JPH11157997A - Substrate for growing thin layer and emitter using the same - Google Patents

Substrate for growing thin layer and emitter using the same

Info

Publication number
JPH11157997A
JPH11157997A JP32680097A JP32680097A JPH11157997A JP H11157997 A JPH11157997 A JP H11157997A JP 32680097 A JP32680097 A JP 32680097A JP 32680097 A JP32680097 A JP 32680097A JP H11157997 A JPH11157997 A JP H11157997A
Authority
JP
Japan
Prior art keywords
substrate
crystal
gallium nitride
single crystal
magnesia spinel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32680097A
Other languages
Japanese (ja)
Other versions
JP3652861B2 (en
Inventor
Shinji Inoue
真司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP32680097A priority Critical patent/JP3652861B2/en
Publication of JPH11157997A publication Critical patent/JPH11157997A/en
Application granted granted Critical
Publication of JP3652861B2 publication Critical patent/JP3652861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive and excellent substrate for growing thin layer that can stably produce magnesia spinel of high quality by not increasing, but rather lowering the crystal growth temperature for magnesia spinel, in addition, suitably permits the crystal growth from vapor phase such as epitaxial growth of gallium nitride and provide an emitter using the same. SOLUTION: This substrate for growing thin layer comprises magnesia spinel single crystal including a transition metal element and is used for growing semiconductor thin layer (single crystal) mainly containing gallium nitride. In an embodiment, this magnesia spinel single crystal contains 0.1-5.0 wt.% of TiO2 or MnO. The objective light-emitting device (LD) is prepared by arranging a laser element 3 having the semiconductor thin layers 31-35 at least containing gallium nitride on the substrate for growing thin layers thereon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は青色レーザーダイオ
ード素子や発光ダイオード素子等に応用可能で、良質な
窒化ガリウム系半導体薄膜を気相成長(特にエピタキシ
ャル成長)させるのに好適な薄膜成長用基板及びそれを
用いた各種ダイオード素子等の発光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applicable to a blue laser diode device, a light emitting diode device, and the like, and is suitable for a thin-film growth substrate suitable for vapor-phase growth (particularly, epitaxial growth) of a high-quality gallium nitride-based semiconductor thin film. The present invention relates to a light emitting device such as various diode elements using the same.

【0002】[0002]

【従来の技術】現在、窒化ガリウム単結晶は、約3.4
eVのバンドギャップを有し、青色の光を発するデバイ
スに好適に利用出来るものとして期待されている。しか
し、この結晶の融点は高く、溶融時の窒素ガスの蒸気圧
は104 気圧と非常に大きいため、通常の溶融法で結晶
を製造することは極めて困難である。このため、MOV
PE(Metalorganic Vapor Phase Epitaxy :有機金属
気相成長法)等の気相成長法により合成されている。そ
して、このような気相成長の際に使用する基板は、多く
の研究者によりサファイア、ガリウム砒素、シリコン、
酸化マグネシウム、窒化珪素等の単結晶が用いられてき
たが、その中でも気相成長時における高温(1200℃
程度)且つ還元性の高い水素雰囲気下でも安定なサファ
イア基板が窒化ガリウムから成る発光ダイオード素子用
基板として実用化されている。
2. Description of the Related Art At present, a gallium nitride single crystal has a thickness of about 3.4.
It is expected that it has a band gap of eV and can be suitably used for a device emitting blue light. However, since the melting point of this crystal is high and the vapor pressure of nitrogen gas at the time of melting is very high at 10 4 atm, it is extremely difficult to produce the crystal by a normal melting method. For this reason, MOV
It is synthesized by a vapor phase growth method such as PE (Metalorganic Vapor Phase Epitaxy). Substrates used for such a vapor phase growth are made of sapphire, gallium arsenide, silicon,
Single crystals such as magnesium oxide and silicon nitride have been used. Among them, high temperature (1200 ° C.)
A sapphire substrate that is stable even in a highly reducing hydrogen atmosphere has been put to practical use as a light emitting diode element substrate made of gallium nitride.

【0003】ところで、窒化ガリウムをレーザーダイオ
ードの発光素子(以下、発光装置ともいう)に用いるに
は、レーザー発振に必要な端面を形成させる必要がある
が、このような発振用の端面は、通常、窒化ガリウムを
エピタキシャル成長させる基板のへき開を利用して作ら
れるため、基板の選択が大変重要となる。
[0003] In order to use gallium nitride for a light emitting element of a laser diode (hereinafter also referred to as a light emitting device), it is necessary to form an end face required for laser oscillation. Since the substrate is formed by utilizing the cleavage of the substrate on which gallium nitride is epitaxially grown, the selection of the substrate is very important.

【0004】しかしながら、上記した薄膜成長用基板と
して用いられているサファイアはへき開性が弱く、しか
も窒化ガリウムの(1−100)へき開(注:ミラー指
数の「−1」は「1」の反転記号を意味するものとし、
以下、これにしたがって表記する)はサファイアの(1
−100)へき開と約30度ずれている。このためサフ
ァイア基板の場合には、へき開を利用して窒化ガリウム
のへき開面を作ることはできず、端面研磨、反射膜コー
ティング等のプロセスが必要となり、これによってコス
ト高になる上、へき開ほど良質の鏡面は得られない。
However, sapphire used as a substrate for the above-mentioned thin film growth has a weak cleavage property, and further has a cleavage of gallium nitride (1-100) (Note: Miller index "-1" is an inverted symbol of "1") Shall mean
Hereinafter, it will be described according to this).
-100) It is shifted about 30 degrees from the cleavage. For this reason, in the case of a sapphire substrate, it is not possible to make a cleavage surface of gallium nitride by using cleavage, which requires processes such as end face polishing and reflection film coating, which increases the cost and improves the quality of the cleavage. No mirror surface is obtained.

【0005】上記した問題点に鑑み、近年、(111)
及び(100)面でへき開する性質を持つマグネシウム
スピネルが窒化ガリウムのエピタキシャル成長の基板と
して注目され、実際、窒化ガリウムの成長に成功した実
例が報告されている(例えばKuramata et al.,Applied
Physics Letters,Vol67 (1995),P2521-2523等を参
照)。
In view of the above problems, in recent years, (111)
In addition, magnesium spinel, which has the property of cleaving on the (100) plane, has been attracting attention as a substrate for epitaxial growth of gallium nitride, and in fact, examples of successful growth of gallium nitride have been reported (eg, Kuramata et al., Applied).
Physics Letters, Vol67 (1995), P2521-2523).

