JPH11156352A - Method and apparatus for treatment of water - Google Patents

Method and apparatus for treatment of water

Info

Publication number
JPH11156352A
JPH11156352A JP9336598A JP33659897A JPH11156352A JP H11156352 A JPH11156352 A JP H11156352A JP 9336598 A JP9336598 A JP 9336598A JP 33659897 A JP33659897 A JP 33659897A JP H11156352 A JPH11156352 A JP H11156352A
Authority
JP
Japan
Prior art keywords
water
photocatalyst
ultraviolet
treated
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9336598A
Other languages
Japanese (ja)
Inventor
Toshiro Kato
敏朗 加藤
Osamu Miki
理 三木
Shingo Katayama
真吾 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9336598A priority Critical patent/JPH11156352A/en
Publication of JPH11156352A publication Critical patent/JPH11156352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To treat water efficiently by restraining photorectivation of microorganisms while defects of ultraviolet disinfecting and phtocatalytic disinfection are compensated as a disinfecting method in place of a chlorine disinfection method. SOLUTION: When water to be treated is irradiated with ultraviolet radiation from ultraviolet lamp 2, a photoreactivation phenomenon of microorganism is restrained by irradiating cylindrical platy photocatalytic supports 9 to 12 arranged so that a photocatalyst having titanium dioxide, etc., as a main constituent and water to be treated come to be contact with each other simultaneously with ultraviolet radiation. As the ultraviolet lamp 2, a medium pressure or high pressure mercury lamp is preferably used. Thereby, the photoreactivation phenomenon of the microorganisms is restrained by a disinfection effect of free radicals having intensive oxidation force generated with the photocatalyst irradiated with ultraviolet radiation in addition to a direct disinfection effect of ultraviolet radiation, and effective disinfection can be executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光触媒存在下で被
処理水に紫外線を照射し、被処理水中に含まれる微生物
の殺滅によって水を消毒する水処理方法およびそれに用
いる水処理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment method for irradiating treated water with ultraviolet rays in the presence of a photocatalyst and disinfecting the water by killing microorganisms contained in the treated water, and a water treatment apparatus used therefor. It is.

【0002】[0002]

【従来の技術】水処理における消毒は、従来、塩素消毒
が一般的であるが、残留塩素による塩素臭や放流先の生
態系に及ぼす影響の問題、水中の有機物との反応による
有害な有機塩素化合物の副生成の問題、クリプトスポリ
ジウムなど塩素に耐性を持った微生物の問題化、山間の
処理場での塩素剤の運搬・貯蔵の問題など、検討を要す
る課題があり、様々な代替消毒技術の開発が試みられて
いる(例えば、大垣眞一郎(1992)『消毒技術に関
する最近の動向』水道公論,第29巻,第3号,71
頁;神子直之他(1995)『紫外線消毒の処理特性と
その機構』月刊下水道,第18巻,第6号,20頁)。
2. Description of the Related Art Conventionally, chlorination is generally used for disinfection in water treatment. However, there is a problem of chlorine odor due to residual chlorine and an influence on an ecosystem at a discharge destination, and harmful organic chlorine caused by a reaction with organic matter in water. There are issues that need to be examined, such as the problem of compound by-products, the problem of chlorine-resistant microorganisms such as cryptosporidium, and the problem of transporting and storing chlorinating agents in mountainous treatment plants. Development has been attempted (for example, Shinichiro Ogaki (1992), "Recent Trends in Disinfection Technology", Water Works, Vol. 29, No. 3, 71)
(Naokiyuki Miko et al., 1995) "Treatment characteristics and mechanism of ultraviolet disinfection", Monthly Sewer, Vol. 18, No. 6, page 20).

【0003】塩素に替わる消毒技術としては、例えば、
紫外線消毒法がある。
[0003] Disinfection techniques that can replace chlorine include, for example,
There is a UV disinfection method.

【0004】紫外線、とりわけ波長254nm付近の紫
外線を生物に照射すると、遺伝情報を司るデオキシリボ
核酸(DNA)中の隣接したピリミジン塩基、とくに、
チミジン塩基が光架橋して二量体化するため、遺伝子の
発現やDNAの複製が正常に起こらなくなり、ついには
死滅すると考えられている(例えば、安藤茂他(199
4)『紫外線による下水・排水の消毒』用水と廃水,第
36巻,第6号,27頁など)。しかしながら、紫外線
によってDNA上に損傷を受けた生物は、波長300n
mから600nmの可視光ないしは近紫外光を受けると
損傷が軽減され、回復が起こることが知られている(例
えば、『生化学辞典』東京化学同人;鹿島田浩二他(1
995)『紫外線照射水処理における光回復の評価』水
環境学会誌,第18巻,第1号,44頁;土佐光司他
(1997)『下痢原性大腸菌の紫外線による不活化と
光回復』水環境学会誌,第20巻,第9号,610
頁)。この現象は光回復と呼ばれる。
When an organism is irradiated with ultraviolet rays, especially ultraviolet rays having a wavelength of about 254 nm, adjacent pyrimidine bases in the deoxyribonucleic acid (DNA) that controls genetic information, in particular,
It is thought that gene expression and DNA replication do not occur normally and eventually die because thymidine bases undergo photocrosslinking and dimerization (for example, Shigeru Ando et al. (199)
4) "Disinfection of sewage and drainage by ultraviolet light", Water and wastewater, Vol. 36, No. 6, p. 27, etc.). However, organisms damaged on DNA by ultraviolet light have a wavelength of 300 n.
It is known that damage is reduced and recovery occurs when receiving visible light or near-ultraviolet light from m to 600 nm (for example, "Biochemical Dictionary", Tokyo Chemical Dojin; Kashimada Koji et al. (1)
995) "Evaluation of light recovery in ultraviolet irradiation water treatment" Journal of Japan Society on Water Environment, Vol. 18, No. 1, p. 44; Koji Tosa et al. (1997) "Inactivation and light recovery of diarrheagenic Escherichia coli by ultraviolet light" Journal of the Environmental Society, Vol. 20, No. 9, 610
page). This phenomenon is called light recovery.

【0005】したがって、紫外線で消毒する場合には、
紫外線照射によって死滅したかのようにみえる多くの微
生物は、放流後に太陽光などにさらされると、光回復で
生き返ることから、光回復を加味して十分な処理を行う
ことが要求されつつあり、従来の技術では紫外線照射時
間の延長など処理効率の大幅な低下が懸念されている。
Therefore, when disinfecting with ultraviolet light,
Many microorganisms that seem to have been killed by ultraviolet irradiation will be revived by light recovery when exposed to sunlight after being released, so it has been required to perform sufficient treatment in consideration of light recovery, In the related art, there is a concern that the processing efficiency may be significantly reduced, such as the extension of the ultraviolet irradiation time.

【0006】ところで、紫外線とは異なる機構で、塩素
のような薬剤を添加することなく、消毒する技術とし
て、近年、光触媒が注目され始めている。
In recent years, attention has been paid to a photocatalyst as a technique for disinfecting a substance different from ultraviolet rays without adding a chemical such as chlorine.

【0007】二酸化チタンなどの半導体触媒に代表され
る光触媒は、その表面に光を受けると、触媒の表面に接
触している水の分解反応が起こり、強い酸化力を有する
ヒドロキシラジカル(・OH)やスーパーオキシド(O
2 - )などの遊離基が生成し、生体を構成する化合物を
酸化分解して、死滅させるといわれている(例えば、松
永是(1984)『半導体を用いた新しい殺菌法』化学
と生物,第22巻,第11号,754頁など)。
When a photocatalyst represented by a semiconductor catalyst such as titanium dioxide receives light on its surface, a decomposition reaction of water in contact with the surface of the catalyst occurs, and a hydroxyl radical (.OH) having a strong oxidizing power is generated. And superoxide (O
2 -) radical is generated, such as by oxidative decomposition of the compound constituting the living body, it is said to kill (e.g., Shi Matsunaga (1984) "New sterilization method using a semiconductor" chemical and biological, first 22, No. 11, p. 754).

