JPH11156556A - Clad metal butt resistance welding method - Google Patents

Clad metal butt resistance welding method

Info

Publication number
JPH11156556A
JPH11156556A JP32149497A JP32149497A JPH11156556A JP H11156556 A JPH11156556 A JP H11156556A JP 32149497 A JP32149497 A JP 32149497A JP 32149497 A JP32149497 A JP 32149497A JP H11156556 A JPH11156556 A JP H11156556A
Authority
JP
Japan
Prior art keywords
resistance
welding
low
clad
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32149497A
Other languages
Japanese (ja)
Inventor
Akihisa Nishimura
晃尚 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP32149497A priority Critical patent/JPH11156556A/en
Publication of JPH11156556A publication Critical patent/JPH11156556A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent generation of a welding defect due to too much/too little welding electric current among each metal group of a low electric resistance and of a high electric resistance respectively even when a butt resistance welding is conducted among clad metals themselves composed of a high electric resistance metal and a low electric resistance metal. SOLUTION: High resistance layers 1a and 2a composed of a high resistance metal with a high electric resistance, and low resistance layers 1b and 2b formed on a surface of the high resistance layers 1a and 2a, comprising of a low resistance metal whose electric resistance is lower than that of the high resistance metal, comprise the first and the second clad metals 1 and 2, and the butt resistance welding is conducted among/between each end face. At this time, a groove 3 is installed only to and between the low resistance layers 1b and 2b of the butted first and second clad metals, and at the starting stage of resistance welding to flow a welding electric current, priority is given to the high resistance layers 1a and 2a of the first and second clad metals and 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はクラッド材の突き合
わせ抵抗溶接方法に関する。
The present invention relates to a method for butt resistance welding of clad materials.

【0002】[0002]

【従来の技術】従来、異種材で構成されるクラッド材が
知られており、かかるクラッド材は、それぞれの材料の
メリットを活かして利用することができるため、種々の
部品に適用されている。例えば、近年、車両の軽量コン
パクト化及びエンジンの冷却性能の向上を狙って、エン
ジンブロックを構成するシリンダボアに鉄−アルミニウ
ムのクラッド材を適用することが試みられている。
2. Description of the Related Art Conventionally, clad materials composed of different kinds of materials are known, and such clad materials can be utilized by utilizing the merits of the respective materials, and thus are applied to various parts. For example, in recent years, attempts have been made to apply a clad material of iron-aluminum to a cylinder bore constituting an engine block in order to reduce the weight and size of a vehicle and improve the cooling performance of an engine.

【0003】上記のように鉄−アルミニウムのクラッド
材をシリンダボア等の摺動部材に適用した場合、鉄が摺
動内面となりアルミニウムが外面となるように造管すれ
ば、鉄よりなる摺動内面は耐摩耗性を確保することがで
きるとともに、燃焼や摺動により発生した熱を熱伝導の
良好なアルミニウムの外面側へ逃がすことができ、また
シリンダボア等そのものの軽量化を図ることができる。
When the iron-aluminum clad material is applied to a sliding member such as a cylinder bore as described above, if the pipe is formed so that iron is the sliding inner surface and aluminum is the outer surface, the sliding inner surface made of iron is Abrasion resistance can be ensured, heat generated by combustion and sliding can be released to the outer surface side of aluminum having good heat conduction, and the weight of the cylinder bore and the like can be reduced.

【0004】ところで、上記したようにクラッド材から
管部材を製造するためには、クラッド材の端面同士を突
き合わせ溶接する必要がある。現在、板同士を突き合わ
せ溶接する方法として、バット溶接(アプセット溶
接)、バットシーム溶接、フラッシュ溶接や高周波抵抗
溶接等、種々の突き合わせ抵抗溶接法が用いられてい
る。このような突き合わせ抵抗溶接は、一般的に、被溶
接物の端面同士を突き合わせて加圧しながら溶接電流を
流し、端面同士の接触部を抵抗発熱により加熱させ、母
材の一部を溶融して接合する方法である。
In order to manufacture a tubular member from a clad material as described above, it is necessary to butt-weld end faces of the clad material. At present, various butt resistance welding methods such as butt welding (upset welding), butt seam welding, flash welding and high-frequency resistance welding are used as a method of butt welding plates. In such a butt resistance welding, generally, a welding current is applied while the end faces of the workpiece are butt-pressed and pressurized, and the contact portions between the end faces are heated by resistance heating to melt a part of the base material. It is a joining method.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記異
種材で構成されたクラッド材同士を突き合わせ抵抗溶接
しようとすると、溶接電流は主に電気抵抗の低い材料側
を流れることから、電気抵抗の低い材料同士の間及び電
気抵抗の高い材料同士の間で、それぞれ溶接電流の過不
足に起因する溶接欠陥が発生し易いという問題がある。
However, when the clad members composed of the above-mentioned different materials are butt-welded to each other by resistance welding, the welding current mainly flows through the material side having a low electric resistance. There is a problem that a welding defect due to an excess or deficiency of a welding current is easily generated between each other and between materials having high electric resistance.

【0006】すなわち、発熱量:Q、溶接電流:I、電
気抵抗:R及び通電時間:tの間には、Q=I2 Rtの
関係があり、電気抵抗の低い材料同士の間では、抵抗発
熱しにくいため大電流条件となり、また発生した熱も拡
散しやすくなるため、接合界面が外表面側に大きく膨出
変形し易くなる。一方、電気抵抗の高い材料同士の間で
は、溶接電流の過小により抵抗発熱が不十分となるた
め、接合強度が低下したり接合不能となったりする。
That is, there is a relation of Q = I 2 Rt between the calorific value: Q, the welding current: I, the electric resistance: R, and the energizing time: t. Since it is difficult to generate heat, a large current condition is obtained, and the generated heat is also easily diffused, so that the bonding interface is greatly expanded and deformed toward the outer surface side. On the other hand, between materials having a high electric resistance, the resistance heating becomes insufficient due to an excessively small welding current, so that the joining strength is reduced or the joining becomes impossible.

