JPH11162480A - Stack structure having passage integral electrode and its manufacture - Google Patents

Stack structure having passage integral electrode and its manufacture

Info

Publication number
JPH11162480A
JPH11162480A JP9331375A JP33137597A JPH11162480A JP H11162480 A JPH11162480 A JP H11162480A JP 9331375 A JP9331375 A JP 9331375A JP 33137597 A JP33137597 A JP 33137597A JP H11162480 A JPH11162480 A JP H11162480A
Authority
JP
Japan
Prior art keywords
electrode
plate
current collector
passage
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9331375A
Other languages
Japanese (ja)
Inventor
Toshiya Matsuyama
俊哉 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP9331375A priority Critical patent/JPH11162480A/en
Publication of JPH11162480A publication Critical patent/JPH11162480A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the reaction area within an electrode without increasing the overvoltage of the electrode by arranging a passage integral electrode prepared by directly forming the electrode on one side of a current collecting plate formed by bending a porous metal plate, and flattening the surface on the electrode side, and using the current collecting side of the electrode as a gas passage and the flattened side as the contact surface with an electrolyte plate. SOLUTION: Stack structure is formed by stacking a plurality of cells 11 in tens to hundreds steps through a separator 12 to obtain high voltage, and has a passage integral electrode 14. The passage integral electrode 14 functions as an electrode and also as a gas passage which is one function of the separator. In this constitution, the separator 12 has no passage in at least a reaction part, and has only the function for separating gas with a center plate 12a. The passage integral electrode 14 has structure in which an electrode 16 is directly formed on one side of a current collecting plate 15 formed by bending a porous metal plate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融炭酸塩型燃料
電池に係わり、更に詳しくは、流路一体型電極を備えた
スタック構造とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten carbonate fuel cell, and more particularly, to a stack structure having a flow path integrated electrode and a method of manufacturing the same.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池は、水の電気分解
の逆の反応を利用し、水素と酸素から水を生成するとき
の化学エネルギを電気エネルギに変換するものである。
この燃料電池は、図3に示すように、2枚の多孔質電極
(主としてNi、NiO)が電解質板を挟み、溝付ホル
ダでガスを送る構造となっている。多孔質電極は3相接
触界面(固体/液体/気体の界面)が大きくとれ、燃料
電池には不可欠のものである。また、電解質板は、主と
してLiAlO2 からなる多孔体の空孔に炭酸塩を入れ
たもので、作動温度域では炭酸塩は溶けてCO3 2-を通
す電解質溶液となる。この電解質板は、炭酸塩の長期保
持を図るとともに、両極ガスの混合を防ぐものである。
2. Description of the Related Art Molten carbonate fuel cells use the reverse reaction of the electrolysis of water to convert the chemical energy used to produce water from hydrogen and oxygen into electric energy.
As shown in FIG. 3, this fuel cell has a structure in which two porous electrodes (mainly Ni and NiO) sandwich an electrolyte plate and send gas by a grooved holder. The porous electrode has a large three-phase contact interface (solid / liquid / gas interface) and is indispensable for a fuel cell. The electrolyte plate is primarily intended to put holes in the carbonate of the porous body consisting of LiAlO2, carbonates in an operating temperature range becomes electrolyte solution through the CO 3 2- melt. This electrolyte plate is intended to maintain carbonate for a long period of time and to prevent mixing of bipolar gases.

【0003】溶融炭酸塩型燃料電池における電池反応
は、次の2つの式であらわすことができる。 (アノード反応)H2 +CO3 2-→H2 O+CO2 +2e...式 (カソード反応)CO2 +1/2O2 →CO3 2- ...式 また、電池の電圧と電流の関係は、次のようになる。
A cell reaction in a molten carbonate fuel cell can be represented by the following two equations. (Anode reaction) H 2 + CO 3 2- → H 2 O + CO 2 + 2e. . . Formula (Cathode Reaction) CO 2 + 1 / 2O 2 → CO 3 2- . . . Expression The relationship between the voltage and the current of the battery is as follows.