【0006】マグネシアスピネルのへき開面である(1
11)あるいは(100)面は、マグネシアスピネルの
(111)面上にエピタキシャル成長させた窒化ガリウ
ムの(1−100)へき開方向と一致するので、特別な
研磨加工を施すことなしに光学鏡面が得られ、窒化ガリ
ウムのレーザーダイオード素子への応用が開けつつある
といえる。
The cleavage surface of magnesia spinel (1)
The (11) or (100) plane coincides with the (1-100) cleavage direction of gallium nitride epitaxially grown on the (111) plane of magnesia spinel, so that an optical mirror surface can be obtained without special polishing. Thus, it can be said that applications of gallium nitride to laser diode elements are opening up.

【0007】また、一般的にスピネル(スピネル構造を
成す結晶グループ)は、サファアイアに比べて硬度が低
いため(サファイアのモース硬度9に対してスピネルは
7.5〜8)、ウエハ加工や素子形成後のバックグライ
ンド(素子切断をしやすくするための成長基板の薄形加
工)が簡便に行え、ひいてはトータル的な加工コストを
低減できるという利点を有している。
In general, spinel (a crystal group having a spinel structure) has a lower hardness than that of sapphire (spinel is 7.5 to 8 with respect to Mohs hardness of 9 of sapphire). This has the advantage that back grinding (thinning of the growth substrate to facilitate element cutting) can be easily performed later, and the total processing cost can be reduced.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、マグネ
シアスピネルは融点がサファイアの融点2045℃に比
べて約2150℃ときわめて高いため、良質の結晶を安
価に製造することができるチョクラルスキー法による結
晶育成はかなり困難になる。なぜなら、マグネシアスピ
ネルは無色透明なため輻射熱を透過してしまい、チョク
ラルスキー法での結晶育成に必要な熱バランスが実現し
にくい。そのため、種付け直後に結晶が急激に成長し、
セル成長や気泡などの結晶欠陥を発生し、品質を著しく
低下させる原因となる。また、この対策として温度勾配
を大きくすることが考えられるが、温度勾配を大きくす
ることは坩堝の温度を上昇させることになり、育成時の
坩堝温度が坩堝材のIr(イリジウム)の融点(245
0℃)に近く、高温下での使用に耐久性上問題がある。
また、坩堝の周りの炉材も特殊なものが必要となるため
コスト高になる。
However, since the melting point of magnesia spinel is much higher than the melting point of sapphire, that is, 2045 ° C., which is about 2150 ° C., crystal growth by the Czochralski method can produce good quality crystals at low cost. Will be quite difficult. Because magnesia spinel is colorless and transparent, it transmits radiant heat, making it difficult to achieve the heat balance necessary for crystal growth by the Czochralski method. Therefore, crystals grow rapidly immediately after seeding,
Crystal defects such as cell growth and air bubbles are generated, which causes the quality to remarkably deteriorate. As a countermeasure against this, it is conceivable to increase the temperature gradient. However, increasing the temperature gradient increases the temperature of the crucible, and the temperature of the crucible during growth is reduced to the melting point of Ir (iridium) of the crucible material (245).
0 ° C.), and there is a problem in durability when used at high temperatures.
In addition, the furnace material around the crucible also requires a special material, which increases the cost.

【0009】そこで本発明では、マグネシアスピネルの
結晶成長温度を上昇させることなく、むしろ成長温度を
下げ、高品質なマグネシアスピネルを再現性良く安定に
製造でき、しかも窒化ガリウムのエピタキシャル成長用
などの気相成長を好適に行い得る安価で優れた薄膜成長
用基板、及びそれを用いた発光装置を提供することを目
的とする。
In the present invention, therefore, it is possible to stably produce a high-quality magnesia spinel with good reproducibility without raising the crystal growth temperature of magnesia spinel, but to increase the growth temperature. It is an object of the present invention to provide an inexpensive and excellent thin film growth substrate capable of favorably growing, and a light emitting device using the same.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、遷移金属元素を含有したマグネシアス
ピネル単結晶から成り、窒化ガリウムを主成分とする半
導体薄膜(単結晶)を気相成長させるための薄膜成長用
基板(結晶成長用基板)を提供する。
According to the present invention, a semiconductor thin film (single crystal) made of a magnesia spinel single crystal containing a transition metal element and containing gallium nitride as a main component is provided by the present invention. A thin film growth substrate (crystal growth substrate) for growth is provided.

【0011】また、この薄膜成長用基板は、TiO2
しくはMnOを0.1〜5.0重量%含有せしめたマグ
ネシアスピネル単結晶から成ることを特徴とする。
Further, the substrate for thin film growth is characterized by comprising a magnesia spinel single crystal containing TiO 2 or MnO in an amount of 0.1 to 5.0% by weight.

【0012】特に、マグネシアスピネル単結晶が550
〜1400nmの波長帯域内で80%/mm以下の光吸収
スペクトル特性(光透過率)を有することを特徴とす
る。
In particular, the magnesia spinel single crystal is 550
It has a light absorption spectrum characteristic (light transmittance) of 80% / mm or less in a wavelength band of 11400 nm.

【0013】また、本発明の発光装置は、上記薄膜成長
用基板上に、少なくとも窒化ガリウムを主成分とする半
導体薄膜から成るレーザー素子を配設したことを特徴と
する。
Further, the light emitting device of the present invention is characterized in that a laser element made of a semiconductor thin film containing at least gallium nitride as a main component is provided on the thin film growth substrate.

【0014】なお、薄膜成長用基板と窒化ガリウムを主
成分とする半導体薄膜との間に、薄膜成長用基板と半導
体薄膜と結晶構造が類似した材質の非晶質や結晶質のバ
ッファ層を介在させてもよく、そのような場合も含むも
のとする。
An amorphous or crystalline buffer layer having a material similar in crystal structure to the thin film growth substrate and the semiconductor thin film is interposed between the thin film growth substrate and the semiconductor thin film containing gallium nitride as a main component. And may include such cases.