【0008】排水処理に光触媒を適用した例として、粉
体(例えば、特開平2−298392号公報;特開平5
−23680号公報;特開平5−23681号公報;特
開平6−134476号公報など)としての利用が開示
されているが、添加した光触媒による光透過性の不良に
よる処理効率の低下や処理水からの光触媒の分離・回収
が非常に困難であるなどの問題がある。光触媒の分離・
回収の問題を回避するために、浮遊性支持体(例えば、
特開昭63−42792号公報;特開平6−50234
0号公報など)、磁性支持体(例えば、特開平4−37
1233号公報など)、あるいは、成形体(例えば、特
開平6−134476号公報など)、粒状担持体(例え
ば、特開平8−47687号公報など)、多孔質担持体
(例えば、特開平8−99041号公報;特開平8−2
99789号公報など)、繊維状担持体(例えば、特開
平4−141294号公報;特開平6−320010号
公報など)などの充填材として利用することが開示され
ているが、充填材による光透過性の不良のために満足で
きる処理効率は得られていない。さらに、充填材による
光透過性の不良の問題を克服するために、光透過性支持
体に被膜する方法(例えば、特開平8−257410号
公報;特開平5−154473号公報など)が開示され
ているが、実用化が困難で未だに実施されていない。
As an example of applying a photocatalyst to wastewater treatment, powder (for example, Japanese Patent Application Laid-Open No. 2-298392;
U.S. Pat. No. 23,680; Japanese Patent Application Laid-Open No. Hei 5-23681; Japanese Patent Application Laid-Open No. Hei 6-134476) are disclosed. There is a problem that separation and recovery of the photocatalyst is very difficult. Separation of photocatalyst
To avoid recovery problems, use floating supports (eg,
JP-A-63-42792; JP-A-6-50234
0, etc.), a magnetic support (for example, JP-A-4-37
No. 1233), a molded article (for example, JP-A-6-134476), a granular carrier (for example, JP-A-8-47687), a porous carrier (for example, JP-A-8-47687). Japanese Patent Application Laid-Open No. 99041;
No. 99789) and use as fillers for fibrous carriers (for example, JP-A-4-141294; JP-A-6-320010) are disclosed. Satisfactory processing efficiency has not been obtained due to poor properties. Furthermore, in order to overcome the problem of poor light transmission due to the filler, a method of coating a light-transmitting support (for example, JP-A-8-257410; JP-A-5-154473) is disclosed. However, practical application is difficult and it has not been implemented yet.

【0009】処理水中の微生物の殺滅や有機物質の酸化
分解を、光触媒の作用のみに頼るのは、処理効率の点か
らみると決して満足できる結果が得られない。細菌の殺
滅には、生物種にもよるが、光触媒の作用のみでは概ね
数分間乃至数時間の処理時間を要する(例えば、S.S.Bl
ock etal.(1995)"Chemically enhanced sunlight forki
lling bacteria",Solar Engineering,Vol.1,p431;M.Bek
boelet(1997)"Photocatalytic bactericidal activity
of TiO2 in aqueous suspensions of E.coli",Water.Sc
i.Tech.,Vol.35,p95 ;渡辺俊也(1995)『光触媒
反応による微生物の殺菌とその応用』化学工業,12月
号,50頁;細見正明他(1997)『紫外線及び光触
媒による消毒効果の評価』化学工学会第30回秋季大会
研究講演要旨集,G302など)。また、有機物質の酸
化分解についても、化合物の種類にもよるが、光触媒の
作用のみでは概ね数分間乃至数時間の処理時間を要する
(例えば、吉田克彦他(1994)『ゾル−ゲル法によ
る二酸化チタン薄膜を用いた水中のトリクロロエチレン
の光触媒分解』水環境学会誌,第17巻,第5号,32
4頁;磯明夫他(1995)『地球に優しい環境対策研
究(難分解性物質の処理)』福島県ハイテクプラザ試験
研究報告,1994年,96頁;P.H.Chen etal."TiO2
photocatalysis to remove the trace organic in drin
king water"Water Supply,Vol.13,p29 など)。
Relying solely on the action of the photocatalyst for killing microorganisms and oxidative decomposition of organic substances in the treated water cannot provide satisfactory results in terms of treatment efficiency. Depending on the species, the elimination of bacteria requires a treatment time of several minutes to several hours using only the action of the photocatalyst (for example, SSBl).
ock etal. (1995) "Chemically enhanced sunlight forki
lling bacteria ", Solar Engineering, Vol.1, p431; M.Bek
boelet (1997) "Photocatalytic bactericidal activity
of TiO 2 in aqueous suspensions of E.coli ", Water.Sc
i.Tech., Vol.35, p95; Toshiya Watanabe (1995) "Sterilization of microorganisms by photocatalytic reaction and its application", Chemical Industry, December, p. 50; Masaaki Hosomi et al. (1997) "Disinfection effect by ultraviolet light and photocatalyst" Evaluation of the 30th Fall Meeting of the Society of Chemical Engineers, G302). Regarding the oxidative decomposition of organic substances, depending on the type of the compound, a treatment time of about several minutes to several hours is generally required only by the action of the photocatalyst (for example, Katsuhiko Yoshida et al. (1994) "Dioxide by sol-gel method"). Photocatalytic Decomposition of Trichlorethylene in Water Using Titanium Thin Film ”Journal of Japan Society on Water Environment, Vol. 17, No. 5, 32
(4); Akio Iso, et al. (1995) "Eco-friendly Environmental Research (Treatment of Persistent Substances)", Fukushima Prefectural High-Tech Plaza Test Report, 1994, p. 96; PHChen et al. "TiO 2
photocatalysis to remove the trace organic in drin
king water "Water Supply, Vol.13, p29).

【0010】[0010]

【発明が解決しようとする課題】本発明は、有害物質の
生成など前述した問題を抱えた塩素消毒に代わる消毒方
法として、従来の紫外線消毒および光触媒消毒の欠点を
補った、すなわち、微生物の光回復を抑止し、効率的な
処理を可能にする光触媒利用紫外線消毒法およびその装
置を提供するものである。
SUMMARY OF THE INVENTION The present invention compensates for the disadvantages of conventional UV disinfection and photocatalytic disinfection as an alternative to chlorine disinfection, which has the above-mentioned problems such as the generation of harmful substances, that is, the light of microorganisms. An object of the present invention is to provide an ultraviolet disinfection method utilizing a photocatalyst and a device therefor, which suppresses recovery and enables efficient treatment.

【0011】[0011]

【課題を解決するための手段】本発明は、以下の〜
の通りである。
The present invention provides the following:
It is as follows.

【0012】 被処理水に紫外線発生ランプで紫外線
を照射する水処理方法において、被処理水に紫外線を照
射すると同時に、光触媒と被処理水とが接触するように
配した光触媒担持体に前記紫外線を照射することによっ
て微生物の光回復現象を抑制することを特徴とする水処
理方法。
[0012] In the water treatment method of irradiating the water to be treated with an ultraviolet ray by an ultraviolet ray generating lamp, the water to be treated is irradiated with the ultraviolet light, and at the same time, the ultraviolet light is applied to a photocatalyst carrier arranged so that the photocatalyst and the water to be treated come into contact with each other. A water treatment method characterized by suppressing light recovery of microorganisms by irradiation.

【0013】 前記紫外線発生ランプとして中圧もし
くは高圧水銀ランプを用いる前記の水処理方法。
[0013] The above water treatment method, wherein a medium pressure or high pressure mercury lamp is used as the ultraviolet ray generating lamp.

【0014】 被処理水に紫外線を照射する水処理装
置において、光触媒と被処理水とが接触するように配し
た光触媒担持体と、該担持体に紫外線を照射する光源と
を有し、光触媒と被処理水を同時に、および/または光
触媒を介して被処理水に、および/または被処理水を介
して光触媒に紫外線照射することを特徴とする水処理装
置。
A water treatment apparatus for irradiating treated water with ultraviolet light, comprising: a photocatalyst carrier arranged so that the photocatalyst and the treated water come into contact with each other; and a light source for irradiating the carrier with ultraviolet light. A water treatment apparatus, comprising irradiating treated water simultaneously and / or to the treated water via a photocatalyst and / or to the photocatalyst via the treated water.

