JPH11154949A - Communication channel network fault diagnostic device and recording medium storing program readable by machine - Google Patents
Communication channel network fault diagnostic device and recording medium storing program readable by machineInfo
- Publication number
- JPH11154949A JPH11154949A JP9337855A JP33785597A JPH11154949A JP H11154949 A JPH11154949 A JP H11154949A JP 9337855 A JP9337855 A JP 9337855A JP 33785597 A JP33785597 A JP 33785597A JP H11154949 A JPH11154949 A JP H11154949A
- Authority
- JP
- Japan
- Prior art keywords
- failure
- fault
- diagnosis
- transmission line
- transmission path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Data Exchanges In Wide-Area Networks (AREA)
- Maintenance And Management Of Digital Transmission (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、通信回線網の各所
で発生する故障信号に基づいて故障の主原因となる伝送
路などを診断する通信回線網故障診断装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a communication network fault diagnosis apparatus for diagnosing a transmission path or the like which is the main cause of a fault based on fault signals generated at various points in a communication network.
【0002】[0002]
【従来の技術】従来、この種の通信回線網故障診断装置
としては、特開昭61−288648号公報に記載され
たデータベースを用いた回線監視方式(以下、従来装置
と称す)が知られている。2. Description of the Related Art Conventionally, a line monitoring system using a database described in Japanese Patent Application Laid-Open No. 61-288648 (hereinafter referred to as a conventional device) has been known as this type of communication line network fault diagnosis device. I have.
【0003】図5に従来装置のブロック図を示す。診断
(監視)対象となる通信回線網の各被監視局1から送ら
れてくる故障信号4は、コンピュータ3に入力され、こ
のコンピュータ3において、通信回線網の構造を反映し
たデータベース8に従って処理5が実行され、診断出力
が生成される。データベース8には、故障信号4と伝送
路との対応関係を定義した信号伝送路セットオカーレン
ス12,伝送路を任意の区間で縦割にみたときの上下の
階層関係および伝送路を区間に分割してみた場合の横の
連絡関係を定義した伝送路セットオカーレンス13等が
含まれ、処理5では、故障信号4から信号伝送路セット
オカーレンス12を検索して故障信号に対応する伝送路
を判定し、更にこの判定結果から伝送路セットオカーレ
ンス13を検索して、故障の主原因となった伝送路やそ
の故障の影響を受ける伝送路を示した診断結果を生成す
る。FIG. 5 shows a block diagram of a conventional apparatus. The failure signal 4 sent from each monitored station 1 of the communication network to be diagnosed (monitored) is input to a computer 3 where the computer 3 performs processing 5 according to a database 8 reflecting the structure of the communication network. Is executed to generate a diagnostic output. The database 8 includes a signal transmission line set occurrence 12, which defines the correspondence between the failure signal 4 and the transmission line, the upper and lower hierarchical relationships when the transmission line is vertically divided into arbitrary sections, and the transmission path is divided into sections. In this case, the transmission path set occurrence 13 defining the horizontal communication relationship is included. In the process 5, the signal transmission path set occurrence 12 is searched from the failure signal 4 to determine the transmission path corresponding to the failure signal. The transmission path set occurrence 13 is searched from the result of the determination, and a diagnosis result indicating the transmission path that is the main cause of the failure and the transmission path affected by the failure is generated.
【0004】診断対象となる通信回線網の一例を図6
に、この図6の通信回線網の構造を反映したデータベー
ス8のデータ構造の一例を図7にそれぞれ示す。FIG. 6 shows an example of a communication line network to be diagnosed.
FIG. 7 shows an example of the data structure of the database 8 reflecting the structure of the communication network shown in FIG.
【0005】図6の通信回線網では、被監視局1として
局A〜Dを設定し、これら被監視局1間を結ぶ伝搬路2
として、局Bと局A,C間にマイクロ方式無線伝搬路の
搬Bと搬Cを、局Aと局C間にケーブル搬送方式伝搬路
の搬Aを、局Bと局D間にディジタル多重方式光ケーブ
ル伝搬路の搬Dを、それぞれ設定している。また、SG
MUX、GMUX、CHMUXは、それぞれ搬送端局装
置のSG帯多重化機能部、G帯多重化機能部、CH帯分
波機能部を示し、TRFは2ルート化された局Aと局C
を切り替える2ルート切替装置、TRはマイクロ波送受
信装置を示す。更に、小丸印箇所は故障検出点で、この
箇所から故障信号4がコンピュータ3に入力されること
を示し、点線矢印が指しているブロックはコンピュータ
3に入力される一連の故障信号4の内容を示す。また、
回XはCH帯の故障信号4、GXはG帯の故障信号4、
区Xは伝搬路2の故障信号4を示す。搬Xは伝搬路2、
路XはG帯使用の伝送路、CHXはトーンCH帯使用の
伝送路で、この中をユーザ伝送路が通り、例えばCH1
は局AのCHMUXと局CのCHMUXとの間の伝送路
であり、ユXは伝送路のユーザとして端末装置に専有さ
れているユーザ伝送路、線Xは回線の端末装置を示し、
例えばユーザ伝送路「ユE」は局Dの端末装置「線E」
と接続されている。In the communication network shown in FIG. 6, stations A to D are set as monitored stations 1, and propagation paths 2 connecting these monitored stations 1 are provided.
The carrier B and carrier C of the micro-system radio propagation path between the stations B and the stations A and C, the carrier A of the cable carrier system propagation path between the stations A and C, and the digital multiplexing between the stations B and D. The transport D of the system optical cable propagation path is set respectively. Also, SG
MUX, GMUX, and CHMUX indicate an SG band multiplexing function unit, a G band multiplexing function unit, and a CH band demultiplexing function unit of the carrier terminal equipment, respectively, and TRF is a two-routed station A and station C.
TR indicates a microwave transmission / reception device. Further, a small circle point indicates a failure detection point, and indicates that a failure signal 4 is input to the computer 3 from this point. A block indicated by a dotted arrow indicates the contents of a series of failure signals 4 input to the computer 3. Show. Also,
Time X is the failure signal 4 in the CH band, GX is the failure signal 4 in the G band,
The section X indicates the fault signal 4 of the propagation path 2. Carry X is propagation path 2,
The path X is a transmission path using the G band, and CHX is a transmission path using the tone CH band, through which a user transmission path passes, for example, CH1.
Is a transmission line between the CHMUX of the station A and the CHMUX of the station C, YX is a user transmission line exclusively used by the terminal device as a user of the transmission line, line X is a terminal device of the line,
For example, the user transmission line “U E” is the terminal device “Line E” of the station D.
