JPH11164880A - Manufacture of titania containing inorganic/organic hybrid bioactive material - Google Patents

Manufacture of titania containing inorganic/organic hybrid bioactive material

Info

Publication number
JPH11164880A
JPH11164880A JP9352461A JP35246197A JPH11164880A JP H11164880 A JPH11164880 A JP H11164880A JP 9352461 A JP9352461 A JP 9352461A JP 35246197 A JP35246197 A JP 35246197A JP H11164880 A JPH11164880 A JP H11164880A
Authority
JP
Japan
Prior art keywords
mixing
titanium compound
bone
organoalkoxysilane
bioactive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9352461A
Other languages
Japanese (ja)
Inventor
Tadashi Kokubo
正 小久保
Ki Chin
奇 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP9352461A priority Critical patent/JPH11164880A/en
Publication of JPH11164880A publication Critical patent/JPH11164880A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a material with excellent bioactivity usable for a bone substitutional material, by adding a hydrolytic titanium compound to an aqueous solution containing an organoalkoxysilane and end silanol type dialkylsiloxane, mixing them, and then adding a calcium salt to it and mixing and heating it. SOLUTION: The bioactive material manufactured by adding a hydrolytic titanium compound to an aqueous solution containing an organoalkoxysilane SiR'n (OR)4-n and end silanol type dialkylsiloxane (HO(Si(R)2 O)n )H and mixing and then adding a calcium salt of inorganic acid and mixing and heating, is used as a bone substitutional material or bone reparative material. Tetraethoxysilane is preferably used as organoalkoxysilane SiR'n (OR)4-n and end silanol type polydimethylsiloxane preferably used as end silanol type dialkylsiloxane. Tetraisopropyltintanate is suitable as the titanium compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、チタニアを含有
する無機・有機混成生体活性材料の製造方法に属する。
この生体活性材料は、骨代替材料や骨修復材料として好
適に利用されうる。
TECHNICAL FIELD The present invention relates to a method for producing an inorganic / organic hybrid bioactive material containing titania.
This bioactive material can be suitably used as a bone substitute material or a bone repair material.

【0002】[0002]

【従来の技術】骨代替材料や骨修復材料として、従来か
らアパタイト等のセラミックス、チタン等の金属、ポリ
エチレン等の高分子が用いられているが、いずれも生体
骨結合性などの生体活性、生体親和性及び力学的特性の
全てを満足するものではない。即ち、アパタイトは脆く
て破壊しやすい。チタンは弾性係数が高すぎて、周囲の
生体骨に荷重が加わらなくなるため、生体骨を痩せさせ
てしまう。ポリエチレンは、生体骨結合性をもたないう
えに、ヤング率が低くて海綿骨のそれの50〜500M
Paに到底及ばない。
2. Description of the Related Art Conventionally, ceramics such as apatite, metals such as titanium, and polymers such as polyethylene have been used as bone substitute materials and bone repair materials. Not all of the affinity and mechanical properties are satisfied. That is, apatite is brittle and easily broken. Titanium has too high an elastic modulus, so that a load is not applied to the surrounding living bone, thereby making the living bone thin. Polyethylene has no natural osteointegration, has a low Young's modulus, and has a 50-500M that of cancellous bone.
It is far below Pa.