【0015】また、上記レーザー素子には上記半導体薄
膜だけでなく上記バッファ層等のその他の層も含んでも
よいものとする。また、上記バッファ層が結晶成長用基
板に含まれるものとしてもよいものとする。
The laser element may include not only the semiconductor thin film but also other layers such as the buffer layer. Further, the buffer layer may be included in a substrate for crystal growth.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail.

【0017】まず、MgAl2 4 組成の酸化物混合物
にTi, Co, Cr, Mn, Niなどの遷移金属の酸化
物を所定量添加して1200〜1600℃の温度で焼成
し、多結晶体としたものを原料物質とする。
First, a predetermined amount of an oxide of a transition metal such as Ti, Co, Cr, Mn, or Ni is added to an oxide mixture having a composition of MgAl 2 O 4 , and calcined at a temperature of 1200 to 1600 ° C. Is used as a raw material.

【0018】これらの原料を例えばIrやMo等からな
る坩堝に充填し、その後、この坩堝を高周波あるいは抵
抗加熱式の単結晶育成炉内に配設し、原料物質の融点以
上に加熱して坩堝内原料を溶融させる。そして、しかる
後に引き上げ速度1〜5mm/時間でチョクラルスキー
法により、直径約20〜30mm、長さ30〜60mm
の単結晶を育成する。
These raw materials are filled in a crucible made of, for example, Ir or Mo, and then placed in a high-frequency or resistance heating type single crystal growing furnace, and heated to a temperature higher than the melting point of the raw material. The internal material is melted. Then, after that, at a lifting speed of 1 to 5 mm / hour, the diameter is about 20 to 30 mm and the length is 30 to 60 mm by the Czochralski method.
Grow a single crystal.

【0019】さらに、この育成単結晶からウェハ加工を
行い、(111)面を主面とするウェハを作製し、この
ウェハをエピタキシャル成長用基板(薄膜成長用基板)
とし、非晶質のバッファ層、及び窒化ガリウムを主成分
とする単結晶の気相成長を行わせ、活性層をその禁制帯
幅よりも大きな禁制帯幅を有する層で挟んだダブルヘテ
ロ構造のGaN(窒化ガリウム)系化合物半導体から成
る、半導体レーザダイオード(発光装置)を作製する。
なお、上記バッファ層は、窒化ガリウム系の単結晶との
格子定数と結晶成長用基板との格子定数の相違をできる
だけ緩和させるように設けているが、結晶成長が良好に
行われるのであればバッファ層は無くともよい。
Further, a wafer is processed from the grown single crystal to produce a wafer having a (111) plane as a main surface, and this wafer is used as a substrate for epitaxial growth (substrate for thin film growth).
And a double hetero structure in which an amorphous buffer layer and a single crystal mainly composed of gallium nitride are grown by vapor phase, and the active layer is sandwiched between layers having a band gap larger than the band gap. A semiconductor laser diode (light emitting device) made of a GaN (gallium nitride) compound semiconductor is manufactured.
The buffer layer is provided so as to reduce the difference between the lattice constant of the gallium nitride single crystal and the lattice constant of the crystal growth substrate as much as possible. There may be no layers.

【0020】ここで、薄膜成長用基板は、特にTiO2
もしくはMnOを0.1〜5.0重量%(TiO2 は特
に0.1〜2.0重量%が好適である)含有せしめたマ
グネシアスピネル単結晶から成ることを特徴とする。ま
た、マグネシアスピネル単結晶が550〜1400nm
の広い波長帯域内で80%/mm以下の光吸収スペクトル
特性(光透過率)を有することを特徴とする。上記重量
%の下限を下回ると光吸収スペクトル特性が遷移金属元
素が無添加のマグネシアスピネル単結晶とほとんど差異
がなく、上限を上回ると結晶中に遷移金属元素の酸化物
が結晶中に取り込まれにくく、偏析により結晶欠陥やク
ラックの原因となるため長尺な結晶を育成することがで
きない。
Here, the substrate for thin film growth is preferably made of TiO 2
Or a MnO 0.1 to 5.0 wt% (TiO 2 is is particularly preferred 0.1 to 2.0 wt.%), Characterized in that it consists of a magnesia spinel single crystal for the additional inclusion. Further, the magnesia spinel single crystal has a thickness of 550 to 1400 nm.
It has a light absorption spectrum characteristic (light transmittance) of 80% / mm or less within a wide wavelength band. When the amount is less than the lower limit of the above weight%, there is almost no difference in light absorption spectrum characteristics from the magnesia spinel single crystal to which the transition metal element is not added, and when the amount exceeds the upper limit, the oxide of the transition metal element is hardly taken into the crystal. In addition, segregation causes crystal defects and cracks, so that a long crystal cannot be grown.

【0021】図1にこの半導体レーザダイオードLDの
斜視図を、図2にそのX−X線断面図を示すように、本
発明の半導体レーザダイオードは、基板1の主面11に
非晶質の窒化ガリウムもしくはAlN(窒化アルミニウ
ム)層から成るバッファ層2を備え、該バッファ層2の
上にレーザ素子を成す半導体の多重層3を備えている。
このように、半導体レーザダイオードLDは、基板1上
に少なくとも窒化ガリウムを主成分とする単結晶層から
成るレーザー素子を配設して構成されている。
FIG. 1 is a perspective view of the semiconductor laser diode LD, and FIG. 2 is a cross-sectional view taken along the line XX of FIG. 2. As shown in FIG. A buffer layer 2 made of a gallium nitride or AlN (aluminum nitride) layer is provided, and a semiconductor multi-layer 3 forming a laser device is provided on the buffer layer 2.
As described above, the semiconductor laser diode LD is configured by disposing a laser element composed of a single crystal layer containing gallium nitride as a main component on the substrate 1.