Is connected to
【0006】このような通信回線網に対応するデータベ
ースの定義は例えば次のように行われる。 1)ユーザ伝送路;端末装置(線X)がユーザ伝送路
(ユX)に接続されている。 2)CH伝送路;CH伝送路「CH1」には「ユB
1」,「ユA」が通り、「CH2」には「ユB2」,
「ユC」が通る。 3)G伝送路;G伝送路「路A」には「CH1」が通
り、「路C」には「CH2」,「ユD」が通る。 4)伝搬路;伝搬路「搬A」には「路A」が通り、「搬
B」,「搬C」には「路C」が通り、「搬D」には「ユ
E」が通る。 5)監視信号;監視信号4の「区A」は「搬A」と関係
し、「区B1」,「区B2」は「搬B」と関係し、同様
に他の「区X」の関係がある。また、監視信号4の「G
A」は「路A」に、「GC」は「路C」に、「区A」は
「ユA」に、「回B」は「ユB1」,「ユB2」に、
「回E」は「ユE」に関係する。 6)局;「局A」には監視信号4の「回A」,「回
B」,「回E」,「GA」,「区A1」,「区B1」が
あり、「局B」には「区B2」,「区D1」,「区C
1」があり、「局C」には「区C2」,「GC」,「区
A2」,「回C」があり、「局D」には「区D2」があ
る。 7)スキーマ;スキーマは「局A」,「局B」,「局
C」,「局D」からなる。 8)2ルート回線;「ユB1」,「ユB2」が「線B」
の2ルート回線である。The definition of a database corresponding to such a communication network is performed, for example, as follows. 1) User transmission line; the terminal device (line X) is connected to the user transmission line (YX). 2) CH transmission path; CH transmission path "CH1"
1 ”and“ YuA ”, and“ CH2 ”is“ YuB2 ”,
"Yu C" passes. 3) G transmission path: "CH1" passes through the G transmission path "path A", and "CH2" and "YU" pass through "path C". 4) Propagation path: "Path A" passes through the propagation path "Transport A", "Path C" passes through "Transport B" and "Transport C", and "U E" passes through "Transport D". . 5) Monitoring signal; "District A" of the monitoring signal 4 relates to "Transport A", "District B1" and "District B2" relate to "Transport B", and similarly, relations of other "District X". There is. In addition, “G
“A” is “Road A”, “GC” is “Road C”, “District A” is “YuA”, “Time B” is “YuB1”, “YuB2”,
“Time E” is related to “You E”. 6) Stations: "Station A" includes "Time A", "Time B", "Time E", "GA", "Distance A1", and "Distance B1" of the monitoring signal 4, and is located at "Distance B". Are “ward B2”, “ward D1”, “ward C
1 "," station C "includes" ward C2 "," GC "," ward A2 ", and" time C ", and" station D "includes" ward D2 ". 7) Schema: The schema is composed of “station A”, “station B”, “station C”, and “station D”. 8) 2 route lines; "Y B1" and "Y B2" are "Line B"
2 route line.
【0007】上記のデータベース定義に従い構築された
のが図7に示すデータベース構造であり、図7におい
て、大丸印はスキーマ14およびレコードオカーレンス
(10,11,15)、実線を貫く小丸印は信号伝送路
セットオカーレンス12、実線は伝送路セットオカーレ
ンス13、実線上に交差した1本棒の印はスキーマ局セ
ットオカーレンス16、実線上に交差した2本棒の印は
局信号セットオカーレンスを示し、図の上側に位置する
伝送路レコードオカーレンス11の優先順位がより高
く、下側に位置するものがより低く図示されている。The database structure shown in FIG. 7 is constructed in accordance with the above database definition. In FIG. 7, the large circles indicate the schema 14 and record occurrences (10, 11, 15), and the small circles passing through the solid lines indicate the signal. The transmission line set occurrence 12, the solid line is the transmission line set occurrence 13, the single bar crossing the solid line is the schema station set occurrence 16, and the double bar crossing the solid line is the station signal set occurrence. The transmission line record occurrence 11 located at the top of the figure has a higher priority and the one located at the bottom has a lower priority.
【0008】図8は従来装置の処理例を示すフローチャ
ートである。以下、図6において星印を記載した箇所、
即ち伝搬路2の搬Bで極めて強力なフェージングにより
当該区間のマイクロ波送受信装置の受信キャリア断が発
生し、この影響により例えば図6のハッチング部分の故
障信号4が発生してコンピュータ3に入力された場合を
例に従来装置の動作を説明する。FIG. 8 is a flowchart showing a processing example of the conventional apparatus. Hereinafter, the places marked with stars in FIG.
That is, the reception carrier of the microwave transmission / reception device in the section is cut off due to extremely strong fading on the carrier B of the propagation path 2, and a failure signal 4 in a hatched portion in FIG. The operation of the conventional apparatus will be described by taking the case as an example.
【0009】先ず、故障信号をデータベース8に写像
し、データベース8の信号レコードオカーレンス10中
の区B1,区B2,GC,回B,回E(図中のハッチン
グ部分)を得る(図8のS11)。次に、これら各信号
レコードオカーレンス10に相関する伝送路レコードオ
カーレンス11を信号伝送路セットオカーレンス12を
辿って検索し(図7中の矢印上の)、各信号レコード
オカーレンス10に対応する伝送路レコードオカーレン
ス11(搬B,路C,ユB1,ユB2,ユE)を得て
(S12)、それらを一時記憶M1に記憶する(S1
3)。First, the fault signal is mapped to the database 8 to obtain the sections B1, B2, GC, times B, times E (hatched portions in FIG. 8) in the signal record occurrences 10 of the database 8 (FIG. 8). S11). Next, a transmission line record occurrence 11 correlated with each of the signal record occurrences 10 is searched for along the signal transmission line set occurrence 12 (on the arrow in FIG. 7), and To obtain the transmission line record occurrence 11 (transportation B, path C, user B1, user B2, user E) (S12) and store them in the temporary storage M1 (S1).
3).