【0004】 Vcell=Vo −(ηa +ηc )−i・Ri ...式 ηa ≒i(Ra+Rai) ...式 ηc ≒i(Rc+Rci) ...式 なお、式において、Vcellは電池の作動電圧、Vo
電池の開路電圧、ηa はアノード過電圧、ηc はカソー
ド過電圧、Raはアノード分極抵抗、Rcはカソード分
極抵抗、Raiはアノード電気抵抗、Rciはカソード
電気抵抗、Riは内部抵抗、iは取り出す電流密度であ
る。式の関係を図4に示す。電池の性能を向上させる
ためには、アノード過電圧ηa 、カソード過電圧ηc
内部抵抗Riを減少させる必要がある。
V cell = V o − (η a + η c ) −i · Ri. . . The equation η a ≒ i (Ra + Rai). . . Equation η c ≒ i (Rc + Rci). . . In the equation, V cell is the operating voltage of the battery, V o is the open circuit voltage of the battery, η a is the anode overvoltage, η c is the cathode over voltage, Ra is the anode polarization resistance, Rc is the cathode polarization resistance, and Rai is the anode electric voltage. The resistance, Rci is the cathode electric resistance, Ri is the internal resistance, and i is the current density to be taken out. FIG. 4 shows the relationship between the expressions. In order to improve the performance of the battery, the anode overvoltage η a , the cathode overvoltage η c ,
It is necessary to reduce the internal resistance Ri.

【0005】図5は、従来のスタックにおける反応部の
断面図である。図3に示した単一のセルでは、電池の作
動電圧が低い(0.75〜0.8V)ため、複数のセル
1をセパレータ2を介して数十〜数百段積層して高電圧
を得るようになっている。この図においてセパレータ2
はセンタープレート3とその両側に位置するコルゲート
板4からなり、前述のセル1(電解質板6、燃料極7、
酸素極8からなる)を集電板5を介して挟持するように
なっている。
FIG. 5 is a sectional view of a reaction section in a conventional stack. In the single cell shown in FIG. 3, since the operating voltage of the battery is low (0.75 to 0.8 V), a plurality of cells 1 are stacked with several tens to several hundreds of layers via the separator 2 to apply a high voltage. I am getting it. In this figure, separator 2
Is composed of a center plate 3 and corrugated plates 4 located on both sides of the center plate 3. The cell 1 (electrolyte plate 6, fuel electrode 7,
(Comprising an oxygen electrode 8) is sandwiched via a current collector plate 5.

【0006】[0006]

【発明が解決しようとする課題】図5に示した従来のス
タック構造において、燃料電池の出力電圧を向上させる
には、過電圧を低減させる必要がある。上述したように
燃料電池の電極は多孔質体であり、この空孔の表面が電
解質で濡れかつガスが到達できる部分が電極反応に寄与
するので、電極内部の反応面積を増大させることにより
過電圧を低減することができる。この手段として、図5
に示した平板状の電極の代わりに、電極を厚くする、
又は電極をリブ付きにする、ことにより反応面積を増
すことが従来から一部で提案されていた。
In the conventional stack structure shown in FIG. 5, it is necessary to reduce the overvoltage in order to improve the output voltage of the fuel cell. As described above, the electrode of the fuel cell is a porous body, and the surface of the pores is wetted with the electrolyte and the portion where the gas can reach contributes to the electrode reaction, so that the overvoltage is increased by increasing the reaction area inside the electrode. Can be reduced. As this means, FIG.
Instead of the flat electrode shown in the above, thicken the electrode,
Or, it has been conventionally proposed to increase the reaction area by forming the electrodes with ribs.

【0007】しかし、電極厚さをある程度以上に増す
と、電極内部の反応面積Aが増大し、式におけるi
(i=I/A、Iは外部取出電流)が見掛け上低下する
ので、i・Ra,i・Rcは低下するが、電極の電気抵
抗Rai,Rciが増大するため、電極の過電圧ηa
ηc は、両者が相殺して実質的に性能向上が得られな
い。また、電極を厚くした分、セル厚さ増加する問題点
を生じる。
However, when the electrode thickness is increased to a certain degree or more, the reaction area A inside the electrode increases and i
(I = I / A, where I is the externally extracted current) apparently decreases, so i · Ra and i · Rc decrease. However, since the electrical resistances Rai and Rci of the electrodes increase, the electrode overvoltage η a +
As for η c , the two cancel each other out and substantially no performance improvement is obtained. In addition, there is a problem that the thickness of the cell is increased by the thickness of the electrode.

【0008】また、リブ付きとする場合、焼成する際
に電極が収縮するため、電極各部分の収縮量を制御する
ことが困難であり、リブの寸法精度の確保が難しい。そ
のため精度低下により反応ガスの分配不良や電極とセパ
レータ板の接触不良が生じ、性能がかえって低下してし
まう。
[0008] In addition, when a rib is provided, the electrode shrinks during firing, so it is difficult to control the amount of shrinkage of each part of the electrode, and it is difficult to ensure the dimensional accuracy of the rib. As a result, poor precision causes poor distribution of the reactive gas and poor contact between the electrode and the separator plate, resulting in a reduction in performance.

