JPH11160419A - Alignment adjusting apparatus for laser radar - Google Patents

Alignment adjusting apparatus for laser radar

Info

Publication number
JPH11160419A
JPH11160419A JP9328345A JP32834597A JPH11160419A JP H11160419 A JPH11160419 A JP H11160419A JP 9328345 A JP9328345 A JP 9328345A JP 32834597 A JP32834597 A JP 32834597A JP H11160419 A JPH11160419 A JP H11160419A
Authority
JP
Japan
Prior art keywords
optical system
laser
optical axis
scattered
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9328345A
Other languages
Japanese (ja)
Inventor
Yoshihiko Kameda
芳彦 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9328345A priority Critical patent/JPH11160419A/en
Publication of JPH11160419A publication Critical patent/JPH11160419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an alignment adjusting apparatus by which high-accuracy alignment adjustment of an optical system in a laser radar can be realized automatically. SOLUTION: An alignment adjusting apparatus is constituted in such a way that a part of scattered laser light received by a receiving optical system 13 is fetched, that the central position of the scattered laser light is detected, that a receiving optical system 10 is moved and controlled so as to correspond to the central position, and that the alignment of the transmitting optical system 10 with the receiving optical system 13 is adjusted. Consequently, even when a dislocation is generated in the optical axis of the transmitting optical system 10 and that of the receiving optical system 13 due to an environmental condition or the like, a laser radar is drive, and the scattered laser light is received by the receiving optical system 13. Then, the transmitting optical system 10 and the receiving optical system 13 are controlled so as to make the optical axis of the system 10 coincident with that of the system 13 is accordance with the central position of the scattered laser light, and the high-accuracy alignment adjustment of the laser radar is ensured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば人工衛星
等の宇宙航行体に搭載され、大気観測等に供するレーザ
レーダに係り、特に、そのアライメント調整装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser radar mounted on a spacecraft such as an artificial satellite for use in atmospheric observation and the like, and more particularly to an alignment adjusting device for the laser radar.

【0002】[0002]

【従来の技術】近年、リモートセンシング分野において
は、ライダと称するレーザレーダを用いて大気観測等を
行う方法が研究されている。このレーザレーダは、図3
に示すようにレーザ送信機でレーザ光を生成して、この
レーザ光を送信光学系を介して目標方向に送信する。
2. Description of the Related Art Recently, in the field of remote sensing, a method of observing the atmosphere using a laser radar called a lidar has been studied. This laser radar is shown in FIG.
As shown in (1), laser light is generated by a laser transmitter, and this laser light is transmitted in a target direction via a transmission optical system.

【0003】他方、レーザ受信部としては、受信光学系
3が、その光軸を送信光学系2に対応して配設され、こ
の受信光学系3で雲、エアロゾル等の被測定対象で反射
した散乱レーザ光を受光して検出器4に出力する。検出
器4は、入力した散乱レーザ光の強度及び戻り時間等を
検出して、その検出信号を信号処理部5に出力する。信
号処理部5は、入力した検出信号に基づいて雲、エアゾ
ル等の被測定対象の状態を検出する。この信号処理部5
の検出特性は、送信光学系2と受信光学系3の光軸のア
ライメント調整によりほぼ決定される。
On the other hand, as a laser receiving section, a receiving optical system 3 is disposed with its optical axis corresponding to the transmitting optical system 2, and reflected by the receiving optical system 3 on an object to be measured such as a cloud or an aerosol. The scattered laser light is received and output to the detector 4. The detector 4 detects the intensity and return time of the input scattered laser light, and outputs a detection signal to the signal processing unit 5. The signal processing unit 5 detects a state of a measurement target such as a cloud or an aerosol based on the input detection signal. This signal processing unit 5
Are almost determined by adjusting the alignment of the optical axes of the transmission optical system 2 and the reception optical system 3.

【0004】ところで、最近の宇宙開発の分野において
は、レーダレーダを人工衛星等の宇宙航行体に搭載し
て、宇宙空間から雲やエアロゾル等を観測して、地球規
模での大気観測を行う方法が研究されている。
In the field of recent space development, a method of mounting a radar radar on a spacecraft such as an artificial satellite and observing clouds and aerosols from outer space to perform atmospheric observation on a global scale is known. Has been studied.