【0007】なお、クラッド材同士の溶接にアーク溶接
やレーザ溶接等の溶融溶接を適用すると、溶融した異種
材よりなる脆い金属間化合物が接合界面に形成され、接
合強度が著しく低下する場合がある。例えば、上記鉄−
アルミニウムのクラッド材の場合、Fe2 Al5 、Fe
Al3 等の脆い金属間化合物が接合界面に形成され、接
合強度はほとんど得られない。
[0007] When fusion welding such as arc welding or laser welding is applied to the welding of clad materials, brittle intermetallic compounds composed of molten dissimilar materials are formed at the joining interface, and the joining strength may be significantly reduced. . For example, the iron-
In the case of aluminum clad material, Fe 2 Al 5 , Fe
A brittle intermetallic compound such as Al 3 is formed at the joint interface, and almost no joint strength is obtained.

【0008】本発明は上記実情に鑑みてなされたもので
あり、電気抵抗の高い材料と低い材料とからなるクラッ
ド材同士を突き合わせ抵抗溶接する場合でも、電気抵抗
の低い材料同士及び電気抵抗の高い材料同士のそれぞれ
において、溶接電流の過不足に起因する溶接欠陥の発生
を防止することのできるクラッド材の突き合わせ抵抗溶
接方法を提供することを解決すべき技術課題とするもの
である。
The present invention has been made in view of the above circumstances, and even when clad materials made of a material having a high electrical resistance and a material having a low electrical resistance are butt-welded to each other, the materials having a low electrical resistance and the materials having a high electrical resistance are welded. An object of the present invention is to provide a method for butt resistance welding of clad materials that can prevent the occurrence of welding defects due to excessive or insufficient welding current in each of the materials.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する本発
明のクラッド材の突き合わせ抵抗溶接方法は、電気抵抗
の高い高抵抗材料よりなる高抵抗層と、該高抵抗層の表
面に形成され、該高抵抗材料よりも電気抵抗の低い低抵
抗材料よりなる低抵抗層とからなる第1及び第2クラッ
ド材の端面同士を突き合わせた状態で保持し、該第1及
び第2クラッド材の突き合わせ端面を加圧しながら該第
1及び第2クラッド材に溶接電流を流すことにより、該
第1及び第2クラッド材の該高抵抗層同士並びに該第1
及び第2クラッド材の該低抵抗層同士を抵抗溶接により
接合するクラッド材の突き合わせ抵抗溶接方法であっ
て、上記突き合わされた第1及び第2クラッド材の上記
低抵抗層同士の間にのみ開先を設け、溶接電流を流し始
める抵抗溶接の初期段階で該第1及び第2クラッド材の
上記高抵抗層同士の間に優先的に電流を流すようにした
ことを特徴とするものである。
A butt resistance welding method for a clad material according to the present invention, which solves the above problems, comprises a high resistance layer made of a high resistance material having a high electric resistance, and a high resistance layer formed on a surface of the high resistance layer; The end faces of the first and second clad materials, which are made of a low-resistance layer made of a low-resistance material having a lower electric resistance than the high-resistance material, are held in abutted state, and the butted end faces of the first and second clad materials are held together. By applying a welding current to the first and second cladding materials while applying pressure, the high-resistance layers of the first and second cladding materials and the first
And a butt resistance welding method of the clad material for joining the low resistance layers of the second clad material by resistance welding, wherein only the space between the low resistance layers of the butted first and second clad materials is opened. The method is characterized in that a current is preferentially supplied between the high-resistance layers of the first and second clad materials at an initial stage of resistance welding in which a welding current starts to flow.

【0010】[0010]

【発明の実施の形態】本発明のクラッド材の突き合わせ
抵抗溶接方法では、電気抵抗の高い高抵抗材料よりなる
高抵抗層と、該高抵抗層の表面に形成され、該高抵抗材
料よりも電気抵抗の低い低抵抗材料よりなる低抵抗層と
からなる第1及び第2クラッド材の端面同士を突き合わ
せて抵抗溶接する。
BEST MODE FOR CARRYING OUT THE INVENTION In the butt resistance welding method for a clad material according to the present invention, a high resistance layer made of a high resistance material having a high electric resistance is formed on the surface of the high resistance layer, and the electric resistance is higher than that of the high resistance material. The end faces of the first and second clad members made of a low-resistance layer made of a low-resistance material having low resistance are abutted and resistance-welded.

【0011】すなわち、第1クラッド材の端面と第2ク
ラッド材の端面とを、それぞれの高抵抗層同士及び低抵
抗層同士を相互に対向させて突き合わせて接触させる。
本発明方法では、このように第1クラッド材の端面と第
2クラッド材の端面とが突き合わされた状態で、第1ク
ラッド材の低抵抗層と第2クラッド材の低抵抗層との間
にのみ開先が設けられている。このため、溶接電流を流
し始める抵抗溶接の初期段階では、開先が設けられてい
ない第1クラッド材の高抵抗層と第2クラッド材の高抵
抗層との間で優先的に電流が流れる。したがって、電気
抵抗の高い高抵抗層同士の間においても、良好に抵抗発
熱するため、溶接電流の過小、ひいては抵抗発熱の不足
に起因する接合強度の低下や接合不能を防ぐことができ
る。
That is, the end face of the first clad material and the end face of the second clad material are brought into contact with each other with the high resistance layers and the low resistance layers facing each other.
In the method of the present invention, the end face of the first clad material and the end face of the second clad material are brought into contact with each other and the low-resistance layer of the first clad material and the low-resistance layer of the second clad material are brought into contact with each other. Only a groove is provided. For this reason, in the initial stage of the resistance welding in which the welding current starts to flow, the current flows preferentially between the high resistance layer of the first clad material and the high resistance layer of the second clad material where no groove is provided. Accordingly, even between the high-resistance layers having high electric resistance, good resistance heat is generated, so that it is possible to prevent the welding strength from being too small, and further reduce the bonding strength and the connection failure due to insufficient resistance heat generation.

