JPH11158609A - Piping structure and its production - Google Patents

Piping structure and its production

Info

Publication number
JPH11158609A
JPH11158609A JP33007497A JP33007497A JPH11158609A JP H11158609 A JPH11158609 A JP H11158609A JP 33007497 A JP33007497 A JP 33007497A JP 33007497 A JP33007497 A JP 33007497A JP H11158609 A JPH11158609 A JP H11158609A
Authority
JP
Japan
Prior art keywords
film
nbn
wiring
coating
ito
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33007497A
Other languages
Japanese (ja)
Inventor
Tatsuya Fujita
達也 藤田
Takashi Sato
崇 佐藤
Ikuo Sakono
郁夫 迫野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP33007497A priority Critical patent/JPH11158609A/en
Publication of JPH11158609A publication Critical patent/JPH11158609A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing Nb coating capable of obtaining sufficient adhesion in the case Nb coating is formed on ITO coating. SOLUTION: On ITO coating 2 with about 1000 Å coating thickness formed on a glass substrate 1, Nb/NbN piping of NbN coating 3a with 200 Å coating thickness and Nb coating with 4500 Åcoating thickness is formed. In the case the concn. of nitrogen in the NbN coating is >=30 at.% and the coating thickness of the NbN coating is also >=200 Å, its adhesion with the ITO coating can be improved to a practically sufficient degree.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示装置や集
積回路に用いられる信号配線およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal wiring used for a liquid crystal display device and an integrated circuit, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】TFT駆動のアクティブマトリックス型
液晶ディスプレイに関して高精細、高開口率、大型化へ
の要求が高まっている。しかし、液晶ディスプレイが大
型化、高精細化するにつれ配線抵抗の増大による信号遅
延が大きくなる。
2. Description of the Related Art There is an increasing demand for an active matrix type liquid crystal display driven by a TFT to have a high definition, a high aperture ratio and a large size. However, as the size and resolution of the liquid crystal display increase, the signal delay due to an increase in wiring resistance increases.

【0003】例えばゲート配線ではゲートパルスのオン
時間不足による画素への書き込み不足、或いは、TFT
が完全にオフする前に次の信号が書き込まれることによ
るクロストークが発生し表示品位が低下する。画素領域
に占めるソース配線の長さがゲート配線に比べて長い場
合には、配線の面積の割合を考えるとソース配線の開口
率への影響はゲート配線よりも大きく、ソース配線幅は
できるだけ小さくする必要があり、その分配線抵抗を低
抵抗する必要がある。表示品位を低下させることなく高
精細、高開口率、大型化を進めるには配線自体の低抵抗
化が不可欠である。
For example, in the case of a gate wiring, insufficient writing to a pixel due to insufficient ON time of a gate pulse, or a TFT
When the next signal is written before the signal is completely turned off, crosstalk occurs and the display quality deteriorates. When the length of the source wiring occupying the pixel region is longer than that of the gate wiring, the effect on the aperture ratio of the source wiring is larger than that of the gate wiring, and the width of the source wiring is made as small as possible, considering the area ratio of the wiring. It is necessary to reduce the wiring resistance accordingly. In order to achieve high definition, high aperture ratio and large size without deteriorating the display quality, it is essential to reduce the resistance of the wiring itself.

【0004】従来このような要求を満たす配線材料とし
てTa,Ti,Nbなどの各種金属膜が用いられてき
た。なかでもNb(ニオブ)はスパッタリングにより容
易に低抵抗薄膜(比抵抗15〜20μΩ・cm)が形成
でき、耐薬品性も優れた材料である為、配線材料として
用いられてきた。
Conventionally, various metal films such as Ta, Ti and Nb have been used as wiring materials satisfying such requirements. Among them, Nb (niobium) has been used as a wiring material because it can easily form a low-resistance thin film (specific resistance 15 to 20 μΩ · cm) by sputtering and has excellent chemical resistance.