【0005】しかしながら、上記レーザレーダにあって
は、その検出特性が送信光学系2と受信光学系3の光軸
のアライメント調整によりほぼ決定されるため、宇宙開
発の分野に適用すると、宇宙空間への打上げ時の振動や
衝撃、あるいは環境温度等により、送信光学系と受信光
学系のアライメントずれが生じ、高精度なレーダ特性を
確保するのが困難となるという問題を有する。
However, in the above-mentioned laser radar, since its detection characteristics are almost determined by adjusting the alignment of the optical axes of the transmission optical system 2 and the reception optical system 3, if it is applied to the field of space development, There is a problem that the transmission optical system and the reception optical system are misaligned due to vibration or impact at the time of launching, environmental temperature, or the like, and it is difficult to secure high-accuracy radar characteristics.

【0006】そこで、このようなレーザレーダを宇宙開
発の分野に適用する場合には、送信光学系2と受信光学
系3の光軸を合致させるアライメント調整手段を設ける
ことが必要となりる。
Therefore, when such a laser radar is applied to the field of space development, it is necessary to provide an alignment adjusting means for matching the optical axes of the transmitting optical system 2 and the receiving optical system 3.

【0007】このアライメント調整手段としては、単
に、送信光学系2と受信光学系3の光軸を合致させれば
良いものでなく、レーザレーダの高精度な測定動作に悪
影響を及ぼすことなく、迅速にして高精度にアライメン
ト調整を実現することが要求される。
[0007] This alignment adjusting means is not limited to simply making the optical axes of the transmitting optical system 2 and the receiving optical system 3 coincide with each other, and does not adversely affect the highly accurate measurement operation of the laser radar. It is required to realize the alignment adjustment with high accuracy.

【0008】[0008]

【発明が解決しようとする課題】以上述べたように、従
来のレーザレーダでは、振動や衝撃を受けたり、環境温
度の変化により、送信光学系と受信光学系の光軸が合致
しなくなり、高精度なレーダ特性を確保するのが困難と
なるという問題を有する。
As described above, in the conventional laser radar, the optical axes of the transmission optical system and the reception optical system do not coincide with each other due to vibration, shock, or a change in environmental temperature. There is a problem that it is difficult to ensure accurate radar characteristics.

【0009】この発明は上記の事情に鑑みてなされたも
ので、構成簡易にして、光学系の高精度なアライメント
調整を実現し得るようにしたレーザレーダのアライメン
ト調整装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a laser radar alignment adjusting apparatus which has a simple structure and can realize high-precision alignment adjustment of an optical system. I do.

【0010】[0010]

【課題を解決するための手段】この発明は、レーザ発振
源から出力されたレーザ光を目標方向に送出する送信光
学系と、この送信光学系から送出したレーザ光の散乱レ
ーザ光を受光する受信光学系と、この受信光学系で受信
した散乱レーザ光に基づいて被測定対象を検出する被測
定対象検出手段と、前記受信光学系で受光した散乱レー
ザ光の中心位置を算出して、該中心位置に対応して前記
送信光学系と前記受信光学系の光軸を合致するように制
御する光軸制御手段とを備えてレーザレーダのアライメ
ント調整装置を構成したものである。
According to the present invention, there is provided a transmission optical system for transmitting a laser beam output from a laser oscillation source in a target direction, and a reception for receiving a scattered laser beam of the laser beam transmitted from the transmission optical system. An optical system, an object to be measured detecting means for detecting an object to be measured based on the scattered laser light received by the receiving optical system, and a center position of the scattered laser light received by the receiving optical system is calculated; The laser radar alignment adjusting device is provided with optical axis control means for controlling the transmission optical system and the reception optical system to match the optical axis in accordance with the position.

【0011】上記構成によれば、受信光学系で受光する
散乱レーザ光の中心位置を検出して、この中心位置に対
応するように送信光学系と受信光学系の光軸を合致する
ように制御することにより、アライメント制御が行われ
る。従って、環境条件等により送信光学系と受信光学系
の光軸に位置ずれが発生しても、レーザレーダが駆動さ
れて、受信光学系で散乱レーザ光が受光されると、この
散乱レーザ光の中心位置に対応して送信光学系と受信光
学系の光軸が合致するように制御され、高精度なアライ
メント調整が確保される。
According to the above arrangement, the center position of the scattered laser light received by the receiving optical system is detected, and the control is performed so that the optical axes of the transmitting optical system and the receiving optical system coincide with each other so as to correspond to the center position. By doing so, alignment control is performed. Therefore, even if the optical axis of the transmission optical system and the optical axis of the reception optical system are misaligned due to environmental conditions or the like, when the laser radar is driven and the reception optical system receives the scattered laser light, the scattered laser light is received. Control is performed so that the optical axes of the transmission optical system and the reception optical system match in accordance with the center position, and highly accurate alignment adjustment is ensured.