【0022】この多重層3は、バッファ層2の前面に備
えたSi(シリコン)をドープしたn型GaN層からな
るn+層31と、このn+層31上に備えた電極41
と、該電極41以外の部分に備えたSiをドープしたA
0.1 Ga0.9 N層からなるn層32と、Siをドープ
したGaN層から成る活性層33と、Mg(マグネシウ
ム)をドープしたAl0.1 Ga0.9 N層からなるp層3
4と、これを覆うSiO2 (酸化珪素)層35と、Si
2 層35の窓部に備えた電極42から構成されてい
る。
The multi-layer 3 includes an n + layer 31 made of an n-type GaN layer doped with Si (silicon) provided on the front surface of the buffer layer 2 and an electrode 41 provided on the n + layer 31.
And Si doped A provided in a portion other than the electrode 41
An n layer 32 composed of an l 0.1 Ga 0.9 N layer, an active layer 33 composed of a GaN layer doped with Si, and a p layer 3 composed of an Al 0.1 Ga 0.9 N layer doped with Mg (magnesium).
4, a SiO 2 (silicon oxide) layer 35 covering the
It is composed of an electrode 42 provided in the window of the O 2 layer 35.

【0023】そして、図1に示すように基板1の対向す
る端面1b、1bは(1−100)面に沿ってへき開し
た面となっており、上記多重層3の対向端面(共振面)
3a、3aが形成されている面は、それぞれこの端面1
b、1bに連なった面となっている。
As shown in FIG. 1, the facing end faces 1b and 1b of the substrate 1 are cleaved along the (1-100) plane, and the facing end faces (resonant surfaces) of the multi-layer 3 are formed.
The surfaces on which 3a and 3a are formed are respectively end faces 1
b, 1b.

【0024】以下、図1、図2に示す半導体レーザダイ
オードLDの製造方法を説明する。まず、(111)面
を主面とするスピネル型単結晶基板を用意し、この基板
1を有機洗浄した後、結晶成長装置の結晶成長部に設置
する。装置内を真空排気した後、水素を供給し、水素雰
囲気中で約1200℃まで昇温して、基板表面に付着し
た炭化水素系ガスを除去する。
Hereinafter, a method of manufacturing the semiconductor laser diode LD shown in FIGS. 1 and 2 will be described. First, a spinel-type single crystal substrate having a (111) plane as a main surface is prepared, and after the substrate 1 is organically washed, it is set in a crystal growth section of a crystal growth apparatus. After evacuating the inside of the apparatus, hydrogen is supplied, and the temperature is raised to about 1200 ° C. in a hydrogen atmosphere to remove the hydrocarbon-based gas attached to the substrate surface.

【0025】次に、基板1の温度を約500℃程度まで
降温し、TMG(トリメチルガリウム)及びNH3 (ア
ンモニア)を供給して、基板1上に約300μmの厚み
に窒化ガリウムを成長させてバッファ層2とする。つぎ
に、基板1の温度を1030℃まで上昇させ、上記ガス
に加えてSiH4 (シラン)を供給し、Siドープ型G
aN層からなるn層31を成長させる。
Next, the temperature of the substrate 1 is lowered to about 500 ° C., TMG (trimethylgallium) and NH 3 (ammonia) are supplied, and gallium nitride is grown on the substrate 1 to a thickness of about 300 μm. The buffer layer 2 is used. Next, the temperature of the substrate 1 is raised to 1030 ° C., and SiH 4 (silane) is supplied in addition to the above-mentioned gas to form a Si-doped G
An n layer 31 composed of an aN layer is grown.

【0026】一旦、基板1を成長炉から取り出し、n+
層31の表面の一部をSiO2 でマスクした後、再び成
長炉に戻し、真空排気して水素及びNH3 を供給して、
1030℃まで昇温する。次にTMA(トリメチルアル
ミニウム)、TMG及びSiH4 を供給して、SiO2
2がマスクされていない部分に厚さ0.5μmのSiド
ープAl0.1 Ga0.9 N層を形成してn層32とする。
Once the substrate 1 is taken out of the growth furnace, n +
After masking a part of the surface of the layer 31 with SiO 2, it is returned to the growth furnace again, evacuated and supplied with hydrogen and NH 3 ,
Raise the temperature to 1030 ° C. Next, TMA (trimethylaluminum), TMG and SiH 4 are supplied to form SiO 2
An Si-doped Al 0.1 Ga 0.9 N layer having a thickness of 0.5 μm is formed in a portion where 2 is not masked to form an n layer 32.

【0027】次に、TMG及びSiH4 を供給し、厚さ
0.2μmのSiドープGaN層を成膜して活性層33
とする。次にTMA、TMG及びCp2 Mg(ビスシク
ロペンタディエニルマグネシウム)を供給して、厚さ
0.5μmのマグネシウムドープAl0.1 Ga0.9 N層
からなるp層34を形成する。
Next, TMG and SiH 4 are supplied to form a Si-doped GaN layer having a thickness of 0.2 μm to form an active layer 33.
And Next, TMA, TMG and Cp 2 Mg (biscyclopentadienyl magnesium) are supplied to form a 0.5 μm-thick magnesium-doped Al 0.1 Ga 0.9 N p-layer 34.

【0028】次に、マスクとして使用したSiO2 をフ
ッ酸系エッチャントにより除去し、p層34上にSiO
2 層35を堆積した後、所定の大きさの短冊状に窓を開
け、真空チャンバに移してp層34に電子線照射を行
う。この電子線照射によりp層34はp伝導を示した。
モして、p層34の窓にあたる部分と、n+層31に、
各々金属の電極41、42を形成した。ここで、陽極
(電極42)は、例えば上層:Au(金)/下層:Cr
(クロム)の2層構造や上層:Au/中間層:Pt(白
金)/下層:Ti(チタン)の3層構造等とし、陰極
(電極41)は、例えば上層:Au/中間層:Ni(ニ
ッケル)/下層:Au−Ge(ゲルマニウム)合金の3
層構造等とする。
Next, the SiO 2 used as a mask is removed with a hydrofluoric acid-based etchant, and the SiO 2
After depositing the two layers 35, a window is opened in a rectangular shape having a predetermined size, and is moved to a vacuum chamber to irradiate the p layer 34 with an electron beam. By this electron beam irradiation, the p-layer 34 showed p-conduction.
Then, the portion corresponding to the window of the p layer 34 and the n + layer 31
Metal electrodes 41 and 42 were formed, respectively. Here, the anode (electrode 42) is, for example, an upper layer: Au (gold) / a lower layer: Cr
A two-layer structure of (chromium) or a three-layer structure of upper layer: Au / intermediate layer: Pt (platinum) / lower layer: Ti (titanium), and the cathode (electrode 41) is, for example, upper layer: Au / intermediate layer: Ni ( Nickel) / Lower layer: Au-Ge (germanium) alloy 3
It has a layer structure or the like.