【0012】また、このように高抵抗層同士の間で優先
的に電流が流れ、抵抗発熱により加熱された高抵抗層同
士が軟化又は軟化・溶融すると、加圧力により第1及び
第2クラッド材の高抵抗層同士が押し潰された状態で溶
接される。その結果、第1及び第2クラッド材が相互に
近接し、第1及び第2クラッド材の低抵抗層同士の間に
設けられた開先がそれぞれの低抵抗層の低抵抗材料によ
り充足され、第1及び第2クラッド材の低抵抗層同士も
接触し合う。このため、第1及び第2クラッド材の低抵
抗層同士の間にも溶接電流が流れ、抵抗発熱により低抵
抗層同士も確実に溶接される。そして、上記のように低
抵抗層同士の間に設けられた開先に低抵抗材料が充足さ
れることから、低抵抗層同士の間において、溶接電流の
過大に起因して接合界面が外表面側へ大きく膨出変形す
ることを抑えることができる。
When a current flows preferentially between the high-resistance layers as described above and the high-resistance layers heated by resistance heating are softened or softened / melted, the first and second clad materials are pressed by the pressing force. Are welded in a crushed state. As a result, the first and second cladding materials are close to each other, and the groove provided between the low-resistance layers of the first and second cladding materials is filled with the low-resistance material of each low-resistance layer, The low resistance layers of the first and second cladding materials also contact each other. Therefore, a welding current flows between the low-resistance layers of the first and second cladding materials, and the low-resistance layers are reliably welded to each other by resistance heat generation. Since the groove provided between the low-resistance layers is filled with the low-resistance material as described above, the bonding interface between the low-resistance layers is reduced due to an excessive welding current. It is possible to suppress a large bulging deformation to the side.

【0013】よって、電気抵抗の高い高抵抗層と電気抵
抗の低い低抵抗層とからなるクラッド材同士を突き合わ
せ抵抗溶接するに際し、高抵抗層同士及び低抵抗層同士
のそれぞれにおいて溶接電流の過不足に起因する溶接欠
陥の発生を抑えることができ、かかるクラッド材の突き
合わせ抵抗溶接の充分な溶接品質を確保することが可能
となる。
Therefore, when the cladding materials composed of the high-resistance layer having a high electric resistance and the low-resistance layer having a low electric resistance are butt-welded to each other, the welding current is excessive or insufficient in each of the high-resistance layers and the low-resistance layers. Therefore, it is possible to suppress the occurrence of welding defects caused by the above, and to secure sufficient welding quality of such butt resistance welding of the clad material.

【0014】ここに、上記開先の形状及び大きさとして
は、溶接電流を流し始める抵抗溶接の初期段階において
第1及び第2クラッド材の高抵抗層同士の間で優先的に
電流が流れ、かつ、抵抗発熱により軟化又は軟化・溶融
した第1及び第2クラッド材の高抵抗層同士が第1及び
第2クラッド材の突き合わせ端面への加圧力で押し潰さ
れることにより、第1及び第2クラッド材の低抵抗材料
が該開先の隙間に充足されて、第1及び第2クラッド材
の低抵抗層同士が接触しうる形状及び大きさであれば、
特に限定されない。例えば、断面形状として、V字状、
I字状(L字状)、U字状やレ字状等とすることができ
る。
Here, as the shape and size of the groove, a current preferentially flows between the high-resistance layers of the first and second clad materials in an initial stage of resistance welding in which a welding current starts to flow. In addition, the first and second high-resistance layers of the first and second clad materials, which have been softened or softened and melted by resistance heat generation, are crushed by the pressing force applied to the butted end surfaces of the first and second clad materials. If the low-resistance material of the clad material is filled in the gap of the groove, and the shape and the size are such that the low-resistance layers of the first and second clad materials can contact each other,
There is no particular limitation. For example, as a cross-sectional shape, a V-shape,
An I-shape (L-shape), U-shape, L-shape, or the like can be used.

【0015】ただし、抵抗溶接の初期段階において第1
及び第2クラッド材の高抵抗層同士の間にのみ溶接電流
が流れるようにして、該高抵抗層同士の間でより確実に
抵抗発熱させ、ひいては抵抗発熱の不足に起因する該高
抵抗層同士の溶接不良をより確実に防ぐ観点から、上記
開先の形状及び大きさは、溶接電流を流し始める初期段
階で、第1及び第2クラッド材の高抵抗層同士のみが接
触し合い、第1及び第2クラッド材の低抵抗層同士は全
く接触しないように設定することが好ましい。
However, in the initial stage of resistance welding, the first
And a welding current flows only between the high-resistance layers of the second clad material to more reliably generate resistance heat between the high-resistance layers, and furthermore, the high-resistance layers caused by insufficient resistance heating. From the viewpoint of more reliably preventing poor welding, the shape and size of the groove are set such that only the high-resistance layers of the first and second clad materials come into contact with each other at the initial stage when the welding current starts to flow, and It is preferable that the low resistance layers of the second clad material are set so as not to contact each other at all.

