JPH11156718A - Grinding device and grinding method - Google Patents

Grinding device and grinding method

Info

Publication number
JPH11156718A
JPH11156718A JP32112397A JP32112397A JPH11156718A JP H11156718 A JPH11156718 A JP H11156718A JP 32112397 A JP32112397 A JP 32112397A JP 32112397 A JP32112397 A JP 32112397A JP H11156718 A JPH11156718 A JP H11156718A
Authority
JP
Japan
Prior art keywords
polishing
electric field
polishing slurry
slurry supply
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32112397A
Other languages
Japanese (ja)
Inventor
Masakazu Muroyama
雅和 室山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP32112397A priority Critical patent/JPH11156718A/en
Publication of JPH11156718A publication Critical patent/JPH11156718A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent flocculation of abrasive grain by improving dispersibility of abrasive grain in abrasive slurry by providing an abrasive slurry supplying means with an electric field impressing means for abrasive slurry. SOLUTION: An electric field impressing means 18 is provided on an abrasive slurry supply tank 15 (or supply nozzle 16). The electrode constitution is made a constitution in which a capacitive coupling by a that plate electrode or an inductive coupling by a coiled electrode and an antenna are used. As the power source, ac is mainly used from a point of view of dispersion efficiency of abrasive slurry of dc or ac. Electric field of a prescribed frequency is impressed in the abrasive slurry supply tank 15 and abrasive slurry 17 is supplied to a grinding pad 14. Thus, flocculation of abrasive grain is prevented, abrasive slurry having excellent dispersibility is supplied to the grinding pad 14 and generation of a grinding flaw such as a scratch flaw can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は研磨装置および研磨
方法に関し、更に詳しくは、スクラッチ等の研磨疵を防
止して安定な研磨をなしうる研磨装置および研磨方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing apparatus and a polishing method, and more particularly to a polishing apparatus and a polishing method capable of performing stable polishing by preventing polishing flaws such as scratches.

【0002】[0002]

【従来の技術】LSI等の半導体装置の集積度が進み、
そのデザインルールがサブハーフミクロンからクォータ
ミクロンのレベルへと微細化されるに伴い、内部配線の
パターン幅も縮小されつつある。一方配線抵抗を低いレ
ベルに保ち、信号伝播の遅延や各種マイグレーションを
防止するには、配線の断面積を確保する必要がある。す
なわち配線の高さはあまり縮小できないことから、配線
のアスペクト比は増加の傾向にある。また同一の半導体
チップ上においても、配線密度が稠密な領域と疎な領域
とが混在する場合が一般的である。
2. Description of the Related Art The degree of integration of semiconductor devices such as LSIs has increased.
As the design rules are refined from sub-half micron to quarter micron, the pattern width of the internal wiring is also being reduced. On the other hand, in order to keep the wiring resistance at a low level and prevent signal propagation delay and various migrations, it is necessary to secure a cross-sectional area of the wiring. That is, since the height of the wiring cannot be reduced so much, the aspect ratio of the wiring tends to increase. In general, even on the same semiconductor chip, a region where the wiring density is dense and a region where the wiring density is sparse are mixed.

【0003】かかる微細配線を下層とした多層配線構造
を形成する場合には、下層配線により形成された段差や
凹部を埋めるように平坦化層間絶縁膜を形成してフラッ
トな表面を確保し、この上に上層配線を形成するプロセ
スを繰り返すことが必要になる。これは、上層配線のス
テップカバレッジの向上もさることながら、レジストパ
ターニングのためのリソグラフィにおける、露光光の短
波長化やレンズの高NA化にともなうDOF (Depth of
Focus) の低下を補償する観点からも重要である。一例
として、波長248nmのKrFエキシマレーザステッ
パ露光により0.25μmルールのラインアンドスペー
スを制御性よくパターニングするには、露光面の表面段
差は0.2〜0.3μm以下が要求されている。
In order to form a multilayer wiring structure having such fine wiring as a lower layer, a flattening interlayer insulating film is formed so as to fill a step or a recess formed by the lower wiring to secure a flat surface. It is necessary to repeat the process of forming the upper layer wiring thereon. This is because the DOF (Depth of Depth of Exposure) associated with the shortening of the exposure light wavelength and the increase in the NA of the lens in lithography for resist patterning, as well as improving the step coverage of the upper wiring,
Focus) is also important from the viewpoint of compensating for the decrease. As an example, in order to pattern a line and space of 0.25 μm rule with good controllability by KrF excimer laser stepper exposure with a wavelength of 248 nm, the surface step of the exposed surface is required to be 0.2 to 0.3 μm or less.

【0004】従来より各種の平坦化層間絶縁膜の形成方
法が開発されている。これらの形成方法は、大別して成
膜条件の最適化によりセルフフロー特性を向上するか、
あるいは成膜後のリフロー熱処理により表面平坦性を向
上するかのいずれかである。いずれの方法も、配線間隔
の広い段差凹部での層間絶縁膜の平坦形状や、配線間隔
の狭い部分での層間絶縁膜のボイド(鬆)の発生防止に
関して改善の余地が残されている。
Conventionally, various methods for forming a planarized interlayer insulating film have been developed. These forming methods are roughly divided into improving the self-flow characteristics by optimizing the film forming conditions,
Alternatively, the surface flatness is improved by reflow heat treatment after film formation. In any of the methods, there is room for improvement with respect to the flat shape of the interlayer insulating film in a stepped recess having a wide wiring interval and the prevention of voids in the interlayer insulating film in a portion having a narrow wiring interval.

【0005】そこで、段差が発生した層間絶縁膜等を後
処理により平坦化する方法として、近年シリコンウェハ
のミラーポリッシュ法を応用した化学的機械研磨(CM
P;Chemical Mechnical Polishing) によるグローバル
平坦化法が提案されている。この化学的機械研磨方法
は、一旦形成された被処理基板上の各種段差を一括して
確実に平坦化できる方法として有望視されている。
Therefore, as a method of flattening an interlayer insulating film or the like having a step by post-processing, a chemical mechanical polishing (CM) using a mirror polishing method of a silicon wafer has recently been applied.
P: Chemical Mechanical Polishing) has been proposed. This chemical mechanical polishing method is regarded as promising as a method that can collectively flatten various steps on a target substrate once formed.

【0006】図4は従来の化学的機械研磨装置を示す概
略断面図である。同図において、回転するキャリア12
に研磨面を下向きにして貼着した被研磨基板11は、こ
れも回転する研磨定盤であるプラテン13と対向するよ
うにセッティングされる。このプラテン13表面には、
研磨パッド14が貼着されている。一方、研磨スラリ供
給手段の主要構成要素である研磨スラリ供給槽15から
研磨スラリ供給ノズル16を経由し、プラテン13上の
研磨パッド14に研磨スラリ17を供給する。この状態
で被研磨基板11を所定圧力で研磨パッド14に押圧し
て研磨を施す。このときキャリア12およびプラテン1
3の回転数と回転軸の調整を最適化するとともに、被研
磨基板に適した研磨スラリの選択が1つのポイントとな
る。一例として、酸化シリコン系の層間絶縁膜を研磨す
る場合には、研磨粒子として粒径10nm程度のシリカ
微粒子を懸濁したKOH水溶液等の分散媒を用い、化学
反応と機械的研磨とを併用したCMPを施す。
FIG. 4 is a schematic sectional view showing a conventional chemical mechanical polishing apparatus. In the figure, the rotating carrier 12
The substrate 11 to be polished with the polished surface facing downward is set so as to face a platen 13 which is also a rotating polishing platen. On the surface of this platen 13,
The polishing pad 14 is stuck. On the other hand, a polishing slurry 17 is supplied from a polishing slurry supply tank 15, which is a main component of the polishing slurry supply means, to a polishing pad 14 on a platen 13 via a polishing slurry supply nozzle 16. In this state, the substrate 11 to be polished is pressed against the polishing pad 14 with a predetermined pressure to perform polishing. At this time, the carrier 12 and the platen 1
One point is to optimize the adjustment of the number of rotations and the rotation axis, and to select a polishing slurry suitable for the substrate to be polished. As an example, when polishing a silicon oxide-based interlayer insulating film, a chemical reaction and mechanical polishing are used in combination using a dispersion medium such as a KOH aqueous solution in which silica fine particles having a particle diameter of about 10 nm are suspended as polishing particles. Perform CMP.

【0007】[0007]

【発明が解決しようとする課題】この化学的機械研磨方
法による平坦化法には、実用化に向けて解決すべき問題
が残されている。その一つとして、被研磨基板表面に発
生する、スクラッチ疵等の研磨疵が挙げられる。例えば
層間絶縁膜等の被研磨面にこのようなスクラッチ疵が発
生すると、後工程でこの上にAl系金属等による配線を
形成した場合に、スクラッチ疵部分で段切れ等が発生
し、エレクトロマイグレーション耐性の劣化等の信頼性
の低下が発生する虞れがある。またHDD (Hard Disk
Drive)用非磁性基板等の研磨においてスクラッチ疵が発
生すると、ドロップアウト等、再生信号欠落が発生する
原因となる。
The flattening method by the chemical mechanical polishing method has problems to be solved for practical use. One of them is a polishing flaw such as a scratch flaw which is generated on the surface of the substrate to be polished. For example, if such scratches occur on the surface to be polished such as an interlayer insulating film, when a wiring made of an Al-based metal or the like is formed thereon in a later step, a step breakage or the like occurs at the scratches and electromigration. There is a possibility that a decrease in reliability such as a deterioration in resistance occurs. HDD (Hard Disk)
When scratches occur during polishing of a non-magnetic substrate for Drive, etc., this may cause a loss of reproduced signal such as dropout.

【0008】スクラッチ疵の発生は、研磨粒子の分散不
良による凝集塊に起因するものと考えられている。特
に、金属膜のCMPに用いられる、研磨粒子としてアル
ミナを採用した研磨スラリは分散性が悪く、この対策と
して研磨粒子が沈降しないようにモータ駆動による撹拌
装置を備えたCMP装置が提案されている。しかしなが
ら、このような機械的な分散手段によっても、研磨粒子
の分散性は充分ではなく、スクラッチ疵を完全に防止す
るに至っていない。
The generation of scratches is considered to be caused by agglomerates due to poor dispersion of abrasive particles. In particular, a polishing slurry that employs alumina as abrasive particles, which is used for CMP of a metal film, has poor dispersibility, and as a countermeasure against this, a CMP device provided with a motor-driven stirring device so that the abrasive particles do not settle has been proposed. . However, even with such mechanical dispersing means, the dispersibility of the abrasive particles is not sufficient, and the scratches have not been completely prevented.

【0009】本発明は上述した問題点を解決することを
その課題とする。すなわち本発明の課題は、研磨スラリ
中の研磨粒子の分散性を向上し、あるいは良好な分散を
維持し、研磨粒子の凝集を防止することにより、被研磨
基板表面のスクラッチ疵等の発生を防止して、歩留りの
高い安定で高精度な研磨を施すことが可能な研磨装置お
よび研磨方法を提供することである。
An object of the present invention is to solve the above-mentioned problems. That is, an object of the present invention is to improve the dispersibility of abrasive particles in a polishing slurry, or to maintain good dispersion and prevent agglomeration of abrasive particles, thereby preventing the occurrence of scratches and the like on the surface of a substrate to be polished. Accordingly, an object of the present invention is to provide a polishing apparatus and a polishing method capable of performing stable and high-precision polishing with a high yield.

【0010】[0010]

【課題を解決するための手段】本発明の研磨装置は上述
の課題を達成するために提案するものであり、研磨パッ
ドが貼着された研磨定盤、この研磨パッドに研磨スラリ
を供給する、研磨スラリ供給槽および研磨スラリ供給ノ
ズルを含む研磨スラリ供給手段、被研磨基板を把持して
研磨パッド表面に押圧するとともに、被研磨基板と研磨
定盤とを相対移動させる被研磨基板把持手段を具備する
研磨装置であって、この研磨スラリ供給手段は、研磨ス
ラリに対する電界印加手段をさらに有することを特徴と
する。
SUMMARY OF THE INVENTION A polishing apparatus according to the present invention is proposed to achieve the above-mentioned object, and comprises a polishing platen to which a polishing pad is attached, a polishing slurry supplied to the polishing pad, Polishing slurry supply means including a polishing slurry supply tank and a polishing slurry supply nozzle, and a polished substrate gripping means for gripping a substrate to be polished and pressing against a surface of a polishing pad, and relatively moving the substrate to be polished and the polishing platen. The polishing slurry supply means further includes an electric field applying means for the polishing slurry.

【0011】また本発明の研磨方法は、研磨パッドが貼
着された研磨定盤に、研磨スラリ供給槽および研磨スラ
リ供給ノズルを含む研磨スラリ供給手段から、研磨スラ
リを供給する工程、被研磨基板を把持して前記研磨パッ
ド表面に押圧するとともに、被研磨基板と研磨定盤とを
相対移動させて被研磨基板表面を研磨する研磨工程を具
備する研磨方法であって、この研磨スラリ供給工程は、
研磨スラリに対する電界印加工程をさらに有することを
特徴とする。
In the polishing method of the present invention, a polishing slurry is supplied from a polishing slurry supply means including a polishing slurry supply tank and a polishing slurry supply nozzle to a polishing platen to which a polishing pad is attached. And pressing the polishing pad against the surface of the polishing pad, the polishing method comprises a polishing step of polishing the surface of the substrate to be polished by relatively moving the substrate to be polished and the polishing platen, this polishing slurry supply step ,
The method further comprises the step of applying an electric field to the polishing slurry.

【0012】本発明における研磨スラリに対する電界印
加は、交流電界印加であることが望ましい。
The electric field applied to the polishing slurry in the present invention is desirably an AC electric field.

【0013】また本発明における研磨スラリに対する電
界印加は、研磨スラリ供給槽あるいは研磨スラリ供給ノ
ズルにおいて施すことが望ましい。
In the present invention, the electric field is preferably applied to the polishing slurry in a polishing slurry supply tank or a polishing slurry supply nozzle.

【0014】つぎに作用の説明に移る。研磨スラリは、
通常研磨粒子を酸性あるいはアルカリ性水溶液の分散媒
に分散した懸濁液である。したがって、研磨粒子表面は
懸濁液中で電気二重層を形成し、帯電した状態で浮遊し
ている。この状態で外部から電界を印加することによ
り、研磨粒子の運動が加速され、良好な分散状態が維持
され、あるいは凝集が防止される。これにより、凝集塊
によるスクラッチ疵等の発生が防止される。
Next, the operation will be described. The polishing slurry is
Usually, it is a suspension in which abrasive particles are dispersed in a dispersion medium of an acidic or alkaline aqueous solution. Therefore, the surface of the abrasive particles forms an electric double layer in the suspension and floats in a charged state. By applying an electric field from outside in this state, the movement of the abrasive particles is accelerated, and a good dispersion state is maintained or aggregation is prevented. This prevents scratches and the like from occurring due to the aggregates.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態例につ
き、添付図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0016】まず、本発明の研磨装置を半導体装置の製
造工程に用いられる化学的機械研磨装置に適用した構成
例につき、図1および図2を参照して説明する。
First, an example of a configuration in which the polishing apparatus of the present invention is applied to a chemical mechanical polishing apparatus used in a manufacturing process of a semiconductor device will be described with reference to FIGS.

【0017】図1の研磨装置は、研磨スラリ供給手段の
主要構成要素である、研磨スラリ供給槽15および研磨
スラリ供給ノズル16のうち、研磨スラリ供給槽15に
電界印加手段18を設けたものである。また図2の研磨
装置は、研磨スラリ供給手段の主要構成要素である、研
磨スラリ供給槽15および研磨スラリ供給ノズル16の
うち、研磨スラリ供給ノズル16に電界印加手段19を
設けたものである。この場合、電界印加手段19は研磨
スラリ供給槽15から研磨スラリ供給ノズル16の吐出
端までの配管のうちのいずれの個所に設けてもよい。装
置構成としては、研磨スラリ供給槽15および研磨スラ
リ供給ノズル16の双方に電界印加手段18を設けても
よい。いずれの装置においても、研磨スラリ供給手段は
研磨スラリ17を循環して用いても、使い捨てで用いて
もよい。いずれの装置においても、電界印加手段18の
構成以外は図4を参照して説明した従来の研磨装置と同
様であるので、重複する説明は省略する。
The polishing apparatus shown in FIG. 1 has a polishing slurry supply tank 15 and a polishing slurry supply nozzle 16 which are main components of the polishing slurry supply means, and is provided with an electric field applying means 18 in the polishing slurry supply tank 15. is there. The polishing apparatus shown in FIG. 2 has an electric field applying means 19 provided in the polishing slurry supply nozzle 16 of the polishing slurry supply tank 15 and the polishing slurry supply nozzle 16 which are main components of the polishing slurry supply means. In this case, the electric field applying means 19 may be provided at any part of the pipe from the polishing slurry supply tank 15 to the discharge end of the polishing slurry supply nozzle 16. As an apparatus configuration, an electric field applying unit 18 may be provided in both the polishing slurry supply tank 15 and the polishing slurry supply nozzle 16. In any of the apparatuses, the polishing slurry supply means may circulate the polishing slurry 17 or use it disposably. In any of the apparatuses, the configuration is the same as that of the conventional polishing apparatus described with reference to FIG.

【0018】図示の電界印加手段18の電極構成は、一
例として一対の平板電極による容量結合となっている
が、コイル状電極による誘導結合構成、あるいはアンテ
ナを用いる構成等、研磨スラリに有効な電界が印加しう
る構成であれば種類を問わない。電界印加手段の電源と
しては、直流、交流のいずれでもよいが、研磨スラリの
分散効率の面からは交流が望ましい。ここでは一例とし
て、商用電源の50Hzの交流電源を用いた。印加電圧
は、電界印加手段18の電極構成例えば電極間距離等に
依存する設計事項であり、電極間放電等が起こらない電
圧範囲、例えば数十V〜数千Vが選ばれる。また交流の
場合の周波数は、数Hz〜RF(Radio Frequency) の範
囲から選ばれる。
The electrode configuration of the electric field applying means 18 shown is, for example, capacitive coupling by a pair of plate electrodes. However, an electric field effective for polishing slurry, such as an inductive coupling configuration using coiled electrodes or a configuration using an antenna, is used. Any type can be used as long as it can apply. As a power source for the electric field applying means, either a direct current or an alternating current may be used. Here, as an example, a 50 Hz AC power supply of a commercial power supply was used. The applied voltage is a design item that depends on the electrode configuration of the electric field applying unit 18, for example, the distance between the electrodes, and a voltage range in which inter-electrode discharge or the like does not occur, for example, several tens of volts to several thousand volts is selected. The frequency in the case of AC is selected from the range of several Hz to RF (Radio Frequency).

【0019】[0019]

【実施例】以下、本発明の研磨方法を実施例により更に
詳しく説明する。ただし本発明はこれらの実施例になん
ら限定されるものではない。
EXAMPLES Hereinafter, the polishing method of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

【0020】実施例1 研磨スラリとして、平均粒子径10nmのシリカ微粒子
をアンモニア水に懸濁させ、pHを10.0に調製した
ものを用いた。研磨スラリ中のシリカ微粒子は30重量
%とした。図1に示した研磨装置を用い、研磨スラリ供
給槽15に50Hzの電界を印加して、研磨パッド14
に研磨スラリ17を供給する。研磨スラリ17の電子顕
微鏡による観察および画像処理により粒径分布を求めた
ところ、電界印加なしでは研磨粒子の平均粒径は50n
mで凝集塊が見られたが、電界の印加により平均粒径は
10nmとなり、分散性の向上が確認された。
Example 1 A polishing slurry prepared by suspending silica fine particles having an average particle diameter of 10 nm in aqueous ammonia and adjusting the pH to 10.0 was used. The amount of silica fine particles in the polishing slurry was 30% by weight. An electric field of 50 Hz is applied to the polishing slurry supply tank 15 using the polishing apparatus shown in FIG.
Is supplied with a polishing slurry 17. When the particle size distribution was determined by observation of the polishing slurry 17 with an electron microscope and image processing, the average particle size of the polishing particles was 50 n without electric field application.
Although an agglomerate was observed at m, the average particle size became 10 nm by application of an electric field, and improvement in dispersibility was confirmed.

【0021】図3(a)〜(c)は本発明の研磨方法の
工程を示す概略断面図である。すなわち、図3(a)に
示すようにMOSトランジスタ等の素子群(不図示)が
作り込まれたシリコン等の半導体基板1上に、酸化シリ
コン等の下層層間絶縁膜2およびAl系金属等の配線3
を形成した。さらに図3(b)に示すように、SiH4
とN2 Oを原料ガスとする常法のプラズマCVD法によ
り、酸化シリコンからなる上層層間絶縁膜4を形成し、
これを被研磨基板11とした。上層層間絶縁膜4の表面
は、配線3のラインアンドスペースを反映した凹凸形状
を有する。
FIGS. 3A to 3C are schematic sectional views showing steps of the polishing method of the present invention. That is, as shown in FIG. 3A, a lower interlayer insulating film 2 such as silicon oxide and an Al-based metal or the like are formed on a semiconductor substrate 1 such as silicon on which an element group (not shown) such as a MOS transistor is formed. Wiring 3
Was formed. As further shown in FIG. 3 (b), SiH 4
The N 2 O by plasma CVD conventional method for the raw material gas to form an upper interlayer insulating film 4 made of silicon oxide and,
This was used as the substrate 11 to be polished. The surface of the upper interlayer insulating film 4 has an uneven shape reflecting the line and space of the wiring 3.

【0022】図3(b)に示す被研磨基板11を、図1
に示す研磨装置のキャリア12にフェイスダウンの状態
で把持し、図1に示す研磨装置の研磨スラリ供給槽15
に50Hzの電界を印加しつつ、上層層間絶縁膜4を研
磨した。研磨条件の一例を下記に示す。 キャリア回転数 30 rpm プラテン回転数 30 rpm 研磨圧力 300 g/cm2 時間 180 sec なお研磨パッドは発泡ポリウレタンの下部に不織布を積
層したIC1000/suba400(ローデル社製)
を用いた。
The substrate 11 to be polished shown in FIG.
1 is held face down on the carrier 12 of the polishing apparatus shown in FIG.
The upper interlayer insulating film 4 was polished while applying an electric field of 50 Hz to. An example of the polishing conditions is shown below. Carrier rotation speed 30 rpm Platen rotation speed 30 rpm Polishing pressure 300 g / cm 2 hours 180 sec Note that the polishing pad is an IC1000 / suba400 (manufactured by Rodel) in which a non-woven fabric is laminated below foamed polyurethane.
Was used.

【0023】研磨終了後の状態を図3(c)に示す。上
層層間絶縁膜4表面の凹凸は平坦化され、走査型電子顕
微鏡による観察ではスクラッチ疵等の研磨疵は見出せな
かった。一方、研磨スラリ供給槽15に電界を印加せず
に上層層間絶縁膜4を研磨したものは、多数のスクラッ
チ疵が発生していた。なお、図2に示した研磨装置を用
い、研磨スラリ供給ノズル16に電界を印加した場合も
同様にスクラッチ疵等の研磨疵は見出せなかった。
FIG. 3C shows a state after the polishing is completed. The unevenness on the surface of the upper interlayer insulating film 4 was flattened, and no polishing flaws such as scratch flaws were found by observation with a scanning electron microscope. On the other hand, when the upper interlayer insulating film 4 was polished without applying an electric field to the polishing slurry supply tank 15, many scratches were generated. In the case where an electric field was applied to the polishing slurry supply nozzle 16 using the polishing apparatus shown in FIG. 2, no polishing flaws such as scratches were found.

【0024】実施例2 研磨スラリとして、平均粒子径10nmのアルミナ微粒
子を水酸化カリウム水溶液に懸濁させたものを用いた。
研磨スラリ中のアルミナ微粒子は35重量%とした。図
2に示した研磨装置を用い、研磨スラリ供給ノズル16
先端に50Hzの電界を印加して、研磨パッド14に研
磨スラリ17を供給する。研磨スラリ17の電子顕微鏡
による観察および画像処理により粒径分布を求めたとこ
ろ、電界印加なしでは研磨粒子の平均粒径は50nmで
凝集塊が見られたが、電界の印加により平均粒径は10
nmとなり、分散性の向上が見られた。
Example 2 A polishing slurry in which alumina fine particles having an average particle diameter of 10 nm were suspended in an aqueous potassium hydroxide solution was used.
The amount of alumina fine particles in the polishing slurry was 35% by weight. Using the polishing apparatus shown in FIG.
A polishing slurry 17 is supplied to the polishing pad 14 by applying an electric field of 50 Hz to the tip. When the particle size distribution was obtained by observing the polishing slurry 17 with an electron microscope and by image processing, the average particle size of the abrasive particles was 50 nm without application of an electric field, and agglomerates were observed.
nm, and the dispersibility was improved.

【0025】本実施例における被研磨基板11は、前実
施例1に準じたものであるが、図3(b)に示す上層層
間絶縁膜4として、低誘電率のフッ素を含有する酸化シ
リコン(SiOF)を用いた。ECRプラズマCVD装
置を用いたSiOFのプラズマCVD成膜条件の一例を
示す。 SiF4 80 sccm SiH4 40 sccm O2 100 sccm Ar 50 sccm 圧力 1.0 Pa マイクロ波パワー 2000 W(2.45GHz) RFパワー 2000 W(13.56MHz) 基板温度 200 ℃ SiOFによる上層層間絶縁膜4の表面も、配線3のラ
インアンドスペースを反映した凹凸形状を有する。
The substrate 11 to be polished in this embodiment is the same as that in the first embodiment. However, as the upper interlayer insulating film 4 shown in FIG. SiOF) was used. An example of the plasma CVD film forming conditions of SiOF using an ECR plasma CVD apparatus will be described. SiF 4 80 sccm SiH 4 40 sccm O 2 100 sccm Ar 50 sccm Pressure 1.0 Pa Microwave power 2000 W (2.45 GHz) RF power 2000 W (13.56 MHz) Substrate temperature 200 ° C. Upper interlayer insulating film 4 made of SiOF Also has an uneven shape reflecting the line and space of the wiring 3.

【0026】図3(b)に示す被研磨基板11を、図2
に示す研磨装置のキャリア12にフェイスダウンの状態
で把持し、研磨スラリ供給ノズル16に50Hzの電界
を印加しつつ、上層層間絶縁膜4を研磨した。研磨条件
の一例を下記に示す。 キャリア回転数 30 rpm プラテン回転数 30 rpm 研磨圧力 250 g/cm2 時間 150 sec なお研磨パッドは同じく発泡ポリウレタンの下部に不織
布を積層したIC1000/suba400(ローデル
社製)を用いた。
The substrate 11 to be polished shown in FIG.
Then, the upper interlayer insulating film 4 was polished while applying a 50 Hz electric field to the polishing slurry supply nozzle 16 while gripping the carrier 12 of the polishing apparatus shown in FIG. An example of the polishing conditions is shown below. Carrier rotation speed 30 rpm Platen rotation speed 30 rpm Polishing pressure 250 g / cm 2 hours 150 sec The polishing pad used was IC1000 / suba400 (manufactured by Rodel) in which a nonwoven fabric was also laminated on the lower part of foamed polyurethane.

【0027】研磨終了後の状態を図3(c)に示す。上
層層間絶縁膜4表面の凹凸は平坦化され、走査型電子顕
微鏡による観察ではスクラッチ疵等の研磨疵は見出せな
かった。一方研磨スラリ供給ノズル16に電界を印加せ
ずに上層層間絶縁膜4を研磨したものは、多数のスクラ
ッチ疵が発生していた。なお、図1に示した研磨装置を
用い、研磨スラリ供給槽15に電界を印加した場合も、
同様にスクラッチ疵等の研磨疵は見出せなかった。
FIG. 3C shows a state after the polishing is completed. Irregularities on the surface of the upper interlayer insulating film 4 were flattened, and no polishing flaws such as scratches were found by observation with a scanning electron microscope. On the other hand, when the upper interlayer insulating film 4 was polished without applying an electric field to the polishing slurry supply nozzle 16, many scratches were generated. In the case where an electric field is applied to the polishing slurry supply tank 15 using the polishing apparatus shown in FIG.
Similarly, no polishing flaws such as scratch flaws were found.

【0028】以上、本発明を2例の実施例をもって説明
したが、本発明はこれら実施例に何ら限定されるもので
はない。
Although the present invention has been described with reference to the two embodiments, the present invention is not limited to these embodiments.

【0029】例えば、研磨装置として化学的機械研磨装
置を例にとったが、化学反応を伴わない単なる機械的研
磨装置に適用することもできる。また研磨スラリの分散
媒としてアンモニア水あるいは水酸化カリウム等の無機
アルカリ性分散媒を用いたが、有機アミンやその誘導体
等の有機アルカリ性分散媒であってもよい。また無機酸
あるいは有機酸等の酸性分散媒体においても同様の効果
が得られる。研磨スラリ中にはこの他安定剤、pH緩衝
剤あるいは酸化剤等を被研磨基板に応じて添加してよ
い。例えば、W層の平坦化にはH2 2 /KOH水溶液
系の分散媒が好適であるし、Al系金属層の平坦化には
3 PO4 /H2 2 水溶液系の分散媒を用いればよ
い。
For example, although a chemical mechanical polishing apparatus is taken as an example of the polishing apparatus, the present invention can be applied to a simple mechanical polishing apparatus that does not involve a chemical reaction. Although an inorganic alkaline dispersion medium such as aqueous ammonia or potassium hydroxide is used as a dispersion medium for the polishing slurry, an organic alkaline dispersion medium such as an organic amine or a derivative thereof may be used. Similar effects can be obtained with an acidic dispersion medium such as an inorganic acid or an organic acid. In addition, a stabilizer, a pH buffer, an oxidizing agent, or the like may be added to the polishing slurry depending on the substrate to be polished. For example, an H 2 O 2 / KOH aqueous solution-based dispersion medium is suitable for flattening the W layer, and an H 3 PO 4 / H 2 O 2 aqueous solution-based dispersion medium is used for flattening the Al-based metal layer. It may be used.

【0030】研磨粒子として、シリカやアルミナが代表
的であるが、酸化セリウム、二酸化マンガン、酸化ジル
コニウム、酸化チタン、酸化クロムあるいは酸化鉄等の
酸化物系、あるいは各種金属の硫酸塩、炭酸塩(水不溶
性のもの)を用いてもよい。また超微粒子ダイアモンド
を研磨粒子とする研磨スラリの分散性の向上にも寄与す
る。
As the abrasive particles, silica and alumina are typical, and oxides such as cerium oxide, manganese dioxide, zirconium oxide, titanium oxide, chromium oxide and iron oxide, or sulfates and carbonates of various metals ( Water-insoluble) may be used. It also contributes to improving the dispersibility of a polishing slurry using ultrafine diamond as polishing particles.

【0031】被研磨基板として実施例で述べた酸化シリ
コン系層間絶縁膜の他に、有機SOG (Spin On Glass)
あるいはBSG (Boro Silicate Glass)、PSG (Phos
phoSilicate Glass) 、BPSG (Boro Phosho Silicat
e Glass) 、AsSG (Arseno Silicate Glass)等の各
種ガラス、酸化窒化シリコンあるいは窒化シリコン等の
無機系絶縁膜、ポリイミド等の有機高分子、フッ化ポリ
パラキシリレン等の有機低誘電率高分子等であってもよ
い。また層間絶縁膜の他にシリコン基板、多結晶シリコ
ン、非晶質シリコン、あるいはAl系金属、Cu、W等
の各種高融点金属およびそのシリサイドの研磨にも好適
である。さらに半導体装置の製造工程の他に、HDD用
Al系金属基板や、光ディスク、光磁気ディスク用のポ
リカーボネート基板、超高分子量ポリオレフィン基板等
の平坦化研磨に良好な効果を得ることができる。その
他、平坦な表面を必要とする各種電子デバイス、光学デ
バイス等に適用できることは言うまでもない。その他、
研磨装置の装置構成等も適宜変更してよい。
As a substrate to be polished, in addition to the silicon oxide-based interlayer insulating film described in the embodiment, an organic SOG (Spin On Glass)
Or BSG (Boro Silicate Glass), PSG (Phos
phoSilicate Glass), BPSG (Boro Phosho Silicat)
e Glass), various glasses such as AsSG (Arseno Silicate Glass), inorganic insulating films such as silicon oxynitride or silicon nitride, organic polymers such as polyimide, organic low dielectric constant polymers such as polyparaxylylene fluoride, etc. It may be. In addition to the interlayer insulating film, it is also suitable for polishing a silicon substrate, polycrystalline silicon, amorphous silicon, or various kinds of refractory metals such as Al-based metals, Cu and W, and silicides thereof. In addition to the semiconductor device manufacturing process, a favorable effect can be obtained for flattening and polishing of Al-based metal substrates for HDDs, polycarbonate substrates for optical disks and magneto-optical disks, ultra-high molecular weight polyolefin substrates, and the like. In addition, it goes without saying that the present invention can be applied to various electronic devices and optical devices that require a flat surface. Others
The configuration and the like of the polishing apparatus may be appropriately changed.

【0032】[0032]

【発明の効果】以上の説明から明らかなように、本発明
の研磨装置によれば、研磨スラリ供給手段に対する電界
印加手段を具備させることにより、研磨粒子の凝集を防
止し、良好な分散性を有する研磨スラリを研磨パッドに
供給することができる。
As is apparent from the above description, according to the polishing apparatus of the present invention, the provision of the electric field applying means for the polishing slurry supply means prevents the agglomeration of the abrasive particles and improves the dispersibility. The polishing slurry can be supplied to the polishing pad.

【0033】また本発明の研磨方法によれば、研磨スラ
リ供給工程中に研磨スラリに電界を印加することによ
り、研磨粒子の凝集を防止し、良好な分散性を有する研
磨スラリを研磨パッドに供給してスクラッチ疵等研磨疵
の発生を防止することができる。
Further, according to the polishing method of the present invention, by applying an electric field to the polishing slurry during the polishing slurry supply step, aggregation of the polishing particles is prevented, and the polishing slurry having good dispersibility is supplied to the polishing pad. Thus, the occurrence of polishing flaws such as scratch flaws can be prevented.

【0034】以上の効果により、多層配線構造の採用に
より高段差が発生した半導体装置の表面平坦化プロセス
や、高記録密度の情報記録媒体の製造プロセス等を信頼
性高く施すことが可能となる。
According to the above effects, it is possible to perform a process for flattening the surface of a semiconductor device having a high step due to the adoption of a multilayer wiring structure, a process for manufacturing an information recording medium having a high recording density, and the like with high reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の研磨装置の一構成例を示す概略断面図
である。
FIG. 1 is a schematic cross-sectional view showing one configuration example of a polishing apparatus of the present invention.

【図2】本発明の研磨装置の他の構成例を示す概略断面
図である。
FIG. 2 is a schematic sectional view showing another configuration example of the polishing apparatus of the present invention.

【図3】本発明の研磨方法の工程を示す概略断面図であ
る。
FIG. 3 is a schematic cross-sectional view showing the steps of the polishing method of the present invention.

【図4】従来の研磨装置を示す概略断面図である。FIG. 4 is a schematic sectional view showing a conventional polishing apparatus.

【符号の説明】[Explanation of symbols]

1…半導体基板、2…下層層間絶縁膜、3…配線、4…
上層層間絶縁膜 11…被研磨基板、12…キャリア(被研磨基板把持手
段)、13…プラテン(研磨定盤)、14…研磨パッ
ド、15…研磨スラリ供給槽、16…研磨スラリ供給ノ
ズル、17…研磨スラリ、18,19…電界印加手段
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... Lower interlayer insulating film, 3 ... Wiring, 4 ...
Upper interlayer insulating film 11: substrate to be polished, 12: carrier (grinding means for substrate to be polished), 13: platen (polishing platen), 14: polishing pad, 15: polishing slurry supply tank, 16: polishing slurry supply nozzle, 17 ... polishing slurry, 18, 19 ... electric field applying means

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 研磨パッドが貼着された研磨定盤、 前記研磨パッドに研磨スラリを供給する、研磨スラリ供
給槽および研磨スラリ供給ノズルを含む研磨スラリ供給
手段、 被研磨基板を把持して前記研磨パッド表面に押圧すると
ともに、前記被研磨基板と前記研磨定盤とを相対移動さ
せる被研磨基板把持手段を具備する研磨装置であって、 前記研磨スラリ供給手段は、前記研磨スラリに対する電
界印加手段をさらに有することを特徴とする研磨装置。
A polishing plate having a polishing pad attached thereto; a polishing slurry supply means including a polishing slurry supply tank and a polishing slurry supply nozzle for supplying a polishing slurry to the polishing pad; A polishing apparatus comprising: a substrate to be polished gripping means for pressing the surface of a polishing pad and relatively moving the substrate to be polished and the polishing platen, wherein the polishing slurry supply means is an electric field applying means for the polishing slurry. A polishing apparatus, further comprising:
【請求項2】 前記電界印加手段は、交流電界印加手段
であることを特徴とする請求項1記載の研磨装置。
2. The polishing apparatus according to claim 1, wherein said electric field applying means is an AC electric field applying means.
【請求項3】 前記電界印加手段は、前記研磨スラリ供
給槽に配設されていることを特徴とする請求項1記載の
研磨装置。
3. The polishing apparatus according to claim 1, wherein said electric field applying means is provided in said polishing slurry supply tank.
【請求項4】 前記電界印加手段は、前記研磨スラリ供
給ノズルに配設されていることを特徴とする請求項1記
載の研磨装置。
4. The polishing apparatus according to claim 1, wherein said electric field applying means is provided in said polishing slurry supply nozzle.
【請求項5】 研磨パッドが貼着された研磨定盤に、研
磨スラリ供給槽および研磨スラリ供給ノズルを含む研磨
スラリ供給手段から、研磨スラリを供給する工程、 被研磨基板を把持して前記研磨パッド表面に押圧すると
ともに、前記被研磨基板と前記研磨定盤とを相対移動さ
せて前記被研磨基板表面を研磨する研磨工程を具備する
研磨方法であって、 前記研磨スラリ供給工程は、前記研磨スラリに対する電
界印加工程をさらに有することを特徴とする研磨方法。
5. A step of supplying a polishing slurry from a polishing slurry supply means including a polishing slurry supply tank and a polishing slurry supply nozzle to a polishing platen to which a polishing pad is attached, wherein said polishing is performed by gripping a substrate to be polished. A polishing method comprising: a polishing step of pressing the surface of a pad and relatively moving the substrate to be polished and the polishing platen to polish the surface of the substrate to be polished. A polishing method, further comprising a step of applying an electric field to the slurry.
【請求項6】 前記電界印加工程は、交流電界印加工程
であることを特徴とする請求項5記載の研磨方法。
6. The polishing method according to claim 5, wherein said electric field applying step is an AC electric field applying step.
【請求項7】 前記電界印加工程は、前記研磨スラリ供
給槽において施す工程であることを特徴とする請求項5
記載の研磨方法。
7. The method according to claim 5, wherein the step of applying the electric field is a step of applying the electric field in the polishing slurry supply tank.
The polishing method as described above.
【請求項8】 前記電界印加工程は、前記研磨スラリ供
給ノズルにおいて施す工程であることを特徴とする請求
項5記載の研磨方法。
8. The polishing method according to claim 5, wherein the electric field applying step is a step of applying the electric field in the polishing slurry supply nozzle.
JP32112397A 1997-11-21 1997-11-21 Grinding device and grinding method Pending JPH11156718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32112397A JPH11156718A (en) 1997-11-21 1997-11-21 Grinding device and grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32112397A JPH11156718A (en) 1997-11-21 1997-11-21 Grinding device and grinding method

