JPH11156110A - Pressurizing filtration method and plastic made filter medium - Google Patents

Pressurizing filtration method and plastic made filter medium

Info

Publication number
JPH11156110A
JPH11156110A JP9305806A JP30580697A JPH11156110A JP H11156110 A JPH11156110 A JP H11156110A JP 9305806 A JP9305806 A JP 9305806A JP 30580697 A JP30580697 A JP 30580697A JP H11156110 A JPH11156110 A JP H11156110A
Authority
JP
Japan
Prior art keywords
shape
appropriate
fin
plastic
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9305806A
Other languages
Japanese (ja)
Inventor
Ikuo Noro
幾夫 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIO KK
Original Assignee
NISHIO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIO KK filed Critical NISHIO KK
Priority to JP9305806A priority Critical patent/JPH11156110A/en
Publication of JPH11156110A publication Critical patent/JPH11156110A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a pressurizing filtration method and plastic-made filter medium at a low installing cost, having a general use property, difficult to clog, and easily backwashed with a small amount of backwashing water by a method wherein a plastic-made elastic filtor medium of an appropriate shape, is filled in a filter cylinder, treating liquid is injected under an appropriate pressure, and backwashed under an ordinary pressure. SOLUTION: In a plastic-made chip-shaped filtor medium a fin wherein polyvinylchloirde having elasticity and its similar material are formed in many continuous wavy shape in a fan shape of about 10 to 15 ϕ mm outer diameter, about 15 to 75 mm height, above 0.5 to 2.0 mm thickness, and 40 deg. to 80 deg. angle, is arranged spirally around a central axis, a cylindrical clearance of about 5 to 20 mm diameter is provided along the central axis, and its appearance is in a suitable shape such as a cylindrical shape or a globular shape. By injecting continuously treating liquid at an appropriate and constant pressure, fins of chip-shaped filtration medium comes to have appropriate intervals, a straightened flow is generated on inside and outside faces and a surface of the fin, and adsorption of solid material is efficiently carried out. The backwashing can be easily executed since the fin interval is returned to an original state at ordinary pressure with elasticity of the filter medium to be widened.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は微細SS(懸濁物質)を含む処理
液を少量でも安価、効率的にろ過可能な構造体(プラス
チック製チップ状ろ過材)及びこのろ過材を用いたろ過
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure (plastic tip filter material) capable of efficiently and inexpensively filtering a processing solution containing fine SS (suspended substance) even in a small amount, and a filtration method using the filter material. It is.

【0002】[0002]

【従来の技術】微細SS(懸濁物質)の分離機器として
はマイクロストレーナー、砂ろ過などが実用化されてい
るが、大水量でかつ多量のSS(懸濁物質)を含む処理
水には適しておらず、分離素子、ろ過材の目詰りがごく
短時間で起こり、その逆洗に多量の逆洗水が必要であっ
た。
2. Description of the Related Art Microstrainers and sand filters have been put into practical use as fine SS (suspension substance) separation equipment. However, they are suitable for treated water containing large amounts of SS (suspension substance). However, clogging of the separation element and the filter medium occurred in a very short time, and a large amount of backwash water was required for backwashing.

【0003】一方、動力又は浮力を利用した沈澱法、加
圧浮上法の場合は装置の設置面積が広く処理時間が長
い、スカムあるいはスラッジのリーク、固形物濃縮倍率
が低いなどの欠点を有している(例えば、「省エネ型傾
斜式ウエッジワイヤースクリーン」、化学工学、p4
5、47、1、′83)。
On the other hand, the sedimentation method and the pressure flotation method using power or buoyancy have disadvantages such as a large installation area of the apparatus, a long processing time, leakage of scum or sludge, and a low solids concentration ratio. (For example, “energy-saving inclined wedge wire screen”, Chemical Engineering, p4
5, 47, 1, '83).