【0003】そこで、最近になって都留らが、オモシル
(ORMOSILS)と称される有機物に修飾されたケイ酸塩で
あって、カルシウムイオンを含有する生体活性材料を合
成した(ジャーナル オブ マテリアルズ サイエン
ス:マテリアルズ イン メディスン 1997年第8
巻第157−161頁)。オモシルは、テトラエトキシ
シランと末端シラノール型ポリジメチルシロキサンとの
反応によって得られる有機無機混成材料であって、都留
らの合成以前にシュミット(Schmidt)によって公表さ
れている(ノンクリスタリン ソリッド 1985年第
73巻第681頁)。オモシルは、その無機成分(Si,C
a)と有機成分(CH3)との比率を変えることによって弾
性を調整できる点で優れた材料である。都留らはオモシ
ルの反応過程に硝酸カルシウムを導入し、生成物に骨結
合性を付与したのである。
Recently, Tsuru et al. Have synthesized a bioactive material containing calcium ions, which is a silicate modified with an organic substance called Omosil (ORMOSILS) (Journal of Materials Science). : Materials in Medicine 8th 1997
157-161). Omosyl is an organic-inorganic hybrid material obtained by the reaction of tetraethoxysilane with polydimethylsiloxane terminated with silanol, and has been published by Schmidt before its synthesis (Non-Crystallin Solids, 1985, 73rd) 681). Omosil uses its inorganic components (Si, C
It is an excellent material in that the elasticity can be adjusted by changing the ratio between a) and the organic component (CH 3 ). Tsuru and colleagues introduced calcium nitrate into the omosyl reaction process to impart osteointegration to the product.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来合成され
たオモシルのヤング率は、45〜80MPaであって、
生体骨のそれと比べて依然として低すぎる。又、都留ら
の合成したオモシルは生体内での骨結合に長時間を要す
るので、骨結合までに体内で異物反応を生じるおそれが
ある。それ故、本発明の一つの目的は、力学的特性が生
体骨に近似し、生体活性に優れた材料を提供することに
ある。又、他の目的は、得られる生体活性材料の力学的
特性を自在に調整できる製造方法を提供することにあ
る。
However, the conventionally synthesized Omosil has a Young's modulus of 45 to 80 MPa,
Still too low compared to that of living bone. In addition, Omosyl synthesized by Tsuru et al. Takes a long time for osseointegration in a living body, and there is a possibility that a foreign body reaction may occur in the body before osseointegration. Therefore, one object of the present invention is to provide a material having mechanical properties similar to those of a living bone and having excellent bioactivity. Another object of the present invention is to provide a manufacturing method capable of freely adjusting the mechanical properties of the obtained bioactive material.

【0005】[0005]

【課題を解決するための手段】その目的を達成するため
に、本発明の生体活性材料の製造方法は、オルガノアル
コキシシランSiR'n(OR)4-nと末端シラノール型
ジアルキルシロキサン(HO(Si(R)2O)nHを含
む水溶液に、加水分解性のチタン化合物を加えて混合
し、次いで無機酸のカルシウム塩を加えて混合し、加熱
することを特徴とする。
In order to achieve the object, a method for producing a bioactive material according to the present invention comprises an organoalkoxysilane SiR ′ n (OR) 4-n and a silanol-terminated dialkylsiloxane (HO (Si A hydrolyzable titanium compound is added to and mixed with an aqueous solution containing (R) 2 O) n H, and then a calcium salt of an inorganic acid is added and mixed, followed by heating.

【0006】この特徴を備えることにより、得られた材
料は、生体骨に近似した弾性を示し、且つ優れたアパタ
イト形成能力を有する。そして、形成されたアパタイト
を介して速やかに生体骨と結合する。しかも、水溶液中
の相対的な水量、チタン化合物の量及び加熱温度のいず
れかを変えることで、得られる材料のヤング率を調整す
ることができる。この理由はおそらく次のように考えら
れる。
[0006] With this feature, the obtained material exhibits elasticity close to that of living bone and has excellent apatite forming ability. Then, it is quickly bonded to the living bone via the formed apatite. Moreover, the Young's modulus of the obtained material can be adjusted by changing any of the relative amount of water in the aqueous solution, the amount of the titanium compound, and the heating temperature. The reason is probably as follows.

【0007】チタン化合物を添加する前までの工程は、
従来のオモシルの合成過程と類似している。従って、チ
タン化合物を添加する前の段階でオモシルの基本骨格と
なる長い分子鎖が形成されている。そして、チタン化合
物が添加されると直ぐにオモシルと反応し、分子鎖を短
くしてSi−O-のように負に帯電した多数の開裂点を
同時に形成する。その開裂点が正に帯電したカルシウム
イオンを引きつけるので、アパタイト形成能力を向上さ
せる。長い分子鎖をもつオモシルは、既述のように柔軟
であるが、チタン化合物の添加によって短くなった分子
鎖に、シリカよりも結合力の強いチタニアが結合してヤ
ング率を高める。
The steps before adding the titanium compound are as follows:
It is similar to the conventional synthesis process of omosyl. Therefore, a long molecular chain serving as the basic skeleton of omosyl is formed before the addition of the titanium compound. Then, to react with immediately Omoshiru the titanium compound is added, to shorten the molecular chain Si-O - simultaneously forming a large number of cleavage points negatively charged as. Since the cleavage point attracts positively charged calcium ions, the ability to form apatite is improved. Omosyl having a long molecular chain is flexible as described above, but titania having a stronger bonding force than silica is bonded to the molecular chain shortened by the addition of the titanium compound to increase the Young's modulus.