【0005】従来、Nb膜配線の製造方法は以下のよう
にして行われる。図2に示すように、ガラス1上に形成
されたITO膜2の上に、Nbターゲットを用いたスパ
ッタリングによりNb単層からなるNb膜3bを1μm
程度の一様な薄膜として形成させ、その後のフォトリソ
グラフィー工程で所望の微細な配線パターンに形成され
る。スパッタリングに関しては、スパッタリングターゲ
ットを負電位に、薄膜を形成すべき基板をアース電位に
維持して、Ar等のスパッタガスを導入した真空曹内に
ターゲットと基板を対向させて配置する。
Conventionally, a method for manufacturing an Nb film wiring is performed as follows. As shown in FIG. 2, an Nb film 3b composed of an Nb single layer is formed on the ITO film 2 formed on the glass 1 by sputtering using an Nb target to a thickness of 1 μm.
It is formed as a thin film having a uniform thickness, and is formed into a desired fine wiring pattern in a subsequent photolithography process. With respect to sputtering, the sputtering target is maintained at a negative potential, and the substrate on which a thin film is to be formed is maintained at the ground potential, and the target and the substrate are placed in a vacuum soaking bath into which a sputtering gas such as Ar is introduced.

【0006】ターゲット及び基板間の電界によりグロー
放電が生じ、スパッタガスはこの放電によりイオン化さ
れる。生じたイオンは電界により加速されてターゲット
のスパッタ面に照射されスパッタ面からターゲット物質
を蒸発させる。蒸発したターゲット物質は、スパッタ面
に対向して配置された基板上に堆積して薄膜を形成す
る。
[0006] A glow discharge is generated by the electric field between the target and the substrate, and the sputter gas is ionized by the discharge. The generated ions are accelerated by the electric field and irradiated on the sputtering surface of the target to evaporate the target material from the sputtering surface. The evaporated target material is deposited on a substrate disposed to face the sputtering surface to form a thin film.

【0007】[0007]

【発明が解決しようとする課題】ITO膜上にNb膜を
スパッタリングにより形成する場合、Nb膜とITO膜
の間の密着性が十分でない為、その後のエッチング、洗
浄工程でNb膜の剥離が生じ、配線の断線等の不良が生
じる為、製品製造上の大きな問題となっていた。本発明
は上記課題に鑑みてなされたもので、ITO膜上にNb
膜を形成する場合に、十分な密着性を得ることが可能な
Nb膜の製造方法を提供することを目的とする。
When an Nb film is formed on an ITO film by sputtering, the adhesion between the Nb film and the ITO film is not sufficient, so that the Nb film is peeled off in the subsequent etching and cleaning steps. This causes a problem such as disconnection of the wiring, which has been a major problem in product manufacturing. The present invention has been made in view of the above-mentioned problems, and it has been proposed that Nb be formed on an ITO film.
It is an object of the present invention to provide a method for manufacturing an Nb film capable of obtaining sufficient adhesion when forming a film.

【0008】[0008]

【課題を解決するための手段】請求項1に記載の発明
は、基板上に形成されるITO膜と、該ITO膜上に形
成されるNbN膜と、該NbN膜上に形成されるNb膜
を備えることを特徴とする。請求項2に記載の発明は、
前記NbN膜の窒素濃度が30at%以上であることを
特徴とする。請求項3に記載の発明は、前記NbN膜の
膜厚が200Å以上であることを特徴とする。
According to a first aspect of the present invention, there is provided an ITO film formed on a substrate, an NbN film formed on the ITO film, and an Nb film formed on the NbN film. It is characterized by having. The invention described in claim 2 is
The NbN film has a nitrogen concentration of 30 at% or more. The invention according to claim 3 is characterized in that the thickness of the NbN film is 200 ° or more.

