JPH11153544A - Gas analyzer - Google Patents

Gas analyzer

Info

Publication number
JPH11153544A
JPH11153544A JP32087997A JP32087997A JPH11153544A JP H11153544 A JPH11153544 A JP H11153544A JP 32087997 A JP32087997 A JP 32087997A JP 32087997 A JP32087997 A JP 32087997A JP H11153544 A JPH11153544 A JP H11153544A
Authority
JP
Japan
Prior art keywords
gas
measured
reaction tank
reaction
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32087997A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Nakajima
和義 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP32087997A priority Critical patent/JPH11153544A/en
Publication of JPH11153544A publication Critical patent/JPH11153544A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a luminous type gas analyzer which simultaneously measure a substituted gas to be measured, and an unsubstituted gas obtained by displacing the nitrogen dioxides (NO2 ) of the gas to be measured with nitrogen oxides (NO), and makes the calibration of a detector unnecessary. SOLUTION: A gas to be measured in a first passage 2a which passes a converter 3 is led into a first reaction tank 4a, and a gas to be measured in a second passage 2b which does not pass the converter 3 is led into a second reaction tank 4b. Lights emitted by reaction with ozone (O3 ) in individual reaction tanks 4a, 4b are collected into a detector 8 by a condensing lens 5. Luminous intensities from individual reaction tanks 4a, 4b are inputted interchangeably by an optical chopper 6 put between the detector 8 and both reaction tanks 4a, 4b, and a nitrogen dioxide (NO2 ) concentration is found from the difference between both luminous intensities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ボイラーの煙道排
ガスや自動車排ガス等に含まれる窒素酸化物の濃度を測
定する化学発光式のガス分析計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemiluminescent gas analyzer for measuring the concentration of nitrogen oxides contained in flue gas from a boiler, exhaust gas from a motor vehicle and the like.

【0002】[0002]

【従来の技術】工場の燃焼炉における燃焼や自動車のエ
ンジン内における燃焼などにより生じる人体に有害な窒
素酸化物(NOX )が問題となっているが、この大気中
や排気ガス中の窒素酸化物の濃度を測定する装置の一つ
に化学発光式のガス分析計がある。これは被測定ガス
(大気から採取したサンプル、排ガスなど)とオゾン
(O3 )ガスとを測定装置の反応槽内で接触させ、被測
定ガスの一酸化窒素(NO)とオゾンが化学反応を起こ
す際に発生する光を光検出器で検出することにより、被
測定ガス中の一酸化窒素の含有量を定量測定するもので
ある。
Although BACKGROUND ART Plant harmful nitrogen oxides to the human body caused by such combustion in combustion and in automotive engine in the combustion furnace (NO X) becomes a problem, NOx in the atmosphere or exhaust gas One of the devices for measuring the concentration of substances is a chemiluminescent gas analyzer. In this method, a gas to be measured (sample, exhaust gas, etc. collected from the atmosphere) and an ozone (O 3 ) gas are brought into contact with each other in a reaction tank of a measuring device. The amount of nitric oxide in the gas to be measured is quantitatively measured by detecting light generated when the light is generated by a photodetector.

【0003】またこのガス分析計ではアンモニア(NH
3 )や二酸化窒素(NO2 )についてもこれらを別の反
応槽において予め一酸化窒素に変換しておくことにより
濃度測定を行うことができる。
In this gas analyzer, ammonia (NH
Concentration measurement can also be performed on 3 ) and nitrogen dioxide (NO 2 ) by previously converting them into nitric oxide in another reaction tank.

【0004】図2および図3に従来の化学発光式のガス
分析計の反応部付近略図を示す。図2において試料入り
口からポンプ1によって採取された被測定ガスは、2つ
の流路2aと2bに分かれ、一方の流路2aではコンバ
ータ3において被測定ガスに紫外線を照射して光分解を
おこなわせ被測定ガス成分中の二酸化窒素(NO2 )が
一酸化窒素(NO)に変換されて第一反応槽4aに供給
される。他方の流路2bではそのまま第二反応槽4bに
供給される。第一、第二反応槽4a、4bにはそれぞれ
オゾンガスが供給されており、測定ガス中の一酸化窒素
(NO)とオゾンとの化学反応が生じる。そして、それ
ぞれの反応槽4a、4bで化学反応により生じた光の発
光量が第一検出器8aおよび第二検出器8bでそれぞれ
測定される。
FIGS. 2 and 3 are schematic views showing the vicinity of a reaction section of a conventional chemiluminescence type gas analyzer. In FIG. 2, the gas to be measured collected by the pump 1 from the sample inlet is divided into two flow paths 2a and 2b. In one of the flow paths 2a, the gas to be measured is irradiated with ultraviolet rays in the converter 3 to perform photolysis. Nitrogen dioxide (NO 2 ) in the gas component to be measured is converted into nitric oxide (NO) and supplied to the first reaction tank 4a. In the other flow path 2b, it is supplied to the second reaction tank 4b as it is. Ozone gas is supplied to each of the first and second reaction tanks 4a and 4b, and a chemical reaction between nitrogen monoxide (NO) and ozone in the measurement gas occurs. Then, the amount of light emitted by the chemical reaction in each of the reaction tanks 4a and 4b is measured by the first detector 8a and the second detector 8b, respectively.

【0005】ここで、反応槽において二酸化窒素(NO
2 )はオゾンと反応せず、一酸化窒素(NO)のみがオ
ゾンと反応するため第一検出器4aおよび第二検出器4
bでの測定値の差から被測定ガス中の二酸化窒素(NO
2 )の濃度が計測される。
[0005] Here, nitrogen dioxide (NO
2 ) does not react with ozone and only nitric oxide (NO) reacts with ozone, so that the first detector 4a and the second detector 4
b, the nitrogen dioxide (NO
2 ) The concentration is measured.

【0006】図3は他の従来例を示す。図2と異なるの
はオゾンとの反応を行わせる反応槽4と反応によって生
じた発光量を測定する検出器8がそれぞれ1個で計測し
ているところである。図3の装置では試料入口からポン
プ1によって採取された被測定ガスの流路はコンバータ
3を有する流路2aとコンバータ3を通らない流路2b
とに分岐され、これらの流路2a、2bは反応槽4に入
る前に三方コック9に接続される。最初に流路2aのコ
ンバータ3を通った被測定ガスを反応槽4へ導入するよ
うに、三方コック9をセットして反応槽4で生じる発光
量を検出器8で測定し、次に流路2bのコンバータ3を
通らない被測定ガスを反応槽4へ導入するように三方コ
ック9を切り替えて反応槽4で生じる発光量を検出器8
で測定する。これによって両測定値の差から被測定ガス
中の二酸化窒素(NO2 )の濃度が計測される。
FIG. 3 shows another conventional example. What is different from FIG. 2 is that the reaction tank 4 for performing the reaction with ozone and the detector 8 for measuring the amount of luminescence generated by the reaction are each measured by one. In the apparatus shown in FIG. 3, the flow path of the gas to be measured collected from the sample inlet by the pump 1 is a flow path 2a having the converter 3 and a flow path 2b not passing through the converter 3.
These flow paths 2 a and 2 b are connected to a three-way cock 9 before entering the reaction tank 4. First, the three-way cock 9 is set so that the gas to be measured that has passed through the converter 3 in the flow path 2a is introduced into the reaction tank 4, and the amount of luminescence generated in the reaction tank 4 is measured by the detector 8, and then the flow path is measured. The three-way cock 9 is switched so that the gas to be measured that does not pass through the converter 3 of 2b is introduced into the reaction tank 4, and the amount of light emitted in the reaction tank 4 is detected by the detector 8.
Measure with As a result, the concentration of nitrogen dioxide (NO 2 ) in the gas to be measured is measured from the difference between the two measured values.

【0007】[0007]

【発明が解決しようとする課題】従来の化学発光式のガ
ス分析計は以上のように構成されているが、図2に示す
ような第一、第二反応槽4a、4bの2個の反応槽を用
い、かつ各々に第一、第二検出器8a、8bを対応させ
て設置するガス分析計では、この2個の検出器8a、8
bの検出特性が完全に一致していることが前提となる
が、検出器の特性を一致させることは困難である。従っ
て、2個の検出器8a、8bの検出特性が一致するよう
に検出特性を校正するという面倒な作業が必要となる問
題があった。さらに、校正を行ったとしても温度、湿度
等の周囲環境の変動により第一、第二検出器8a、8b
それぞれの検出特性が別個に変動した場合には二酸化窒
素(NO2 )の測定精度に多大な悪影響が生じるという
問題があった。
The conventional chemiluminescence type gas analyzer is constructed as described above. However, as shown in FIG. 2, two reaction tanks 4a and 4b in the first and second reaction tanks 4a and 4b are used. In a gas analyzer using a tank and installing the first and second detectors 8a and 8b in correspondence with each other, these two detectors 8a and 8b are used.
It is assumed that the detection characteristics of b completely match, but it is difficult to match the characteristics of the detectors. Therefore, there is a problem that a troublesome operation of calibrating the detection characteristics so that the detection characteristics of the two detectors 8a and 8b match is required. Furthermore, even if the calibration is performed, the first and second detectors 8a, 8b
If the respective detection characteristics fluctuate independently, there is a problem that the measurement accuracy of nitrogen dioxide (NO 2 ) is greatly adversely affected.

【0008】また、図3に示すような反応槽4と検出器
8がそれぞれ1個のガス分析計では前述のような問題は
生じないが、三方コック9の切り替えで反応槽4にコン
バータ3を通った流路2aからの被測定ガスを導入して
測定を行った後、反応槽4にコンバータ3を通らない流
路2bからの被測定ガスを導入して測定を行うので、反
応槽4内の被測定ガスが完全に入れ替わるのに十数秒の
時間がかかる。このため試料ガスの二酸化窒素(N
2 )濃度が時間的に変動している場合、コンバータ3
を通る被測定ガスによる測定値とコンバータ3を通らな
い被測定ガスによる測定値に時刻差が生じるので、測定
値に誤差が生じるという問題があった。
Although the above-mentioned problem does not occur in a gas analyzer having one reaction vessel 4 and one detector 8 as shown in FIG. 3, the converter 3 is connected to the reaction vessel 4 by switching the three-way cock 9. After the measurement is performed by introducing the gas to be measured from the flow path 2a that has passed, the measurement is performed by introducing the gas to be measured from the flow path 2b that does not pass through the converter 3 to the reaction tank 4. It takes about ten seconds for the measured gas to be completely replaced. Therefore, the sample gas nitrogen dioxide (N
O 2) If the concentration is changing temporally, the converter 3
There is a time difference between the measured value of the gas to be measured passing through the converter and the measured value of the gas to be measured not passing through the converter 3, causing a problem that an error occurs in the measured value.

【0009】本発明は、このような事情に鑑みてなされ
たものであって、検出器の検出特性校正の作業を不要に
し、かつ時間的に変動する二酸化窒素(NO2 )濃度を
正確に測定し得るガス分析計を提供することを目的とす
る。
The present invention has been made in view of such circumstances, and eliminates the need for the operation of calibrating the detection characteristics of a detector and accurately measures the time-varying concentration of nitrogen dioxide (NO 2 ). It is an object of the present invention to provide a gas analyzer which can be used.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
め、本発明のガス分析計は、第一反応槽による発光と第
二反応槽による発光を集束する光路集束手段と、第一反
応槽と第二反応槽による発光を断続して交互に検出器に
導入する光断続手段とを有する。
In order to achieve the above object, a gas analyzer according to the present invention comprises: an optical path focusing means for focusing light emitted by a first reaction tank and light emitted by a second reaction tank; And light intermittent means for intermittently emitting light from the second reaction tank and alternately introducing the light into the detector.

【0011】[0011]

【発明の実施の形態】本発明の、化学発光式のガス分析
計の一実施例を図1により説明する。図1は化学発光式
のガス分析計の反応部付近の概略図であり、1はポンプ
で、その出力側は第一流路2aと第二流路2bとに分岐
している。第一流路2aにはコンバータ3が接続され、
コンバータ3は第一反応槽4aに接続されている。一方
の第二流路2bは直接第二反応槽4bに接続されてい
る。第一反応槽4aと第二反応槽4bは上記の被測定ガ
ス流入接続口の他に各々オゾンガス流入口とガス排出口
とをもっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a chemiluminescent gas analyzer according to the present invention will be described with reference to FIG. FIG. 1 is a schematic view of the vicinity of a reaction section of a chemiluminescence type gas analyzer. Reference numeral 1 denotes a pump, the output side of which is branched into a first flow path 2a and a second flow path 2b. A converter 3 is connected to the first flow path 2a,
Converter 3 is connected to first reaction tank 4a. One second flow path 2b is directly connected to the second reaction tank 4b. The first reaction tank 4a and the second reaction tank 4b have an ozone gas inlet and a gas outlet, respectively, in addition to the above-mentioned measured gas inflow connection port.

【0012】反応槽からの発光の受光部として、両反応
槽4a、4bと検出器8との間に第一反応槽4aから発
する第一光束7aと、第二反応槽4bから発する第二光
束7bを集束させる集光レンズ5と、この両発光光束7
a、7bの光を交互に通過させる光チョッパ6が設置さ
れる。
A first light beam 7a emitted from the first reaction tank 4a and a second light beam emitted from the second reaction tank 4b are provided between the two reaction tanks 4a and 4b and the detector 8 as light receiving portions for light emitted from the reaction tank. A condenser lens 5 for converging the light beam 7b,
A light chopper 6 for passing the lights a and 7b alternately is provided.

【0013】次に二酸化窒素(NO2 )の濃度計測を行
う動作について説明する。試料ガス入り口からポンプ1
で吸入された被測定ガスは第一流路2aに流れるものと
第二流路2bに流れるものに分岐される。第一流路2a
に流れる被測定ガスはコンバータ3を通過し、ここで被
測定ガス中の二酸化窒素(NO2 )は一酸化窒素(N
O)に置換され、第一反応槽4aに導入される。一方の
第二流路2bに流れる被測定ガスはそのまま第二反応槽
4bに導入される。
Next, the operation for measuring the concentration of nitrogen dioxide (NO 2 ) will be described. Pump 1 from sample gas inlet
The gas to be measured sucked in is branched into one flowing into the first flow path 2a and one flowing into the second flow path 2b. First channel 2a
Is flowing through the converter 3, where nitrogen dioxide (NO 2 ) in the gas to be measured is converted into nitrogen monoxide (N
O) and is introduced into the first reaction tank 4a. The gas to be measured flowing through one second flow path 2b is directly introduced into the second reaction tank 4b.

【0014】両反応槽4a、4bではそれぞれにオゾン
ガス(O3 )が供給され、それぞれの反応槽内で導入さ
れた被測定ガス中の一酸化窒素(NO)とオゾンとの化
学反応によって化学発光が生じる。これらの発光は第一
光束7a、第二光束7bとして集光レンズ5によって検
出器8に入射する。両反応槽4a、4bと検出器8との
間に光チョッパ6が設置してあり、この光チョッパ6に
よって第一光束7aと第二光束7bの光は光チョッパ6
の回転速度とセクタの開口大きさで定まるタイミングで
もって、検出器8に入射し、検出器8の出力信号は一定
時間幅で交互に反応槽4aからの発光強度I1と反応槽
4bからの発光強度I2を示す。これらの信号は光チョ
ッパ6の回転に同期した同期信号を用いて弁別され、そ
の周期時間は検出器の時定数、感度の制限内で十分早く
できるから事実上両強度は同時刻の測定とみてよい。強
度I1は被測定ガス中の二酸化窒素(NO2 )と一酸化
窒素(NO)量の和を、I2は被測定ガス中の一酸化窒
素(NO)量を表しているから被測定ガス中の二酸化窒
素(NO2 )濃度Yは較正曲線関数をFとして、Y=F
(I1−I2)として得られる。
Ozone gas (O 3 ) is supplied to each of the reaction tanks 4a and 4b, and chemiluminescence is caused by a chemical reaction between nitrogen monoxide (NO) and ozone in the gas to be measured introduced into each of the reaction tanks. Occurs. These emitted lights are incident on the detector 8 by the condenser lens 5 as the first light flux 7a and the second light flux 7b. An optical chopper 6 is provided between the two reaction vessels 4a and 4b and the detector 8, and the light of the first light beam 7a and the light of the second light beam 7b is
At the timing determined by the rotation speed of the laser beam and the size of the opening of the sector, the light enters the detector 8 and the output signal of the detector 8 alternately emits the light emission intensity I1 from the reaction tank 4a and the light emission from the reaction tank 4b at a fixed time width. The intensity I2 is shown. These signals are discriminated by using a synchronizing signal synchronized with the rotation of the optical chopper 6, and the cycle time can be sufficiently fast within the limits of the time constant and sensitivity of the detector. Good. The intensity I1 represents the sum of the amounts of nitrogen dioxide (NO 2 ) and nitric oxide (NO) in the gas to be measured, and I2 represents the amount of nitric oxide (NO) in the gas to be measured. Nitrogen dioxide (NO 2 ) concentration Y is represented by Y = F, where F is a calibration curve function.
It is obtained as (I1-I2).

【0015】このように2個の反応槽4a、4bと1個
の検出器8による計測を行うことによって、ガスの置換
時間ならびに検出器の校正を不要にすることができる。
By performing the measurement using the two reaction tanks 4a and 4b and the single detector 8, it is possible to eliminate the gas replacement time and the calibration of the detector.

【0016】上記実施例では光路集束手段として集光レ
ンズ5を用いたが、反応槽4a、4bと検出器8とのス
ペースの制限からプリズム、フレネルレンズによっても
光路集束が可能であり、また反応槽4a、4bと検出器
8との距離が離れる場合は光路集束用とは別に反応槽4
a、4bと検出器8とを共軛関係とするレンズを第一光
束7aおよび第二光束7b中に設置することによって微
弱な発光を効率よく検出器8に集光させることができ
る。
In the above embodiment, the condenser lens 5 is used as the optical path focusing means. However, due to the limited space between the reaction tanks 4a and 4b and the detector 8, the optical path can be focused by a prism or a Fresnel lens. When the distance between the tanks 4a and 4b and the detector 8 is large, the reaction tank 4 is separately provided for focusing the optical path.
By installing lenses in the first light flux 7a and the second light flux 7b that make the detectors 8a and 4b conjugate, weak light can be efficiently condensed on the detector 8.

【0017】さらに上記実施例図では光断続手段として
セクタを回転させる方式の光チョッパ6を用いたがスペ
ースの制限からこれをスライド式に遮光板を往復させる
方式のものにしてもよい。
Further, in the above-described embodiment, the optical chopper 6 of the type in which the sector is rotated is used as the optical intermittent means, but it may be of the type in which the light shielding plate is reciprocated in a sliding manner due to space limitations.

【0018】また、上記実施例では集光レンズの後ろに
光チョッパを設けたが、集光レンズの前に光チョッパを
設けても同様の効果を得ることができる。
Although the optical chopper is provided behind the condenser lens in the above embodiment, the same effect can be obtained by providing an optical chopper before the condenser lens.

【0019】[0019]

【発明の効果】本発明のガス分析計は上記のように構成
されており、反応槽を二酸化窒素(NO2 )を一酸化窒
素(NO)に置換した被測定ガス反応用と、この置換を
行わない被測定ガス反応用に分けて配置したので両者を
同時刻に測定することができ、測定精度が向上できる。
The gas analyzer according to the present invention is constructed as described above. The gas analyzer for the reaction of the gas to be measured in which nitrogen dioxide (NO 2 ) is replaced by nitrogen monoxide (NO) is used in the reaction tank. Since they are arranged separately for the reaction of the gas to be measured which is not performed, both can be measured at the same time, and the measurement accuracy can be improved.

【0020】さらに反応槽を2個配置したにも関わらず
検出器を1個で行えるようにしたので、検出器を2個配
置する方式のものに比べ検出器間の検出特性校正の作業
が不要となったと同時に検出特性変動の問題もなくな
り、これにより測定精度を向上させることができる。
Further, since one detector can be used in spite of two reactors, the work of calibrating the detection characteristics between the detectors is unnecessary as compared with the system in which two detectors are arranged. At the same time, the problem of the detection characteristic fluctuation disappears, whereby the measurement accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のガス分析計の一実施例を示す図であ
る。
FIG. 1 is a diagram showing one embodiment of a gas analyzer of the present invention.

【図2】従来のガス分析計を示す図である。FIG. 2 is a diagram showing a conventional gas analyzer.

【図3】従来の他のガス分析計を示す図である。FIG. 3 is a diagram showing another conventional gas analyzer.

【符号の説明】[Explanation of symbols]

1……ポンプ 2a…第一流路 2b…第二流路 3……コンバータ 4……反応槽 4a…第一反応槽 4b…第二反応槽 5……集光レンズ 6……光チョッパ 7……光束 7a…第一光束 7b…第二光束 8……検出器 8a…第一検出器 8b…第二検出器 9……三方コック DESCRIPTION OF SYMBOLS 1 ... Pump 2a ... First flow path 2b ... Second flow path 3 ... Converter 4 ... Reaction tank 4a ... First reaction tank 4b ... Second reaction tank 5 ... Condensing lens 6 ... Optical chopper 7 ... Light flux 7a First light flux 7b Second light flux 8 Detector 8a First detector 8b Second detector 9 Three-way cock