【0008】[0008]

【発明の実施の形態】オルガノアルコキシシランSi
R'n(OR)4-nとして好ましいのは、テトラエトキシ
シラン(以下、「TEOS」という)である。常温で安
定な液体であるし、適当な速度で加水分解するからであ
る。末端シラノール型ジアルキルシロキサンは、好まし
くは末端シラノール型ポリジメチルシロキサン(以下、
「PDMS」という)である。高級アルキル基は、分子
鎖の変角運動に対して立体障害となって、ヤング率の調
整が困難となるからである。ただし、メチル基の一部又
は全部をエチル基に置換することによって、得られる材
料の熱安定性が向上する。チタン化合物として好ましい
のは、テトライソプロピルチタネート(以下、「TiP
T」という)である。常温で安定な液体であるし、且つ
適当な速度で加水分解するからである。
DETAILED DESCRIPTION OF THE INVENTION Organoalkoxysilane Si
R ' n (OR) 4-n is preferably tetraethoxysilane (hereinafter referred to as "TEOS"). This is because the liquid is stable at normal temperature and hydrolyzes at an appropriate rate. The terminal silanol-type dialkylsiloxane is preferably a terminal silanol-type polydimethylsiloxane (hereinafter, referred to as "didimethylsiloxane").
"PDMS"). This is because the higher alkyl group becomes a steric hindrance to the bending motion of the molecular chain, making it difficult to adjust the Young's modulus. However, the thermal stability of the obtained material is improved by substituting a part or all of the methyl group with an ethyl group. Preferred as the titanium compound is tetraisopropyl titanate (hereinafter referred to as “TiP
T ”). This is because it is a stable liquid at normal temperature and hydrolyzes at an appropriate rate.

【0009】[0009]

【実施例】−実施例1− 出発原料として、ナカライテスク社製のTEOS、同じ
くTiPT、同じくCa(NO32、同じく塩酸(35
%)を用いた。有機成分としてアルドリッチケミカル社
製のPDMS(10センチストック溶液;ポリスチレン
を標準試料としてゲル透過クロマトグラムによって測定
された平均分子量1100)を用いた。
EXAMPLES Example 1 As starting materials, TEOS manufactured by Nacalai Tesque, TiPT, Ca (NO 3 ) 2 , and hydrochloric acid (35) were also used as starting materials.
%). PDMS (10 cm stock solution; average molecular weight 1100 measured by gel permeation chromatography using polystyrene as a standard sample) manufactured by Aldrich Chemical Co. was used as an organic component.