【0016】また、抵抗発熱により加熱された第1及び
第2クラッド材の高抵抗層同士が加圧力で押し潰された
ときに低抵抗層同士を確実に接触させるとともに、第1
及び第2クラッド材の低抵抗層同士の接合界面が外表面
側に大きく膨出変形することをより確実に防ぐ観点よ
り、開先の断面形状をV字状とした場合は、開先角度を
20〜30°程度とすることが好ましく、また開先の幅
(第1及び第2クラッド材の低抵抗層同士の最大間隔)
は1〜2mm程度とすることが好ましい。V字状の開先
角度が小さ過ぎたり、あるいは開先の幅が狭すぎたりす
ると、低抵抗層同士の接合界面が大きく膨出変形するこ
とを効果的に抑えることができなくなり、一方V字状の
開先角度が大き過ぎたり、あるいは開先の幅が広過ぎた
りすると、抵抗発熱により加熱された第1及び第2クラ
ッド材の高抵抗層同士が加圧力で押し潰されたときに低
抵抗層同士を確実に接触させることが困難となる。
Further, when the high-resistance layers of the first and second clad materials heated by the resistance heat generation are crushed by the pressing force, the low-resistance layers are reliably brought into contact with each other.
From the viewpoint of more reliably preventing the junction interface between the low-resistance layers of the second clad material from bulging and deforming to the outer surface side, when the groove has a V-shaped cross-sectional shape, the groove angle is reduced. Preferably, the angle is about 20 to 30 °, and the width of the groove (the maximum distance between the low-resistance layers of the first and second cladding materials).
Is preferably about 1 to 2 mm. If the V-shaped groove angle is too small or the width of the groove is too narrow, it is not possible to effectively suppress large bulging deformation of the bonding interface between the low-resistance layers. If the groove angle of the shape is too large or the width of the groove is too wide, the high resistance layers of the first and second clad materials heated by the resistance heat will be low when the high resistance layers are crushed by the pressing force. It is difficult to reliably contact the resistance layers.

【0017】クラッド材を構成する高抵抗材料と低抵抗
材料との組み合わせについては、特に限定されず、適用
される製品の要求特性に応じて適宜選定可能である。例
えば、高抵抗材料としての鉄と、低抵抗材料としてのア
ルミニウムとの組み合わせや、高抵抗材料としてのチタ
ンと、低抵抗材料としてのアルミニウムとの組み合わせ
等とすることができる。
The combination of the high-resistance material and the low-resistance material constituting the clad material is not particularly limited, and can be appropriately selected according to the required characteristics of the product to be applied. For example, a combination of iron as a high-resistance material and aluminum as a low-resistance material, a combination of titanium as a high-resistance material, and aluminum as a low-resistance material, and the like can be used.

【0018】高抵抗層及び低抵抗層の厚さについても特
に限定されず、適用される製品の要求特性に応じて適宜
設定可能である。なお、第1クラッド材を構成する高抵
抗材料及び低抵抗材料と、第2クラッド材を構成する高
抵抗材料及び低抵抗材料とは、互いに同じ材料を用いる
ことが通常であるが、抵抗溶接により接合強度が確保さ
れれば、第1クラッド材と第2クラッド材とで、互いに
異なる高抵抗材料又は低抵抗材料を用いることも可能で
ある。
The thicknesses of the high-resistance layer and the low-resistance layer are not particularly limited, either, and can be appropriately set according to the required characteristics of the product to be applied. The high-resistance material and the low-resistance material constituting the first clad material and the high-resistance material and the low-resistance material constituting the second clad material are usually the same, but are formed by resistance welding. If the bonding strength is secured, it is possible to use different high-resistance materials or low-resistance materials for the first clad material and the second clad material.

【0019】また、抵抗溶接の種類も特に限定されず、
バット溶接(アプセット溶接)、バットシーム溶接、フ
ラッシュ溶接や高周波抵抗溶接等、種々の突き合わせ抵
抗溶接法を採用可能である。溶接条件についても、高抵
抗材料及び低抵抗材料の種類や、上記開先の形状及び大
きさ等に応じて、適宜設定可能である。ただし、第1及
び第2クラッド材に溶接電流を流すための溶接電極は、
第1及び第2クラッド材のそれぞれの高抵抗層と接触さ
せることが好ましい。この態様によれば、溶接電極から
第1及び第2クラッド材の高抵抗層へ直接通電させるこ
とができるので、抵抗溶接の初期段階において第1及び
第2クラッド材の高抵抗層同士の間により優先的に溶接
電流を流すことができ、該高抵抗層同士の間でより確実
に抵抗発熱させることが可能となる。
The type of resistance welding is not particularly limited, either.
Various butt resistance welding methods such as butt welding (upset welding), butt seam welding, flash welding and high frequency resistance welding can be employed. The welding conditions can also be appropriately set according to the type of the high-resistance material and the low-resistance material, the shape and size of the groove, and the like. However, a welding electrode for flowing a welding current to the first and second clad materials is:
It is preferable to make contact with the respective high resistance layers of the first and second cladding materials. According to this aspect, it is possible to directly conduct electricity from the welding electrode to the high-resistance layers of the first and second clad materials. The welding current can flow preferentially, and the resistance heating can be more reliably generated between the high resistance layers.