【0010】次に、各伝送路レコードオカーレンス11
の中で、上位階層に位置する搬Bを抽出し、一時記憶M
2に移送する(S14)。そして、レコードオカーレン
ス11の搬Bから伝送路セットオカーレンス13を下位
階層に向かって辿って(図7中矢印上の)、伝送路レ
コードオカーレンス11(路C,ユB2,線B)を検索
し(S15)、これらを一時記憶M3に移送して同じも
のを一時記憶M1から消去する(S16,S17)。ま
た、伝送路レコードオカーレンス11の線Bまで達する
と、データベースの最下位階層まで達したので(S18
でYES)、伝送路レコードオカーレンス11の搬Bま
でバックトラックし(S20)、搬Bから前回とは別の
伝送路セットオカーレンス13を辿って検索を続行し、
伝送路レコードオカーレンス11(ユE,線E)を得
る。ここでも同様に、これらを一時記憶M3に移送して
同じものを一時記憶M1から消去する。更に、伝送路レ
コードオカーレンス11の線Eでデータベース8の最下
位階層まで達しているので、伝送路レコードオカーレン
ス1の搬Bまでバックトラックし、これらの操作を、搬
Bからたどるべき伝送路セットオカーレンス13が無く
なるまで続ける(S19)。そして、全て辿ってしまっ
た場合に、一時記憶M2に記憶されている伝送路レコー
ドオカーレンス11を主原因の伝送路、一時記憶M3に
記憶されている伝送路レコードオカーレンス11を影響
された伝送路とする診断結果を出力する(S21)。ま
た、一時記憶M1に残されている伝送路レコードオカー
レンスがあれば、その他の情報として出力する。Next, each transmission line record occurrence 11
, A delivery B located at a higher hierarchical level is extracted and temporarily stored M
2 (S14). Then, the transmission line set occurrence 13 is traced from the transport B of the record occurrence 11 to the lower hierarchy (on the arrow in FIG. 7), and the transmission line record occurrence 11 (path C, U B2, line B) is traced. A search is made (S15), these are transferred to the temporary storage M3, and the same is deleted from the temporary storage M1 (S16, S17). When the line B of the transmission line record occurrence 11 is reached, the line has reached the lowest level of the database (S18).
YES), backtrack to the transport B of the transmission path record occurrence 11 (S20), and continue the search from the transport B by tracing the transmission path set occurrence 13 different from the previous time,
The transmission line record occurrence 11 (U, line E) is obtained. Here, similarly, these are transferred to the temporary storage M3 and the same is deleted from the temporary storage M1. Furthermore, since the line E of the transmission line record occurrence 11 has reached the lowest level of the database 8, the backtracking is performed to the transmission line B of the transmission line record occurrence 1, and these operations are performed on the transmission line to be traced from the transmission B. The process is continued until the set occurrence 13 disappears (S19). Then, when all of them have been traced, the transmission line record occurrence 11 stored in the temporary storage M2 is affected by the transmission line record occurrence 11 stored in the temporary storage M3. The diagnosis result for the road is output (S21). If there is a transmission line record occurrence left in the temporary storage M1, it is output as other information.
【0011】[0011]
【発明が解決しようとする課題】上述した従来技術によ
れば、監視対象設備に変更が生じても、データベースを
変更することで、診断機能の有効性を維持することが可
能である。しかし、データベース検索処理は一般に高負
荷な処理である。従来装置では、診断を行う為にそのよ
うな高負荷なデータベース検索処理を必ず実施する必要
があるため、診断処理の負荷が増大するという問題点が
あった。According to the above-mentioned prior art, even if a change occurs in the equipment to be monitored, the effectiveness of the diagnostic function can be maintained by changing the database. However, the database search process is generally a high-load process. In the conventional apparatus, such a high-load database search process must be performed in order to perform a diagnosis, and thus there is a problem that the load of the diagnosis process increases.
【0012】そこで本発明の目的は、一部の故障につい
てはデータベース検索処理を伴わずに診断結果を得るこ
とができるようにして、診断処理の負荷の増大を抑える
ことにある。SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for obtaining a diagnosis result for some failures without database search processing, thereby suppressing an increase in the load of the diagnosis processing.
【0013】[0013]
【課題を解決するための手段】本発明は上記の目的を達
成するために、通信回線網の各所で発生する故障信号に
基づいて故障診断を行う通信回線網故障診断装置におい
て、前記通信回線網の最上位階層の伝送路毎に、その伝
送路とその伝送路に対応する故障信号とその伝送路の故
障の影響を受ける下位伝送路との対応関係が予め登録さ
れた故障診断辞書と、前記通信回線網から発生した一連
の故障信号中に、前記故障診断辞書に登録された故障信
号が含まれているか否かを判定する判定手段と、該判定
手段によって含まれていると判定された故障信号に対応
して前記故障診断辞書に登録されている最上位階層の伝
送路を故障の主原因,下位伝送路をその故障の影響を受
ける伝送路とした診断結果を生成する最上位伝送路故障
診断手段とを備えている。SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a communication network fault diagnosis apparatus for performing fault diagnosis based on fault signals generated at various points in a communication network. A failure diagnosis dictionary in which the correspondence between the transmission path, the failure signal corresponding to the transmission path and the lower transmission path affected by the failure of the transmission path is registered in advance, Determining means for determining whether a series of fault signals generated from the communication network include a fault signal registered in the fault diagnosis dictionary; and a fault determined to be included by the determining means. A top-level transmission path fault that generates a diagnosis result with the top-level transmission path registered in the failure diagnosis dictionary corresponding to the signal as the main cause of the failure and the lower-level transmission path as the transmission path affected by the failure Diagnostic means There.
【0014】このように構成された本発明の通信回線網
故障診断装置にあっては、故障診断辞書が、通信回線網
の最上位階層の伝送路毎に、その伝送路とその伝送路に
対応する故障信号とその伝送路の故障の影響を受ける下
位伝送路との対応関係を予め保持しており、通信回線網
の各所で故障信号が発生すると、判定手段が、その発生
した一連の故障信号中に、故障診断辞書に登録された故
障信号が含まれているか否かを判定し、含まれていた場
合は、最上位伝送路故障診断手段が、その故障信号に対
応して故障診断辞書に登録されている最上位階層の伝送
路を故障の主原因,下位伝送路をその故障の影響を受け
る伝送路とした診断結果を生成する。[0014] In the communication network fault diagnosis apparatus of the present invention configured as described above, the fault diagnosis dictionary corresponds to the transmission path and the transmission path for each transmission path of the highest hierarchy of the communication network. The correspondence relationship between the failure signal to be generated and the lower transmission path affected by the failure of the transmission path is held in advance, and when a failure signal is generated at various points in the communication network, the determination means generates a series of generated failure signals. It is determined whether or not a failure signal registered in the failure diagnosis dictionary is included.If the failure signal is included in the failure diagnosis dictionary, the highest-level transmission path failure diagnosis means stores the failure signal in the failure diagnosis dictionary in accordance with the failure signal. A diagnostic result is generated in which the registered transmission line of the highest hierarchy is the main cause of the failure and the lower transmission line is the transmission line affected by the failure.