【0004】又、傾斜板ろ過は広く浄水設備などに用い
られているが広い設置面積を要しスラッジの処理に多く
の労力を削く必要があったが、石炭の分別、パルプ原料
の濃縮など主として粗大固形物の分級用に実用化された
ウエッジワイヤースクリーンは、その後省エネ型傾斜式
ウエッジワイヤースクリーン(東レ)において100μ
m以下の微細SS(懸濁物質)まで効率よく分離可能と
なった(特開昭55ー152511)。
[0004] Inclined plate filtration is widely used in water purification facilities and the like, but requires a large installation area and requires much labor for sludge treatment. However, it is necessary to separate coal and concentrate pulp raw materials. Wedge wire screens, which have been put to practical use mainly for the classification of coarse solids, have been used in energy-saving inclined wedge wire screens (Toray) for 100 μm.
m or less fine SS (suspended material) can be efficiently separated (JP-A-55-152511).

【0005】[0005]

【解決しようとする課題】しかしながら、ウエッジワイ
ヤースクリーンにおいても用途が限られており設置コス
トもかなり高く維持管理が必要で、一般性あるいは汎用
性に欠けており、少量のろ過には向かない欠点を有して
いた。
However, wedge wire screens are also limited in their applications, their installation costs are quite high, and require maintenance and maintenance. They lack generality or versatility and are not suitable for small-scale filtration. Had.

【0006】本発明は傾斜板やウエッジワイヤースクリ
ーンの手法を発展させ、より汎用性の有る設置コストの
低い、しかも簡単構造で、耐酸性、耐アルカリ性を有す
る高速ろ過(ろ過方法及びろ過材)を提供しようとする
ものである。
[0006] The present invention develops a technique of a sloping plate or a wedge wire screen to provide a high-speed filtration (filtration method and filtration material) which is more versatile, has a low installation cost, has a simple structure, and has acid resistance and alkali resistance. It is something to offer.

【0007】[0007]

【課題の解決手段】請求項1の発明は請求項2以降に記
したような適形状で弾性のあるプラスチック製ろ過材を
適量(必要とされる処理能力によりチップ状ろ過材の使
用量は異なり当然ろ過筒の容量も異なる)をろ過筒に充
填し、処理液を適正圧でしかも恒圧で連続的に注入する
事によりチップ状ろ過材のフィンが適度な間隔(0.0
5〜0.1mm程度になることが必要)となり、チップ
状ろ過材のフィンの内外側面や表面に整流が生じスクリ
ーンと同様の効果(クロスフローフィルトレーション)
が発生しフィンの表面、裏面を中心に固形物の吸着が効
率的に行われる。
According to the first aspect of the present invention, an appropriate amount of a plastic filter medium having an appropriate shape and elasticity as described in the second and subsequent embodiments is used in an appropriate amount. Naturally, the filter tube is filled with the filter solution and the treatment liquid is continuously injected at an appropriate pressure and at a constant pressure, so that the fins of the chip-shaped filter material have an appropriate interval (0.0 mm).
(It is necessary to be about 5 to 0.1 mm), and rectification occurs on the inner and outer surfaces and the surface of the fin of the chip-shaped filter medium, and the same effect as a screen (cross flow filtration)
Is generated, and the solids are efficiently adsorbed mainly on the front and back surfaces of the fin.

【0008】逆洗はチップ状ろ過材のフィン間隔がろ過
素材の弾性により常圧で元に戻りかなり広い(2〜5m
m程度)ため、ろ過筒に逆洗水を満たし常圧下で曝気あ
るいは超音波をかけた後、ドレンを除去し、ろ過材表面
し付着する固形物の洗浄のために逆洗水を常圧で注入す
ることにより容易にかつ効果的に行うことが出来、チッ
プ状ろ過材の形状により異なるが、逆洗水の使用量は極
めて少量であり、逆洗に要する時間も極短時間である。
[0008] In the backwashing, the fin spacing of the chip-shaped filter medium returns to normal pressure at normal pressure due to the elasticity of the filter material and is considerably wide (2 to 5 m).
m), fill the filter tube with backwash water, apply aeration or ultrasonic wave under normal pressure, remove the drain, and wash the backwash water at normal pressure to wash the solid material adhering to the surface of the filter media. It can be easily and effectively performed by injecting, and the amount of backwashing water used is extremely small, and the time required for backwashing is extremely short, although it depends on the shape of the chip-shaped filter medium.