【0009】本発明は、かかる問題点を解決するために
創案されたものである。すなわち本発明の目的は、電極
の過電圧上昇を伴うことなく、電極内部の反応面積Aを
増大させることができるスタック構造とその製造方法を
提供することにある。更に、本発明の目的は、セル厚さ
の増大や、焼成による電極厚さ精度の低下、反応ガスの
分配不良、電極とセパレータ板との接触不良等を伴うこ
となく、電極内部の反応面積Aを増大させることができ
るスタック構造とその製造方法を提供することにある。
The present invention has been made to solve such a problem. That is, an object of the present invention is to provide a stack structure capable of increasing the reaction area A inside the electrode without increasing the overvoltage of the electrode, and a method of manufacturing the same. Further, the object of the present invention is to increase the cell thickness, reduce the electrode thickness accuracy due to firing, impede the distribution of reactive gas, and cause a poor contact between the electrode and the separator plate. And a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】本発明によれば、金属多
孔板を折り曲げた集電板の片面に直接電極を成形し、電
極側表面を平面化した流路一体型電極を備え、該電極の
集電板側をガス流路とし、平面側を電解質板との接触面
とする、ことを特徴とするスタック構造が提供される。
According to the present invention, an electrode is formed directly on one side of a current collector plate obtained by bending a metal perforated plate, and a flow path integrated electrode having a flat surface on the electrode side is provided. Wherein the current collector plate side is a gas flow path and the flat side is a contact surface with the electrolyte plate.

【0011】本発明の構造によれば、折り曲げた集電板
の片面に直接電極を成形するので、電極とセパレータ板
との接触不良を防止し電気抵抗を低減できる。従って、
電極の過電圧上昇を伴うことなく、電極内部の反応面積
Aを増大させることができる。また集電板で流路形状が
確保できるため、ガス分配不良を防ぐことができる。更
に、従来の平板状の集電板を無くすことかでき、従来の
コルゲート板に相当する折り曲げた集電板の片面に直接
電極を成形するので、セル厚さを実質的に低減でき、か
つ電極内部の反応面積Aを増大させることができる。
According to the structure of the present invention, since the electrode is directly formed on one surface of the bent current collector plate, poor contact between the electrode and the separator plate can be prevented and the electric resistance can be reduced. Therefore,
The reaction area A inside the electrode can be increased without increasing the overvoltage of the electrode. Further, since the shape of the flow path can be secured by the current collector plate, poor gas distribution can be prevented. Furthermore, since the conventional flat current collector plate can be eliminated, and the electrode is directly formed on one surface of the bent current collector plate corresponding to the conventional corrugated plate, the cell thickness can be substantially reduced, and the electrode can be substantially reduced. The internal reaction area A can be increased.

【0012】また、本発明によれば、a.集電板の素材
となる板材に孔開け加工し、b.曲げ加工により片面に
流路を有する集電板を成形し、c.流路の反対面に電極
スラリーを流し込み、d.乾燥・脱脂し、e.焼成す
る、ことを特徴とする流路一体型電極の製造方法が提供
される。この方法によれば、集電板に直接電極を成形す
ることができ、焼成の際の電極の収縮を集電板が抑制す
るため、電極各部分の収縮量を制御することが可能であ
り、電極厚さの精度を確保し、反応ガスの分配性能を向
上し、電極とセパレータ板の接触抵抗を低減することが
できる。
According to the present invention, a. Perforating a plate material serving as a current collector plate, b. Forming a current collector having a flow path on one side by bending; c. Pouring the electrode slurry into the opposite side of the flow path; d. Dry and degrease, e. A method for producing a channel-integrated electrode, comprising firing. According to this method, the electrode can be formed directly on the current collector plate, and the current collector plate suppresses the contraction of the electrode during firing, so that it is possible to control the amount of contraction of each electrode portion, Accuracy of the electrode thickness can be ensured, the distribution performance of the reaction gas can be improved, and the contact resistance between the electrode and the separator plate can be reduced.