【0029】上記のレーザ素子を成す多重層3が1枚の
基板1上に多数形成される。そして、この酸化物基板1
と多重層3を同時に分割することによって、図1、2に
示す個々の半導体レーザダイオードを得ることができ
る。
A large number of multiple layers 3 constituting the above-mentioned laser element are formed on one substrate 1. And this oxide substrate 1
1 and 2 can be obtained by simultaneously dividing the semiconductor laser diode and the multi-layer 3.

【0030】この分割を行う際に、多重層3の対向端面
3a、3a及び基板1の端面1b、1bは、窒化ガリウ
ム単結晶の(1−100)面のへき開により分割され、
その他の端面はダイヤモンドカッタ等で切断して分割す
る。このようにして発振効率の高い優れた半導体レーザ
ダイオードを得ることができる。また、本発明の薄膜成
長用基板は、従米のMgAl2 4 スピネル基板より気
泡や結晶粒界、歪みなどの結晶欠陥を著しく低減し、高
品質な結晶基板を歩留りよく製造することが可能であ
る。
At the time of this division, the opposing end faces 3a and 3a of the multilayer 3 and the end faces 1b and 1b of the substrate 1 are divided by cleavage of the (1-100) plane of the gallium nitride single crystal.
The other end face is cut by a diamond cutter or the like and divided. Thus, an excellent semiconductor laser diode having high oscillation efficiency can be obtained. In addition, the thin film growth substrate of the present invention can significantly reduce crystal defects such as bubbles, crystal grain boundaries, and strains, and can produce a high-quality crystal substrate with a high yield compared to a conventional MgAl 2 O 4 spinel substrate. is there.

【0031】また、本発明のスピネル構造の薄膜成長用
基板の(111)面は、窒化ガリウム(0001)面と
の接合面は整合性が良好であり、接合面の構造周期は表
1に示したように窒化ガリウムとの差(ミスマッチ率:
(|D1-D2 |/D1)x100、ただし、D1: 窒化ガリウム単結
晶の(0001)面における窒素原子の原子間距離、D
2: 窒化ガリウムを主成分とする単結晶を気相成長させ
る主面における酸素原子の原子間距離)が6.7%以内
であり、従来のマグネシウムスピネルと比較しても同等
の整合性を有しており、品質の良い窒化ガリウム薄膜を
作ることができる。
The (111) plane of the spinel-structured thin film growth substrate of the present invention has good matching with the gallium nitride (0001) plane, and the structural period of the bonding plane is shown in Table 1. The difference from gallium nitride (mismatch rate:
(| D1-D2 | / D1) x100, where D1: distance between nitrogen atoms on the (0001) plane of gallium nitride single crystal, D
2: The interatomic distance between oxygen atoms on the main surface on which a single crystal containing gallium nitride as a main component is vapor-phase grown is within 6.7%, and has the same consistency as that of a conventional magnesium spinel. As a result, a high-quality gallium nitride thin film can be produced.

【0032】なお、本発明のマグネシアスピネル単結晶
は、550〜1400nmの広い光の波長帯域内で80
%/mm以下の光透過率を有するものであれば、上記遷移
金属元素以外の元素を含むものであってもよく、本発明
の要旨を逸脱しない範囲で適宜変更実施が可能である。
Incidentally, the magnesia spinel single crystal of the present invention can be used within a wide light wavelength band of 550 to 1400 nm.
As long as it has a light transmittance of not more than% / mm, it may contain an element other than the above-mentioned transition metal element, and can be appropriately changed and implemented without departing from the gist of the present invention.

【0033】[0033]

【実施例】〔例1〕4NのMgO粉末と4NのAl2
3 粉末に、4NのTiO2 粉末を28.047:70.
953:1.0重量%の混合比で秤量した。この原料を
アルミナボールにて10時間乾式混合した後、1t/c
2 でプレス成型し、1600℃で焼成したものを結晶
育成用原料とした。
EXAMPLES [Example 1] 4N MgO powder and 4N Al 2 O
3 powder, a TiO 2 powder 4N 28.047: 70.
The mixture was weighed at a mixing ratio of 953: 1.0% by weight. After dry-mixing this raw material for 10 hours with an alumina ball, 1 t / c
What was press-molded at m 2 and fired at 1600 ° C. was used as a raw material for crystal growth.

【0034】イリジウム製の直径50mm,高さ50m
m,厚さ2mmの坩堝に上記原料を180g充填し、融
点以上に加熱溶解させた後に<111>方位のマグネシ
アスピネル種結晶を融液表面に種付けし、温度を徐々に
降下させながら回転数10〜20rpm,引上げ速度3
〜5mm/hの条件で育成した。
Iridium diameter 50 mm, height 50 m
A crucible having a thickness of 2 mm and a thickness of 2 mm was filled with 180 g of the above-mentioned raw material, and heated and melted to a melting point or higher, and then a magnesia spinel seed crystal having a <111> orientation was seeded on the melt surface. ~ 20rpm, pulling speed 3
It grew on conditions of 〜5 mm / h.

【0035】育成結晶は外径25mm長さ50mmの透
明青色結晶で、図3に示すように種付け後の結晶制御性
が高く、クラックや結晶粒界,結晶歪みのない高品質結
晶であった。なお、図中Kは結晶育成棒であり、Jの育
成結晶の肩部を示す。
The grown crystal was a transparent blue crystal having an outer diameter of 25 mm and a length of 50 mm. As shown in FIG. 3, the crystal was highly controllable after seeding, and was a high-quality crystal free of cracks, grain boundaries and crystal distortion. In the drawing, K is a crystal growing rod, which indicates the shoulder of the grown crystal of J.