【0012】[0012]

【発明の実施の形態】以下、この発明の実施の形態につ
いて、図面を参照して詳細に説明する。図1は、この発
明の一実施の形態に係るレーザレーダのアライメント調
整装置を示すもので、送信光学系10は、その光軸方向
が調整自在に配設され、レーザ送信機11で発生したレ
ーザ光を目標方向に送出する。送信光学系10には、光
軸制御機構部12が配設され、この光軸制御機構部12
には、後述する光軸検出回路13の出力端が接続され
る。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows an alignment adjusting device for a laser radar according to an embodiment of the present invention. A transmitting optical system 10 is arranged so that its optical axis direction can be adjusted. Sends light in the target direction. An optical axis control mechanism 12 is provided in the transmission optical system 10.
Is connected to an output terminal of an optical axis detection circuit 13 described later.

【0013】この送信光学系10の光軸の調整構造とし
ては、一部鏡面を移動調整してもよいし、あるいは送信
光学系全体を移動調整するようにしてもよい。また、送
信光学系10の光軸に対応して、受信光学系13が配設
される。この受信光学系13の光軸上には、光分岐素
子、例えばビームスプリッタ14が配設され、その透過
光路には、検出器15が配設される。この検出器15に
は、信号処理部16が接続され、受信光学系13で受光
した散乱レーザ光がビームスプリッタ14を介して入力
されると、該散乱レーザ光の強度及びレーザ光の戻り時
間等を検出して信号処理部16に出力する。信号処理部
16は、入力した検出信号に基づいて大気観測状態等を
求める。
As a structure for adjusting the optical axis of the transmission optical system 10, a mirror surface may be partially moved or adjusted, or the entire transmission optical system may be moved and adjusted. A receiving optical system 13 is provided corresponding to the optical axis of the transmitting optical system 10. An optical splitting element, for example, a beam splitter 14 is provided on the optical axis of the receiving optical system 13, and a detector 15 is provided in the transmitted light path. A signal processing unit 16 is connected to the detector 15, and when the scattered laser light received by the receiving optical system 13 is input via the beam splitter 14, the intensity of the scattered laser light, the return time of the laser light, etc. Is detected and output to the signal processing unit 16. The signal processing unit 16 obtains an atmospheric observation state or the like based on the input detection signal.

【0014】そして、ビームスプリッタ14の反射光路
上には、光軸検出回路17が配設される。この光軸検出
回路17は、例えば図2に示すようにビームスプリッタ
の反射光路を介して入力される散乱レーザ光の一部を集
光レンズ17aで例えば撮像素子で構成される検出器1
7bに案内する。検出器17bには、演算処理部17c
が接続され、入射した散乱レーザ光の中心位置を検出し
て、その検出信号を演算処理部17cに出力する。
On the reflected light path of the beam splitter 14, an optical axis detecting circuit 17 is provided. The optical axis detection circuit 17 uses a condenser lens 17a to convert a part of the scattered laser light input through a reflection optical path of a beam splitter, for example, as shown in FIG.
Guide to 7b. The detector 17b includes an arithmetic processing unit 17c
Is connected, and detects the center position of the incident scattered laser light, and outputs the detection signal to the arithmetic processing unit 17c.

【0015】演算処理部17cには、上記光軸制御機構
部12が接続され、入力した検出信号とに予め設定され
る基準値と比較して、例えばその差が「ゼロ」となるよ
うなアライメント制御信号を生成して光軸制御機構部1
2に出力する。光軸制御機構部12は、入力したアライ
メント制御信号に基づいて送信光学系10の光軸を移動
調整する。これにより、送信光学系10は、その光軸が
受信光学系13で受光する散乱レーザ光の中心位置に対
応するように制御され、そのアライメントが受信光学系
13に対応される。
The optical axis control mechanism section 12 is connected to the arithmetic processing section 17c. The optical axis control mechanism section 12 is compared with an input detection signal and a reference value set in advance. A control signal is generated to control the optical axis control mechanism 1
Output to 2. The optical axis control mechanism 12 moves and adjusts the optical axis of the transmission optical system 10 based on the input alignment control signal. As a result, the transmission optical system 10 is controlled so that its optical axis corresponds to the center position of the scattered laser light received by the reception optical system 13, and its alignment corresponds to the reception optical system 13.