【0013】[0013]

【発明の実施の形態】以下に本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において、共通
する部分には同一の符号を付し重複した説明を省略す
る。図1は、本発明による流路一体型電極を備えたスタ
ック構造図である。この図において、本発明のスタック
構造は、図5と同様に複数のセル11をセパレータ12
を介して数十〜数百段積層して高電圧を得るようになっ
ている。
Preferred embodiments of the present invention will be described below with reference to the drawings. In each of the drawings, common portions are denoted by the same reference numerals, and redundant description will be omitted. FIG. 1 is a diagram showing a stack structure including a channel-integrated electrode according to the present invention. In this figure, the stack structure of the present invention is similar to that of FIG.
, Several tens to several hundreds of layers are stacked to obtain a high voltage.

【0014】更に本発明のスタック構造では、流路一体
型電極14を備えており、この流路一体型電極14は、
電極として機能すると共に、従来のセパレータの機能の
一部であるガス流路としても機能する。従って、本発明
の構成では、セパレータ12は、少なくとも反応部分に
は流路がなく、単にセンタープレート12aによりガス
を分離する機能を果している。
Further, the stack structure of the present invention is provided with a flow path integrated electrode 14, and this flow path integrated electrode 14
In addition to functioning as an electrode, it also functions as a gas flow path that is a part of the function of a conventional separator. Therefore, in the configuration of the present invention, the separator 12 has no flow path at least in the reaction portion, and has a function of simply separating gas by the center plate 12a.

【0015】流路一体型電極14は、金属多孔板を折り
曲げた集電板15の片面に直接電極16を成形した構造
となっており、更に成形した電極の表面は、平坦な平面
となっている。電極の集電板11側がガス流路となり、
平面側が電解質板6との接触面となる。金属多孔板は、
反応領域に適した材質の金属、例えばアノード側にはニ
ッケル又はニッケル合金、カソード側にはステンレス等
を用いる。金属多孔板の孔は、ガスが流通できる範囲で
できるだけ小さいことが好ましい。金属多孔板の折り曲
げ形状は、ガス流路を形成できる限りで自由であり、角
形ストレート、波型ストレート、オフセット型等を採用
することができる。
The channel integrated electrode 14 has a structure in which an electrode 16 is directly formed on one surface of a current collector plate 15 obtained by bending a metal porous plate, and the surface of the formed electrode is a flat surface. I have. The current collector plate 11 side of the electrode serves as a gas flow path,
The plane side is a contact surface with the electrolyte plate 6. The perforated metal plate
A metal of a material suitable for the reaction region, for example, nickel or a nickel alloy is used on the anode side, and stainless steel or the like is used on the cathode side. It is preferable that the holes of the metal perforated plate are as small as possible as long as the gas can flow. The bent shape of the metal porous plate is free as long as the gas flow path can be formed, and a rectangular straight, a wave-shaped straight, an offset type, or the like can be adopted.

【0016】上述した構成により、折り曲げた集電板1
5の片面に直接電極16を成形するので、電極16とセ
パレータ板(すなわち集電板15)との接触不良を防止
し電気抵抗を低減できる。従って、電極15の過電圧上
昇を伴うことなく、電極内部の反応面積Aを増大させる
ことができる。また集電板15で流路形状が確保できる
ため、ガス分配不良を防ぐことができる。更に、従来の
平板状の集電板(図5の5)を無くすことかでき、従来
のコルゲート板(図5の4)に相当する折り曲げた集電
板15の片面に直接電極を成形するので、セル厚さを実
質的に低減でき、かつ電極内部の反応面積Aを増大させ
ることができる。
The current collector plate 1 bent by the above-described configuration.
Since the electrode 16 is formed directly on one side of the electrode 5, poor contact between the electrode 16 and the separator plate (that is, the current collector plate 15) can be prevented, and the electric resistance can be reduced. Therefore, the reaction area A inside the electrode can be increased without increasing the overvoltage of the electrode 15. In addition, since the shape of the flow path can be ensured by the current collecting plate 15, it is possible to prevent poor gas distribution. Furthermore, the conventional flat current collector plate (5 in FIG. 5) can be eliminated, and the electrodes are directly formed on one surface of the bent current collector plate 15 corresponding to the conventional corrugated plate (4 in FIG. 5). The cell thickness can be substantially reduced, and the reaction area A inside the electrode can be increased.

【0017】なお、図1の例では、燃料電池のアノード
側、カソード側の両方に本発明の流路一体型電極を備え
ているが、これは必要によりいずれか一方であってもよ
い。
In the example shown in FIG. 1, both the anode side and the cathode side of the fuel cell are provided with the channel-integrated electrode of the present invention, but this may be either one if necessary.

【0018】図2は、本発明の流路一体型電極の製造方
法を示すフロー図である。この図に示すように、本発明
の流路一体型電極14は、まず、a.集電板の素材とな
る板材に孔開け加工をし、次いでf.片面に炭化水素系
のシートを貼り付け、b.曲げ加工を行う。次に、c.
シート面の裏側に電極スラリーを流し込み、d.200
〜300℃で乾燥・脱脂を行う。このときシートが除去
される。更にe.セル外又はセル内で焼成する。
FIG. 2 is a flowchart showing a method of manufacturing a flow path integrated electrode according to the present invention. As shown in this figure, the channel-integrated electrode 14 of the present invention comprises: a. Perforating a plate material to be a material of the current collector plate, and then f. Affixing a hydrocarbon sheet on one side; b. Perform bending. Next, c.
Pouring the electrode slurry into the back side of the sheet surface; d. 200
Dry and degrease at ~ 300 ° C. At this time, the sheet is removed. Further, e. Baking outside or inside the cell.

【0019】孔開けと曲げ加工は、オフセット型コルゲ
ートのように同時に行ってもよい。f.のシートの貼り
付けは、孔から電極スラリーが流れでる場合には、必要
であるが、孔が小さい場合や、スラリーの粘性が高い場
合等にはこれを省略することができる。
Drilling and bending may be performed simultaneously, as in an offset corrugate. f. Is required when the electrode slurry flows from the holes, but can be omitted when the holes are small or the viscosity of the slurry is high.

【0020】上述した方法により、集電板15に直接電
極16を成形することができ、焼成の際の電極16の収
縮を集電板15が抑制するため、電極各部分の収縮量を
制御することが可能であり、電極厚さの精度を確保し、
反応ガスの分配性能を向上し、電極とセパレータ板の接
触抵抗を低減することができる。
According to the above-described method, the electrode 16 can be formed directly on the current collector 15 and the current collector 15 suppresses the contraction of the electrode 16 during firing. It is possible to ensure the accuracy of the electrode thickness,
The distribution performance of the reaction gas can be improved, and the contact resistance between the electrode and the separator plate can be reduced.

【0021】なお、本発明は上述した実施形態及び実施
例に限定されず、本発明の要旨を逸脱しない範囲で種々
変更できることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiments and examples, and it is needless to say that various changes can be made without departing from the gist of the present invention.

【0022】[0022]

【発明の効果】上述したように、本発明の流路一体型電
極を備えたスタック構造とその製造方法は、電極の過電
圧上昇を伴うことなく、かつセル厚さの増大や、焼成に
よる電極厚さ精度の低下、反応ガスの分配不良、電極と
セパレータ板との接触不良等を伴うことなく、電極内部
の反応面積Aを増大させることができる等の優れた効果
を有し、これにより、電極面積が増加し、反応過電圧が
低減する。その結果、セルの出力電圧の向上が図れる。
As described above, the stack structure provided with the flow path-integrated electrode and the method of manufacturing the same according to the present invention can be used without increasing the overvoltage of the electrode, increasing the cell thickness, or firing the electrode. Has an excellent effect such as being able to increase the reaction area A inside the electrode without accompanying a decrease in accuracy, a poor distribution of the reaction gas, a poor contact between the electrode and the separator plate, and the like. The area increases and the reaction overvoltage decreases. As a result, the output voltage of the cell can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による流路一体型電極を備えたスタック
構造図である。
FIG. 1 is a diagram illustrating a stack structure including a channel-integrated electrode according to the present invention.

【図2】本発明の流路一体型電極の製造方法を示すフロ
ー図である。
FIG. 2 is a flowchart showing a method for manufacturing a flow path integrated electrode of the present invention.

【図3】溶融炭酸塩型燃料電池の原理図である。FIG. 3 is a principle diagram of a molten carbonate fuel cell.

【図4】燃料電池の電圧と電流の関係図である。FIG. 4 is a diagram showing the relationship between voltage and current of a fuel cell.

【図5】従来のスタックにおける反応部の断面図であ
る。
FIG. 5 is a sectional view of a reaction section in a conventional stack.

【符号の説明】[Explanation of symbols]

1 セル 2 セパレータ 3 センタープレート 4 コルゲート板 5 集電板 6 電解質板 7 燃料極(アノード) 8 酸素極(カソード) 11 セル 12 セパレータ 12a センタープレート 14 流路一体型電極 15 集電板 16 電極 DESCRIPTION OF SYMBOLS 1 Cell 2 Separator 3 Center plate 4 Corrugated plate 5 Current collector 6 Electrolyte plate 7 Fuel electrode (anode) 8 Oxygen electrode (cathode) 11 Cell 12 Separator 12a Center plate 14 Integrated flow path electrode 15 Current collector plate 16 Electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属多孔板を折り曲げた集電板の片面に
直接電極を成形し、電極側表面を平面化した流路一体型
電極を備え、該電極の集電板側をガス流路とし、平面側
を電解質板との接触面とする、ことを特徴とするスタッ
ク構造。
An electrode is directly formed on one side of a current collector plate obtained by bending a metal porous plate, and a flow path integrated electrode having a flat surface on the electrode side is provided, and the current collector side of the electrode is used as a gas channel. A stack structure, wherein the flat side is a contact surface with the electrolyte plate.
【請求項2】 a.集電板の素材となる板材に孔開け加
工し、b.曲げ加工により片面に流路を有する集電板を
成形し、c.流路の反対面に電極スラリーを流し込み、
d.乾燥・脱脂し、e.焼成する、ことを特徴とする流
路一体型電極の製造方法。
2. A method comprising: a. Perforating a plate material serving as a current collector plate, b. Forming a current collector having a flow path on one side by bending; c. Pour the electrode slurry into the opposite surface of the flow path,
d. Dry and degrease, e. A method for producing a flow path integrated electrode, comprising firing.
JP9331375A 1997-12-02 1997-12-02 Stack structure having passage integral electrode and its manufacture Pending JPH11162480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9331375A JPH11162480A (en) 1997-12-02 1997-12-02 Stack structure having passage integral electrode and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9331375A JPH11162480A (en) 1997-12-02 1997-12-02 Stack structure having passage integral electrode and its manufacture

Publications (1)

Publication Number Publication Date
JPH11162480A true JPH11162480A (en) 1999-06-18

Family

ID=18242991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9331375A Pending JPH11162480A (en) 1997-12-02 1997-12-02 Stack structure having passage integral electrode and its manufacture

Country Status (1)

Country Link
JP (1) JPH11162480A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150074283A (en) * 2013-12-23 2015-07-02 재단법인 포항산업과학연구원 Saperator for solid oxide fuel cell and fuel cell having thereof and method for manufacturing the same
CN109786781A (en) * 2019-03-15 2019-05-21 徐州华清京昆能源有限公司 A kind of integral electrode with air flue

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150074283A (en) * 2013-12-23 2015-07-02 재단법인 포항산업과학연구원 Saperator for solid oxide fuel cell and fuel cell having thereof and method for manufacturing the same
CN109786781A (en) * 2019-03-15 2019-05-21 徐州华清京昆能源有限公司 A kind of integral electrode with air flue

Similar Documents

Publication Publication Date Title
KR100341402B1 (en) Single Cell and Stack Structure of Solid Oxide Fuel Cell
JPH03205763A (en) Fuel cell fluid floating plate
US20040219423A1 (en) Metal-supported solid electrolyte electrochemical cell and multi cell reactors incorporating same
JP2004500685A (en) Planar fuel cell using nail current collector to increase effective surface area
JP2004055564A (en) Fuel cell assembly
JP2002260709A (en) Solid polymer cell assembly, fuel cell stack and operation method of fuel cell
JPH0529009A (en) Gas passage plate for fuel cell
JP2002313370A (en) Separator for use in solid electrolyte fuel cell and solid electrolyte fuel cell with such separator incorporated therein
US20050019645A1 (en) Seal for a fuel cell stack
JPH11162480A (en) Stack structure having passage integral electrode and its manufacture
KR101254965B1 (en) A Seperator For Fuel Cell
JPH0668887A (en) Separator for fuel cell
JPH087900A (en) Solid electrolytic fuel cell
JPH07153472A (en) Current collecting plate for fuel cell
JPH0982346A (en) Plate-like solid electrolyte fuel cell
JPS6247968A (en) Molten carbonate fuel cell capable of internal reformation
EP4181243A2 (en) Fuel cell interconnect optimized for operation in hydrogen fuel
JPH0722058A (en) Flat solid electrolyte fuel cell
JPH03238758A (en) Fuel cell of solid electrolyte type
JPS5996668A (en) Bipolar separator for fuel cell
JPH01313856A (en) Electrode member for solid electrolyte type fuel cell, its manufacture and solid electrolyte type fuel cell
JP2948441B2 (en) Flat solid electrolyte fuel cell
US11489187B2 (en) Cell stack device
JP2547743B2 (en) Method for manufacturing electrode support plate for molten carbonate fuel cell
JP2008277236A (en) Solid oxide fuel cell, and its stack structure