【0036】この結晶から直径25mm,厚み0.5m
mのウエハの(111)面の鏡面ウエハを採取し、この
ウエハに青色発光半導体であるGaNを成長させた。G
aNの成長プロセスでは1000〜1200℃でH2
Heの還元性ガス中で行われるが、本基板ではプロセス
で基板が損傷を受けることも無く、正常に成膜が出来
た。また、デバイスプロセスでのバックポリッシュやブ
レーキングでも問題はなく、歩留りよく発光素子を製造
することが出来た。
From this crystal, a diameter of 25 mm and a thickness of 0.5 m
A mirror surface wafer of the (111) plane of the m wafer was collected, and GaN, which is a blue light emitting semiconductor, was grown on the wafer. G
The aN growth process is performed at 1000 to 1200 ° C. in a reducing gas such as H 2 or He. In this substrate, the film was formed normally without any damage to the substrate in the process. In addition, there was no problem in back polishing or braking in the device process, and the light emitting device could be manufactured with a high yield.

【0037】TiO2 の添加量は0.1〜2.0重量%
の範囲で顕著な効果が見られたが、特に5.0重量%を
越える添加量では結晶下部において組成変動やセル成長
による結晶品質の低下が起りTiO2 添加の効果が著し
く悪化した。
The amount of TiO 2 added is 0.1 to 2.0% by weight.
However, when the addition amount exceeds 5.0% by weight, the effect of the addition of TiO 2 is remarkably deteriorated due to a change in composition or a decrease in crystal quality due to cell growth in the lower portion of the crystal.

【0038】無添加のマグネシアスピネルでは500〜
1500nm波長での吸収はないがTiO2 を添加する
ことにより、図4に示すように500〜1050nmの
広い範囲に渡って透過率が60%/mm以下であり、こ
の吸収特性により種結晶と融液との温度差が緩和され、
結晶の制御性が向上したと考えられる。
[0038] 500-
Although there is no absorption at a wavelength of 1500 nm, by adding TiO 2 , the transmittance is 60% / mm or less over a wide range of 500 to 1050 nm as shown in FIG. The temperature difference with the liquid is reduced,
It is considered that the controllability of the crystal was improved.

【0039】〔例2〕4NのMgO粉末と4NのAl2
3 粉末に4NのMnO粉末を28.047:70.9
53:1.0重量%の混合比で秤量した。この原料をア
ルミナボールにて10時間乾式混合した後、1t/cm
2 でプレス成型し、1600℃で焼成したものを結晶育
成用原料とした。
[Example 2] 4N MgO powder and 4N Al 2
28.047: 70.9 4N MnO powder in O 3 powder
It was weighed at a mixing ratio of 53: 1.0% by weight. This material was dry-mixed with alumina balls for 10 hours and then 1 t / cm
What was press-molded in 2 and fired at 1600 ° C. was used as a raw material for crystal growth.

【0040】イリジウム製の例1と同様な坩堝に上記原
料を180g充填し、融点以上に加熱溶解させた後に<
111>方位のマグネシアスピネル種結晶を融液表面に
種付けし、温度を徐々に降下させながら回転数10〜2
0rpm,引上げ速度3〜5mm/hの条件で育成し
た。
The same crucible as in Example 1 made of iridium was charged with 180 g of the above-mentioned raw material, and heated and melted at a temperature not lower than the melting point.
A magnesia spinel seed crystal having an orientation of 111> is seeded on the surface of the melt, and the temperature is gradually lowered while the rotation speed is 10 to 2
They were grown under the conditions of 0 rpm and a pulling speed of 3 to 5 mm / h.

【0041】育成結晶は外径25mm長さ50mmの透
明赤色結晶で、例1と同様に種付け後の結晶制御性が高
く、クラックや結晶粒界,結晶歪みのない高品質結晶で
あった。
The grown crystal was a transparent red crystal having an outer diameter of 25 mm and a length of 50 mm, which was a high quality crystal having high crystallographic controllability after seeding as in Example 1 and free from cracks, crystal grain boundaries and crystal distortion.

【0042】この結晶から直径25mm厚み0.5mm
のウエハの(111)面の鏡面ウエハを採取し、このウ
エハに青色発光半導体であるGaNを成長させた。Ga
Nの成長プロセスでは1000〜1200℃でH2 やH
eの還元性ガス中で行われるが、本基板ではプロセスで
基板が損傷を受けることも無く、正常に成膜が出来た。
また、デバイスプロセスでのバックポリッシュやブレー
キングによる問題もなく、歩留りよく発光素子を製造す
ることが出来た。
From this crystal, a diameter of 25 mm and a thickness of 0.5 mm
A mirror-finished wafer of the (111) plane of the wafer was collected, and GaN as a blue light emitting semiconductor was grown on the wafer. Ga
In the growth process of N, H 2 or H
The process was performed in a reducing gas of e. In this substrate, the film could be formed normally without damaging the substrate in the process.
In addition, a light emitting element could be manufactured with a high yield without any problem due to back polishing or breaking in a device process.

【0043】MnOの添加量は0.1〜5.0重量%の
範囲で効果が見られたが、5.0重量%を越える添加量
では結晶下部において組成変動やセル成長による結晶品
質の低下が起りMnO添加の効果が著しく悪化した。
The effect was observed when the amount of MnO added was in the range of 0.1 to 5.0% by weight. However, when the amount of addition exceeded 5.0% by weight, the crystal quality deteriorated due to composition fluctuation and cell growth in the lower part of the crystal. As a result, the effect of the addition of MnO was significantly deteriorated.

【0044】無添加のマグネシアスピネルでは500〜
1500nm波長での吸収はないがMnOを添加するこ
とにより、図5に示すように500〜1100nmの広
い範囲に渡って60%/mm以下の光透過率であり、こ
の吸収特性により種結晶と融液との温度差が緩和され、
結晶の制御性が向上したと考えられる。
With no added magnesia spinel, 500 to
Although there is no absorption at a wavelength of 1500 nm, the addition of MnO results in a light transmittance of 60% / mm or less over a wide range of 500 to 1100 nm as shown in FIG. The temperature difference with the liquid is reduced,
It is considered that the controllability of the crystal was improved.