【0015】 前記光触媒担持体として、筒状、板状
の支持体の片面または両面を光触媒で被膜した前記の
水処理装置。
The above-mentioned water treatment apparatus, wherein one or both surfaces of a cylindrical or plate-like support is coated with a photocatalyst as the photocatalyst support.

【0016】 前記光触媒として二酸化チタンを主成
分とする光触媒を用いることを特徴とする前記または
の水処理装置。
The above-mentioned water treatment apparatus, wherein a photocatalyst containing titanium dioxide as a main component is used as the photocatalyst.

【0017】 微生物の殺菌、消毒を主目的とする前
記〜のいずれかの水処理装置。
[0017] The water treatment apparatus according to any one of the above-mentioned items, mainly intended for sterilization and disinfection of microorganisms.

【0018】 前記紫外線を照射する光源として中圧
もしくは高圧水銀ランプを用いる前記〜のいずれか
の水処理装置。
The water treatment apparatus according to any one of the above items (1) to (4), wherein a medium pressure or high pressure mercury lamp is used as a light source for irradiating the ultraviolet rays.

【0019】紫外線とは異なる作用メカニズムで消毒す
る方法のうち、紫外線消毒との併用が可能な方法に関し
て研究を重ねた結果、光触媒存在下で被処理水に紫外線
を照射した場合、紫外線による直接的な殺滅と光触媒作
用により生じた酸化力による間接的な殺滅との相乗効果
によって、極めて効果的に消毒が可能であることを見出
し、本発明を完成するに至った。本発明により、紫外線
単独の消毒で問題のあった光回復を抑止し、かつ、光触
媒単独の消毒で問題であった消毒効率の低さを克服し、
極めて効果的かつ効率的な水の消毒ができる。
As a result of repeated studies on methods that can be used in combination with ultraviolet disinfection among methods of disinfection using an action mechanism different from that of ultraviolet light, when the water to be treated is irradiated with ultraviolet light in the presence of a photocatalyst, the direct The present inventors have found that the disinfection can be performed extremely effectively by the synergistic effect of the terrible killing and the indirect killing by the oxidizing power generated by the photocatalysis, and have completed the present invention. According to the present invention, light recovery that was problematic in disinfection of ultraviolet light alone was suppressed, and the low disinfection efficiency that was a problem in disinfection of photocatalyst alone was overcome,
Extremely effective and efficient water disinfection is possible.

【0020】[0020]

【発明の実施の形態】紫外線照射反応槽内に被膜する光
触媒としては、光触媒活性を有する半導体材料であれば
特に限定はないが、例えば、Ag、Al、As、Ba、
Bi、Cd、Co、Cr、Cu、Fe、Ga、In、M
o、Nb、Ni、Pb、Sb、Se、Si、Sn、S
r、Te、Ti、W、Zn、Zrのいずれか、またはこ
れら金属の酸化物、硫化物、リン化物等が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The photocatalyst coated in an ultraviolet irradiation reaction tank is not particularly limited as long as it is a semiconductor material having photocatalytic activity. For example, Ag, Al, As, Ba,
Bi, Cd, Co, Cr, Cu, Fe, Ga, In, M
o, Nb, Ni, Pb, Sb, Se, Si, Sn, S
Any of r, Te, Ti, W, Zn, and Zr, or oxides, sulfides, and phosphides of these metals.

【0021】さらに、前記金属ないし化合物は、単独で
も使用できるが、2種類以上の混合物であってもよく、
光触媒としての活性の強さや光源として用いるランプの
分光分布などの使用条件、あるいは、被膜すべき支持体
への固定化のしやすさや固定化した被膜の安定性、耐久
性等に鑑み、好適なものを採用することができる。通
常、前記光触媒のうち、酸化チタンが、経済性、加工
性、もしくは製造法や物理化学的性状に関する知見が集
積されている点からも好適である。
Further, the above-mentioned metal or compound can be used alone, or may be a mixture of two or more kinds.
Considering the use conditions such as the intensity of activity as a photocatalyst and the spectral distribution of a lamp used as a light source, or the ease of immobilization to a support to be coated, the stability of the immobilized film, the durability, etc. Things can be adopted. In general, among the photocatalysts, titanium oxide is preferable in that knowledge on economics, processability, a production method, and physicochemical properties is accumulated.

【0022】前記光触媒の触媒活性を向上させるため
に、光触媒被膜の層内および/または被膜の外側に、A
g、Au、Cu、Fe、Mb、Ni、Pd、Pr、R
d、Rh、Ru、Sn、V、Zn等の金属、またはそれ
ら金属の酸化物を担持させても良い。
In order to improve the catalytic activity of the photocatalyst, A
g, Au, Cu, Fe, Mb, Ni, Pd, Pr, R
Metals such as d, Rh, Ru, Sn, V, and Zn, or oxides of these metals may be supported.

【0023】一般に、光触媒としての活性の強さには、
触媒物質の結晶構造や比表面積が影響するといわれてい
る。例えば、酸化チタンは正方晶系の2種類の結晶構
造、すなわちアナターゼ相とルチル相を採りうるが、こ
れらの結晶構造は被膜製造時の焼成温度に依存してお
り、アナターゼ相からルチル相への相転移は600〜7
00℃の温度領域で開始するといわれている(例えば、
加藤一実(1995)『化学修飾アルコキシド法による
酸化チタンコーティング膜の構造制御と光化学的特性の
向上』セラミックス,第30巻,第11号,1021
頁)。一般にルチル相よりもアナターゼ相の方が光触媒
としての活性が高く(例えば、吉田克彦他(1994)
『ゾル−ゲル法による二酸化チタン薄膜を用いた水中の
トリクロロエチレンの光触媒分解』水環境学会誌,第1
7巻,第5号,324頁など)、アナターゼ型の酸化チ
タンを使うのが好ましいが、その使用に際しては必ずし
も100%アナターゼである必要はなく、アナターゼ型
の結晶型が検出できる程度に存在していればよい。
Generally, the activity of the photocatalyst is as follows:
It is said that the crystal structure and the specific surface area of the catalyst substance influence. For example, titanium oxide can have two kinds of tetragonal crystal structures, namely, an anatase phase and a rutile phase, and these crystal structures are dependent on the calcination temperature at the time of film production. Phase transition is 600-7
It is said to start in the temperature range of 00 ° C (for example,
Kato Kazumi (1995) "Structural Control of Titanium Oxide Coating Film and Improvement of Photochemical Properties by Chemically Modified Alkoxide Method", Ceramics, Vol. 30, No. 11, 1021
page). Generally, the anatase phase has a higher activity as a photocatalyst than the rutile phase (for example, Katsuhiko Yoshida et al. (1994)
"Photocatalytic degradation of trichlorethylene in water using titanium dioxide thin film by sol-gel method" Journal of Japan Society on Water Environment, 1
7, No. 5, p. 324), it is preferable to use anatase-type titanium oxide, but it is not always necessary to use 100% anatase, and the anatase-type titanium oxide exists to the extent that anatase-type crystal form can be detected. It should just be.

【0024】光触媒粒子を支持体に固定化する方法とし
ては、公知の方法を採用できる。例えば、光触媒物質な
いしその前駆物質を水、アルコール、トルエンなどの溶
媒に懸濁したゾルを支持体の表面に塗り、固定化する方
法、ないしは、被膜の比表面積を増大させるために、前
記ゾルへポリエチレングリコールなどの高分子有機物質
を添加したものを支持体の表面に塗り、乾燥後に焼成・
固定化する方法等が挙げられる。前記ゾルを支持体に塗
る方法としては、公知の塗布法、噴霧法、浸漬法を採用
できる。前記ゾルを塗った支持体は、被膜の固定化のた
めに、乾燥後に150〜1000℃、好適には300〜
700℃の加熱炉内で30分〜2時間焼成する。とりわ
け、光触媒として酸化チタンを用いた場合、ルチル相へ
の相転移温度以下で焼成することが望ましく、さらに好
適には、室温から焼成温度までは徐々に加熱する。
As a method for immobilizing the photocatalyst particles on the support, a known method can be employed. For example, a method in which a sol in which a photocatalytic substance or a precursor thereof is suspended in a solvent such as water, alcohol, or toluene is applied to the surface of a support and fixed, or in order to increase the specific surface area of the coating, A material to which a high molecular organic substance such as polyethylene glycol is added is coated on the surface of the support, dried, and fired.
An immobilization method and the like can be mentioned. As a method of applying the sol to the support, a known coating method, spraying method, and dipping method can be adopted. The support coated with the sol is dried at 150 to 1000 ° C., preferably 300 to
Firing in a heating furnace at 700 ° C. for 30 minutes to 2 hours. In particular, when titanium oxide is used as the photocatalyst, it is preferable to perform calcination at a temperature lower than the phase transition temperature to the rutile phase, and more preferably, to gradually heat from room temperature to the calcination temperature.