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 二酸化窒素を一酸化窒素に変換するコン
バータを有する第一流路を介して供給された被測定ガス
にオゾンを反応させる第一反応槽と、コンバータを有し
ない第二流路を介して供給された被測定ガスにオゾンを
反応させる第二反応槽を有し、オゾンとの反応によりこ
れらの反応槽で生じた発光量を検出器で測定し、前記第
一反応槽からの測定値と第二反応槽からの測定値との差
から二酸化窒素濃度を計測する化学発光式のガス分析計
において、前記第一反応槽による発光と第二反応槽によ
る発光を集束する光路集束手段と、第一反応槽と第二反
応槽による発光を断続して交互に検出器に導入する光断
続手段とを有することを特徴とするガス分析計。
1. A first reaction tank for reacting ozone with a gas to be measured supplied through a first channel having a converter for converting nitrogen dioxide to nitric oxide, and a second channel having no converter. A second reaction tank for causing ozone to react with the gas to be measured supplied in the above manner, and the amount of luminescence generated in these reaction tanks due to the reaction with ozone is measured by a detector, and the measured value from the first reaction tank is measured. In a chemiluminescence gas analyzer that measures the concentration of nitrogen dioxide from the difference between the measured value from the second reaction tank and the light path focusing means for focusing the light emission by the first reaction tank and the light emission by the second reaction tank, A gas analyzer comprising: light intermittent means for intermittently emitting light from a first reaction tank and a second reaction tank and introducing the light to a detector alternately.
JP32087997A 1997-11-21 1997-11-21 Gas analyzer Pending JPH11153544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32087997A JPH11153544A (en) 1997-11-21 1997-11-21 Gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32087997A JPH11153544A (en) 1997-11-21 1997-11-21 Gas analyzer

Publications (1)

Publication Number Publication Date
JPH11153544A true JPH11153544A (en) 1999-06-08

Family

ID=18126291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32087997A Pending JPH11153544A (en) 1997-11-21 1997-11-21 Gas analyzer

Country Status (1)

Country Link
JP (1) JPH11153544A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100990368B1 (en) 2008-08-11 2010-10-29 주식회사 케이엔알 Volume measuring device for gas produced by reaction of micro-organism in reaction tank and multi channel type automatic gas analyzing system comprising the same
CN102128802A (en) * 2010-11-30 2011-07-20 中国科学技术大学 Multi-lane motor vehicle tail gas detection system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100990368B1 (en) 2008-08-11 2010-10-29 주식회사 케이엔알 Volume measuring device for gas produced by reaction of micro-organism in reaction tank and multi channel type automatic gas analyzing system comprising the same
CN102128802A (en) * 2010-11-30 2011-07-20 中国科学技术大学 Multi-lane motor vehicle tail gas detection system

Similar Documents

Publication Publication Date Title
US3967933A (en) Dual channel nitrogen oxides analyzer
US20220341783A1 (en) In-situ infra-red & ultra-violet photometer
JPWO2015181879A1 (en) Gas analyzer
CN112763443A (en) Carbon dioxide sensor, calibration method and online detector
JPH08327545A (en) Infrared gas analyzer
JPH01134235A (en) Gas multiple analyzer
JPH1082740A (en) Infrared gas analyzer
KR20200126384A (en) Laser-guided incandescent particle sensor with confocal placement of laser spot and thermal radiation spot
JP2003050203A (en) Gas analyzing device of non-dispersive infrared absorption type, and its analyzing method
JPH11153544A (en) Gas analyzer
JPH06249779A (en) Gas analyzer
US3819945A (en) Spectrometers
JPH10142148A (en) Concentration measuring device
AU2006316724A1 (en) Optical analyzer
JPH09178655A (en) Infrared gas analyzer
JP2000329682A (en) Analyzer for simultaneous execution of raman spectroscopic analysis and particle size distribution measurement
JP2001330562A (en) Infrared gas analyzer
JPH03221837A (en) Method and device for measuring body to be tested
JPH05203573A (en) Infrared ray gas analyzer
JPH0134112Y2 (en)
EP4276444A1 (en) Optical co2 concentration meter based on ir light absorption in gas
CN114324277B (en) Device and method for detecting multiple gases
JPH079068Y2 (en) Chemiluminescent gas analyzer
JPH0921753A (en) Chemiluminescent gas analyzer
JP2541993Y2 (en) Chemiluminescence gas analyzer