【0015】また本発明は上記目的を達成すると共に、
故障信号の伝搬遅延等の影響を除去し且つ比較的短い時
間で繰り返し発生する故障信号による重複した診断処理
を防止するため、通信回線網の各所で発生する故障信号
に基づいて故障診断を行う通信回線網故障診断装置にお
いて、前記通信回線網の最上位階層の伝送路毎に、その
伝送路とその伝送路に対応する故障信号とその伝送路の
故障の影響を受ける下位伝送路との対応関係が予め登録
された故障診断辞書と、前記通信回線網から発生した一
連の故障信号を一定時間の集約時間内で集約する時間集
約手段と、該時間集約手段で集約処理された一連の故障
信号中に、前記故障診断辞書に登録された故障信号が含
まれているか否かを判定する判定手段と、該判定手段に
よって含まれていると判定された故障信号に対応して前
記故障診断辞書に登録されている最上位階層の伝送路を
故障の主原因,下位伝送路をその故障の影響を受ける伝
送路とした診断結果を生成する最上位伝送路故障診断手
段とを備えている。Further, the present invention achieves the above objects,
Communication that performs fault diagnosis based on fault signals that occur at various points in a communication network in order to eliminate the effects of fault signal propagation delay and the like and to prevent redundant diagnostic processing due to fault signals that occur repeatedly in a relatively short time. In the network fault diagnosis apparatus, for each transmission line in the highest hierarchy of the communication network, the correspondence between the transmission line, a failure signal corresponding to the transmission line, and a lower transmission line affected by the failure of the transmission line. A failure diagnosis dictionary registered in advance, a time aggregation unit that aggregates a series of failure signals generated from the communication network within an aggregation time of a predetermined time, and a series of failure signals aggregated by the time aggregation unit. Determining means for determining whether or not a failure signal registered in the failure diagnosis dictionary is included; and in the failure diagnosis dictionary corresponding to the failure signal determined to be included by the determination means. The main cause of failure of the transmission line of the uppermost hierarchy is recorded, and a top-level transmission line fault diagnosis means for generating a diagnosis result the lower transmission line and a transmission line affected by the fault.
【0016】このように構成された通信回線網故障診断
装置にあっては、故障診断辞書が、通信回線網の最上位
階層の伝送路毎に、その伝送路とその伝送路に対応する
故障信号とその伝送路の故障の影響を受ける下位伝送路
との対応関係を予め保持しており、通信回線網の各所で
故障信号が発生すると、時間集約手段が、発生した一連
の故障信号を一定時間の集約時間内で集約し、判定手段
が、この集約処理された一連の故障信号中に、故障診断
辞書に登録された故障信号が含まれているか否かを判定
する。そして、故障診断辞書に登録された故障信号が含
まれている場合は、最上位伝送路故障診断手段が、その
故障信号に対応して故障診断辞書に登録されている最上
位階層の伝送路を故障の主原因,下位伝送路をその故障
の影響を受ける伝送路とした診断結果を生成する。In the communication network fault diagnosis apparatus thus constructed, the fault diagnosis dictionary stores, for each transmission path in the highest hierarchy of the communication network, a transmission path and a failure signal corresponding to the transmission path. And a lower-level transmission line affected by the failure of the transmission line in advance, and when a failure signal is generated in various parts of the communication network, the time aggregation means causes a series of generated failure signals to be generated for a certain period of time. And the determination means determines whether or not the series of failure signals subjected to the aggregation processing include failure signals registered in the failure diagnosis dictionary. Then, when the failure signal registered in the failure diagnosis dictionary is included, the highest-level transmission path failure diagnosis means determines the highest-level transmission path registered in the failure diagnosis dictionary corresponding to the failure signal. A diagnosis result is generated in which the main cause of the failure and the lower transmission line are set as transmission lines affected by the failure.
【0017】また本発明は、故障信号と伝送路との対応
関係を定義した信号伝送路セットオカーレンスと、伝送
路を任意の区間で縦割にみたときの上下の階層関係およ
び伝送路を区間に分割してみた場合の横の連絡関係を定
義した伝送路セットオカーレンスとを含むデータベース
を有し、前記通信回線網から発生した一連の故障信号中
に前記故障診断辞書に登録された故障信号が含まれてい
ないと前記判定手段で判定されたとき、故障信号から前
記信号伝送路セットオカーレンスを検索して故障信号に
対応する伝送路を判定し、更にこの判定結果から前記伝
送路セットオカーレンスを検索して診断結果を生成する
データベース検索による故障診断手段を備えている。Further, the present invention provides a signal transmission line set occurrence which defines a correspondence relationship between a fault signal and a transmission line, and a hierarchical relationship above and below the transmission line when a transmission line is vertically divided into arbitrary sections and a transmission line. And a transmission path set occurrence that defines a horizontal communication relationship in the case of dividing into a plurality of failure signals, and a failure signal registered in the failure diagnosis dictionary in a series of failure signals generated from the communication network. Is not included, the signal transmission path set occurrence is searched for from the failure signal to determine the transmission path corresponding to the failure signal, and further the transmission path set occurrence is determined from the determination result. Fault diagnosis means for searching a reference and generating a diagnosis result by a database search.
【0018】[0018]
【発明の実施の形態】次に本発明の実施の形態の例につ
いて図面を参照して詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings.
【0019】図1は本発明の一実施例のブロック図であ
る。本実施例の通信回線網故障診断装置100は、通信
回線網の各被監視局1から送られてくる故障信号4を受
信して解析し、故障の主原因となる伝送路等の診断結果
を出力するもので、時間集約手段101,故障診断辞書
102,判定手段103,最上位伝送路故障診断手段1
04,データベース検索による故障診断手段105およ
び出力手段106を備えている。FIG. 1 is a block diagram of one embodiment of the present invention. The communication network fault diagnosis apparatus 100 of the present embodiment receives and analyzes a fault signal 4 transmitted from each monitored station 1 of the communication network, and analyzes a diagnosis result of a transmission path or the like which is a main cause of the fault. The time aggregation means 101, the failure diagnosis dictionary 102, the determination means 103, the highest-order transmission path failure diagnosis means 1
04, a failure diagnosis means 105 by database search and an output means 106 are provided.
【0020】このような通信回線網故障診断装置100
はコンピュータと記録媒体200とで実現することがで
きる。即ち、記録媒体200はCD−ROM,磁気ディ
スク,半導体メモリ等の機械読み取り可能な記録媒体で
あり、ここに記録された通信回線網故障診断用のプログ
ラムは通信回線網故障診断装置100を構成するコンピ
ュータに読み取られ、そのコンピュータの動作を制御す
ることにより、そのコンピュータ上に図1に示される時
間集約手段101,故障診断辞書102,判定手段10
3,最上位伝送路故障診断手段104,データベース検
索による故障診断手段105および出力手段106を実
現する。Such a communication line network fault diagnosis apparatus 100
Can be realized by the computer and the recording medium 200. That is, the recording medium 200 is a machine-readable recording medium such as a CD-ROM, a magnetic disk, and a semiconductor memory, and the program for diagnosing the communication network failure recorded therein constitutes the communication network failure diagnosis apparatus 100. By being read by the computer and controlling the operation of the computer, the time aggregation unit 101, the failure diagnosis dictionary 102, and the determination unit 10 shown in FIG.
Third, the highest-order transmission path failure diagnosis means 104, the failure diagnosis means 105 by database search, and the output means 106 are realized.
【0021】時間集約手段101は、或る一定時間の集
約時間を設け、各被監視局1から送出される故障信号4
をその集約時間内で集約する手段である。図2に時間集
約手段101の動作説明図を示す。同図のaの箇所およ
びbの箇所に示すように、通信回線網の何れかで故障が
発生すると、該当する被監視局1からの故障信号4が正
常から故障発生に状態が変化する。このとき、伝送路は
階層的に構成されており、上位の伝送路に故障が生じる
と、その下位伝送路に影響故障がでるため、その下位伝
送路に該当する被監視局1からの故障信号4も変化す
る。但し、各被監視局1から通信回線網故障診断装置1
00までの伝搬遅延量の相違等の要因により、複数の故
障信号4が同時に状態変化するとは限らず、図2のaの
部分に示すように状態変化のタイミングが多少ずれるこ
とがある。また、図2のbに示すようにフェージング等
により比較的短い時間間隔で故障信号4が故障状態,復
旧状態を繰り返す場合がある。The time aggregating means 101 provides an aggregating time of a certain time, and outputs the failure signal 4 sent from each monitored station 1.
Are aggregated within the aggregation time. FIG. 2 is a diagram for explaining the operation of the time aggregation means 101. As shown at points a and b in FIG. 3, when a failure occurs in any of the communication network, the state of the failure signal 4 from the corresponding monitored station 1 changes from normal to failure occurrence. At this time, the transmission paths are configured in a hierarchical manner, and if a failure occurs in an upper transmission path, an influence failure occurs in the lower transmission path. Therefore, a failure signal from the monitored station 1 corresponding to the lower transmission path. 4 also changes. However, each monitored station 1 sends a communication network fault diagnosis device 1
Due to factors such as the difference in propagation delay up to 00, the state of the plurality of fault signals 4 does not always change at the same time, and the timing of the state change may be slightly shifted as shown in part a of FIG. Further, as shown in FIG. 2B, the failure signal 4 may repeat the failure state and the recovery state at relatively short time intervals due to fading or the like.
【0022】時間集約手段101は、全ての故障信号4
が正常状態を示している状況において、何れかの故障信
号4が正常から故障発生に状態変化すると、その時点か
ら一定時間の集約時間を設定してその集約時間内におけ
る故障信号の状態変化を監視し、集約処理した一連の故
障信号を判定手段103に伝達する。ここで、状態変化
の集約は個々の故障信号4毎に行われ、その一定時間内
で1度でも故障状態を示した故障信号は「故障発生」と
判断し、この判断結果を上記一定時間経過時点で一括し
て判定手段103に伝達する。これにより、図2のaの
箇所のように一連の故障信号4の状態変化のタイミング
がずれていてもその状態変化タイミングを揃えることが
でき、また図2のbの箇所のように比較的短い時間間隔
で故障信号4が故障状態,復旧状態を繰り返す場合で
も、それらを1つの故障として処理することができる。The time aggregating means 101 outputs all fault signals 4
If any of the fault signals 4 changes from normal to fault occurrence in a status indicating that the fault signal is normal, an aggregation time is set for a certain time from that point and the change in the status of the failure signal within the aggregation time is monitored. Then, a series of failure signals subjected to the aggregation processing are transmitted to the determination unit 103. Here, the state change is aggregated for each failure signal 4, and a failure signal indicating a failure state at least once within a certain period of time is determined as "failure occurred". At this point, the information is transmitted to the determination means 103 in a lump. Thereby, even if the timing of the state change of the series of failure signals 4 is shifted as shown in FIG. 2A, the state change timing can be made uniform, and a relatively short state as shown in FIG. 2B. Even when the failure signal 4 repeats the failure state and the recovery state at time intervals, they can be processed as one failure.
【0023】故障診断辞書102は、通信回線網の最上
位階層の伝送路毎に、その伝送路とその伝送路に対応す
る故障信号とその伝送路の故障の影響を受ける下位伝送
路との対応関係を予め登録してある辞書である。例えば
通信回線網が図6で示したものである場合、最上位階層
の伝送路は搬A,搬B,搬C,搬Dであるため、搬A〜
D毎について上述の情報が事前に登録されている。ここ
で、例えば搬Bについて考えると、搬Bに対応する故障
信号は図6の場合「区 B1」と「区 B2」の2つあ
り、搬Bが故障するとその影響を受ける下位伝送路は、
「路C」,「ユE」等、事前に予測できるので、搬Bに
関して図3に例示するような情報が事前に登録されてい
る。他の搬A,C,Dについても同様な情報が登録され
ている。The failure diagnosis dictionary 102 stores, for each transmission line in the highest hierarchy of the communication network, a correspondence between the transmission line, a failure signal corresponding to the transmission line, and a lower transmission line affected by the failure of the transmission line. This is a dictionary in which relationships are registered in advance. For example, when the communication network is the one shown in FIG. 6, the transmission paths of the highest hierarchy are transport A, transport B, transport C, and transport D.
The above information is registered in advance for each D. Here, for example, when the transport B is considered, there are two failure signals corresponding to the transport B in the case of FIG. 6, “ward B1” and “ward B2”.
Since information such as “Route C” and “You E” can be predicted in advance, information as exemplified in FIG. Similar information is registered for the other deliveries A, C, and D.
【0024】判定手段103は、時間集約手段101か
ら伝達された一連の故障信号中に、故障診断辞書102
に登録された故障信号が含まれているか否かを判定し、
含まれている場合には、含まれていた故障信号を渡して
最上位伝送路故障診断手段104を起動し、含まれてい
ない場合は、時間集約手段101から伝達された一連の
故障信号を渡してデータベース検索による故障診断手段
105を起動する手段である。The determination means 103 includes a failure diagnosis dictionary 102 in a series of failure signals transmitted from the time aggregation means 101.
It is determined whether the failure signal registered in is included,
If it is included, it passes the included fault signal to activate the top-level transmission path fault diagnostic means 104, and if it is not included, it passes a series of fault signals transmitted from the time aggregation means 101. To activate the failure diagnosis means 105 by database search.