【0025】光触媒で被膜する支持体の材質は、用いよ
うとする光触媒物質の被膜のし易さに応じて選定すれば
よいが、消毒の効率を左右するため、光とりわけ紫外光
を効率的に透過する光透過性支持体、好適には石英ガラ
スを用いる。
The material of the support to be coated with the photocatalyst may be selected according to the ease of coating the photocatalyst substance to be used. However, in order to control the disinfection efficiency, light, especially ultraviolet light, is efficiently used. A transmissive light-transmitting support, preferably quartz glass, is used.

【0026】光触媒で被膜する支持体の形状は、実装す
べき紫外線消毒装置の反応槽内に無理なく装着でき、か
つ、流水の圧力損失を可能な限り抑えられる形状であれ
ば特に限定はないが、例えば、円筒状、角筒状、板状、
格子状等が挙げられる。さらに、被処理水と光触媒との
接触を高めるために、流水中に乱流を起こさせる目的で
支持体の形状に凹凸を付けてもよい。
The shape of the support coated with the photocatalyst is not particularly limited as long as it can be easily mounted in the reaction tank of the ultraviolet disinfection apparatus to be mounted and can suppress the pressure loss of flowing water as much as possible. For example, cylindrical, square tubular, plate,
Lattice shape and the like. Further, in order to increase the contact between the water to be treated and the photocatalyst, the shape of the support may be provided with irregularities for the purpose of causing turbulence in flowing water.

【0027】前記支持体は、支持体表面の片側もしくは
両側を光触媒で被膜することができるが、消毒効率の点
あるいは経済性の点から被処理水に接触する面の全面も
しくは一部分を光触媒で被膜した支持体が好適である。
The support can be coated with a photocatalyst on one or both sides of the support surface. However, from the viewpoint of disinfection efficiency or economy, the entire surface or a part of the surface which comes into contact with the water to be treated is coated with the photocatalyst. Preferred supports are suitable.

【0028】光触媒を実装するための紫外線消毒装置と
しては、例えば、図1(a)、(b)に示したような水
路型の内部照射型紫外線消毒装置が挙げられる。これは
被処理水の流路内に紫外線発生ランプ2を浸漬し、流水
内部から紫外線を照射する装置であり、紫外線発生ラン
プ2は防水のため保護管3内に内挿されている。
As an ultraviolet disinfection device for mounting a photocatalyst, for example, there is a water channel type internal irradiation type ultraviolet disinfection device as shown in FIGS. 1 (a) and 1 (b). This is a device for immersing an ultraviolet ray generating lamp 2 in the flow path of the water to be treated and irradiating ultraviolet rays from inside the flowing water. The ultraviolet ray generating lamp 2 is inserted in a protective tube 3 for waterproofing.

【0029】この装置内に光触媒で被膜した支持体を実
装する形態としては、例えば断面8を示す図1(c)〜
(h)の様な形態が挙げられる。すなわち、図1(c)
の如く紫外線発生ランプ2の保護管3の処理水に接する
面を予め光触媒9で被膜する形態、図1(d)、(e)
の如く保護管3とは別に支持体の片面または両面を光触
媒で被膜した円筒状、角筒状ないしは井型に組んだ格子
状の担持体10、11として紫外線発生ランプ2を取り
囲むように配する形態、図1(f)、(g)の如く支持
体の片面または両面を光触媒で被膜した板状の担持体1
1として紫外線発生ランプ2間に垂直ないしは水平に配
する形態、図1(h)の如く紫外線照射反応槽7の内壁
面および/あるいは底面に予め担持する形態、紫外線照
射反応槽7の内壁面および/あるいは底面に沿って板状
の担持体12として配する形態、あるいは、これらのう
ち2つ以上を併設する形態等が挙げられる。前記実装形
態例のうち、紫外線発生ランプ2の保護管3を予め光触
媒で被膜する形態が、実存の紫外線消毒装置における水
理特性等の性能を落とすことなく適用が可能であり、さ
らには保護管3に光触媒被膜することでその表面への汚
れの沈着を低減させることが期待できるために、実存の
装置において運転上必須である保護管3のクリーニング
が不要となる、もしくはその頻度を減らせる等の理由か
ら好適である。または、光触媒で被膜した板状の担持体
として紫外線発生ランプ2間に垂直に配する形態が、既
設の紫外線消毒装置への装着や維持管理の容易さから好
適である。
As a mode for mounting a support coated with a photocatalyst in this apparatus, for example, FIG.
(H). That is, FIG.
As shown in FIGS. 1D and 1E, the surface of the protective tube 3 of the ultraviolet light generating lamp 2 which is in contact with the treated water is coated with the photocatalyst 9 in advance.
In addition to the protective tube 3 as described above, one or both surfaces of the support are coated with a photocatalyst, and are arranged so as to surround the ultraviolet light generating lamp 2 as lattice-shaped supports 10 and 11 assembled in a cylindrical, square cylindrical or well shape. As shown in FIG. 1 (f), (g), a plate-like support 1 in which one or both surfaces of the support is coated with a photocatalyst.
As shown in FIG. 1, a configuration in which the device is disposed vertically or horizontally between the ultraviolet ray generating lamps 2, a configuration in which it is previously supported on the inner wall surface and / or the bottom surface of the ultraviolet radiation reaction tank 7 as shown in FIG. And / or a form in which two or more of these are arranged along the bottom surface as a plate-like carrier 12 or the like. Among the mounting examples, the form in which the protective tube 3 of the ultraviolet ray generating lamp 2 is coated in advance with a photocatalyst can be applied without deteriorating the performance such as hydraulic characteristics of the existing ultraviolet disinfection apparatus. Since the deposition of dirt on the surface can be expected to be reduced by coating the photocatalyst 3 with the photocatalyst 3, cleaning of the protection tube 3 which is indispensable for operation in an existing apparatus becomes unnecessary or its frequency can be reduced. It is preferable for the reason. Alternatively, a plate-shaped carrier coated with a photocatalyst and disposed vertically between the ultraviolet light generating lamps 2 is preferable from the viewpoint of ease of mounting on an existing ultraviolet light disinfection device and easy maintenance.

【0030】また、光触媒を実装するための紫外線消毒
装置としては、例えば、図2に示したような管路型の外
部照射型紫外線消毒装置も挙げられる。被処理水は、流
入口14より装置内に流入し、石英ガラス、フッ素樹脂
などの紫外光透過性材料でできた通水管13において、
管外部に配した紫外線発生ランプ2から紫外線照射され
た後に流出口15より排出される。この装置への光触媒
の実装形態としては、例えば、通水管13の内壁に光触
媒被膜する形態、通水管13内部に光触媒担持体を内挿
する形態が挙げられる。
Further, as an ultraviolet disinfection device for mounting a photocatalyst, for example, a pipeline type external irradiation type ultraviolet disinfection device as shown in FIG. 2 can be mentioned. The water to be treated flows into the apparatus through the inflow port 14, and flows through the water pipe 13 made of an ultraviolet light transmitting material such as quartz glass or fluororesin.
After being irradiated with ultraviolet rays from an ultraviolet ray generating lamp 2 disposed outside the tube, the ultraviolet rays are discharged from an outlet 15. Examples of the form of mounting the photocatalyst on this device include a form in which a photocatalytic coating is applied to the inner wall of the water pipe 13 and a form in which a photocatalyst carrier is inserted inside the water pipe 13.