【0009】請求項2の発明は酸及びアルカリに耐性が
ありかつ弾性を有するポリ塩化ビニル、ポリ塩化ビニリ
デン等のプラスチック素材を図2に示すように、外径で
直径10〜15φmm、高さ15〜75mm(大きさは
必要とする処理能力により異なる)で、厚さ0.5以上
2.0mm以下、角度が40゜以上80゜以下の扇形を
した多数の連続した波状の適度の粗面のフィンを中心軸
の回りに螺旋状に配し中心軸に沿って直径5〜20(m
m)の円柱状の空隙を有し、外観が円柱形あるいは球形
など適形状のチップ状ろ過材である。
According to the invention of claim 2, a plastic material such as polyvinyl chloride or polyvinylidene chloride which is resistant to acid and alkali and has elasticity has an outer diameter of 10 to 15 mm and a height of 15 mm as shown in FIG. 7575 mm (the size depends on the required processing capacity), a large number of continuous wavy moderately rough surfaces having a thickness of 0.5 to 2.0 mm and an angle of 40 to 80 °. The fins are spirally arranged around the central axis, and have a diameter of 5 to 20 (m) along the central axis.
m) It is a chip-shaped filter medium having a columnar void and having a cylindrical or spherical external shape.

【0010】 チップ状ろ過材は該当する径の円柱形棒状プラスチック
を旋盤などにより軸方向に対し角度を変化させ上記寸法
の波状螺旋帯に切削後必要な寸法に切断し成形するかあ
るいは必要寸法に平板状の螺旋帯押し出し成形後加熱し
つつ波状に曲げ切断することにより製造可能であるが、
フィン表面には適度な粗さが必要とされるため旋盤によ
る成形が望ましい。
[0010] The chip-shaped filter medium is formed by cutting a cylindrical rod-shaped plastic having an appropriate diameter in an axial direction with a lathe or the like, changing the angle to the corrugated spiral band having the above-mentioned size, and then cutting and shaping the strip to a required dimension. It can be manufactured by bending and cutting in a wavy shape while heating after extruding a flat spiral band,
Since the fin surface requires an appropriate roughness, it is desirable to form the fin with a lathe.

【0011】新しいろ過形式であるクロスフローフィル
トレーションの代表的存在である傾斜板式連続沈降槽に
おける沈降速度の完全分離式は η=v/(Q/S) η;分離効率 S;分離面積 Q;流量 v;沈降速度 となり、理論的には分離効率は分離面積に比例し流量に
反比例するが、本発明は分離面積を流量に比し非常に大
きく取ることにより流量の影響を極めて小さくし分離効
率を大きくすることが可能との判断から研究開発に着手
したものであるが、分離効率及び吸着した固形物の洗浄
効率がフィン間隔に大きく依存し、分離能力を高めるに
はフィン間隔を狭くし、フィン径を大きくする必要があ
り、他方逆洗時の洗浄効率を考えればフィン間隔は広く
すべきであり、これを解決するために、フィンの反発力
を利用しフィン間隔をろ過時には狭くし逆洗時には広く
する方法すなわちろ過時に処理液を高圧で注入し逆洗時
に常圧で行う方法を開発するに至った。
The complete separation equation of the sedimentation velocity in the inclined plate type continuous sedimentation tank, which is a representative of the new filtration type, cross flow filtration, is η = v / (Q / S) η; separation efficiency S; separation area Q Flow rate v; settling velocity; theoretically, the separation efficiency is proportional to the separation area and inversely proportional to the flow rate. However, in the present invention, the effect of the flow rate is extremely small by taking the separation area very large as compared with the flow rate. We started R & D based on the judgment that it was possible to increase the efficiency.However, the separation efficiency and the washing efficiency of the adsorbed solids greatly depended on the fin spacing. It is necessary to increase the fin diameter.On the other hand, considering the cleaning efficiency at the time of backwashing, the fin interval should be widened, and in order to solve this, the refining force of the fin is used to filter the fin interval. A method of sometimes narrowing and widening at the time of backwashing, that is, a method of injecting the treatment liquid at a high pressure at the time of filtration and performing the treatment at a normal pressure at the time of backwashing, has been developed.

【0012】また、ろ過材については、プラスチック素
材、フィン形状(フィンの厚さ、形及び大きさ)、フィ
ン間隔、チップ形状(チップの中心空洞部の大きさ、外
形及び大きさ)が重要であり分離効率に大きく影響する
ため、加工の容易性、分離面積の確保、ろ過液の水道の
確保及びフィンの弾性反発力などの点から検討した結果
図2に示したような中心部分が円柱形の空洞になってお
り波形の帯状フィンが螺旋に中心軸を取り巻くチップ状
ろ過材を開発するに至った。
As for the filter material, plastic material, fin shape (thickness, shape and size of fin), fin interval, and tip shape (size, outer shape and size of central cavity of tip) are important. Because it greatly affects the separation efficiency, it was examined from the viewpoint of ease of processing, securing of separation area, securing of tap water for filtrate, and elastic repulsion of fins. As a result, the center part as shown in Fig. 2 was cylindrical. This led to the development of a chip-shaped filter medium in which the wavy fins spirally surround the central axis.

【0013】加工の容易性はチップ状ろ過材自体の形状
に直接反映するため、旋盤などによる切削成形または押
し出し成形、加熱形成が可能であること及びプラスチッ
ク素材が適度な弾性を有していることが必須事項であ
る。
Since the ease of processing is directly reflected on the shape of the filter media itself, it can be cut or extruded by a lathe or the like, and can be heated, and the plastic material has a suitable elasticity. Is required.

【0014】分離面積は分離効率に直接影響するため最
大限大きくすること、すなわちチップ間空隙を可能な限
り小さくし、チップ当たり分離面積を最大にする必要が
あるが、チップ間空隙及びチップ当たり分離面積はチッ
プ形状に依存し、特にフィン形状は重要であり、波の深
さは分離面積の大小を左右し分離効率に影響する一方で
洗浄効率にも関係しており、波が深すぎると分離効率は
向上するが逆洗効率を低下させることになり、逆に浅す
ぎると分離効率を悪くし、また中心部の空洞はフィン間
を通過したろ過後の処理液の水道となるため大きい方が
よい。
Since the separation area directly affects the separation efficiency, it is necessary to maximize the separation area, that is, it is necessary to minimize the gap between chips as much as possible to maximize the separation area per chip. The area depends on the tip shape, especially the fin shape is important, and the wave depth affects the size of the separation area and affects the separation efficiency, while it is also related to the cleaning efficiency. Efficiency is improved but backwashing efficiency is reduced.On the other hand, if the depth is too shallow, separation efficiency will be deteriorated.In addition, the larger cavity will be used because the center cavity will be a water supply for the filtered treatment liquid that has passed between the fins. Good.

【0015】弾性反発力はプラスチック素材自体とフィ
ン厚さが重要であり、処理液の注入圧及び洗浄効率に関
係し、小さすぎると逆洗時に適度なフィン間隔が得られ
ず洗浄効率を低下させ、大きすぎると適度なフィン間隔
を得るため注入圧を上げる必要があり流量を大きくし分
離効率の低下を招くことになる。
The elastic repulsion depends on the plastic material itself and the thickness of the fins, and is related to the injection pressure of the processing solution and the cleaning efficiency. If it is too large, it is necessary to increase the injection pressure in order to obtain an appropriate fin interval, which increases the flow rate and lowers the separation efficiency.