【0025】最上位伝送路故障診断手段104は、判定
手段103から渡された故障信号に対応する最上位階層
の伝送路およびその伝送路の故障の影響を受ける下位伝
送路を故障診断辞書102から検索し、この検索した最
上位階層の伝送路を故障の主原因となる伝送路,検索し
た下位伝送路をその故障の影響を受ける伝送路とした診
断結果を生成する手段である。The highest-level transmission path fault diagnosis means 104 determines the highest-level transmission path corresponding to the fault signal passed from the determination means 103 and the lower-level transmission paths affected by the fault of the transmission path from the fault diagnosis dictionary 102. This is a means for generating a diagnosis result in which the searched transmission line of the highest hierarchy is regarded as a transmission line which is a main cause of the failure, and the searched lower transmission line is regarded as a transmission line affected by the failure.
【0026】データベース検索による故障診断手段10
5は、従来技術の項で述べたデータベースを利用した既
存の故障診断手段である。この故障診断手段105は前
述した特開昭61−288648号公報に記載された技
術を利用することができる。Failure diagnosis means 10 by database search
Reference numeral 5 denotes an existing fault diagnosis unit using the database described in the section of the prior art. This failure diagnosis means 105 can use the technology described in the above-mentioned Japanese Patent Application Laid-Open No. 61-288648.
【0027】出力手段106は、最上位伝送路故障診断
手段104またはデータベース検索による故障診断手段
105で生成された診断結果を、図示しない表示装置や
印刷装置やファイル装置等の出力装置に出力する手段で
ある。The output unit 106 outputs the diagnosis result generated by the top-level transmission path failure diagnosis unit 104 or the failure diagnosis unit 105 based on a database search to an output device (not shown) such as a display device, a printing device, or a file device. It is.
【0028】図4は通信回線網故障診断装置100の処
理の流れを示すフローチャートである。以下、各図を参
照して本実施例の動作を説明する。FIG. 4 is a flowchart showing the processing flow of the communication network fault diagnosis apparatus 100. Hereinafter, the operation of this embodiment will be described with reference to the drawings.
【0029】時間集約手段101は、通信回線網の被監
視局1からの何れかの故障信号4が正常から故障発生に
状態変化すると、その時点から一定時間の集約時間を設
定してその集約時間内における故障信号の状態変化を集
約し、集約処理した一連の故障信号を判定手段103に
伝達する(図4のS1)。When any one of the failure signals 4 from the monitored station 1 of the communication network changes from a normal state to a failure state, the time aggregation means 101 sets an aggregation time of a certain time from that time and sets the aggregation time. The state change of the failure signal within the group is aggregated, and a series of aggregated failure signals is transmitted to the determination unit 103 (S1 in FIG. 4).
【0030】判定手段103は、時間集約手段101か
ら伝達された一連の故障信号中に、故障診断辞書102
に登録されている最上位階層の伝送路に対応する故障信
号が含まれているか否かを判定する(図4のS2)。そ
して、最上位階層の伝送路に対応する故障信号が含まれ
ていたときは、その故障信号を通知して最上位伝送路故
障診断手段104を起動し、反対にそのような故障信号
が含まれていないときは、時間集約手段101から伝達
された一連の故障信号を通知してデータベース検索によ
る故障診断手段105を起動する。The judging means 103 includes, in the series of fault signals transmitted from the time aggregating means 101,
It is determined whether or not a failure signal corresponding to the transmission path of the highest hierarchy registered in is registered (S2 in FIG. 4). Then, when a failure signal corresponding to the transmission path of the highest hierarchy is included, the failure signal is notified to activate the highest transmission path failure diagnosis means 104, and conversely, such a failure signal is included. If not, a series of failure signals transmitted from the time aggregation means 101 are notified to activate the failure diagnosis means 105 by database search.
【0031】最上位伝送路故障診断手段104は起動さ
れると、通知された故障信号をキーに故障診断辞書10
2を検索し、その故障信号に対応して登録されている最
上位伝送路を故障の主原因である伝送路、その故障信号
に対応して登録されている下位伝送路をその故障の影響
を受ける伝送路とした診断結果を生成し、出力手段10
6に出力する(図4のS3)。データベース検索を伴わ
ないので、この処理は軽負荷で実行可能である。When activated, the highest-order transmission line fault diagnosis means 104 starts the fault diagnosis dictionary 10 by using the notified fault signal as a key.
2 is searched, and the highest-order transmission path registered corresponding to the failure signal is determined as the main transmission path of the failure, and the lower transmission path registered corresponding to the failure signal is determined as the influence of the failure. A diagnostic result as a transmission path to be received is generated and output means 10
6 (S3 in FIG. 4). Since no database search is involved, this processing can be executed with a light load.
【0032】他方、データベース検索による故障診断手
段105は起動されると、従来の技術の項で説明したよ
うにデータベース検索処理を行って診断結果を生成し、
出力手段106に出力する(図4のS4)。On the other hand, when the failure diagnosing means 105 based on the database search is activated, it performs a database search process to generate a diagnosis result as described in the section of the prior art, and
Output to the output means 106 (S4 in FIG. 4).
【0033】出力手段106は、最上位伝送路故障診断
手段104またはデータベース検索による故障診断手段
105から出力された診断結果を図示しない出力装置に
出力する(図4のS5)。The output means 106 outputs a diagnosis result output from the highest-order transmission path failure diagnosis means 104 or the failure diagnosis means 105 by database search to an output device (not shown) (S5 in FIG. 4).
【0034】従って、図6中に星印で示されるように搬
Bで故障が発生し、図6に示される「区B1」,「区B
2」を含む一連の故障信号が故障発生に状態変化した場
合、図3の故障診断辞書に登録された「区B1」,「区
B2」が含まれているため、データベース検索によらず
故障診断辞書を使った故障診断が行われ、その結果、搬
Bを主原因伝送路,路C,ユE等を影響伝送路とする診
断結果が出力されることになる。Accordingly, as shown by the star in FIG. 6, a failure occurs in the transport B, and the “ward B1” and the “ward B” shown in FIG.
When the state of a series of failure signals including "2" changes to "occurrence of failure", "diagnosis B1" and "division B2" registered in the failure diagnosis dictionary of FIG. Failure diagnosis is performed using the dictionary, and as a result, a diagnosis result is output with the transport B as the main cause transmission path and the paths C, E and the like as the affected transmission paths.
【0035】なお、診断結果に含まれる影響伝送路の利
用方法としては、故障信号が出ている下位伝送路のう
ち、診断結果で影響伝送路と判断された伝送路をマスク
し、本当の故障でないとシステム管理者等に通知する利
用方法がある。The method of using the affected transmission line included in the diagnosis result is to mask the transmission line determined as the affected transmission line in the diagnosis result among the lower transmission lines from which the failure signal is output, and Otherwise, there is a usage method that notifies the system administrator or the like.
【0036】[0036]
【発明の効果】以上説明したように本発明によれば以下
のような効果を得ることができる。As described above, according to the present invention, the following effects can be obtained.
【0037】最上位階層の伝送路の故障についてはデー
タベース検索処理を伴わずに診断結果を得ることがで
き、その分、診断処理の負荷の増大を抑えることができ
る。その理由は、通信回線網の最上位階層の伝送路毎
に、その伝送路とその伝送路に対応する故障信号とその
伝送路の故障の影響を受ける下位伝送路との対応関係を
予め故障診断辞書に登録してあり、通信回線網の各所で
発生した一連の故障信号中に、故障診断辞書に登録され
た故障信号が含まれている場合は、最上位伝送路故障診
断手段が、その故障信号に対応して故障診断辞書に登録
されている最上位階層の伝送路を故障の主原因,下位伝
送路をその故障の影響を受ける伝送路とした診断結果を
生成するからである。For a failure in the transmission line of the highest hierarchy, a diagnosis result can be obtained without database search processing, and an increase in the load of the diagnosis processing can be suppressed accordingly. The reason is that, for each transmission line in the highest layer of the communication network, the correspondence between the transmission line, the failure signal corresponding to the transmission line, and the lower transmission line affected by the failure of the transmission line is diagnosed in advance. If a series of fault signals registered in the dictionary and included in the fault diagnosis dictionary are included in a series of fault signals generated at various points in the communication network, the highest-level transmission path fault diagnosis means will detect the fault. This is because a diagnosis result is generated in which the transmission path of the highest hierarchy registered in the failure diagnosis dictionary corresponding to the signal is the main cause of the failure and the lower transmission path is the transmission path affected by the failure.
【0038】故障信号の伝搬遅延等の影響が除去でき、
また比較的短い時間で繰り返し発生する故障信号による
重複した診断処理を防止することができる。その理由
は、通信回線網の各所で発生した一連の故障信号を時間
集約手段において時間的に集約するからである。The influence of the propagation delay of the fault signal can be eliminated.
Further, it is possible to prevent a redundant diagnosis process due to a failure signal repeatedly generated in a relatively short time. The reason is that a series of failure signals generated in various parts of the communication network are temporally aggregated by the time aggregation means.
【図1】本発明の一実施例のブロック図である。FIG. 1 is a block diagram of one embodiment of the present invention.
【図2】時間集約手段の動作説明図である。FIG. 2 is an explanatory diagram of an operation of a time aggregation unit.
【図3】故障診断辞書の内容説明図である。FIG. 3 is an explanatory diagram of the contents of a failure diagnosis dictionary.
【図4】通信回線網故障診断装置の処理の流れを示すフ
ローチャートである。FIG. 4 is a flowchart showing a processing flow of the communication line network fault diagnosis device.
【図5】従来装置のブロック図である。FIG. 5 is a block diagram of a conventional device.
【図6】診断対象となる通信回線網の一例を示す図であ
る。FIG. 6 is a diagram illustrating an example of a communication network to be diagnosed.
【図7】図6の通信回線網の構造を反映したデータベー
スのデータ構造の一例を示す図である。FIG. 7 is a diagram showing an example of a data structure of a database reflecting the structure of the communication network of FIG. 6;
【図8】従来装置の処理例を示すフローチャートであ
る。FIG. 8 is a flowchart illustrating a processing example of a conventional device.
1…被監視局 2…伝搬路 4…故障信号 100…通信回線網故障診断装置(コンピュータ) 101…時間集約手段 102…故障診断辞書 103…判定手段 104…最上位伝送路故障診断手段 105…データベース検索による故障診断手段 106…出力手段 200…記録媒体 DESCRIPTION OF SYMBOLS 1 ... Monitored station 2 ... Propagation path 4 ... Failure signal 100 ... Communication line network failure diagnosis apparatus (computer) 101 ... Time aggregation means 102 ... Failure diagnosis dictionary 103 ... Judgment means 104 ... Top-level transmission path failure diagnosis means 105 ... Database Failure diagnosis means by search 106 ... output means 200 ... recording medium
Claims (4)
基づいて故障診断を行う通信回線網故障診断装置におい
て、 前記通信回線網の最上位階層の伝送路毎に、その伝送路
とその伝送路に対応する故障信号とその伝送路の故障の
影響を受ける下位伝送路との対応関係が予め登録された
故障診断辞書と、 前記通信回線網から発生した一連の故障信号中に、前記
故障診断辞書に登録された故障信号が含まれているか否
かを判定する判定手段と、 該判定手段によって含まれていると判定された故障信号
に対応して前記故障診断辞書に登録されている最上位階
層の伝送路を故障の主原因,下位伝送路をその故障の影
響を受ける伝送路とした診断結果を生成する最上位伝送
路故障診断手段とを備えることを特徴とする通信回線網
故障診断装置。An apparatus for diagnosing a failure in a communication network based on a failure signal generated in each part of the communication network, comprising: A fault diagnosis dictionary in which the correspondence between the fault signal corresponding to the path and the lower transmission path affected by the fault of the transmission path is registered in advance, and the fault diagnosis is performed in a series of fault signals generated from the communication network. Determining means for determining whether or not the failure signal registered in the dictionary is included; and the highest level registered in the failure diagnosis dictionary corresponding to the failure signal determined to be included by the determination means A communication line network fault diagnosis device, comprising: a highest level transmission line fault diagnosis means for generating a diagnosis result in which a transmission line in a hierarchy is a main cause of a fault and a lower transmission line is a transmission line affected by the fault. .
基づいて故障診断を行う通信回線網故障診断装置におい
て、 前記通信回線網の最上位階層の伝送路毎に、その伝送路
とその伝送路に対応する故障信号とその伝送路の故障の
影響を受ける下位伝送路との対応関係が予め登録された
故障診断辞書と、 前記通信回線網から発生した一連の故障信号を一定時間
の集約時間内で集約する時間集約手段と、 該時間集約手段で集約処理された一連の故障信号中に、
前記故障診断辞書に登録された故障信号が含まれている
か否かを判定する判定手段と、 該判定手段によって含まれていると判定された故障信号
に対応して前記故障診断辞書に登録されている最上位階
層の伝送路を故障の主原因,下位伝送路をその故障の影
響を受ける伝送路とした診断結果を生成する最上位伝送
路故障診断手段とを備えることを特徴とする通信回線網
故障診断装置。2. A communication network fault diagnosis apparatus for performing a fault diagnosis based on a fault signal generated at various points in a communication network, comprising: A fault diagnosis dictionary in which the correspondence between the fault signal corresponding to the path and the lower transmission path affected by the fault in the transmission path is registered in advance, and a series of fault signals generated from the communication line network are collected for a certain period of time. Within a series of failure signals aggregated by the time aggregation means,
Determining means for determining whether a failure signal registered in the failure diagnosis dictionary is included; and registering in the failure diagnosis dictionary corresponding to the failure signal determined to be included by the determination means. A communication line network for generating a diagnosis result in which a transmission line of the highest hierarchy is a main cause of the failure and a lower transmission line is a transmission line affected by the failure. Failure diagnosis device.