【0020】以上、本発明の実施形態について説明した
が、かかる説明から特許請求の範囲に記載した技術的事
項以外に次の技術的事項を抽出できることを付記してお
く。 (1)開先の形状及び大きさは、溶接電流を流し始める
抵抗溶接の初期段階で、第1及び第2クラッド材の高抵
抗層同士のみが接触し合い、第1及び第2クラッド材の
低抵抗層同士は全く接触しないように設定されているこ
とを特徴とする請求項1記載のクラッド材の突き合わせ
抵抗溶接方法。 (2)開先の形状及び大きさは、溶接電流を流し始める
抵抗溶接の初期段階で、第1及び第2クラッド材の高抵
抗層同士のみが接触し合うとともに、第1及び第2クラ
ッド材の低抵抗層同士は全く接触しないように、かつ、
抵抗発熱により加熱された第1及び第2クラッド材の高
抵抗層同士が加圧力で押し潰されたときに、低抵抗層の
低抵抗材料で該開先が充足されることにより第1及び第
2クラッド材の低抵抗層同士が接触し合うように設定さ
れていることを特徴とする請求項1記載のクラッド材の
突き合わせ抵抗溶接方法。
Although the embodiments of the present invention have been described above, it should be noted that the following technical matters can be extracted from the description in addition to the technical matters described in the claims. (1) The shape and size of the groove are such that only the high-resistance layers of the first and second clad materials are in contact with each other at the initial stage of resistance welding when the welding current starts to flow, and the first and second clad materials are in contact with each other. 2. The method according to claim 1, wherein the low resistance layers are set so as not to contact each other at all. (2) The shape and size of the groove are such that only the high-resistance layers of the first and second clad materials are in contact with each other and the first and second clad materials are in contact with each other at the initial stage of resistance welding when the welding current starts to flow. So that the low-resistance layers do not contact each other at all, and
When the high resistance layers of the first and second clad materials heated by the resistance heating are crushed by the pressing force, the grooves are filled with the low resistance material of the low resistance layer so that the first and second claddings are filled. 2. The method according to claim 1, wherein the low resistance layers of the two clad materials are set so as to contact each other.

【0021】[0021]

【実施例】以下、本発明を具体化した実施例について、
図面を参照しつつ説明する。 (実施例1)本実施例では、第1及び第2クラッド材と
して、鉄−アルミニウムのクラッド板材を用いた。すな
わち、この第1及び第2クラッド材1及び2は、図1の
断面図に示すように、電気抵抗の高い高抵抗材料たる鉄
(S45C)よりなる高抵抗層1a及び2aと、高抵抗
層1a及び2aの表面に形成され、電気抵抗の低い低抵
抗材料たるアルミニウム(A1050)よりなる低抵抗
層1b及び2bとから構成されている。
EXAMPLES Hereinafter, examples embodying the present invention will be described.
This will be described with reference to the drawings. (Embodiment 1) In this embodiment, an iron-aluminum clad plate was used as the first and second clad materials. That is, as shown in the cross-sectional view of FIG. 1, the first and second cladding materials 1 and 2 are composed of high resistance layers 1a and 2a made of iron (S45C) as a high resistance material having high electric resistance, and high resistance layers 1a and 2a. Low resistance layers 1b and 2b formed on the surfaces of 1a and 2a and made of aluminum (A1050) as a low resistance material having low electric resistance.

【0022】ここに、高抵抗層1a及び2aの厚さは1
mm、低抵抗層1b及び2bの厚さは4mmである。ま
た、高抵抗層1a及び2aの比電気抵抗(ρa )は9.
8×10-6Ωcm、低抵抗層1b及び2bの比電気抵抗
(ρb )は2.7×10-6Ωcmであり、高抵抗層1a
及び2aの単位幅、単位長さ当たりの電気抵抗(ra
は9.8×10-5Ω/cm、低抵抗層1b及び2bの単
位幅、単位長さ当たりの電気抵抗(rb )は6.7×1
-6Ω/cmである。したがって、高抵抗層1a及び2
aの電流配分(Ia =1/ra )と低抵抗層1b及び2
bの電流配分(Ib =1/rb )との比は、Ia :Ib
=1:14.7となり、低抵抗層1b及び2bを流れる
電流は高抵抗層1a及び2aを流れる電流よりもはるか
に多くなる。
Here, the thickness of the high resistance layers 1a and 2a is 1
mm, and the thickness of the low-resistance layers 1b and 2b is 4 mm. The specific electric resistance (ρ a ) of the high resistance layers 1a and 2a is 9.
8 × 10 −6 Ωcm, the specific resistance (ρ b ) of the low resistance layers 1 b and 2 b is 2.7 × 10 −6 Ωcm, and the high resistance layer 1 a
And the electrical resistance per unit length and length of 2a (r a )
Is 9.8 × 10 −5 Ω / cm, and the electric resistance (r b ) per unit width and unit length of the low-resistance layers 1b and 2b is 6.7 × 1
0 −6 Ω / cm. Therefore, the high resistance layers 1a and 2a
a (I a = 1 / r a ) and low-resistance layers 1b and 2
b and the current distribution (I b = 1 / r b ) are I a : I b
= 1: 14.7, and the current flowing through the low resistance layers 1b and 2b is much larger than the current flowing through the high resistance layers 1a and 2a.