【0009】請求項4に記載の発明は、基板上に形成さ
れるITO膜と、該ITO膜上に形成されるNbN膜
と、該NbN膜上に形成されるNb膜を備える配線構造
の製造方法において、前記NbN膜は、ターゲットにN
bを用いて、チャンバー内の窒素ガスの割合が40%以
上に設定された反応性スパッタリングによって形成する
ことを特徴とする。請求項5に記載の発明は、基板上に
形成されるITO膜と、該ITO膜上に形成されるNb
N膜と、該NbN膜上に形成されるNb膜を備える配線
構造の製造方法において、前記NbN膜は、ターゲット
に窒素濃度30at%以上のNbNを用いて反応性スパ
ッタリングによって形成することを特徴とする。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a wiring structure including an ITO film formed on a substrate, an NbN film formed on the ITO film, and an Nb film formed on the NbN film. In the method, the NbN film includes an NbN film on a target.
It is characterized by being formed by reactive sputtering in which the proportion of nitrogen gas in the chamber is set to 40% or more using b. According to a fifth aspect of the present invention, there is provided an ITO film formed on a substrate and an Nb film formed on the ITO film.
In a method for manufacturing a wiring structure including an N film and an Nb film formed on the NbN film, the NbN film is formed by reactive sputtering using NbN having a nitrogen concentration of 30 at% or more as a target. I do.

【0010】以下に本発明による作用について説明す
る。本発明の請求項1に記載の配線構造によれば、IT
O膜とNb膜の間にNbN膜を設けることにより、配線
の密着性が向上しNb膜の剥離を防ぐことができる。本
発明の請求項2及び請求項3の配線構造によれば、配線
の密着性が向上しNb膜の剥離を十分に防ぐことができ
る。
The operation of the present invention will be described below. According to the wiring structure according to claim 1 of the present invention, the IT
By providing the NbN film between the O film and the Nb film, the adhesion of the wiring is improved and the peeling of the Nb film can be prevented. According to the wiring structure of the second and third aspects of the present invention, the adhesion of the wiring is improved and the peeling of the Nb film can be sufficiently prevented.

【0011】本発明の請求項4及び請求項5の配線構造
の製造方法によれば、配線の密着性が向上しNb膜の剥
離を防ぐことができる配線構造を得ることができる。
According to the method for manufacturing a wiring structure according to the fourth and fifth aspects of the present invention, it is possible to obtain a wiring structure in which the adhesion of the wiring is improved and the peeling of the Nb film can be prevented.

【0012】[0012]

【発明の実施の形態】図1に本発明の実施形態を示す。
ガラス基板1上に形成された膜厚1000Å程度のIT
O膜2上に、200ÅのNbN(窒化ニオブ)膜3aと
4500ÅのNb(ニオブ)膜3bのNb/NbN配線
が形成されている。
FIG. 1 shows an embodiment of the present invention.
IT formed on the glass substrate 1 and having a thickness of about 1000 °
On the O film 2, Nb / NbN interconnections of a 200 ° NbN (niobium nitride) film 3a and a 4500 ° Nb (niobium) film 3b are formed.

【0013】以下にNb/NbN配線の製造方法につい
て説明する。スパッタチャンバー内で、純度99.9%
のNbターゲットを用いてAr、窒素混合雰囲気中での
反応性スパッタリング法によりNbN膜3aを形成し
た。
Hereinafter, a method of manufacturing an Nb / NbN interconnection will be described. 99.9% purity in the sputter chamber
An NbN film 3a was formed by a reactive sputtering method in an atmosphere of a mixture of Ar and nitrogen using the Nb target described above.

【0014】本実施形態ではスパッタ条件として基板加
熱温度100℃、Arガス150sccm、窒素ガス1
00sccm、スパッタ圧力0.4Paで行った。その
後スパッタチャンバー内を十分排気後、同一チャンバー
でNb膜3bをArガスのみでスパッタリングし形成す
る。形成されたNbN膜3aとNb膜3bの2層膜をフ
ォトリソグラフィー工程及びエッチング工程で所望の形
状にパターニングし線幅10μmのNb/NbN配線を
形成する。
In this embodiment, the sputtering conditions include a substrate heating temperature of 100 ° C., an Ar gas of 150 sccm, a nitrogen gas of 1
The sputtering was performed at 00 sccm and a sputtering pressure of 0.4 Pa. Thereafter, the inside of the sputtering chamber is sufficiently evacuated, and then the Nb film 3b is formed by sputtering only the Ar gas in the same chamber. The formed two-layer film of the NbN film 3a and the Nb film 3b is patterned into a desired shape by a photolithography step and an etching step to form an Nb / NbN wiring having a line width of 10 μm.