【0016】上記構成において、レーザ送信機11は、
図示しない制御部を介して駆動制御され、レーザ光を発
生し、そのレーザ光が送信光学系10を介して目標方向
に送出される。このレーザ光は、雲等で散乱され、その
散乱レーザが受信光学系13に受光され、ビームスプリ
ッタ14の透過光路を通って検出器15に入力される。
検出器15は、入力した散乱レーザ光の強度及び戻り時
間等を検出して、その検出信号を信号処理部16に出力
する。信号処理部16は、入力した検出信号に基づいて
大気状態を求める。
In the above configuration, the laser transmitter 11
Drive control is performed by a control unit (not shown) to generate a laser beam, and the laser beam is transmitted through the transmission optical system 10 in a target direction. This laser light is scattered by a cloud or the like, and the scattered laser is received by the receiving optical system 13 and input to the detector 15 through the transmission optical path of the beam splitter 14.
The detector 15 detects the intensity and return time of the input scattered laser light, and outputs a detection signal to the signal processing unit 16. The signal processing unit 16 obtains the atmospheric state based on the input detection signal.

【0017】同時に、受信光学系13で受信した散乱レ
ーザ光は、ビームスプリッタ14の反射光路を通って光
軸検出回路17に入力される。光軸検出回路17は、上
述したように散乱レーザ光の中心位置を検出して、該中
心位置が予め設定した基準値との差が「ゼロ」になるよ
うなアライメント制御信号を生成して光軸制御機構部1
2に出力する。光軸制御機構部12は、入力したアライ
メント制御信号に基づいて送信光学系10の光軸を制御
し、送信光学系10の光軸と受信光学系13の光軸のア
ライメントを調整する。
At the same time, the scattered laser light received by the receiving optical system 13 is input to the optical axis detecting circuit 17 through the reflected light path of the beam splitter 14. The optical axis detection circuit 17 detects the center position of the scattered laser light as described above, and generates an alignment control signal such that the difference between the center position and a preset reference value is “zero” to generate an optical control signal. Axis control mechanism 1
Output to 2. The optical axis control mechanism unit 12 controls the optical axis of the transmission optical system 10 based on the input alignment control signal, and adjusts the alignment between the optical axis of the transmission optical system 10 and the optical axis of the reception optical system 13.

【0018】このように、上記レーザレーダのアライメ
ント調整装置は、受信光学系13で受光する散乱レーザ
光の一部を取出して、該散乱レーザ光の中心位置を検出
し、この中心位置に対応して送信光学系10を移動制御
することにより、送信光学系10と受信光学系11のア
ライメント調整を行うように構成した。
As described above, the laser radar alignment adjusting device extracts a part of the scattered laser light received by the receiving optical system 13, detects the center position of the scattered laser light, and corresponds to the center position. By controlling the movement of the transmission optical system 10, the alignment of the transmission optical system 10 and the reception optical system 11 is adjusted.

【0019】これによれば、環境条件等により送信光学
系と受信光学系の光軸に位置ずれが発生しても、レーザ
レーダが駆動されて、受信光学系13で散乱レーザ光が
受光されると、この散乱レーザ光の中心位置に対応して
送信光学系10と受信光学系13の光軸が合致するよう
に制御され、高精度なアライメント調整が確保される。
したがって、レーザレーダの高精度なアライメント調整
を自動的に行うことが可能となり、極限環境の宇宙空間
においても信頼性の高い高精度なレーダ特性が実現され
る。
According to this, even if the optical axes of the transmission optical system and the reception optical system are displaced due to environmental conditions or the like, the laser radar is driven and the reception optical system 13 receives the scattered laser light. Is controlled so that the optical axes of the transmission optical system 10 and the reception optical system 13 coincide with each other in accordance with the center position of the scattered laser light, and highly accurate alignment adjustment is ensured.
Therefore, highly accurate alignment adjustment of the laser radar can be automatically performed, and highly reliable and accurate radar characteristics can be realized even in the outer space in an extreme environment.

【0020】なお、上記実施の形態では、ビームスプリ
ッタ14を用いて受信光学系13で受光される散乱レー
ザ光の一部を取出すように構成した場合で説明したが、
これに限ることなく、各種の構成が可能である。
In the above-described embodiment, a case has been described where the beam splitter 14 is used to extract a part of the scattered laser light received by the receiving optical system 13.
Without being limited to this, various configurations are possible.

【0021】また、上記実施の形態では、送信光学系1
0の光軸を移動調整してアライメント調整を行うように
構成した場合で説明したが、これに限ることなく、受信
光学系13の光軸を移動調整してアライメント調整を行
うように構成することも可能である。よって、この発明
は、上記実施の形態に限ることなく、その他、この発明
の要旨を逸脱しない範囲で種々の変形を実施し得ること
は勿論のことである。
In the above embodiment, the transmission optical system 1
Although the description has been given of the case where the alignment is adjusted by moving and adjusting the optical axis of 0, the invention is not limited to this, and the alignment may be adjusted by moving and adjusting the optical axis of the receiving optical system 13. Is also possible. Therefore, it is needless to say that the present invention is not limited to the above-described embodiment, but can be variously modified without departing from the gist of the present invention.

【0022】[0022]

【発明の効果】以上詳述したように、この発明によれ
ば、構成簡易にして、光学系の高精度なアライメント調
整を実現し得るようにしたレーザレーダのアライメント
調整装置を提供することができる。
As described above in detail, according to the present invention, it is possible to provide a laser radar alignment adjusting apparatus which can realize high-precision alignment adjustment of an optical system with a simplified configuration. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施の形態に係るレーザレーダの
アライメント調整装置を示した図。
FIG. 1 is a diagram showing an alignment adjusting device for a laser radar according to an embodiment of the present invention.

【図2】図1の光軸検出回路を示した図。FIG. 2 is a diagram showing an optical axis detection circuit of FIG. 1;

【図3】この発明の適用されるレーザレーダを示した
図。
FIG. 3 is a diagram showing a laser radar to which the present invention is applied.

【符号の説明】[Explanation of symbols]

10…送信光学系。 11…レーザ送信機。 12…光軸制御機構部。 13…受信光学系。 14…ビームスプリッタ。 15…検出器。 16…信号処理部。 17…光軸検出回路。 17a…集光レンズ。 17b…検出器。 17c…演算処理部。 10 ... Transmission optical system. 11 ... Laser transmitter. 12 ... optical axis control mechanism. 13 ... Reception optical system. 14: Beam splitter. 15 Detector. 16 ... Signal processing unit. 17 ... optical axis detection circuit. 17a: Condensing lens. 17b Detector. 17c: arithmetic processing unit.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 レーザ発振源から出力されたレーザ光を
目標方向に送出する送信光学系と、 この送信光学系から送出したレーザ光の散乱レーザ光を
受光する受信光学系と、 この受信光学系で受信した散乱レーザ光に基づいて被測
定対象を検出する被測定対象検出手段と、 前記受信光学系で受光した散乱レーザ光の中心位置を算
出して、該中心位置に対応して前記送信光学系と前記受
信光学系の光軸を合致するように制御する光軸制御手段
とを具備したレーザレーダのアライメント調整装置。
1. A transmitting optical system for transmitting a laser beam output from a laser oscillation source in a target direction, a receiving optical system for receiving a scattered laser beam of the laser beam transmitted from the transmitting optical system, and a receiving optical system. An object to be measured detecting means for detecting an object to be measured based on the scattered laser light received in step (a), calculating a center position of the scattered laser light received by the receiving optical system, and transmitting the optics corresponding to the center position. An alignment adjusting device for a laser radar, comprising: an optical axis control unit that controls an optical axis of a receiving optical system to coincide with an optical axis of the receiving optical system.
【請求項2】 前記光軸制御手段は、受信光学系の光路
に分岐素子を配設して、該分岐素子で受光したレーザ散
乱光の一部を取出して、その中心位置を算出し、該レー
ザ散乱光の中心位置に対応して送信光学系と受信光学系
の光軸が合致するように制御することを特徴とする請求
項1記載のレーザレーダのアライメント調整装置。
2. The optical axis control means includes: a branch element disposed in an optical path of a receiving optical system; extracting a part of laser scattered light received by the branch element; calculating a center position thereof; 2. The laser radar alignment adjusting device according to claim 1, wherein the control is performed such that the optical axes of the transmission optical system and the reception optical system match in accordance with the center position of the laser scattered light.
【請求項3】 前記送信光学系は、光軸が可変調整自在
に配設され、光軸が散乱レーザ光の中心位置に合致する
ように制御することを特徴とする請求項1又は2記載の
レーザレーダのアライメント調整装置。
3. The transmission optical system according to claim 1, wherein an optical axis of the transmission optical system is variably adjustable, and control is performed such that the optical axis coincides with the center position of the scattered laser light. Laser radar alignment adjustment device.
【請求項4】 前記分岐素子は、ビームスプリッタであ
ることを特徴とする請求項2又は3記載のレーザレーダ
のアライメント調整装置。
4. An alignment adjusting apparatus for a laser radar according to claim 2, wherein said branching element is a beam splitter.
JP9328345A 1997-11-28 1997-11-28 Alignment adjusting apparatus for laser radar Pending JPH11160419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9328345A JPH11160419A (en) 1997-11-28 1997-11-28 Alignment adjusting apparatus for laser radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9328345A JPH11160419A (en) 1997-11-28 1997-11-28 Alignment adjusting apparatus for laser radar