【0023】上記第1クラッド材1の端面と上記第2ク
ラッド材2の端面とを突き合わせた状態で、第1クラッ
ド材1の低抵抗層1bと第2クラッド材2の低抵抗層2
bとの間にのみ断面V字状の開先3が設けられるよう
に、第1及び第2クラッド材1及び2の低抵抗層1b及
び2bの端面を加工した。そして、図2に示すように、
第1及び第2クラッド材1及び2の高抵抗層1a及び2
a同士、並びに第1及び第2クラッド材1及び2の低抵
抗層1b及び2b同士が対向するように、第1クラッド
材1の端面と第2クラッド材2の端面とを突き合わせ
た。なお、このとき第1クラッド材1の低抵抗層1bと
第2クラッド材2の低抵抗層2bとの間に形成される断
面V字状の開先3の開先角度(α)は30度である。ま
た開先3の幅(第1及び第2クラッド材1及び2の低抵
抗層1b及び2b同士の最大間隔)は2.1mm程度
(4tan(α/2)×2≒2.1mm)である。
With the end face of the first clad material 1 and the end face of the second clad material 2 abutting each other, the low resistance layer 1b of the first clad material 1 and the low resistance layer 2 of the second clad material 2
The end surfaces of the low-resistance layers 1b and 2b of the first and second clad materials 1 and 2 were processed so that the groove 3 having a V-shaped cross section was provided only between the low-resistance layers 1b and 2b. And as shown in FIG.
High resistance layers 1a and 2 of first and second cladding materials 1 and 2
The end face of the first clad material 1 and the end face of the second clad material 2 were abutted so that a and the low resistance layers 1b and 2b of the first and second clad materials 1 and 2 faced each other. At this time, the groove angle (α) of the V-shaped groove 3 formed between the low resistance layer 1b of the first cladding material 1 and the low resistance layer 2b of the second cladding material 2 is 30 degrees. It is. The width of the groove 3 (the maximum distance between the low-resistance layers 1b and 2b of the first and second cladding materials 1 and 2) is about 2.1 mm (4 tan (α / 2) × 2 ≒ 2.1 mm). .

【0024】この状態で、第1クラッド材1及び第2ク
ラッド材2の突き合わせ端面を加圧しながら、第1及び
第2クラッド材1及び2の高抵抗層1a及2aにそれぞ
れ接触させた第1及び第2電極4及び5に直流の溶接電
流を通電することにより、抵抗溶接した。このときの通
電条件を図3に示す。なお、図3中、I1 は第1溶接電
流、I2 は第2溶接電流、P1 は第1加圧力、P2 は第
2加圧力、P3 は第3加圧力をそれぞれ示し、また横軸
は時間を示し、その単位はサイクル(1サイクル=1/
60sec)である。また、アプセット代は6mmとし
た。
In this state, the first clad material 1 and the second clad material 2 are pressed against the butt end surfaces thereof, and the first clad materials 1 and 2 are brought into contact with the high resistance layers 1a and 2a of the first and second clad materials 1 and 2, respectively. Resistance welding was performed by applying a DC welding current to the second electrodes 4 and 5. FIG. 3 shows the energizing conditions at this time. In FIG. 3, I 1 denotes a first welding current, I 2 denotes a second welding current, P 1 denotes a first pressing force, P 2 denotes a second pressing force, and P 3 denotes a third pressing force. The horizontal axis indicates time, and the unit is cycle (1 cycle = 1 /
60 sec). The upset margin was 6 mm.

【0025】抵抗溶接後の第1及び第2クラッド材1及
び2の接合界面における金属組織を図4に示すように、
高抵抗層1a及び2aの接合界面では、高抵抗層1a及
び2aの表裏両側(図4の上下両側)に高抵抗層1a及
び2aが突き出るように加圧力で大きく塑性流動を起こ
して接合されている。また、高抵抗層1a及び2aの圧
延方向(図4の水平方向)に生じた鍛流線が接合界面で
消失していないことから、高抵抗層1a及び2aの接合
界面では材料の溶融が生じていないものと考えられる。
FIG. 4 shows the metal structure at the joint interface between the first and second clad materials 1 and 2 after resistance welding.
At the joining interface between the high-resistance layers 1a and 2a, the high-resistance layers 1a and 2a are joined together by a large plastic flow caused by a pressing force such that the high-resistance layers 1a and 2a protrude on both front and back sides (upper and lower sides in FIG. 4). I have. Further, since the grain flow generated in the rolling direction of the high resistance layers 1a and 2a (horizontal direction in FIG. 4) does not disappear at the bonding interface, the material is melted at the bonding interface of the high resistance layers 1a and 2a. It is not considered to be.

【0026】一方、低抵抗層1b及び2bの接合界面で
は、低抵抗層1b及び2b同士が加圧力で押し潰された
こと、及び高抵抗層1a及び2aが低抵抗層1b及び2
b側に突き出されたことの影響により、外表面側(図4
の上方側)に若干膨出し、鍛流線も上方に押し上げられ
ているが、高抵抗層1a及び2aほど大きな塑性流動を
起こしていない。これは、低抵抗層1b及び2bの間に
設けられた開先3に、低抵抗層1b及び2bの低抵抗材
料が充足されたことに因るものである。
On the other hand, at the joining interface between the low resistance layers 1b and 2b, the low resistance layers 1b and 2b are crushed by the pressing force, and the high resistance layers 1a and 2a are connected to the low resistance layers 1b and 2b.
4b, the outer surface side (FIG. 4)
Slightly upward, and the grain flow is also pushed upward, but the plastic flow is not as large as that of the high-resistance layers 1a and 2a. This is because the groove 3 provided between the low-resistance layers 1b and 2b is filled with the low-resistance material of the low-resistance layers 1b and 2b.

【0027】また、低抵抗層1b及び2bの接合界面に
おいては、境界線が見られず、第1クラッド材1の低抵
抗層1bと第2クラッド材2の低抵抗層2bとはしっか
り接合されていることがわかる。さらに、第1及び第2
クラッド材1及び2の接合界面においては、第1クラッ
ド材1の高抵抗層1aと低抵抗層1bとの境界、及び第
2クラッド材2の高抵抗層2aと低抵抗層2bとの境界
には隙間も見られない。
Further, no boundary line is seen at the joining interface between the low resistance layers 1b and 2b, and the low resistance layer 1b of the first clad material 1 and the low resistance layer 2b of the second clad material 2 are firmly joined. You can see that it is. In addition, the first and second
At the joining interface between the cladding materials 1 and 2, a boundary between the high resistance layer 1 a and the low resistance layer 1 b of the first cladding material 1 and a boundary between the high resistance layer 2 a and the low resistance layer 2 b of the second cladding material 2 are formed. Has no gaps.