【0015】図3に、NbN膜3a中の窒素濃度を変化
させたときの、Nb/NbN配線とITO膜との密着性
の関係を評価した結果を示す。密着性テストに用いられ
るピールテストは、ITO膜上にNb/NbN配線を形
成した後、Nb膜上面に粘着テープを粘着させた後剥が
しNb膜の剥離の有無を確認している。また、密着性テ
ストに用いられる耐超音波水洗テストは、ITO膜上に
Nb/NbN配線を形成した後、純水槽内で約5MHz
の超音波を30分印加し、Nb膜の剥離の有無を確認し
ている。
FIG. 3 shows the result of evaluating the relationship between the adhesion between the Nb / NbN wiring and the ITO film when the nitrogen concentration in the NbN film 3a is changed. In the peel test used for the adhesion test, after forming an Nb / NbN wiring on the ITO film, an adhesive tape is adhered to the upper surface of the Nb film and then peeled off to confirm whether or not the Nb film is peeled. The ultrasonic washing test used for the adhesion test is performed by forming an Nb / NbN wiring on an ITO film and then performing a test of about 5 MHz in a pure water tank.
Is applied for 30 minutes, and the presence or absence of peeling of the Nb film is confirmed.

【0016】図3に示すように、スパッタリング時のA
r/N2流量比で窒素量が多いほど密着性が向上され、
チャンバー内の窒素ガスの割合を40%以上に設定すれ
ば好ましい密着性を得ることができる。ITO膜は圧縮
性を持つ膜であるが、Nb膜は伸長性を持つ膜であるた
め、ITO膜の上にNb膜を形成する場合に膜ストレス
の差が大きくなり密着性が悪くなるが、Nb膜に比べて
結晶性の密なNbN膜の膜ストレスはITO膜とNb膜
の間であるため、NbN膜をITO膜とNb膜の間に設
けることにより、密着性が向上する。
[0016] As shown in FIG.
The greater the nitrogen content in the r / N 2 flow ratio, the better the adhesion,
If the ratio of the nitrogen gas in the chamber is set to 40% or more, favorable adhesion can be obtained. Although the ITO film is a film having compressibility, the Nb film is a film having extensibility. Therefore, when an Nb film is formed on the ITO film, a difference in film stress is increased and adhesion is deteriorated. Since the film stress of the NbN film having a higher crystallinity than that of the Nb film is between the ITO film and the Nb film, the adhesion is improved by providing the NbN film between the ITO film and the Nb film.

【0017】図4に、NbN膜3aの膜厚を変化させた
ときの、Nb/NbN配線とITO膜との密着性の関係
を評価した結果を示す。図3及び図4から明らかなよう
にNbN膜のスパッタリング時のArとN2流量比を調
整し形成されたNbN膜中の窒素濃度が30at%以上
で且つNbN膜の膜厚が200Å以上であればITO膜
との密着力を十分に向上させることができる。
FIG. 4 shows the result of evaluating the relationship between the Nb / NbN wiring and the ITO film when the thickness of the NbN film 3a is changed. As is clear from FIG. 3 and FIG. 4, the nitrogen concentration in the NbN film formed by adjusting the flow rate ratio of Ar and N 2 during sputtering of the NbN film is 30 at% or more and the thickness of the NbN film is 200 ° or more. For example, the adhesion to the ITO film can be sufficiently improved.

【0018】Nb/NbN配線の別の製造方法について
説明する。ITO膜上に、ターゲットにNbNターゲッ
トを用いたスパッタリングによりNbN膜3aを形成さ
せる。この時NbNターゲット中の窒素濃度は30at
%以上に調整しておく。
Another method of manufacturing an Nb / NbN wiring will be described. An NbN film 3a is formed on the ITO film by sputtering using an NbN target as a target. At this time, the nitrogen concentration in the NbN target is 30 at.
Adjust to more than%.