Publications (1)

Publication Number Publication Date
JPH11160419A true JPH11160419A (en) 1999-06-18

Family

ID=18209210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9328345A Pending JPH11160419A (en) 1997-11-28 1997-11-28 Alignment adjusting apparatus for laser radar

Country Status (1)

Country Link
JP (1) JPH11160419A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749627A (en) * 2012-06-02 2012-10-24 中国科学院武汉物理与数学研究所 Full-height laser radar for detecting atmosphere wind field, temperature and density
CN103941249A (en) * 2014-05-12 2014-07-23 南京信息工程大学 Multi-azimuth scanning laser radar optical system and detection method
CN110233664A (en) * 2019-04-25 2019-09-13 西安理工大学 A kind of Pointing Control System and pointing control method of wireless light communication

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749627A (en) * 2012-06-02 2012-10-24 中国科学院武汉物理与数学研究所 Full-height laser radar for detecting atmosphere wind field, temperature and density
CN103941249A (en) * 2014-05-12 2014-07-23 南京信息工程大学 Multi-azimuth scanning laser radar optical system and detection method
CN110233664A (en) * 2019-04-25 2019-09-13 西安理工大学 A kind of Pointing Control System and pointing control method of wireless light communication
CN110233664B (en) * 2019-04-25 2021-07-20 西安理工大学 Tracking and aiming control system and tracking and aiming control method for wireless optical communication

Similar Documents

Publication Publication Date Title
US10732287B2 (en) LIDAR based on MEMS
US10338199B1 (en) Transceiver apparatus, method and applications
US4315150A (en) Targeted infrared thermometer
US7379166B2 (en) Combined laser altimeter and ground velocity measurement apparatus and a fiber optic filter edge detector of doppler shifts for use therein
KR20000052660A (en) Device for calibrating distance-measuring apparatus
JP2006502401A (en) Bistatic laser radar device
EP0977070B1 (en) Telescope with shared optical path for an optical communication terminal
CN109520425B (en) Precise tracking error testing device and testing method
US4087689A (en) Boresighting system for infrared optical receiver and transmitter
JP4581111B2 (en) Optical space communication device
CN102636151A (en) Laser range finder and range finding method thereof
US11105900B2 (en) Single MEMS mirror chip scale LIDAR
FI94559B (en) Method and apparatus for measuring the visibility and light scattering in the atmosphere, in which apparatus a common optic is used for transmission and reception
US6504611B2 (en) Two stage optical alignment device and method of aligning optical components
RU2335728C1 (en) Optical-electronic search and tracking system
JPH11160419A (en) Alignment adjusting apparatus for laser radar
EP1228382B1 (en) Method of aligning a bistatic dopple sensor apparatus
US5821526A (en) Star scanning method for determining the line of sight of an electro-optical instrument
KR102254132B1 (en) Test apparatus for gimbal performance and method thereof
KR20230086489A (en) FMCW RiDAR system with common optical assebly and processing method thereof
US20110141470A1 (en) Servo-Controlled Bistatic Anemometric Probe
CN210005211U (en) high-speed wind tunnel schlieren instrument focal spot monitoring and damping system
RU2155323C1 (en) Optoelectronic target search and tracking system
US8125642B2 (en) Process to optically align a photoreceiver with a laser transmitter source in a laser rangefinder system
RU63520U1 (en) OPTICAL AND ELECTRONIC SEARCH AND MAINTENANCE SYSTEM OBJECTIVES