た信号伝送路セットオカーレンスと、伝送路を任意の区
間で縦割にみたときの上下の階層関係および伝送路を区
間に分割してみた場合の横の連絡関係を定義した伝送路
セットオカーレンスとを含むデータベースを有し、前記
通信回線網から発生した一連の故障信号中に前記故障診
断辞書に登録された故障信号が含まれていないと前記判
定手段で判定されたとき、故障信号から前記信号伝送路
セットオカーレンスを検索して故障信号に対応する伝送
路を判定し、更にこの判定結果から前記伝送路セットオ
カーレンスを検索して診断結果を生成するデータベース
検索による故障診断手段を備えることを特徴とする請求
項1または2記載の通信回線網故障診断装置。3. A signal transmission line set occurrence that defines a correspondence between a failure signal and a transmission line, a hierarchical relationship between the upper and lower hierarchies when the transmission line is vertically divided into arbitrary sections, and the transmission path is divided into sections. And a transmission path set occurrence that defines a horizontal communication relationship in the case where the communication path network includes a failure signal registered in the failure diagnosis dictionary in a series of failure signals generated from the communication line network. When it is determined by the determination means that there is no transmission path set occurrence from the failure signal, the transmission path corresponding to the failure signal is determined, and further, the transmission path set occurrence is searched from the determination result. 3. The communication network fault diagnosis apparatus according to claim 1, further comprising a fault diagnosis unit that searches a database to generate a diagnosis result.
基づいて故障診断を行う通信回線網故障診断装置を構成
するコンピュータを、 前記通信回線網の最上位階層の伝送路毎に、その伝送路
とその伝送路に対応する故障信号とその伝送路の故障の
影響を受ける下位伝送路との対応関係が予め登録された
故障診断辞書、 前記通信回線網から発生した一連の故障信号を一定時間
の集約時間内で集約する時間集約手段、 該時間集約手段で集約処理された一連の故障信号中に、
前記故障診断辞書に登録された故障信号が含まれている
か否かを判定する判定手段、 該判定手段によって含まれていると判定された故障信号
に対応して前記故障診断辞書に登録されている最上位階
層の伝送路を故障の主原因,下位伝送路をその故障の影
響を受ける伝送路とした診断結果を生成する最上位伝送
路故障診断手段、 として機能させるプログラムを記録した機械読み取り可
能な記録媒体。4. A computer constituting a communication network fault diagnosis apparatus for performing a fault diagnosis based on a fault signal generated at various points in a communication network, wherein the computer is provided for each transmission line of the highest hierarchy of the communication network. A fault diagnosis dictionary in which the correspondence between the fault signal corresponding to the transmission path and the transmission path and the lower transmission path affected by the failure of the transmission path is registered in advance, and a series of failure signals generated from the communication network are stored for a predetermined time. Time aggregating means for aggregating within the aggregating time of
Determining means for determining whether a failure signal registered in the failure diagnosis dictionary is included; registered in the failure diagnosis dictionary corresponding to the failure signal determined to be included by the determination means A machine readable recording of a program for functioning as a transmission line failure diagnosis means for generating a diagnosis result in which a transmission line of the highest hierarchy is a main cause of a failure and a lower transmission line is a transmission line affected by the failure. recoding media.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9337855A JPH11154949A (en) | 1997-11-21 | 1997-11-21 | Communication channel network fault diagnostic device and recording medium storing program readable by machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9337855A JPH11154949A (en) | 1997-11-21 | 1997-11-21 | Communication channel network fault diagnostic device and recording medium storing program readable by machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11154949A true JPH11154949A (en) | 1999-06-08 |
Family
ID=18312624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9337855A Pending JPH11154949A (en) | 1997-11-21 | 1997-11-21 | Communication channel network fault diagnostic device and recording medium storing program readable by machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11154949A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004112177A (en) * | 2002-09-17 | 2004-04-08 | Fujitsu Ltd | Supervisory control system for communication system |
CN112653577A (en) * | 2020-12-14 | 2021-04-13 | 武汉绿色网络信息服务有限责任公司 | Network element management method, device and storage medium |
-
1997
- 1997-11-21 JP JP9337855A patent/JPH11154949A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004112177A (en) * | 2002-09-17 | 2004-04-08 | Fujitsu Ltd | Supervisory control system for communication system |
CN112653577A (en) * | 2020-12-14 | 2021-04-13 | 武汉绿色网络信息服务有限责任公司 | Network element management method, device and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5734697A (en) | Method and apparatus for improving telecommunications system performance | |
US6434616B2 (en) | Method for monitoring abnormal behavior in a computer system | |
US7483928B2 (en) | Storage operation management program and method and a storage management computer | |
US5771274A (en) | Topology-based fault analysis in telecommunications networks | |
CN107219997A (en) | A kind of method and device for being used to verify data consistency | |
CN106407083A (en) | Fault detection method and device | |
US20070226222A1 (en) | Computer-readable recording medium having recorded system development support program, system development support apparatus, and system development support method | |
US5500944A (en) | Fault indication system in a centralized monitoring system | |
CN117118506A (en) | OTDR data analysis diagnosis method and device, electronic equipment and storage medium | |
CN110012490A (en) | Alarm method, device, operation and maintenance center and computer readable storage medium | |
JPH11154949A (en) | Communication channel network fault diagnostic device and recording medium storing program readable by machine | |
US6615087B2 (en) | Supervisory control apparatus | |
CN108173711A (en) | Enterprises system data exchange monitoring method | |
US6938187B2 (en) | Tandem connection monitoring | |
CN100389565C (en) | Analytic method of expression type | |
JPH03265325A (en) | Fault deciding device | |
JPH053475A (en) | Path retrieval system | |
JPS61288648A (en) | Line supervisory system using data base | |
JPH0648791B2 (en) | Device for collecting monitoring information in transmission device | |
Karsoum et al. | Using timed sequential patterns in the transportation industry | |
JP4952635B2 (en) | Information processing apparatus and log collection program thereof | |
JPH04220834A (en) | Control system for priority control buffer in atm switch | |
CN101272218A (en) | Method for recording communication terminal diagnosis data | |
JP2826774B2 (en) | Data transfer device | |
CN117472654A (en) | Disaster recovery method, equipment and storage medium for data cloud storage |