【0016】以上の事実から、プラスチックろ過材とし
ては使用実績からポリ塩化ビニル、PVA,ポリスチレ
ンなどが上げられるが(例えば、水処理工学、第2版、
P334)、加工の容易性、フィンの反発力(プラスチ
ック素材自体の硬度)から素材はポリ塩化ビニル及びそ
の類似素材が、チップ状ろ過材の形状は螺旋形が最適と
なり、フィン厚さは図2に示すように0.5mm以上
2.0mm以下が適しており、また分離面積を最大限に
確保するにはろ過筒への充填率を大きくし、同一体積に
対する空隙率を小さくする必要があり円柱形または球形
のチップ状ろ過材及び軸に対し40度以上80度以下の
角度を有する波形のフィンを考案した。
From the above facts, polyvinyl chloride, PVA, polystyrene and the like are listed as plastic filter media based on their use results (for example, water treatment engineering, 2nd edition,
P334), easiness of processing, repelling force of fins (hardness of plastic material itself), polyvinyl chloride and similar materials are optimal for material, spiral shape of tip filter material is optimal, and fin thickness is as shown in FIG. As shown in the figure, 0.5 mm or more and 2.0 mm or less are suitable, and in order to ensure the maximum separation area, it is necessary to increase the filling rate of the filtration tube and reduce the porosity for the same volume. We have devised a shaped or spherical tip-shaped filter medium and a corrugated fin having an angle of 40 degrees or more and 80 degrees or less with respect to the axis.

【0017】[0017]

【発明の実施形態】図2に示すように構成された試験装
置(処理液タンク、液送可変ポンプ、チップ状ろ過材を
格納したろ過筒(ろ過筒上部から注入し下部から排水す
る)、処理液タンクを耐圧ホースで連結し循環させる)
に既知濁度あるいは濃度の処理水を処理液タンクに一定
量充填し可変ポンプを調節し必要圧でろ過筒に送液し再
び、処理液タンクに戻し循環させた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A test apparatus (processing liquid tank, liquid transfer variable pump, filter tube containing a chip-shaped filter medium (injected from the upper part of the filter cylinder and drained from the lower part)) configured as shown in FIG. Connect the liquid tank with a pressure-resistant hose and circulate)
Then, a fixed amount of treated water having a known turbidity or concentration was charged into the treatment liquid tank, a variable pump was adjusted, the liquid was sent to the filter cylinder at the required pressure, and again circulated back to the treatment liquid tank.

【0018】[0018]

【実施例】図1に示したプラスチック製ろ過材を図1に
示すようなろ過設備のろ過筒に1kg格納しろ過筒を隙
間無く満たし、生活排水(風呂の湯)を処理液タンクに
50l採取し液送可変ポンプの流量を5l/min及び
15l/mimにセットしろ過を行い1時間ごとに処理
液タンクより試験用処理液を必要量採取し、各試料につ
いて濁度の測定を行い比較した結果、表1に記したよう
に分離効率は無加圧のものに比べ加圧したものは平均で
250%程度向上した。
EXAMPLE 1 kg of the plastic filter material shown in FIG. 1 was stored in a filter tube of a filter facility as shown in FIG. 1, the filter tube was filled without gaps, and 50 liters of domestic wastewater (bath water) was collected in a treatment liquid tank. The flow rate of the liquid transfer variable pump was set to 5 l / min and 15 l / mim, and filtration was performed. A required amount of test treatment liquid was collected from the treatment liquid tank every hour, and the turbidity of each sample was measured and compared. As a result, as shown in Table 1, the separation efficiency was improved on average by about 250% in the case of pressurization as compared with the case of no pressurization.

【表1】 [Table 1]

【発明の効果】本発明は、前述したように構成されてお
り、下記のような効果を奏する。 様々な場所、部位での利用が可能であり汎用性があ
る。 目詰まりがおきにくい。 少量の逆洗水で容易に逆洗可能である。 少量のろ過から大量のろ過まで対応可能である。 設置費用が極めて安価である。 設置面積が極めて狭い。 維持管理が容易である。
The present invention is configured as described above and has the following effects. It can be used in various places and locations and is versatile. Clogging is difficult to occur. It can be easily backwashed with a small amount of backwash water. It can handle from small to large filtration. Installation cost is extremely low. The installation area is extremely small. Maintenance is easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ろ過装置の構成図である。FIG. 1 is a configuration diagram of a filtration device.