【0010】図1に本発明製造方法の実施例の工程順序
を示す。原料の配合組成は表1の通りである。先ずTE
OSをイソプロピルアルコール(IPA)及びテトラハ
イドロフラン(THF)の混合溶媒に入れて、塩酸を触
媒として激しく攪拌しながら蒸留水を添加した。2時間
の加水分解反応の後、PDMSを添加した。15時間以
上もの長時間攪拌し、それからTiPTを滴下した。続
けて1.5時間混合し、次にCa(NO32、蒸留水及
びIPAの混合液を添加して1時間攪拌した。このとき
の反応溶液のpHは3.0ないし4.0であった。反応
溶液を蓋付きのプラスチック容器に入れて大気中40℃
で1日放置して熟成した。溶媒の一部が蒸発して反応溶
液はゲル状になった。このゲルを60℃で3日間加熱す
ることによって、直径70mm、厚さ7mmの円盤が得
られた。
FIG. 1 shows a process sequence of an embodiment of the manufacturing method of the present invention. The composition of the raw materials is as shown in Table 1. First TE
OS was placed in a mixed solvent of isopropyl alcohol (IPA) and tetrahydrofuran (THF), and distilled water was added with vigorous stirring using hydrochloric acid as a catalyst. After a 2 hour hydrolysis reaction, PDMS was added. Stirring was continued for as long as 15 hours or more, and then TiPT was added dropwise. Subsequently, the mixture was mixed for 1.5 hours, and then a mixed solution of Ca (NO 3 ) 2 , distilled water and IPA was added and stirred for 1 hour. At this time, the pH of the reaction solution was 3.0 to 4.0. Put the reaction solution in a plastic container with a lid and put it in air at 40 ° C.
And aged for one day. A part of the solvent was evaporated and the reaction solution became a gel. By heating this gel at 60 ° C. for 3 days, a disk having a diameter of 70 mm and a thickness of 7 mm was obtained.

【0011】[0011]

【表1】 [疑似体液への浸漬]別途、人の血漿に近似した組成を
有し、pH7.25、36.5℃の疑似体液(無機イオ
ン濃度[mM]:Na+142、K+5.0、Mg2+1.5、
Ca2+2.5、Cl-148、HCO3 -4.2、HPO4
2-1.0、SO4 2-0.5)を準備した。円盤から10
×10×2mm3の大きさの試料を切り出し、粗さ40
0番の研磨機で研磨し、洗浄して乾燥した後、30ml
の疑似体液に浸けた。
[Table 1] [Immersion in simulated body fluid] Separately, a simulated body fluid having a composition similar to human plasma and having a pH of 7.25 and 36.5 ° C (inorganic ion concentration [mM]: Na + 142, K + 5.0, Mg 2 + 1.5,
Ca 2+ 2.5, Cl - 148, HCO 3 - 4.2, HPO 4
2 1.0, were prepared SO 4 2- 0.5). 10 from the disk
A sample having a size of × 10 × 2 mm 3 was cut out and had a roughness of 40 mm.
Polish with a No. 0 grinder, wash and dry, then 30ml
Immersed in simulated body fluid.

【0012】[分析と測定]試料を疑似体液から取り出
してイオン交換水で洗浄し、乾燥し、薄膜エックス線回
折計(TF−XRD)及びフーリエ変換赤外反射スペク
トル計(FT−IRRS)によって分析した。また、エ
ネルギー分散エックス線スペクトル(EDX)を装備し
た走査型電子顕微鏡(SEM)によって、試料の表面組
織を観察した。前記各円盤から3×4×30mm3の大
きさの試料を8個ずつ切り出し、インストロン型試験機
を用いて3点曲げ強度を測定した。この測定の際の応力
−変形曲線からヤング率を算出した。
[Analysis and Measurement] A sample was taken out of the simulated body fluid, washed with ion-exchanged water, dried, and analyzed by a thin film X-ray diffractometer (TF-XRD) and a Fourier transform infrared reflection spectrometer (FT-IRRS). . The surface structure of the sample was observed with a scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectrum (EDX). Eight samples each having a size of 3 × 4 × 30 mm 3 were cut out from each of the disks, and the three-point bending strength was measured using an Instron type testing machine. The Young's modulus was calculated from the stress-deformation curve at the time of this measurement.

【0013】[結果]TF−XRD及びFT−IRRS
によれば、どの試料の表面にも4週間以内にアパタイト
が生成した。ただし、表2に示すように、試料A−Dの
各アパタイト生成速度を比較すると、A<B<C<Dす
なわちチタン含有量とともに増した。例えばチタンを含
まない試料Aの場合、14日以内ではアパタイトのピー
クが認められなかったのに対し、多量のTiPTを滴下
して得られた試料Dの場合、わずか0.5日でアパタイ
トが生成した。又、疑似体液に14日間浸けた試料Cの
表面に大きな葉のようなアパタイト粒子が成長してい
た。それは生体活性ガラス(日本電気硝子社製A−Wガ
ラス)の表面に形成されるアパタイトと同様のものであ
った。
[Results] TF-XRD and FT-IRRS
According to the results, apatite was formed on the surface of each sample within 4 weeks. However, as shown in Table 2, when the apatite generation rates of Samples AD were compared, A <B <C <D, that is, the content increased with the titanium content. For example, in the case of sample A containing no titanium, no apatite peak was observed within 14 days, whereas in the case of sample D obtained by dripping a large amount of TiPT, apatite was formed in only 0.5 days. did. Also, apatite particles such as large leaves had grown on the surface of Sample C immersed in the simulated body fluid for 14 days. It was similar to apatite formed on the surface of bioactive glass (AW glass manufactured by NEC Corporation).