【0019】次に別チャンバーで純度99.9%のNb
ターゲットを用いてNb膜3bを形成させる。上述の様
にして形成されたNbN膜3aとNb膜3bの2層膜を
フォトリソグラフィー工程及びエッチング工程で線幅1
0μmにパターニングすることにより、Nb/NbN配
線を形成することができる。
Next, Nb having a purity of 99.9% was prepared in another chamber.
An Nb film 3b is formed using a target. The two-layered film of the NbN film 3a and the Nb film 3b formed as described above is subjected to a photolithography process and an etching process to achieve a line width of 1.
By patterning to 0 μm, an Nb / NbN wiring can be formed.

【0020】図5はMIM−LCD用のマトリクス基板
の平面図を示し、図6はその断面図を示す。このマトリ
クス基板は、ガラス基板4の上に信号配線5が形成さ
れ、信号配線5はマトリクス状に配置されたITO膜か
らなる絵素電極6に向けて分岐されている。MIM素子
部では、信号配線5の上に酸化絶縁膜7が形成され、酸
化絶縁膜7及び絵素電極6上には、NbN膜の第1層8
aとNb膜の第2層8bとの2層構造からなる上電極8
が形成されている。
FIG. 5 is a plan view of a matrix substrate for an MIM-LCD, and FIG. 6 is a sectional view thereof. In this matrix substrate, a signal wiring 5 is formed on a glass substrate 4, and the signal wiring 5 is branched toward a pixel electrode 6 made of an ITO film arranged in a matrix. In the MIM element portion, an oxide insulating film 7 is formed on the signal wiring 5, and a first layer 8 of an NbN film is formed on the oxide insulating film 7 and the pixel electrode 6.
upper electrode 8 having a two-layer structure of a and a second layer 8b of Nb film
Are formed.

【0021】このマトリクス基板の製造方法について以
下に説明する。ガラス基板4上にスパッタリング法によ
りTa膜を3000Å形成し、フォトリソグラフィー工
程により所定の形状にパターニングし信号配線5が形成
される。
The method for manufacturing the matrix substrate will be described below. A Ta film is formed on the glass substrate 4 by a sputtering method at a thickness of 3000 、, and is patterned into a predetermined shape by a photolithography process to form the signal wiring 5.

【0022】その後、信号配線5の表面を陽極酸化して
信号配線5を覆う厚み1000Å程度の酸化絶縁膜7を
形成する。次に厚み800Å程度のITO膜を積層し、
これをパターニングすることにより絵素電極6を形成す
る。
Thereafter, the surface of the signal wiring 5 is anodized to form an oxide insulating film 7 having a thickness of about 1000.degree. Next, an ITO film with a thickness of about 800 mm is laminated,
This is patterned to form the pixel electrode 6.

【0023】この後、窒素濃度30at%以上のNbN
膜からなる第1層8aを厚み300Å程度で形成し、そ
の上にNb膜からなる第2層8bを3000Åに積層す
ることにより、上電極8を形成する。上記のようにして
得られたマトリクス基板は絵素電極6と上電極8で剥離
が生じなかった。上記説明はMIM−LCDで行った
が、TFT−LCDに用いられるITO膜上にNbN膜
及びNb膜を形成してもよい。
Thereafter, NbN having a nitrogen concentration of 30 at% or more is used.
An upper electrode 8 is formed by forming a first layer 8a made of a film with a thickness of about 300 ° and laminating a second layer 8b made of an Nb film at a thickness of 3000 °. In the matrix substrate obtained as described above, no separation occurred between the pixel electrode 6 and the upper electrode 8. Although the above description has been made with reference to the MIM-LCD, an NbN film and an Nb film may be formed on an ITO film used for a TFT-LCD.

【0024】[0024]

【発明の効果】本発明の配線構造によれば、ITO膜と
Nb膜の間にNbN膜を設けることにより、配線の密着
性が向上しNb膜の剥離を防ぐことができ、配線の断線
等を防ぐことができる。本発明の配線構造の製造方法に
よれば、配線の密着性が向上しNb膜の剥離を防ぐこと
ができる配線構造を得ることができ、配線の断線等を防
ぐことができる。
According to the wiring structure of the present invention, by providing the NbN film between the ITO film and the Nb film, the adhesion of the wiring is improved, the peeling of the Nb film can be prevented, and the disconnection of the wiring can be prevented. Can be prevented. ADVANTAGE OF THE INVENTION According to the manufacturing method of the wiring structure of this invention, the adhesiveness of wiring can be improved and the wiring structure which can prevent peeling of a Nb film can be obtained, and disconnection of wiring can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の配線構造を示す断面図である。FIG. 1 is a cross-sectional view illustrating a wiring structure according to the present invention.

【図2】従来の配線構造を示す断面図である。FIG. 2 is a cross-sectional view showing a conventional wiring structure.

【図3】NbN膜3a中の窒素濃度を変化させたとき
の、Nb/NbN配線とITO膜との密着性の関係を評
価した図である。
FIG. 3 is a view showing an evaluation of the relationship between the adhesion between an Nb / NbN wiring and an ITO film when the nitrogen concentration in the NbN film 3a is changed.

【図4】NbN膜3aの膜厚を変化させたときの、Nb
/NbN配線とITO膜との密着性の関係を評価した図
である。
FIG. 4 shows Nb when the thickness of the NbN film 3a is changed.
FIG. 9 is a diagram showing an evaluation of the relationship between the adhesion between the / NbN wiring and an ITO film.

【図5】本発明を適用したMIM−LCD用のマトリク
ス基板の平面図である。
FIG. 5 is a plan view of a MIM-LCD matrix substrate to which the present invention is applied.

【図6】本発明を適用したMIM−LCD用のマトリク
ス基板の断面図である。
FIG. 6 is a sectional view of a matrix substrate for an MIM-LCD to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 ITO膜 3a NbN(窒化ニオブ)膜 3b Nb(ニオブ)膜 4 ガラス基板 5 信号配線 6 絵素電極 7 酸化絶縁膜 8 上電極 8a 第1層 8b 第2層 DESCRIPTION OF SYMBOLS 1 Glass substrate 2 ITO film 3a NbN (niobium nitride) film 3b Nb (niobium) film 4 Glass substrate 5 Signal wiring 6 Pixel electrode 7 Oxide insulating film 8 Upper electrode 8a First layer 8b Second layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H05K 1/09 H01L 29/78 612C ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H05K 1/09 H01L 29/78 612C

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成されるITO膜と、該IT
O膜上に形成されるNbN膜と、該NbN膜上に形成さ
れるNb膜を備えることを特徴とする配線構造。
An ITO film formed on a substrate;
A wiring structure, comprising: an NbN film formed on an O film; and an Nb film formed on the NbN film.
【請求項2】 前記NbN膜の窒素濃度が30at%以
上であることを特徴とする請求項1に記載の配線構造。
2. The wiring structure according to claim 1, wherein said NbN film has a nitrogen concentration of 30 at% or more.
【請求項3】 前記NbN膜の膜厚が200Å以上であ
ることを特徴とする請求項1及び請求項2に記載の配線
構造。
3. The wiring structure according to claim 1, wherein said NbN film has a thickness of 200 ° or more.
【請求項4】 基板上に形成されるITO膜と、該IT
O膜上に形成されるNbN膜と、該NbN膜上に形成さ
れるNb膜を備える配線構造の製造方法において、 前記NbN膜は、ターゲットにNbを用いて、チャンバ
ー内の窒素ガスの割合が40%以上に設定された反応性
スパッタリングによって形成されることを特徴とする配
線構造の製造方法。
4. An ITO film formed on a substrate;
In a method for manufacturing a wiring structure including an NbN film formed on an O film and an Nb film formed on the NbN film, the NbN film uses Nb as a target and has a nitrogen gas ratio in a chamber. A method for manufacturing a wiring structure, wherein the wiring structure is formed by reactive sputtering set to 40% or more.
【請求項5】 基板上に形成されるITO膜と、該IT
O膜上に形成されるNbN膜と、該NbN膜上に形成さ
れるNb膜を備える配線構造の製造方法において、 前記NbN膜は、ターゲットに窒素濃度30at%以上
のNbNを用いてスパッタリングによって形成されるこ
とを特徴とする配線構造の製造方法。
5. An ITO film formed on a substrate;
In a method for manufacturing a wiring structure including an NbN film formed on an O film and an Nb film formed on the NbN film, the NbN film is formed by sputtering using NbN having a nitrogen concentration of 30 at% or more as a target. A method of manufacturing a wiring structure.
JP33007497A 1997-12-01 1997-12-01 Piping structure and its production Pending JPH11158609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33007497A JPH11158609A (en) 1997-12-01 1997-12-01 Piping structure and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33007497A JPH11158609A (en) 1997-12-01 1997-12-01 Piping structure and its production