【0031】本発明の装置に装着する光源としては、紫
外線を発生する能力を備えたものであれば特に制限はな
く、例えば、低・中・高圧水銀ランプ、殺菌ランプ、ブ
ラックランプ、キセノンランプ等が挙げられる。ここで
例示した水銀ランプとは、紫外線殺菌に好適に用いられ
る紫外線発生ランプであり、ランプ管内に充填した水銀
蒸気圧の違いから、一般的に、低圧、中圧、高圧と分類
されている。このうち低圧水銀ランプは、微生物を直接
殺菌しうる波長254nm付近の紫外線を非常に効率よ
く発生する。これに対して、中圧水銀ランプおよび高圧
水銀ランプは、波長254nm付近の紫外線とともに光
触媒を活性化しうる波長400nm以下の紫外線をも発
生する性質があることから、中圧水銀ランプもしくは高
圧水銀ランプを用いることが更に好ましい。
The light source to be mounted on the apparatus of the present invention is not particularly limited as long as it has an ability to generate ultraviolet rays. For example, a low / medium / high pressure mercury lamp, a germicidal lamp, a black lamp, a xenon lamp, etc. Is mentioned. The mercury lamp exemplified here is an ultraviolet ray generating lamp suitably used for ultraviolet sterilization, and is generally classified into a low pressure, a medium pressure, and a high pressure based on a difference in a mercury vapor pressure filled in a lamp tube. Among them, the low-pressure mercury lamp generates very efficiently ultraviolet rays having a wavelength of about 254 nm, which can directly kill microorganisms. On the other hand, a medium-pressure mercury lamp and a high-pressure mercury lamp have the property of generating ultraviolet light having a wavelength of 400 nm or less that can activate a photocatalyst together with ultraviolet light having a wavelength of about 254 nm. It is more preferred to use.

【0032】本発明の装置を効果的に使用するための運
転上の制御因子としては、被処理水中の懸濁物質濃度
(SS)、紫外線透過率、溶存酸素濃度(DO)、酸化
還元電位(ORP)、流入水量等が挙げられる。多量の
SSは、被処理水中の紫外線透過性を低めるために処理
効率の大幅な低下が懸念されるため、可能な限り流入水
中から除去するか、および/または処理水の紫外線透過
率を逐次モニタリングして、所定の紫外線量を確保でき
るように、流入水量を制御することが望ましい。DOを
高めると紫外線によるオゾンの発生や光触媒を介したO
2 - の発生促進などにより、消毒効果を更に高めること
が期待できるため、装置への流入水を予め空気曝気した
り、酸素富化したりすることが望ましい。被処理水の流
入時の水質は刻々変化するため、消毒の効果を経時的に
観測するには、処理水中のORPをモニタリングして、
処理水量の制御等へフィードバックすればよい。
Operational control factors for effectively using the apparatus of the present invention include suspended solids concentration (SS), ultraviolet transmittance, dissolved oxygen concentration (DO), redox potential ( ORP), the amount of inflow water, and the like. Since a large amount of SS may cause a significant decrease in treatment efficiency due to a decrease in the UV transmittance of the water to be treated, remove it from the influent as much as possible and / or monitor the UV transmittance of the treated water as much as possible. It is desirable to control the amount of inflow water so that a predetermined amount of ultraviolet light can be secured. When DO is increased, ozone is generated by ultraviolet rays and O
2 - due to generation promotion, because it can be expected that further enhance the disinfection effect, or in advance air aerated flowing water to the apparatus, it is desirable or oxygen-enriched. Since the water quality at the time of inflow of the treated water changes every moment, to observe the disinfection effect over time, monitor the ORP in the treated water,
What is necessary is just to feed back to the control of the amount of treated water and the like.

【0033】[0033]

【実施例】本発明の実施例および比較例について説明す
る。
EXAMPLES Examples and comparative examples of the present invention will be described.

【0034】下記実施例および比較例では、図3に示し
た小型の紫外線消毒装置を用いて、光触媒による紫外線
消毒効率の促進効果を確認した。この装置は、石英ガラ
ス製の保護管3で防水した紫外線発生ランプ2を内挿し
た円筒形の反応槽であり、反応槽の一端に被処理水の流
入口14、他端に被処理水の流出口15を備え、被処理
水は反応槽内を一方向に流れるよう工夫されている。さ
らに、光触媒の効果を調べるために、光触媒を内壁に担
持した円筒内挿管16を反応槽内壁に接するように挿入
した。
In the following Examples and Comparative Examples, the effect of accelerating the UV disinfection efficiency by the photocatalyst was confirmed using the small UV disinfection apparatus shown in FIG. This apparatus is a cylindrical reaction vessel in which an ultraviolet ray generating lamp 2 waterproofed by a protective tube 3 made of quartz glass is inserted. One end of the reaction vessel has an inlet 14 for the water to be treated and the other end has a water inlet. An outlet 15 is provided so that the water to be treated flows in one direction in the reaction tank. Furthermore, in order to investigate the effect of the photocatalyst, a cylindrical inner tube 16 carrying the photocatalyst on the inner wall was inserted so as to be in contact with the inner wall of the reaction tank.

【0035】[0035]

【実施例1】チタンアルコキシドから調製したゾルをガ
ラス製の円筒内挿管16の内壁に塗布し、室温で乾燥
後、加熱・焼成して、チタニア光触媒を内壁に被膜した
円筒内挿管16を作成した。
Example 1 A sol prepared from titanium alkoxide was applied to the inner wall of a glass cylindrical intubation 16, dried at room temperature, heated and fired to form a cylindrical intubation 16 coated with a titania photocatalyst on the inner wall. .

【0036】LB培地(1% トリプトン、1% Na
Cl、0.5% 酵母エキス)を用いて37℃で一晩振
とう培養した大腸菌JM109株を滅菌生理食塩水で1
00倍に希釈して、1mlあたり概ね107 個の大腸菌
を含んだ供試菌液を調製した。
LB medium (1% tryptone, 1% Na
Cl, 0.5% yeast extract), and cultured with shaking overnight at 37 ° C using sterile saline.
After dilution by a factor of 00, a test bacterial solution containing approximately 10 7 E. coli per ml was prepared.

【0037】図3(a)に示した装置の流入口14より
水流ポンプでこの供試菌液を反応槽内へ流入させ、装置
の流出口15で処理水を回収した。紫外線発生ランプ2
としては、400W高圧水銀ランプを用いた。反応槽内
に内挿した円筒内挿管16と紫外線発生ランプ2との距
離に相当する位置での、石英ガラスの保護管3を透過し
た波長254nmの紫外線の照射強度を、米Spectronic
s Corporation 社製紫外線強度計モデルDS−254E
を用いて測定した。
This test bacterium solution was flowed into the reaction tank from the inflow port 14 of the apparatus shown in FIG. 3A by a water flow pump, and treated water was recovered at the outflow port 15 of the apparatus. UV generating lamp 2
, A 400 W high-pressure mercury lamp was used. The irradiation intensity of the ultraviolet light having a wavelength of 254 nm transmitted through the quartz glass protective tube 3 at the position corresponding to the distance between the cylindrical intubation tube 16 inserted in the reaction tank and the ultraviolet light generating lamp 2 was measured by the US Spectronic.
s Corporation UV intensity meter model DS-254E
It measured using.