【0014】試料のヤング率、及び歪みを表2に併記し
た。表2にみられるように、合成過程でTiPTを滴下
することによって、ヤング率が著しく増加した。しかも
TiPTの滴下量によってヤング率を生体骨のそれと近
似するように調整することができた。
Table 2 also shows the Young's modulus and strain of the sample. As shown in Table 2, the drop of TiPT during the synthesis process significantly increased the Young's modulus. In addition, the Young's modulus could be adjusted to be similar to that of living bone by the amount of TiPT dropped.

【0015】[0015]

【表2】 [Table 2]

【0016】−実施例2− 最後に60℃で3日間加熱する代わりに220℃で12
時間加熱した以外は、実施例1と同一手順で円盤を製造
した後、各円盤から3点曲げ強度測定用の試料を8個ず
つ切り出した。原料の配合組成は、表3に示すとおりで
ある。試料CH、試料BH及び試料DHの配合組成は、
実施例1の試料C、B及びDと各々同一である。
Example 2 Finally, instead of heating at 60 ° C. for 3 days, 12
After producing disks in the same procedure as in Example 1 except for heating for 8 hours, eight samples for measuring three-point bending strength were cut out from each disk. The composition of the raw materials is as shown in Table 3. The composition of Sample CH, Sample BH and Sample DH is
Samples C, B and D of Example 1 are the same.

【0017】[0017]

【表3】 [Table 3]

【0018】表3に見られるように、加熱温度を高くし
ただけでヤング率が著しく変化した。このことから、T
iPTの滴下量だけでなく、加熱温度によってヤング率
を自在に調整できることが明らかである。また、有機成
分が分解しない程度の温度(通常300℃以下)でホッ
トプレスすれば、曲げ強度が更に増すと考えられる。
As shown in Table 3, the Young's modulus changed remarkably only by increasing the heating temperature. From this, T
It is apparent that the Young's modulus can be freely adjusted not only by the amount of iPT dropped but also by the heating temperature. It is considered that the bending strength is further increased by hot pressing at a temperature at which the organic components do not decompose (usually 300 ° C. or lower).

【0019】−実施例3− 最後に60℃で3日間加熱する代わりに150℃で1日
間加熱した以外は、実施例1と同一手順で円盤を製造し
た後、各円盤から3点曲げ強度測定用の試料を8個ずつ
切り出した。原料の配合組成は、表4に示すとおりであ
る。試料Ti0R2の配合組成は、実施例1の試料Aと同一
である。
Example 3 A disk was manufactured in the same procedure as in Example 1 except that heating was performed at 150 ° C. for 1 day instead of heating at 60 ° C. for 3 days. 8 samples were cut out. The composition of the raw materials is as shown in Table 4. The composition of sample Ti0R2 is the same as that of sample A of Example 1.

【0020】[0020]

【表4】 [Table 4]

【0021】表4に見られるように、TiPT滴下量及
び加熱温度が同じでも反応溶液中の水の量を変えただけ
でヤング率が著しく変化した。このことから、TiPT
の滴下量及び加熱温度だけでなく、加水分解時の水の量
によってヤング率を自在に調整できることが明らかであ
る。
As can be seen from Table 4, even when the amount of TiPT dropped and the heating temperature were the same, the Young's modulus changed significantly only by changing the amount of water in the reaction solution. From this, TiPT
It is clear that the Young's modulus can be freely adjusted not only by the amount of water added and the heating temperature but also by the amount of water during the hydrolysis.