Publications (1)

Publication Number Publication Date
JPH11158609A true JPH11158609A (en) 1999-06-15

Family

ID=18228500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33007497A Pending JPH11158609A (en) 1997-12-01 1997-12-01 Piping structure and its production

Country Status (1)

Country Link
JP (1) JPH11158609A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006133769A (en) * 2004-10-26 2006-05-25 Samsung Electronics Co Ltd Thin film transistor display plate and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006133769A (en) * 2004-10-26 2006-05-25 Samsung Electronics Co Ltd Thin film transistor display plate and its manufacturing method
US8207534B2 (en) 2004-10-26 2012-06-26 Samsung Electronics Co., Ltd. Thin film transistor array panel and manufacturing method thereof
US8288771B2 (en) 2004-10-26 2012-10-16 Samsung Electonics Co., Ltd. Thin film transistor array panel and manufacturing method thereof
US8455277B2 (en) 2004-10-26 2013-06-04 Samsung Display Co., Ltd. Thin film transistor array panel and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR100375435B1 (en) Method of manufacturing thin film transistor and liquid crystal display using same
US4545112A (en) Method of manufacturing thin film transistors and transistors made thereby
CN1323319C (en) Method for manufacturing thin film transistor array
US4859036A (en) Device plate having conductive films selected to prevent pin-holes
US4736229A (en) Method of manufacturing flat panel backplanes, display transistors and displays made thereby
US5851918A (en) Methods of fabricating liquid crystal display elements and interconnects therefor
US7362402B2 (en) Wires for liquid crystal display and liquid crystal display having the same
US4651185A (en) Method of manufacturing thin film transistors and transistors made thereby
JPS6272167A (en) Depositing and curing method for gate electrode material forthin film field effect transistor
WO2007063991A1 (en) Thin film transistor substrate and display device
JP2001174848A (en) Semiconductor device, liquid crystal display device and method of producing semiconductor device
JPH0862628A (en) Liquid crystal display element and its production
JP2000081632A (en) Thin film transistor and liquid crystal display device
JPH0766423A (en) Array substrate for liquid crystal display device
US5123847A (en) Method of manufacturing flat panel backplanes, display transistors
JPH11158609A (en) Piping structure and its production
JP2740591B2 (en) Method for manufacturing semiconductor device
JPH02106723A (en) Thin film transistor array
TW200538800A (en) A wiring substrate and method using the same
JP2002229065A (en) Liquid crystal display and method of manufacturing the same
JP2000199912A (en) Active matrix type liquid crystal display device and its production
WO2007086280A1 (en) Laminated structure, and electrode for electric circuit using the same
JPH07225395A (en) Liquid crystal display device and its production
JPH0926598A (en) Active matrix type liquid crystal display device
JPS63164A (en) Thin-film transistor