Publications (1)

Publication Number Publication Date
JPH11156718A true JPH11156718A (en) 1999-06-15

Family

ID=18129077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32112397A Pending JPH11156718A (en) 1997-11-21 1997-11-21 Grinding device and grinding method

Country Status (1)

Country Link
JP (1) JPH11156718A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6662403B2 (en) 2000-11-06 2003-12-16 Samsung Kwangju Electronics Co., Ltd. Cyclone dust collecting apparatus for a vacuum cleaner
JP2008021704A (en) * 2006-07-11 2008-01-31 Nec Electronics Corp Method of manufacturing semiconductor device
JP2012138156A (en) * 2010-12-27 2012-07-19 Konica Minolta Advanced Layers Inc Method for manufacturing glass substrate for hard disk
JP5891320B1 (en) * 2015-02-12 2016-03-22 秋田県 Processing method using zeta potential control method
CN106078490A (en) * 2016-08-11 2016-11-09 山东华光光电子股份有限公司 The trimming device of a kind of semiconductor device cap sealing electrode and method of work thereof
CN108436745A (en) * 2018-05-21 2018-08-24 浙江工业大学 A kind of blade liquid metal burnishing device that magnetic field electric field changes simultaneously

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6662403B2 (en) 2000-11-06 2003-12-16 Samsung Kwangju Electronics Co., Ltd. Cyclone dust collecting apparatus for a vacuum cleaner
JP2008021704A (en) * 2006-07-11 2008-01-31 Nec Electronics Corp Method of manufacturing semiconductor device
JP2012138156A (en) * 2010-12-27 2012-07-19 Konica Minolta Advanced Layers Inc Method for manufacturing glass substrate for hard disk
JP5891320B1 (en) * 2015-02-12 2016-03-22 秋田県 Processing method using zeta potential control method
JP2016147348A (en) * 2015-02-12 2016-08-18 秋田県 Processing method using zeta potential control method
CN106078490A (en) * 2016-08-11 2016-11-09 山东华光光电子股份有限公司 The trimming device of a kind of semiconductor device cap sealing electrode and method of work thereof
CN108436745A (en) * 2018-05-21 2018-08-24 浙江工业大学 A kind of blade liquid metal burnishing device that magnetic field electric field changes simultaneously

Similar Documents

Publication Publication Date Title
RU2356926C2 (en) Abrasive particles for mechanical polishing
CN101065457B (en) Chemical mechanical polishing method and polishing composition
US20070167116A1 (en) Polishing composition
US20120083122A1 (en) Shallow Trench Isolation Chemical Mechanical Planarization
JP2002261053A (en) ACID GRINDING SLURRY FOR CHEMICAL MECHANICAL POLISHING OF SiO2 SEPARATION LAYER
JP2003100680A (en) Chemical mechanical polishing method using fixed abrasive and abrasive-containing aqueous fluid medium
JP2003017446A (en) Cmp abrasive and method for polishing substrate
US6358853B2 (en) Ceria based slurry for chemical-mechanical polishing
JPH11156718A (en) Grinding device and grinding method
JPH11256141A (en) Grinding slurry and grinding
JP4414292B2 (en) Polishing speed improvement method
JPH1131675A (en) Novel chemical/mechanical polishing method for layer of separation material with silicon dielectric or silicon as base material
Paik et al. Nanoparticle engineering for chemical-mechanical planarization: Fabrication of next-generation nanodevices
JP2004200268A (en) Cmp polishing agent and polishing method of substrate
JP2003158101A (en) Cmp abrasive and manufacturing method therefor
JP3496585B2 (en) Substrate polishing method
TW525246B (en) Process for the chemical-mechanical polishing of isolation layers produced using the STI technology, at elevated temperatures
JP2001308043A (en) Cmp-polishing agent and polishing method for substrate
JP2001077061A (en) Semiconductor abrasive material
JP2001057352A (en) Method of polishing substrate
JP2002151448A (en) Cmp pad for cerium oxide polishing agent and method of polishing wafer
KR20050064592A (en) Cmp process using the slurry containing abrasive of low concentration
JP2007154155A (en) Method for producing metallic oxide microparticle for abrasive, abrasive, and method for grinding substrate and method for producing semiconductor device by using the abrasive
JP2003017447A (en) Cmp abrasives and method for polishing substrate
Mahajan et al. Effect of slurry abrasive size on polish rate and surface quality of silicon dioxide films