【0022】[0022]

【発明の効果】本発明によって得られる材料は、力学的
特性が生体骨に近似し、生体活性に優れているので、短
時間で表面にアパタイトを形成し、これを介して生体骨
と結合させることができる。本発明製造方法によれば、
得られる生体活性材料の力学的特性を自在に調整できる
ので、種々の生体骨に適応することができる。
The material obtained according to the present invention has mechanical properties close to that of living bone and is excellent in biological activity, so that apatite is formed on the surface in a short time and is bonded to living bone through this. be able to. According to the production method of the present invention,
Since the mechanical properties of the obtained bioactive material can be freely adjusted, it can be applied to various living bones.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態の製造方法の工程図である。FIG. 1 is a process chart of a manufacturing method according to an embodiment.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】オルガノアルコキシシランSiR'n(O
R)4-nと末端シラノール型ジアルキルシロキサン(H
O(Si(R)2O)nHを含む水溶液に、加水分解性の
チタン化合物を加えて混合し、次いで無機酸のカルシウ
ム塩を加えて混合し、加熱することを特徴とする生体活
性材料の製造方法。
1. An organoalkoxysilane SiR ' n (O
R) 4-n and silanol-terminated dialkylsiloxane (H
A bioactive material characterized by adding a hydrolyzable titanium compound to an aqueous solution containing O (Si (R) 2 O) n H and mixing, then adding a calcium salt of an inorganic acid, mixing and heating. Manufacturing method.
【請求項2】オルガノアルコキシシランSiR'n(O
R)4-nがテトラエトキシシランである請求項1に記載
の製造方法。
2. An organoalkoxysilane SiR ' n (O
The method according to claim 1, wherein R) 4-n is tetraethoxysilane.
【請求項3】末端シラノール型ジアルキルシロキサンが
末端シラノール型ポリジメチルシロキサンである請求項
1に記載の製造方法。
3. The method according to claim 1, wherein the silanol-terminated dialkylsiloxane is a silanol-terminated polydimethylsiloxane.
【請求項4】チタン化合物がテトライソプロピルチタネ
ートである請求項1に記載の製造方法。
4. The method according to claim 1, wherein the titanium compound is tetraisopropyl titanate.
JP9352461A 1997-12-05 1997-12-05 Manufacture of titania containing inorganic/organic hybrid bioactive material Pending JPH11164880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9352461A JPH11164880A (en) 1997-12-05 1997-12-05 Manufacture of titania containing inorganic/organic hybrid bioactive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9352461A JPH11164880A (en) 1997-12-05 1997-12-05 Manufacture of titania containing inorganic/organic hybrid bioactive material

Publications (1)

Publication Number Publication Date
JPH11164880A true JPH11164880A (en) 1999-06-22

Family

ID=18424236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9352461A Pending JPH11164880A (en) 1997-12-05 1997-12-05 Manufacture of titania containing inorganic/organic hybrid bioactive material

Country Status (1)

Country Link
JP (1) JPH11164880A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001079080A (en) * 1999-09-16 2001-03-27 Tadashi Kokubo Bioactive inorganic-organic hybrid material and its preparation
WO2002089864A1 (en) * 2001-05-02 2002-11-14 Japan Science And Technology Corporation Anatase-type titanium dioxide/organic polymer composite materials suitable for artificial bone
KR20030022425A (en) * 2001-08-03 2003-03-17 한국화학연구원 A preparation method of bioactive and biodegradable organic/inorganic composite
KR100460452B1 (en) * 2002-08-23 2004-12-08 한국화학연구원 A preparation method of a porous organic/inorganic composite through an instant gel method
US8163032B2 (en) 2002-06-13 2012-04-24 Kensey Nash Bvf Technology, Llc Devices and methods for treating defects in the tissue of a living being
US8690874B2 (en) 2000-12-22 2014-04-08 Zimmer Orthobiologics, Inc. Composition and process for bone growth and repair