【図2】プラスチック製チップ状ろ過材の見取り図であ
る。
FIG. 2 is a sketch drawing of a plastic chip filter material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】適形状で弾性のあるプラスチック製ろ過材
をろ過筒に格納し適正圧力で処理液を注入し、逆洗水を
注入後常圧で逆洗することを特徴とするろ過方法。
1. A filtration method comprising storing a plastic filter material having an appropriate shape and elasticity in a filter tube, injecting a treatment liquid at an appropriate pressure, injecting backwash water, and backwashing at normal pressure.
【請求項2】扇状部の角度が40°以上80°以下の連
続する波状フィンを多数中心軸の回りに放射状でかつ螺
旋状に取付けたことを特徴とする弾性のある円柱形また
は球形など適形状のプラスチック製チップ状ろ過材。
2. An elastic cylindrical or spherical shape, wherein a plurality of continuous wave-shaped fins having an angle of a fan-shaped portion of 40 ° or more and 80 ° or less are radially and spirally mounted around a central axis. Shaped plastic tip filter media.
JP9305806A 1997-11-07 1997-11-07 Pressurizing filtration method and plastic made filter medium Pending JPH11156110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9305806A JPH11156110A (en) 1997-11-07 1997-11-07 Pressurizing filtration method and plastic made filter medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9305806A JPH11156110A (en) 1997-11-07 1997-11-07 Pressurizing filtration method and plastic made filter medium

Publications (1)

Publication Number Publication Date
JPH11156110A true JPH11156110A (en) 1999-06-15

Family

ID=17949599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9305806A Pending JPH11156110A (en) 1997-11-07 1997-11-07 Pressurizing filtration method and plastic made filter medium

Country Status (1)

Country Link
JP (1) JPH11156110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113522026A (en) * 2021-06-24 2021-10-22 合肥云雀智能科技有限公司 Ultrafiltration equipment back-flushing device with pressure relief mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113522026A (en) * 2021-06-24 2021-10-22 合肥云雀智能科技有限公司 Ultrafiltration equipment back-flushing device with pressure relief mechanism

Similar Documents

Publication Publication Date Title
KR101180746B1 (en) Upflow Filtration Reactor
US7361272B2 (en) Anisotropic porous material
RU204652U1 (en) DEVICE FOR SEPARATING DISPERSIONS
EP1264626A1 (en) Variable pore micro filter having simple and compact structure capable of side stream filtration and cross flow filtration
US20110031193A1 (en) Liquid extraction filter and method for cleaning it
WO2018235210A1 (en) Filtration membrane module and filtration method
CN109574410A (en) A kind of Sewage Biological Treatment dynamic membrane device and application method
JPH06238110A (en) Solid-liquid separator and solid-liquid separation method
JP2013059702A (en) Filtration device
GB2047105A (en) Process for removal of suspended solids from liquid
JPH11156110A (en) Pressurizing filtration method and plastic made filter medium
CN203264364U (en) 360-degree water feeding rotary underwater filter bed device
JP3792108B2 (en) Sludge concentration dewatering equipment
JP3824034B2 (en) Filtration device backwash method
JP3467736B2 (en) Filtration device
CN108751500A (en) A kind of oil field compression fracture returns drain processing system and method
KR100367426B1 (en) Filter for water treatment and module using the same
JP2587981Y2 (en) Filter media and filtration equipment
CN103272416A (en) 360-degree inflow rotation type underwater filter bed device and filtering method
JPH02191511A (en) Filter and its back-washing method
JP2667412B2 (en) Oil-water separator
JP3286344B2 (en) Filtration element and liquid treatment device
SU1535580A1 (en) Apparatus for purifying liquids
JP2820959B2 (en) Coagulation filter
JPH01168310A (en) Cross-flow filtration method and its apparatus