【0038】反応槽内への流入速度を種々変えることに
よって、供試菌液への紫外線照射線量を変化させた紫外
線照射後の試料を各々2本のガラス製試験管へ移して、
一方は暗所に静置し、他方は15W白色蛍光灯で可視光
を60分間照射して、光回復させた。紫外線照射後に、
暗所静置し、または、可視光照射した試料中の生菌数
を、『上水試験法(1993年版)』または『下水試験
法(1984年版)』に記載された最確数法(MPN
法)に準拠して定量した。結果を図4に示した。同図で
は横軸に紫外線照射線量を、縦軸に処理後の生残率をプ
ロットした。紫外線照射線量は、前記波長254nmの
紫外線照射強度と反応槽内における供試菌液の滞留時間
との積を表す。生残率は、紫外線照射した試料または紫
外線照射後に可視光照射した試料中の生菌数を、処理前
の供試菌液中の生菌数で除した値を表す。
By changing the inflow rate into the reaction tank in various ways, the samples irradiated with ultraviolet rays with different ultraviolet irradiation doses on the test bacterial solution were transferred to two glass test tubes, respectively.
One was allowed to stand in a dark place, and the other was irradiated with visible light using a 15 W white fluorescent lamp for 60 minutes to recover the light. After UV irradiation,
The number of viable bacteria in the sample that had been allowed to stand in the dark or irradiated with visible light was determined by the most probable number method (MPN) described in the “Water Water Test Method (1993 version)” or “Sewage Test Method (1984 version)”.
Method). The results are shown in FIG. In the figure, the horizontal axis plots the UV irradiation dose, and the vertical axis plots the survival rate after the treatment. The UV irradiation dose represents the product of the UV irradiation intensity at the wavelength of 254 nm and the residence time of the test bacterial solution in the reaction tank. The survival rate is a value obtained by dividing the number of viable bacteria in a sample irradiated with ultraviolet light or a sample irradiated with visible light after irradiation with ultraviolet light by the number of viable bacteria in the test bacterial solution before the treatment.

【0039】図4より明らかなように、1.5mW・s
/cm2 以上の紫外線照射によって、紫外線照射直後の
生残率(図中○印)は、検出限界以下に減衰し、可視光
照射60分後の生残率(図中■印)は紫外線照射直後の
生残率より若干大きな値であったが、光回復は僅かであ
り、3mW・s/cm2 以上の紫外線を照射した場合に
は、光回復が起こらなかった。つまり、本発明において
高圧水銀ランプを光源として用いた場合、光回復を抑制
した完全な消毒が可能であることが示された。
As apparent from FIG. 4, 1.5 mW · s
/ Cm 2 or more, the survival rate immediately after ultraviolet irradiation (marked with ○ in the figure) attenuated below the detection limit, and the survival rate 60 minutes after visible light irradiation (marked with Δ in the figure) was irradiated with ultraviolet light. Although the value was slightly larger than the survival rate immediately after, the light recovery was slight, and the light recovery did not occur when irradiated with ultraviolet rays of 3 mW · s / cm 2 or more. That is, it was shown that when a high-pressure mercury lamp was used as a light source in the present invention, complete disinfection with light recovery suppressed was possible.

【0040】[0040]

【比較例1】実施例1と同様の実験を、二酸化チタン光
触媒被膜のない円筒内挿管16を用いて実施した。結果
を図5に示した。
Comparative Example 1 The same experiment as in Example 1 was performed using a cylindrical intubation 16 having no titanium dioxide photocatalytic coating. The results are shown in FIG.

【0041】図5より明らかなように、1.5mW・s
/cm2 以上の紫外線照射によって、紫外線照射直後の
生残率(図中○印)は、実施例1と同様に検出限界以下
に減衰したが、可視光照射60分後には光回復が極めて
顕著に起こり、15mW・s/cm2 以上の紫外線を照
射しても、光回復が認められた。つまり、光触媒の非存
在下で紫外線照射を行った場合、調べた範囲内では光回
復を完全に抑制することは不可能であったことから、本
発明の水処理方法は極めて有効であることが明らかであ
る。
As apparent from FIG. 5, 1.5 mW · s
Although the survival rate immediately after the irradiation with ultraviolet rays (marked with a circle in the figure) attenuated below the detection limit as in Example 1 due to the irradiation of ultraviolet rays of / cm 2 or more, the light recovery was extremely significant 60 minutes after irradiation with visible light. And light recovery was observed even when irradiated with ultraviolet light of 15 mW · s / cm 2 or more. That is, when ultraviolet irradiation was performed in the absence of a photocatalyst, it was impossible to completely suppress light recovery within the range examined, so that the water treatment method of the present invention is extremely effective. it is obvious.

【0042】[0042]

【実施例2】チタンアルコキシドから調製したゾルをガ
ラス製の円筒内挿管16の内壁に塗布し、室温で乾燥
後、加熱・焼成して、チタニア光触媒を内壁に被膜した
円筒内挿管16を作成した。
Example 2 A sol prepared from a titanium alkoxide was applied to the inner wall of a cylindrical inner tube 16 made of glass, dried at room temperature, heated and fired to form a cylindrical inner tube 16 coated with a titania photocatalyst on the inner wall. .

【0043】LB培地(1% トリプトン、1% Na
Cl、0.5% 酵母エキス)を用いて37℃で一晩振
とう培養した大腸菌JM109株を滅菌生理食塩水で1
00倍に希釈して、1mlあたり概ね107 個の大腸菌
を含んだ供試菌液を調製した。
LB medium (1% tryptone, 1% Na
Cl, 0.5% yeast extract), and cultured with shaking overnight at 37 ° C using sterile saline.
After dilution by a factor of 00, a test bacterial solution containing approximately 10 7 E. coli per ml was prepared.

【0044】図3(a)に示した装置の流入口14より
水流ポンプでこの供試菌液を反応槽内へ流入させ、装置
の流出口15で処理水を回収した。紫外線発生ランプ2
としては、15W低圧水銀ランプを用いた。反応槽内に
内挿した円筒内挿管16と紫外線発生ランプ2との距離
に相当する位置での、石英ガラスの保護管3を透過した
波長254nmの紫外線の照射強度を、米Spectronics
Corporation 社製紫外線強度計モデルDS−254Eを
用いて測定した。
This test bacterium solution was introduced into the reaction tank from the inflow port 14 of the apparatus shown in FIG. 3A by a water flow pump, and treated water was recovered at the outflow port 15 of the apparatus. UV generating lamp 2
, A 15 W low-pressure mercury lamp was used. The irradiation intensity of the ultraviolet light having a wavelength of 254 nm transmitted through the protective tube 3 made of quartz glass at a position corresponding to the distance between the cylindrical insertion tube 16 inserted in the reaction tank and the ultraviolet light generating lamp 2 was measured by Spectronics of the United States.
It measured using the UV intensity meter model DS-254E made from Corporation.

【0045】反応槽内への流入速度を種々変えることに
よって、供試菌液への紫外線照射線量を変化させた紫外
線照射後の試料を各々2本のガラス製試験管へ移して、
一方は暗所に静置し、他方は15W白色蛍光灯で可視光
を60分間照射して、光回復させた。紫外線照射後に、
暗所静置し、または、可視光照射した試料中の生菌数
を、『上水試験法(1993年版)』または『下水試験
法(1984年版)』に記載された最確数法(MPN
法)に準拠して定量した。結果を図6に示した。同図で
は横軸に紫外線照射線量を、縦軸に処理後の生残率をプ
ロットした。紫外線照射線量は、前記波長254nmの
紫外線照射強度と反応槽内における供試菌液滞留時間と
の積を表す。生残率は、紫外線照射した試料または紫外
線照射後に可視光照射した試料中の生菌数を、処理前の
供試菌液中の生菌数で除した値を表す。
By changing the inflow rate into the reaction tank in various ways, the samples after irradiation with the ultraviolet rays to the test bacterial solution were transferred to two glass test tubes, respectively.
One was allowed to stand in a dark place, and the other was irradiated with visible light using a 15 W white fluorescent lamp for 60 minutes to recover the light. After UV irradiation,
The number of viable bacteria in the sample that had been allowed to stand in the dark or irradiated with visible light was determined by the most probable number method (MPN) described in the “Water Water Test Method (1993 version)” or “Sewage Test Method (1984 version)”.
Method). The results are shown in FIG. In the figure, the horizontal axis plots the UV irradiation dose, and the vertical axis plots the survival rate after the treatment. The ultraviolet irradiation dose represents the product of the ultraviolet irradiation intensity at the wavelength of 254 nm and the residence time of the test bacterial solution in the reaction tank. The survival rate is a value obtained by dividing the number of viable bacteria in a sample irradiated with ultraviolet light or a sample irradiated with visible light after irradiation with ultraviolet light by the number of viable bacteria in the test bacterial solution before the treatment.