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001079080A (en) * 1999-09-16 2001-03-27 Tadashi Kokubo Bioactive inorganic-organic hybrid material and its preparation
US8690874B2 (en) 2000-12-22 2014-04-08 Zimmer Orthobiologics, Inc. Composition and process for bone growth and repair
WO2002089864A1 (en) * 2001-05-02 2002-11-14 Japan Science And Technology Corporation Anatase-type titanium dioxide/organic polymer composite materials suitable for artificial bone
KR20030022425A (en) * 2001-08-03 2003-03-17 한국화학연구원 A preparation method of bioactive and biodegradable organic/inorganic composite
US8163032B2 (en) 2002-06-13 2012-04-24 Kensey Nash Bvf Technology, Llc Devices and methods for treating defects in the tissue of a living being
US8419802B2 (en) 2002-06-13 2013-04-16 Kensey Nash Bvf Technology, Llc Devices and methods for treating defects in the tissue of a living being
US8425619B2 (en) 2002-06-13 2013-04-23 Kensey Nash Bvf Technology, Llc Devices and methods for treating defects in the tissue of a living being
US8435306B2 (en) 2002-06-13 2013-05-07 Kensey Nash Bvf Technology Llc Devices and methods for treating defects in the tissue of a living being
US9283074B2 (en) 2002-06-13 2016-03-15 Kensey Nash Bvf Technology, Llc Devices and methods for treating defects in the tissue of a living being
KR100460452B1 (en) * 2002-08-23 2004-12-08 한국화학연구원 A preparation method of a porous organic/inorganic composite through an instant gel method

Similar Documents

Publication Publication Date Title
Murphy et al. Growth of continuous bonelike mineral within porous poly (lactide‐co‐glycolide) scaffolds in vitro
JP4828032B2 (en) Hydrophobic silica powder and method for producing the same
Verné et al. Surface functionalization of bioactive glasses
JP2010537763A (en) Bioactive nanocomposite material
Lao et al. Bioactive glass–gelatin hybrids: Building scaffolds with enhanced calcium incorporation and controlled porosity for bone regeneration
WO2009009784A1 (en) Formable bioceramics
Bossard et al. Mechanism of calcium incorporation inside sol–gel silicate bioactive glass and the advantage of using Ca (OH) 2 over other calcium sources
Colilla et al. Amino− Polysiloxane Hybrid Materials for Bone Reconstruction
Negahi Shirazi et al. A novel strategy for softening gelatin–bioactive-glass hybrids
US7335717B2 (en) Methods, compositions, and biomimetic catalysts for the synthesis of silica, polysilsequioxanes, polysiloxanes, non-silicon metalloid-oxygen networks, polymetallo-oxanes, and their organic or hydrido conjugates and derivatives
Tsuru et al. Synthesis and in vitro behavior of organically modified silicate containing Ca ions
Gabbai-Armelin et al. Characterization and cytotoxicity evaluation of a marine sponge biosilica
KR20150126669A (en) Bone substitutes grafted by mimetic peptides of human bmp-2 protein
JPH11164880A (en) Manufacture of titania containing inorganic/organic hybrid bioactive material
Miyazaki et al. Synthesis of bioactive organic–inorganic nanohybrid for bone repair through sol–gel processing
CN107162388A (en) A kind of method using dendroid polyethyleneimine as template and the big hole bioactive glass nano-cluster of catalyst preparation
Ghorbanzade Zaferani et al. Direct impregnation of MgO nanoparticles in 58S bioactive glass: bioactivity evaluation and antibacterial activity
CN109771692B (en) Formula and preparation method of POSS (polyhedral oligomeric silsesquioxane) -based regenerative medical material
Martinez-Ibañez et al. Design of nanostructured siloxane-gelatin coatings: Immobilization strategies and dissolution properties
Yamamoto et al. Preparation of polymer-silicate hybrid maerials bearing silanol groups and the apatite formation on/in the hybrid materials
Manzano et al. Mechanical properties of organically modified silicates for bone regeneration
EP0100660A2 (en) A bioreactor and a process for the production thereof
Aburatani et al. Mechanical properties and microstructure of bioactive ORMOSILs containing silica particles
Salinas et al. The sol–gel production of bioceramics
JPS59128205A (en) Manufacture of porous gelled support