【0028】上記抵抗溶接後の第1及び第2クラッド材
1及び2の接合界面について、X線回折を行った。その
結果を図5に示すように、接合強度を低下せしめる脆い
金属間化合物(Fe2 Al5 、FeAl3 等)は検出さ
れなかった。なお、図5の横軸の値は、X線の入射角を
θとしたときの回折角(2θ)を示す。また、クラッド
材自身と接合部とについて、引張強さを測定した結果を
図6に示すように、接合部における引張強さはクラッド
材自身と同等であり、本実施例方法により充分な接合強
度を確保できることが確認された。
X-ray diffraction was performed on the bonding interface between the first and second clad materials 1 and 2 after the resistance welding. As shown in FIG. 5, no brittle intermetallic compounds (Fe 2 Al 5 , FeAl 3, etc.) that reduced the bonding strength were detected. The value on the horizontal axis in FIG. 5 indicates the diffraction angle (2θ) when the incident angle of the X-ray is θ. As shown in FIG. 6, the tensile strength of the clad material itself and the joint was measured, and the tensile strength at the joint was equivalent to that of the clad material itself. It was confirmed that it could be secured.

【0029】したがって本実施例によれば、生産性の高
いバット溶接(本実施例ではDCバット溶接)により、
充分な溶接品質を確保しつつ、鉄−アルミニウムのクラ
ッド材同士を突き合わせ抵抗溶接することができ、例え
ば軽量化及び冷却性能の向上を図った車両エンジン用シ
リンダボアを低コストで高生産することが可能となる。
Therefore, according to this embodiment, the butt welding with high productivity (DC butt welding in this embodiment)
Iron-aluminum cladding materials can be butt-welded while ensuring sufficient welding quality. For example, cylinder bores for vehicle engines with reduced weight and improved cooling performance can be produced at high cost at low cost. Becomes

【0030】(実施例2)図7に示す本実施例は、第1
及び第2クラッド材1及び2の低抵抗層1b及び2b同
士の間に設ける開先3の形状を変更したものである。す
なわち、この開先3は断面形状がI字状(L字状)で、
開先3の幅(第1及び第2クラッド材1及び2の低抵抗
層1b及び2b同士の最大間隔)は2mm程度であ
る。、その他の構成は、上記実施例1と同様である。
(Embodiment 2) The present embodiment shown in FIG.
In addition, the shape of the groove 3 provided between the low resistance layers 1b and 2b of the second clad materials 1 and 2 is changed. That is, the groove 3 has an I-shaped (L-shaped) cross section,
The width of the groove 3 (the maximum distance between the low-resistance layers 1b and 2b of the first and second cladding materials 1 and 2) is about 2 mm. Other configurations are the same as those of the first embodiment.

【0031】なお、上述の実施例1及び2では、バット
溶接を例にとって説明したが、本発明はバットシーム溶
接、フラッシュ溶接、高周波溶接等の他の突き合わせ抵
抗溶接方法にも適用できることはいうまでもない。
In the first and second embodiments, butt welding is described as an example. However, it goes without saying that the present invention can be applied to other butt resistance welding methods such as butt seam welding, flash welding, and high frequency welding. Absent.

【0032】[0032]

【発明の効果】以上詳述したように、本発明のクラッド
材の突き合わせ抵抗溶接方法によれば、高抵抗層同士及
び低抵抗層同士のそれぞれにおいて溶接電流の過不足に
起因する溶接欠陥の発生を抑えることができるので、電
気抵抗の高い高抵抗層と電気抵抗の低い低抵抗層とから
なるクラッド材同士を突き合わせ抵抗溶接する場合であ
っても、充分な溶接品質を確保することが可能となる。
As described above in detail, according to the butt resistance welding method of the clad material of the present invention, the occurrence of welding defects due to excessive or insufficient welding current in each of the high resistance layers and the low resistance layers. Therefore, sufficient welding quality can be ensured even when the clad material consisting of the high resistance layer with high electric resistance and the low resistance layer with low electric resistance is butt-welded to each other. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1に係り、クラッド材の断面図である。FIG. 1 is a cross-sectional view of a clad material according to a first embodiment.

【図2】実施例1のクラッド材の突き合わせ抵抗溶接方
法を説明する図であり、(a)は第1及び第2クラッド
材間に溶接電流を流し始める初期段階を示す断面図であ
り、(b)は抵抗溶接完了後を示す断面図である。
FIGS. 2A and 2B are diagrams illustrating a butt resistance welding method of a clad material of Example 1, and FIG. 2A is a cross-sectional view illustrating an initial stage in which a welding current starts flowing between a first and a second clad material; (b) is a sectional view showing a state after the completion of the resistance welding.

【図3】実施例1に係り、抵抗溶接の溶接条件を示す図
である。
FIG. 3 is a diagram showing welding conditions of resistance welding according to the first embodiment.

【図4】実施例1に係り、抵抗溶接完了後において、ク
ラッド材の接合界面における金属組織を示す写真であ
る。
FIG. 4 is a photograph showing a metal structure at a bonding interface of a clad material after completion of resistance welding according to Example 1.

【図5】実施例1に係り、抵抗溶接完了後のクラッド材
の接合界面について、X線回折を行った結果を示すグラ
フである。
FIG. 5 is a graph showing a result of performing X-ray diffraction on a bonding interface of a clad material after completion of resistance welding according to Example 1.

【図6】実施例1に係り、クラッド材自身と接合部とに
ついて、引張強さを測定した結果を示すグラフである。
FIG. 6 is a graph showing the results of measuring the tensile strength of the clad material itself and the joint according to Example 1.

【図7】実施例2に係り、開先形状の変形例を示す断面
図である。
FIG. 7 is a cross-sectional view illustrating a modification of the groove shape according to the second embodiment.