【0045】〔比較例〕4NのMgO粉末と4NのAl
2 3 粉末を28.33:71.67重量%の混合比で
秤量した。この原料をアルミナボールにて10時間乾式
混合した後、1t/cm2 でプレス成型し、1600℃
で焼成したものを結晶育成用原料とした。
[Comparative Example] 4N MgO powder and 4N Al
The 2 O 3 powder was weighed at a mixing ratio of 28.33: 71.67% by weight. This raw material was dry-mixed with alumina balls for 10 hours, and then press-molded at 1 t / cm 2 and 1600 ° C.
The material fired in the above was used as a raw material for crystal growth.

【0046】例1と同様なイリジウム製の坩堝に上記原
料を180g充填し、融点以上に加熱溶解させた後に<
111>方位のマグネシアスピネル種結晶を融液表面に
種付けした。種付け後、結晶は径方向に急激に広がる
が、温度を制御しながら回転数10〜20rpm,引上
げ速度3〜5mm/hの条件で育成した。結晶は径方向
に急激に広がったためセル成長が起こり結晶粒界や気泡
等の結晶欠陥を誘発するとともに、図6に示すような広
がった結晶が坩堝壁まで到達して結晶育成が困難となる
こともしばしば発生し、結晶歩留りを低下させた。な
お、図6においてKは結晶育成棒であり、Jは育成結晶
の肩部である。
180 g of the above-mentioned raw material was filled in the same iridium crucible as in Example 1, and after heating and melting to above the melting point,
A magnesia spinel seed crystal having a 111> orientation was seeded on the melt surface. After seeding, the crystals rapidly spread in the radial direction, but were grown under the conditions of a rotation speed of 10 to 20 rpm and a pulling speed of 3 to 5 mm / h while controlling the temperature. Because the crystal spreads rapidly in the radial direction, cell growth occurs and crystal defects such as crystal grain boundaries and bubbles are induced, and the expanded crystal as shown in FIG. 6 reaches the crucible wall, making crystal growth difficult. Also frequently occurred and reduced the crystal yield. In FIG. 6, K is a crystal growing rod, and J is a shoulder of the grown crystal.

【0047】一方、種付け後の急激な径方向の成長のな
い高い温度で種付けを試みたが、種結晶が解ける問題が
発生し結晶の育成は困難となった。これは、図7に示す
ように、マグネシアスピネルの光吸収が輻射波長で、し
かも加熱に影響度が大きい500〜1500nmの広い
波長域においてほとんど0%であることから、種結晶の
保温がなく、種結晶と融液との温度差が大きくなること
が原因と考えられる。
On the other hand, seeding was attempted at a high temperature without rapid growth in the radial direction after seeding, but a problem of dissolving the seed crystal occurred, making it difficult to grow the crystal. This is because, as shown in FIG. 7, since the light absorption of magnesia spinel is a radiation wavelength and is almost 0% in a wide wavelength range of 500 to 1500 nm, which has a large influence on heating, there is no heat retention of the seed crystal. It is considered that the cause is that the temperature difference between the seed crystal and the melt increases.

【0048】育成結晶は外径25mm長さ50mmの透
明結晶で、図6に示すように種付け後の肩部Jは直角に
成長し、結晶粒界,結晶歪み,セル成長,気泡等の欠陥
が発生した。
The grown crystal is a transparent crystal having an outer diameter of 25 mm and a length of 50 mm. As shown in FIG. 6, the shoulder J after seeding grows at a right angle, and defects such as crystal grain boundaries, crystal distortion, cell growth, and bubbles are generated. Occurred.

【0049】この結晶から直径25mm,厚み0.5m
mウエハ面(111)面の鏡面ウエハを採取し、GaN
発光デバイスを製造したが、結晶粒界や歪みによる半導
体のステップ成長や多結晶化により製造歩留りを著しく
低下した。
From this crystal, a diameter of 25 mm and a thickness of 0.5 m
The mirror surface wafer of the m wafer surface (111) surface is sampled, and GaN
Although the light emitting device was manufactured, the manufacturing yield was remarkably reduced due to the step growth and polycrystallization of the semiconductor due to the crystal grain boundaries and strain.

【0050】[0050]

【発明の効果】以上詳述したように、本発明の薄膜成長
用基板によれば、肩部制御の困難により高品質結晶育成
が困難であったマグネシアスピネル単結晶の品質と歩留
りを飛躍的に向上させることができる。
As described in detail above, according to the substrate for thin film growth of the present invention, the quality and yield of magnesia spinel single crystal, for which high-quality crystal growth was difficult due to difficulty in controlling the shoulder, was dramatically improved. Can be improved.

【0051】また、これにより窒化ガリウム系半導体薄
膜を用いた発光装置が歩留りよくしかも性能良く製造で
き、優れた発光装置を提供することができる。
Further, a light emitting device using a gallium nitride based semiconductor thin film can be manufactured with good yield and high performance, thereby providing an excellent light emitting device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る半導体レーザーダイオ−ドを示す
斜視図である。
FIG. 1 is a perspective view showing a semiconductor laser diode according to the present invention.

【図2】図1におけるX−X線断面図である。FIG. 2 is a sectional view taken along line XX in FIG.

【図3】本発明に係る育成結晶の外観を示す正面図であ
る。
FIG. 3 is a front view showing the appearance of a grown crystal according to the present invention.

【図4】TiO2 を含有したマグネシアスピネル単結晶
基板の透過率の波長依存性を説明するグラフである。
FIG. 4 is a graph illustrating the wavelength dependence of the transmittance of a magnesia spinel single crystal substrate containing TiO 2 .

【図5】MnOを含有したマグネシアスピネル単結晶基
板の透過率の波長依存性を説明するグラフである。
FIG. 5 is a graph illustrating the wavelength dependence of the transmittance of a magnesia spinel single crystal substrate containing MnO.

【図6】ノンドープのマグネシアスピネル単結晶の育成
結晶の外観を示す正面図である。
FIG. 6 is a front view showing the appearance of a grown crystal of a non-doped magnesia spinel single crystal.

【図7】ノンドープのマグネシアスピネル単結晶基板の
透過率の波長依存性を説明するグラフである。
FIG. 7 is a graph illustrating the wavelength dependence of the transmittance of a non-doped magnesia spinel single crystal substrate.