【0046】図6より明らかなように、8mW・s/c
2 以上の紫外線照射によって、紫外線照射直後の生残
率(図中○印)は、検出限界以下に減衰したが、可視光
照射60分後には生残率(図中■印)が2桁程度上昇
し、光回復が僅かに認められた。しかしながら、低圧水
銀ランプを光源に用いた本実施例と高圧水銀ランプを光
源に用いた実施例1とを比べると、実施例1の方が消毒
効果が高い。これは、両実施例では波長254nmの光
強度に着目して比較しているに過ぎないが、低圧水銀ラ
ンプと高圧水銀ランプとで波長254nmの光強度を一
定にした場合には、光触媒の活性化に有効な400nm
以下の波長全域の光強度の総和で比較すると、低圧水銀
ランプよりも高圧水銀ランプの方が多いことに起因して
いると考えられ、低圧水銀ランプを光源として用いよう
とする場合、出力の高い水銀ランプを用いることで、高
圧水銀ランプに比して劣ることのない消毒が可能である
と考えられる。
As is clear from FIG. 6, 8 mW · s / c
by m 2 or more ultraviolet radiation, survival rate after UV irradiation (figure ○ mark) has been attenuated below the detection limit, the survival rate after visible light irradiation for 60 minutes (in the drawing ■ marks) is two orders of magnitude Light recovery was slightly observed. However, when the present embodiment using a low-pressure mercury lamp as a light source and the first embodiment using a high-pressure mercury lamp as a light source are compared, the first embodiment has a higher disinfection effect. This is because the two embodiments merely compare the light intensity at the wavelength of 254 nm, but when the light intensity at the wavelength of 254 nm is constant between the low-pressure mercury lamp and the high-pressure mercury lamp, the activity of the photocatalyst is increased. 400nm effective for
Comparing the sum of the light intensities in the entire wavelength range below, it is considered that this is due to the fact that there are more high pressure mercury lamps than low pressure mercury lamps. It is considered that the use of a mercury lamp enables sterilization that is not inferior to a high-pressure mercury lamp.

【0047】[0047]

【比較例2】実施例2と同様の実験を、二酸化チタン光
触媒被膜のない円筒内挿管16を用いて実施した。結果
を図7に示した。
Comparative Example 2 The same experiment as in Example 2 was conducted using a cylindrical intubation 16 having no titanium dioxide photocatalytic coating. The results are shown in FIG.

【0048】図7より明らかなように、8mW・s/c
2 以上の紫外線照射によって、紫外線照射直後の生残
率(図中○印)は、実施例2と同様に検出限界以下に減
衰したが、可視光照射60分後には生残率(図中■印)
が3〜4桁上昇し、光回復が顕著に認められた。15m
W・s/cm2 以上の紫外線を照射しても、顕著な光回
復が認められた。比較例2における光回復の程度は実施
例2に比べて概ね1〜2桁高かったことから、本発明は
低圧水銀ランプを光源として用いた場合でも光回復を抑
制する効果があることが明らかである。
As is clear from FIG. 7, 8 mW · s / c
The survival rate immediately after the ultraviolet irradiation (marked with a circle in the figure) attenuated below the detection limit in the same manner as in Example 2 due to the ultraviolet irradiation of m 2 or more, but survived 60 minutes after irradiation with visible light (in the figure). ■ mark)
Increased by 3 to 4 digits, and light recovery was remarkably observed. 15m
Significant light recovery was observed even when irradiated with ultraviolet light of W · s / cm 2 or more. Since the degree of light recovery in Comparative Example 2 was approximately one to two orders of magnitude higher than in Example 2, it is clear that the present invention has an effect of suppressing light recovery even when a low-pressure mercury lamp is used as a light source. is there.

【0049】[0049]

【発明の効果】本発明によれば、紫外線を用いた消毒法
において問題であった光回復現象をほぼ完全に抑制し、
極めて効果的に消毒することができる。また、光触媒単
独では消毒効果が低いために実用化が困難であったが、
本発明は紫外線消毒と組み合わせることで、紫外線の消
毒効果と相乗的に作用して効果的に消毒することができ
る。
According to the present invention, the light recovery phenomenon which has been a problem in the disinfection method using ultraviolet rays is almost completely suppressed,
It can be disinfected very effectively. In addition, practical use of photocatalyst alone was difficult due to low disinfection effect,
The present invention can be effectively disinfected by acting in synergy with the disinfection effect of ultraviolet rays by combining with the ultraviolet ray disinfection.

【0050】本発明の水処理装置は、微生物の殺滅の為
のみならず、被処理水中の有機物質の分解、すなわちC
OD(化学的酸素要求量)やBOD(生物化学的酸素要
求量)の削減や微量有害物質の分解除去への適用も大い
に期待できる。そして、本発明の水処理装置は、予め光
触媒で被膜した支持体を装着した新設の装置としてのみ
ならず、既設の装置へ後から光触媒で被膜した支持体を
装着する簡易な改良だけで実用化することができる。
The water treatment apparatus of the present invention not only kills microorganisms but also decomposes organic substances in the water to be treated, ie,
It can be expected to greatly reduce OD (chemical oxygen demand) and BOD (biochemical oxygen demand) and to decompose and remove trace harmful substances. The water treatment apparatus of the present invention can be put to practical use not only as a new apparatus equipped with a support coated with a photocatalyst in advance, but also as a simple improvement of mounting a support coated with a photocatalyst on an existing apparatus later. can do.

【0051】さらに、本発明の水処理方法は、被処理水
の水流内に紫外線発生ランプを配する内部照射型の紫外
線消毒ばかりでなく、被処理水の外部より紫外線を照射
する外部照射型の紫外線消毒にも適用することができ
る。被処理水が流れる光透過性通水管を用いた外部照射
型装置においては、光透過性配管の内壁を光触媒被膜す
ればよいし、被処理水が流れる開水路内に光触媒被膜し
た支持体を浸漬し、外部から紫外線を照射することも可
能である。
Further, the water treatment method of the present invention is not only an internal irradiation type of UV disinfection in which an ultraviolet ray generating lamp is disposed in the water stream of the water to be treated, but also an external irradiation type which irradiates ultraviolet rays from outside the water to be treated. It can also be applied to UV disinfection. In an external irradiation type device using a light-permeable water passage through which water to be treated flows, the inner wall of the light-permeable pipe may be coated with a photocatalyst, or the support coated with the photocatalyst is immersed in an open channel through which the water to be treated flows. However, it is also possible to irradiate ultraviolet rays from outside.

【図面の簡単な説明】[Brief description of the drawings]

【図1】内部照射型紫外線消毒装置の例、および、それ
への光触媒被膜した支持体の実装形態を示す図である。
FIG. 1 is a diagram showing an example of an internal irradiation type ultraviolet disinfection device and a mounting form of a photocatalyst-coated support thereon.

【図2】外部照射型紫外線消毒装置の例を示す図であ
る。
FIG. 2 is a diagram illustrating an example of an external irradiation type ultraviolet disinfection device.

【図3】実施例および比較例で用いた紫外線消毒装置を
示す図である。
FIG. 3 is a view showing an ultraviolet disinfection apparatus used in Examples and Comparative Examples.

【図4】光触媒存在下で高圧水銀ランプで紫外線照射直
後の大腸菌生残率と光回復後の生残率を示す図である。
FIG. 4 is a diagram showing the survival rate of Escherichia coli immediately after ultraviolet irradiation with a high-pressure mercury lamp in the presence of a photocatalyst and the survival rate after light recovery.

【図5】高圧水銀ランプで紫外線照射直後の大腸菌生残
率と光回復後の生残率を示す図である。
FIG. 5 is a diagram showing the survival rate of Escherichia coli immediately after irradiation with ultraviolet light by a high-pressure mercury lamp and the survival rate after light recovery.

【図6】光触媒存在下で低圧水銀ランプで紫外線照射直
後の大腸菌生残率と光回復後の生残率を示す図である。
FIG. 6 is a diagram showing the survival rate of Escherichia coli immediately after irradiation with ultraviolet light by a low-pressure mercury lamp in the presence of a photocatalyst and the survival rate after light recovery.

【図7】低圧水銀ランプで紫外線照射直後の大腸菌生残
率と光回復後の生残率を示す図である。
FIG. 7 is a graph showing the survival rate of Escherichia coli immediately after irradiation with ultraviolet rays by a low-pressure mercury lamp and the survival rate after light recovery.

【符号の説明】[Explanation of symbols]

1 水の流れる方向 2 紫外線発生ランプ 3 保護管 4 中継端子箱 5 電源盤 6 水位調整弁 7 紫外線照射反応槽 8 断面 9 光触媒 10 担持体 11 担持体 12 担持体 13 通水管 14 流入口 15 流出口 16 円筒内挿管 17 電源 18 断面 DESCRIPTION OF SYMBOLS 1 Water flowing direction 2 Ultraviolet ray generating lamp 3 Protective tube 4 Relay terminal box 5 Power supply panel 6 Water level adjustment valve 7 Ultraviolet irradiation reaction tank 8 Cross section 9 Photocatalyst 10 Carrier 11 Carrier 12 Carrier 13 Water pipe 14 Inlet 15 Outlet 16 Cylindrical intubation 17 Power supply 18 Cross section

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 被処理水に紫外線発生ランプで紫外線を
照射する水処理方法において、被処理水に紫外線を照射
すると同時に、光触媒と被処理水とが接触するように配
した光触媒担持体に前記紫外線を照射することによって
微生物の光回復現象を抑制することを特徴とする水処理
方法。
1. A water treatment method in which water to be treated is irradiated with ultraviolet rays by an ultraviolet ray generating lamp, wherein the water to be treated is irradiated with ultraviolet rays, and the photocatalyst and the water to be treated are disposed on a photocatalyst carrier arranged so as to come into contact with the water. A water treatment method comprising irradiating ultraviolet rays to suppress the light recovery phenomenon of microorganisms.
【請求項2】 前記紫外線発生ランプとして中圧もしく
は高圧水銀ランプを用いる請求項1に記載の水処理方
法。
2. The water treatment method according to claim 1, wherein a medium pressure or high pressure mercury lamp is used as the ultraviolet ray generating lamp.
【請求項3】 被処理水に紫外線を照射する水処理装置
において、光触媒と被処理水とが接触するように配した
光触媒担持体と、該担持体に紫外線を照射する光源とを
有し、光触媒と被処理水を同時に、および/または光触
媒を介して被処理水に、および/または被処理水を介し
て光触媒に紫外線照射することを特徴とする水処理装
置。
3. A water treatment apparatus for irradiating treated water with ultraviolet light, comprising: a photocatalyst carrier arranged so that the photocatalyst and the treated water are in contact with each other; and a light source for irradiating the carrier with ultraviolet light. A water treatment apparatus, comprising irradiating a photocatalyst and water to be treated simultaneously and / or to water to be treated via a photocatalyst and / or to a photocatalyst via water to be treated.
【請求項4】 前記光触媒担持体として、筒状、板状の
支持体の片面または両面を光触媒で被膜した請求項3に
記載の水処理装置。
4. The water treatment apparatus according to claim 3, wherein one or both sides of a cylindrical or plate-shaped support are coated with a photocatalyst as the photocatalyst support.
【請求項5】 前記光触媒として二酸化チタンを主成分
とする光触媒を用いることを特徴とする請求項3または
請求項4に記載の水処理装置。
5. The water treatment apparatus according to claim 3, wherein a photocatalyst containing titanium dioxide as a main component is used as the photocatalyst.
【請求項6】 微生物の殺菌、消毒を主目的とする請求
項3〜請求項5のいずれかに記載の水処理装置。
6. The water treatment apparatus according to claim 3, wherein the main purpose is to sterilize and disinfect microorganisms.
【請求項7】 前記紫外線を照射する光源として中圧も
しくは高圧水銀ランプを用いる請求項3〜請求項6のい
ずれかに記載の水処理装置。
7. The water treatment apparatus according to claim 3, wherein a medium pressure or high pressure mercury lamp is used as a light source for irradiating the ultraviolet rays.
JP9336598A 1997-11-21 1997-11-21 Method and apparatus for treatment of water Pending JPH11156352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9336598A JPH11156352A (en) 1997-11-21 1997-11-21 Method and apparatus for treatment of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9336598A JPH11156352A (en) 1997-11-21 1997-11-21 Method and apparatus for treatment of water

Publications (1)

Publication Number Publication Date
JPH11156352A true JPH11156352A (en) 1999-06-15

Family

ID=18300817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9336598A Pending JPH11156352A (en) 1997-11-21 1997-11-21 Method and apparatus for treatment of water

Country Status (1)

Country Link
JP (1) JPH11156352A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003037504A1 (en) * 2001-11-02 2005-02-17 日本テクノ株式会社 Sterilizing vibration stirrer, sterilizing apparatus using the vibration stirrer, and sterilization method
JP2011505247A (en) * 2007-12-04 2011-02-24 ニルセン ビルジル Method and apparatus for treating ballast water
JP2011045808A (en) * 2009-08-25 2011-03-10 Harison Toshiba Lighting Corp Ultraviolet treatment device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003037504A1 (en) * 2001-11-02 2005-02-17 日本テクノ株式会社 Sterilizing vibration stirrer, sterilizing apparatus using the vibration stirrer, and sterilization method
JP2011505247A (en) * 2007-12-04 2011-02-24 ニルセン ビルジル Method and apparatus for treating ballast water
JP2011045808A (en) * 2009-08-25 2011-03-10 Harison Toshiba Lighting Corp Ultraviolet treatment device

Similar Documents

Publication Publication Date Title
US6932947B2 (en) Fluid purification and disinfection device
US6524447B1 (en) Apparatus and method for photocatalytic purification and disinfection of water and ultrapure water
EP2227442B1 (en) Apparatus and method for ballast water treatment
EP2409954A1 (en) Photocatalytic purification device
CN102631936A (en) BiOI composite material and preparation method and application of BiOI composite material
KR100439195B1 (en) Method for killing of microorganisms in the water by UV-TiO2 photocatalytic reaction and reactor for killing of microorganisms
Abhang et al. Design of photocatalytic reactor for degradation of phenol in wastewater
JP2013111577A (en) Ultraviolet sterilizer used in both conduit and water passage
CN102701317A (en) Novel photocatalysis filter tank device and water treatment system
JP2006320843A (en) Photocatalyst material. photocatalyst filter using it, photocatalyst filter unit and photocatalyst cleaning device
JPH05154473A (en) Photochemical reaction treatment for fluid
KR100480347B1 (en) Apparatus for sterilization and purification using UV Lamp Module and Potocatalyst
KR200326897Y1 (en) Cold and Hot Water Purification system with Photocatalytic Purifier and Sterilizer
JP2567273Y2 (en) UV irradiation device for photochemical reaction treatment
US20030211022A1 (en) Method and apparatus for decontaminating water or air by a photolytic and photocatalytic reaction
KR20060117144A (en) Waste water treatment system using photocatalyst and nanosilver immobilized metal fiber filter
JPH11156352A (en) Method and apparatus for treatment of water
KR20210142047A (en) A METHOD FOR PROCESSING WASTE WATER USING CERAMIC SEPARATION MEMBRANE COATED WITH Ti2O AND A SYSTEM FOR PROCESSING WASTE WATER
KR200346263Y1 (en) The photocatalyst sterilization water purifier with direct connection form which uses a photocatalyst sterilization water purifying device
CN103754982A (en) Photocatalytic water-treatment sterilizing equipment
RU2394772C2 (en) Photocatalytic water treatment module
JP2001259620A (en) Water treating device by semiconductor photocatalyst using microwave and uv ray jointly
KR101455369B1 (en) Ultraviolet sterilizer
KR100606503B1 (en) Photocatalytic Aeration Apparatus
JP3792577B2 (en) Water treatment equipment using photocatalyst

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041013