【符号の説明】[Explanation of symbols]

1…第1クラッド材 2…第2クラッド材 1a、2a…高抵抗層 1b、2b…低抵抗
層 3…開先
DESCRIPTION OF SYMBOLS 1 ... 1st clad material 2 ... 2nd clad material 1a, 2a ... High resistance layer 1b, 2b ... Low resistance layer 3 ... Groove

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年12月24日[Submission date] December 24, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図4[Correction target item name] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図4】 FIG. 4

フロントページの続き (51)Int.Cl.6 識別記号 FI B23K 11/24 338 B23K 11/24 338 Continued on the front page (51) Int.Cl. 6 Identification symbol FI B23K 11/24 338 B23K 11/24 338

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電気抵抗の高い高抵抗材料よりなる高抵
抗層と、該高抵抗層の表面に形成され、該高抵抗材料よ
りも電気抵抗の低い低抵抗材料よりなる低抵抗層とから
なる第1及び第2クラッド材の端面同士を突き合わせた
状態で保持し、該第1及び第2クラッド材の突き合わせ
端面を加圧しながら該第1及び第2クラッド材に溶接電
流を流すことにより、該第1及び第2クラッド材の該高
抵抗層同士並びに該第1及び第2クラッド材の該低抵抗
層同士を抵抗溶接により接合するクラッド材の突き合わ
せ抵抗溶接方法であって、 上記突き合わされた第1及び第2クラッド材の上記低抵
抗層同士の間にのみ開先を設け、溶接電流を流し始める
抵抗溶接の初期段階で該第1及び第2クラッド材の上記
高抵抗層同士の間に優先的に電流を流すようにしたこと
を特徴とするクラッド材の突き合わせ抵抗溶接方法。
1. A high resistance layer made of a high resistance material having a high electric resistance, and a low resistance layer formed on a surface of the high resistance layer and made of a low resistance material having a lower electric resistance than the high resistance material. By holding the end surfaces of the first and second clad materials in abutted state and applying a welding current to the first and second clad materials while pressing the butted end surfaces of the first and second clad materials, A butt resistance welding method of a clad material for joining the high resistance layers of the first and second clad materials together and the low resistance layers of the first and second clad materials by resistance welding. A groove is provided only between the low-resistance layers of the first and second clad materials, and priority is given between the high-resistance layers of the first and second clad materials at an initial stage of resistance welding where a welding current starts to flow. To let current flow Butt resistance welding method of the clad material, characterized in that the.
JP32149497A 1997-11-21 1997-11-21 Clad metal butt resistance welding method Pending JPH11156556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32149497A JPH11156556A (en) 1997-11-21 1997-11-21 Clad metal butt resistance welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32149497A JPH11156556A (en) 1997-11-21 1997-11-21 Clad metal butt resistance welding method

Publications (1)

Publication Number Publication Date
JPH11156556A true JPH11156556A (en) 1999-06-15

Family

ID=18133190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32149497A Pending JPH11156556A (en) 1997-11-21 1997-11-21 Clad metal butt resistance welding method

Country Status (1)

Country Link
JP (1) JPH11156556A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181231A1 (en) * 2017-03-31 2018-10-04 Jfeスチール株式会社 Production method for resistance spot welded joint

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181231A1 (en) * 2017-03-31 2018-10-04 Jfeスチール株式会社 Production method for resistance spot welded joint
JP6410003B1 (en) * 2017-03-31 2018-10-24 Jfeスチール株式会社 Method of manufacturing resistance spot welded joint
KR20190126098A (en) * 2017-03-31 2019-11-08 제이에프이 스틸 가부시키가이샤 Method of manufacturing resistance spot welded joints
CN110461528A (en) * 2017-03-31 2019-11-15 杰富意钢铁株式会社 The manufacturing method of joint for resistance spot welding

Similar Documents

Publication Publication Date Title
JP4494496B2 (en) Resistance welding method and welded structure
US7038160B2 (en) Method for producing permanent integral connections of oxide-dispersed (ODS) metallic materials or components of oxide-dispersed (ODS) metallic materials by welding
KR100443803B1 (en) Method for the projection welding of high-carbon steels and high-tension low-alloy
JP2672182B2 (en) Joining method for steel-based materials and aluminum-based materials
JP4326492B2 (en) Dissimilar materials joining method using laser welding
JP2011088197A (en) Different material joined body and different material resistance spot welding method
JP3767147B2 (en) Seam welding method for dissimilar metal plates
WO2003018245A1 (en) Conductive heat seam welding
JP2003236673A (en) Method for joining different kinds of materials
JP3941001B2 (en) Bonding method of dissimilar metal materials
JPH0224197B2 (en)
JP2006175504A (en) Method for joining different kind of material
JP4931506B2 (en) Dissimilar material joining method
JPH11156556A (en) Clad metal butt resistance welding method
JP2531052B2 (en) Resistance welding method for dissimilar metals
JPH09220673A (en) Metal sheet weld joining structure and metal sheet weld joining method
JP4128022B2 (en) Groove butt welding method using insert member and insert member used therefor
CN114473164B (en) Method for resistance spot welding dissimilar metal workpiece stacked assembly and dissimilar metal stacked assembly for resistance spot welding
JP4194419B2 (en) Joining method and joining joint of iron-based material and aluminum-based material
JP2019534791A (en) Enhanced resistance spot welding using clad aluminum alloy
EP1507624B1 (en) Method of welding aluminium alloy strip products
WO2021131988A1 (en) Spot welding method
KR100548015B1 (en) Electrode for electric resistance welding
JP3067519B2 (en) Resistance seam welding method for resin coated steel sheet
JP3283293B2 (en) Welding method of aluminum alloy and dissimilar materials