【符号の説明】[Explanation of symbols]

1 ・・・ 基板 1a・・・ 主面 1b・・・ 端面 2 ・・・ バッファ層 3 ・・・ 多重層(レーザー素子) 3a・・・ 対向端面 31,32,33,34 ・・・ 窒化ガリウムを主成
分とする単結晶層 LD ・・・ 半導体レーザーダイオード(発光装置)
DESCRIPTION OF SYMBOLS 1 ... Substrate 1a ... Main surface 1b ... End surface 2 ... Buffer layer 3 ... Multilayer (laser element) 3a ... Opposite end surface 31, 32, 33, 34 ... Gallium nitride Single crystal layer mainly composed of LD LD semiconductor laser diode (light emitting device)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 窒化ガリウムを主成分とする半導体薄膜
を気相成長させるための基板であって、該基板が遷移金
属元素を含有したマグネシアスピネル単結晶から成るこ
とを特徴とする薄膜成長用基板。
1. A substrate for growing a semiconductor thin film containing gallium nitride as a main component, wherein the substrate is made of a magnesia spinel single crystal containing a transition metal element. .
【請求項2】 前記マグネシアスピネル単結晶はTiO
2 もしくはMnOを0.1〜5.0重量%含有している
ことを特徴とする請求項1に記載の薄膜成長用基板。
2. The magnesia spinel single crystal is made of TiO.
2. The thin film growth substrate according to claim 1, wherein the substrate contains 0.1 to 5.0% by weight of 2 or MnO.
【請求項3】 前記マグネシアスピネル単結晶が550
〜1400nmの波長帯域内での光透過率が80%/m
m以下であることを特徴とする請求項1に記載の薄膜成
長用基板。
3. The method according to claim 1, wherein the magnesia spinel single crystal is 550.
80% / m light transmittance in the wavelength band of ~ 1400 nm
2. The substrate for thin film growth according to claim 1, wherein m is not more than m.
【請求項4】 請求項1に記載の薄膜成長用基板上に、
少なくとも窒化ガリウムを主成分とする半導体薄膜を複
数層積層したことを特徴とする発光装置。
4. The method according to claim 1, wherein:
A light-emitting device comprising a plurality of stacked semiconductor thin films containing at least gallium nitride as a main component.
JP32680097A 1997-11-27 1997-11-27 Thin film growth substrate and light emitting device using the same Expired - Fee Related JP3652861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32680097A JP3652861B2 (en) 1997-11-27 1997-11-27 Thin film growth substrate and light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32680097A JP3652861B2 (en) 1997-11-27 1997-11-27 Thin film growth substrate and light emitting device using the same

Publications (2)

Publication Number Publication Date
JPH11157997A true JPH11157997A (en) 1999-06-15
JP3652861B2 JP3652861B2 (en) 2005-05-25

Family

ID=18191855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32680097A Expired - Fee Related JP3652861B2 (en) 1997-11-27 1997-11-27 Thin film growth substrate and light emitting device using the same

Country Status (1)

Country Link
JP (1) JP3652861B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031047A1 (en) * 2003-09-23 2005-04-07 Saint-Gobain Ceramics & Plastics, Inc. Spinel articles and methods for forming same
US7045223B2 (en) 2003-09-23 2006-05-16 Saint-Gobain Ceramics & Plastics, Inc. Spinel articles and methods for forming same
US7326477B2 (en) 2003-09-23 2008-02-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel boules, wafers, and methods for fabricating same
US7919815B1 (en) 2005-02-24 2011-04-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel wafers and methods of preparation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031047A1 (en) * 2003-09-23 2005-04-07 Saint-Gobain Ceramics & Plastics, Inc. Spinel articles and methods for forming same
US7045223B2 (en) 2003-09-23 2006-05-16 Saint-Gobain Ceramics & Plastics, Inc. Spinel articles and methods for forming same
US7326477B2 (en) 2003-09-23 2008-02-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel boules, wafers, and methods for fabricating same
US7919815B1 (en) 2005-02-24 2011-04-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel wafers and methods of preparation

Also Published As

Publication number Publication date
JP3652861B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
EP0551721B1 (en) Gallium nitride base semiconductor device and method of fabricating the same
JP2795226B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3813740B2 (en) Substrates for electronic devices
EP1367150B1 (en) Production method for semiconductor crystal and semiconductor luminous element
Xiao et al. Growth of c‐axis oriented gallium nitride thin films on an amorphous substrate by the liquid‐target pulsed laser deposition technique
JP2015178448A (en) Method for manufacturing single crystal substrate and method for manufacturing laser device
JP2002284600A (en) Method for manufacturing gallium nitride crystal substrate and the same
JP2001160627A (en) Group iii nitride compound semiconductor light emitting element
JPH10247626A (en) Method of growing gallium nitride on spinel substrate
CN102113140A (en) Method for manufacturing iii nitride semiconductor light emitting element, iii nitride semiconductor light emitting element and lamp
JP4292619B2 (en) Manufacturing method of semiconductor device
JPH11135889A (en) Substrate for crystal growth and light-emitting device using the same
JP2002249400A (en) Method for manufacturing compound semiconductor single crystal and utilization thereof
KR20050104454A (en) Method of growing a nitride single crystal on silicon wafer, nitride semiconductor light emitting diode manufactured using the same and the manufacturing method
JP3652861B2 (en) Thin film growth substrate and light emitting device using the same
JP2003073197A (en) Method for producing semiconductor crystal
JP2003224071A (en) Manufacturing method for nitride based semiconductor and nitride semiconductor element using the same
US20230274934A1 (en) Semiconductor substrate with nitrided interface layer
JPH11243056A (en) Manufacture of iii-group nitride semiconductor
JP5430467B2 (en) Group III nitride semiconductor growth substrate, group III nitride semiconductor free-standing substrate, group III nitride semiconductor device, and methods of manufacturing the same
JP2003249684A (en) Growth substrate for nitride semiconductor, nitride semiconductor light emitting element and its manufacturing method
KR100403191B1 (en) Method for manufacturing a high quality thin film by post-growth annealing in oxygen ambient
JPH09129927A (en) Blue light emitting element
JP2004137135A (en) Quartz substrate with thin film
JP2000269605A (en) Laminate comprising gallium nitride crystal and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050224

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees