JPH11152617A - Fiber for reinforcing concrete and concrete molding using the same - Google Patents

Fiber for reinforcing concrete and concrete molding using the same

Info

Publication number
JPH11152617A
JPH11152617A JP33365197A JP33365197A JPH11152617A JP H11152617 A JPH11152617 A JP H11152617A JP 33365197 A JP33365197 A JP 33365197A JP 33365197 A JP33365197 A JP 33365197A JP H11152617 A JPH11152617 A JP H11152617A
Authority
JP
Japan
Prior art keywords
fiber
strength
concrete
elongation
metal salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33365197A
Other languages
Japanese (ja)
Other versions
JP3755267B2 (en
Inventor
Norihiro Nakai
徳宏 中井
Hiroaki Nishio
浩昭 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP33365197A priority Critical patent/JP3755267B2/en
Publication of JPH11152617A publication Critical patent/JPH11152617A/en
Application granted granted Critical
Publication of JP3755267B2 publication Critical patent/JP3755267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0048Fibrous materials
    • C04B20/0052Mixtures of fibres of different physical characteristics, e.g. different lengths
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1022Non-macromolecular compounds
    • C04B20/1025Fats; Fatty oils; Ester type waxes; Higher fatty acids; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a fiber for reinforcing concrete useful for working board, etc., having a large shock absorbing energy, capable of improving flexural strength and compressed strength of a concrete molding, showing excellent reinforcing effects, by making the fiber include a fiber of high elongation having a single fiber elongation of a prescribed value or higher than it. SOLUTION: This fiber comprises (A) preferably 30-100 wt.% of a fiber of high elongation having >=500%, >=1,000% single fiber elongation, for example, a polyolefin-based fiber such as a polypropylene, etc., and more preferably (B) preferably 0-70 wt.% of a fiber of high strength having >=5 g/d, preferably >=7 g/d single fiber strength, for example, a polyolefin-based fiber, etc. Preferably at least one of the components A and B is coated with 0.1-10 wt.% based on the composition A or B of a surfactant which is selected from among a higher fatty acid metal salt, a higher alcohol sulfuric ester metal salt, an alkylbenzene sulfonic metal salt, etc., and contains a 8-22C alkyl group.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【本発明の属する技術分野】本発明は、コンクリート補
強効果に優れたコンクリート補強用繊維に関する。さら
に詳しくは、施工ボード、瓦等の建築材料を主とするコ
ンクリート成形体に好適に使用されるコンクリート補強
用繊維およびそのコンクリート補強用繊維を用いて形成
したコンクリート成形体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber for reinforcing concrete having an excellent concrete reinforcing effect. More specifically, the present invention relates to a concrete reinforcing fiber suitably used for a concrete molded body mainly composed of building materials such as construction boards and tiles, and a concrete molded body formed using the concrete reinforcing fiber.

【0002】[0002]

【従来の技術】セメントの硬化物は、圧縮強度、耐久
性、不燃性等の優れた性質に加えて安価なるが故に大量
に建築、土木分野等に使用されている。しかしながら、
脆性物質であるために耐屈曲性が著しく低く、引張り、
曲げ応力が加わると容易に破損したり、ひびがはいり、
耐衝撃性が弱い等の欠点がある。近年、これらの問題点
を改善するためにセメント補強用繊維として種々の無機
繊維、有機合成繊維の使用が提案されている。しかしな
がら、繊維の特性を効果的に利用できなかったり、繊維
が長所と短所を併せ持つため効果を十分に発揮できず、
コンクリート補強効果が満足できる域に到達していな
い。例えば、オレフィン系繊維は耐アルカリ性、耐熱性
もあり、かつオートクレーブ養生や蒸気養生ができコン
クリート補強には有利である。しかし、オレフィン系繊
維の表面は疎水性であり、親水性のセメントマトリック
スとの接着性が悪く、更に、セメントスラリー中での分
散性も悪い。この問題点を解決する先行技術として、繊
維を界面活性剤等で表面処理することでセメントとの親
和性を向上させる技術が知られている。(特開平4−2
1556、特開平5−170497、PCT国際公開W
O90/06902等)。また、近年では、分散性や親
和性を改善させたり、補強効果を向上させるために、繊
維の断面を異形化したり、繊維表面に突起や節を付けた
り、または表面を他の成分で皮膜したり、あるいは繊維
強度を向上させたり、さらには他の成分を練り込んだ
り、原料を特殊化したりする等の改善策が提案されてい
るが、未だに満足のできる域には達していない。
2. Description of the Related Art Hardened cement is widely used in the fields of construction and civil engineering because of its low cost in addition to excellent properties such as compressive strength, durability and nonflammability. However,
Because it is a brittle material, it has extremely low flex resistance,
It easily breaks or cracks when bending stress is applied,
There are drawbacks such as low impact resistance. In recent years, in order to solve these problems, use of various inorganic fibers and organic synthetic fibers as fibers for reinforcing cement has been proposed. However, the properties of the fibers cannot be used effectively, or the fibers have both advantages and disadvantages, and the effects cannot be sufficiently exhibited.
The concrete reinforcement effect has not reached a satisfactory level. For example, olefin fibers have alkali resistance and heat resistance, and can be cured in an autoclave or steam, which is advantageous for concrete reinforcement. However, the surface of the olefin fiber is hydrophobic, has poor adhesion to a hydrophilic cement matrix, and has poor dispersibility in a cement slurry. As a prior art for solving this problem, there is known a technique in which fibers are subjected to surface treatment with a surfactant or the like to improve affinity with cement. (Japanese Patent Laid-Open No. 4-2
1556, JP-A-5-170497, PCT International Publication W
O90 / 06902 etc.). In recent years, in order to improve dispersibility and affinity, and to improve the reinforcing effect, the cross section of the fiber is deformed, projections or nodes are formed on the fiber surface, or the surface is coated with other components. There have been proposed improvement measures such as improving fiber strength, kneading other components, and specializing raw materials, but have not yet reached a satisfactory range.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、衝撃
吸収エネルギーが大きく、コンクリート成形体の曲げ強
度や圧縮強度、特に衝撃強度の向上が見られるコンクリ
ート補強用繊維を提供しようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a concrete reinforcing fiber which has a large impact absorption energy and is capable of improving the bending strength and compressive strength, particularly the impact strength, of a concrete molding. is there.

【0004】本発明者らは、上記目的を達成するため
に、鋭意検討を重ねた結果、繊維の強伸度物性とコンク
リート補強に関する知見を生かして、繊維の強度のみな
らず伸度も高く維持することがコンクリート補強の基本
として重要であること、それに加えて繊維表面が疎水性
であるコンクリート補強用繊維、例えばポリオレフィン
系繊維には、高級脂肪酸金属塩、高級アルコール硫酸エ
ステル金属塩、高級アルキルエーテル硫酸エステル金属
塩、アルキルベンゼンスルホン酸金属塩、アルキルベン
ゼンナフタレンスルホン酸金属塩、パラフィンスルホン
酸金属塩、アルキルアミン塩、アルキルアンモニウム塩
の群から選ばれた少なくとも1種で炭素数が8〜22の
アルキル基を有する界面活性剤が繊維表面に付着してい
ることにより、衝撃吸収エネルギーが大きくなり、かつ
セメントマトリックスとの親和性と分散性が向上し、コ
ンクリート成形体の曲げ強度や圧縮強度、特に衝撃強度
の向上が見られることから、かかる繊維が、コンクリー
ト補強用繊維として適していることを知り、かつ該繊維
を用いて形成したコンクリート成形体は極めて優れた衝
撃強度を発現することを見出し、本発明を完成するに至
った。
[0004] The present inventors have conducted intensive studies to achieve the above-mentioned object, and as a result, have taken advantage of the knowledge on the physical properties of fibers and the reinforcement of concrete to maintain not only the strength but also the elongation of fibers at a high level. Is important as the basis of concrete reinforcement. In addition, concrete reinforcing fibers having a hydrophobic fiber surface, such as polyolefin fibers, include higher fatty acid metal salts, higher alcohol sulfate metal salts, and higher alkyl ethers. At least one alkyl group having 8 to 22 carbon atoms selected from the group consisting of a metal salt of a sulfate ester, a metal salt of an alkylbenzenesulfonic acid, a metal salt of an alkylbenzenenaphthalenesulfonic acid, a metal salt of a paraffinsulfonic acid, an alkylamine salt, and an alkylammonium salt; Impact on the surface of the fiber This fiber is used as a fiber for concrete reinforcement because the energy absorption is increased, and the affinity and dispersibility with the cement matrix are improved, and the bending strength and compressive strength of the concrete molded body, especially the impact strength are improved. The present invention was found to be suitable, and it was found that a concrete molded article formed by using the fiber exhibited extremely excellent impact strength, thereby completing the present invention.

【0005】[0005]

【課題を解決するための手段】本発明は、前記課題を解
決するために以下の構成を有する。 (1)単糸伸度500%以上を有する高伸度繊維(A)を含
有するコンクリート補強用繊維。 (2)単糸伸度500%以上を有する高伸度繊維(A)を30
〜100重量%と単糸強度5g/d以上を有する高強度繊維
(B)を0〜70重量%からなるコンクリート補強用繊維。 (3)高伸度繊維(A)が、単糸伸度1000%以上である
前記1または2項に記載のコンクリート補強用繊維。 (4)高強度繊維(B)が、単糸強度7g/d以上である前
記2または3項に記載のコンクリート補強用繊維。 (5)高伸度繊維(A)または高強度繊維(B)が、ポ
リオレフィン系繊維である前記1〜4項のいずれかに記
載のコンクリート補強用繊維。 (6)高伸度繊維(A)または高強度繊維(B)の少な
くとも一方に、高級脂肪酸金属塩,高級アルコール硫酸
エステル金属塩,アルキルベンゼンスルホン酸金属塩,
アルキルベンゼンナフタレンスルホン酸金属塩,パラフ
ィンスルホン酸金属塩,アルキルアミン塩,アルキルア
ンモニウム塩の群から選ばれた少なくとも1種で、かつ
炭素数が8〜22のアルキル基を有する界面活性剤が、前
記高強度繊維(A)または高伸度繊維(B)の重量に対
し、0.1〜10重量%付着されている前記1〜5項のいずれ
かに記載のコンクリート補強用繊維。 (7)前記金属塩が、Na,Li,Kから選ばれた少なくと
も1種のアルカリ金属塩である前記6項に記載のコンク
リート補強用繊維。 (8)前記1〜7項のいずれかに記載のコンクリート補
強用繊維を用いて成形したコンクリート成形体。
The present invention has the following arrangement to solve the above-mentioned problems. (1) Concrete reinforcing fiber containing high elongation fiber (A) having a single yarn elongation of 500% or more. (2) 30 high elongation fibers (A) having a single yarn elongation of 500% or more
Concrete reinforcing fiber comprising 0 to 70% by weight of a high-strength fiber (B) having about 100% by weight and a single yarn strength of 5 g / d or more. (3) The concrete reinforcing fiber according to the above item 1 or 2, wherein the high elongation fiber (A) has a single yarn elongation of 1000% or more. (4) The concrete reinforcing fiber according to the above item 2 or 3, wherein the high-strength fiber (B) has a single-yarn strength of 7 g / d or more. (5) The concrete reinforcing fiber according to any one of the above items 1 to 4, wherein the high elongation fiber (A) or the high strength fiber (B) is a polyolefin fiber. (6) A metal salt of a higher fatty acid, a metal salt of a higher alcohol sulfate, a metal salt of an alkyl benzene sulfonic acid,
The surfactant having at least one kind selected from the group consisting of a metal salt of an alkylbenzene naphthalene sulfonic acid, a metal salt of a paraffin sulfonic acid, an alkylamine salt and an alkylammonium salt and having an alkyl group having 8 to 22 carbon atoms is preferably used. 6. The concrete reinforcing fiber according to any one of the above items 1 to 5, wherein 0.1 to 10% by weight is attached to the weight of the strength fiber (A) or the high elongation fiber (B). (7) The fiber for concrete reinforcement according to the item 6, wherein the metal salt is at least one kind of alkali metal salt selected from Na, Li, and K. (8) A concrete molded article molded using the concrete reinforcing fiber according to any one of the above items 1 to 7.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明のコンクリート補強用繊維は、単糸伸度500%以上
を有する高伸度繊維(A)を含有するコンクリート補強
用繊維である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The concrete reinforcing fiber of the present invention is a concrete reinforcing fiber containing a high elongation fiber (A) having a single yarn elongation of 500% or more.

【0007】好ましくは、本発明のコンクリート補強用
繊維は、単糸伸度500%以上を有する高伸度繊維(A)を
30〜100重量%と単糸強度5g/d以上を有する高強度繊維
(B)を0〜70重量%からなるコンクリート補強用繊維で
ある。より好ましくは、高伸度繊維(A)が、単糸伸度
1000%以上であることが好ましい。また、高強度繊維
(B)が、単糸強度7g/d以上であることが好ましく。更
により好ましくは、高強度繊維(B)が単糸強度7g/d以
上であり、かつ、高伸度繊維(A)が単糸伸度1000%以
上であることが望ましい。
[0007] Preferably, the concrete reinforcing fiber of the present invention comprises a high elongation fiber (A) having a single yarn elongation of 500% or more.
Concrete reinforcing fiber comprising 0 to 70% by weight of high strength fiber (B) having 30 to 100% by weight and single yarn strength of 5 g / d or more. More preferably, the high elongation fiber (A) is a single yarn elongation
It is preferably at least 1000%. The high-strength fiber (B) preferably has a single yarn strength of 7 g / d or more. Still more preferably, it is desirable that the high-strength fiber (B) has a single-yarn strength of 7 g / d or more and the high-strength fiber (A) has a single-yarn elongation of 1000% or more.

【0008】前記コンクリート補強用繊維を使用したコ
ンクリート成形体は、衝撃吸収エネルギーが大きくな
る。衝撃吸収エネルギーが大きくなることによってコン
クリート成形体の曲げ強度や圧縮強度、特に衝撃強度が
向上する。ここでいう衝撃吸収エネルギーとは、コンク
リート成形体が応力を受けてから、破断後応力がゼロに
なるまでのエネルギーのことである。
[0008] A concrete molded body using the concrete reinforcing fiber has a large impact absorption energy. By increasing the impact absorption energy, the bending strength and the compressive strength, particularly the impact strength, of the concrete molded body are improved. The term "impact absorption energy" as used herein refers to energy from the time when a concrete molded body receives a stress until the stress after rupture becomes zero.

【0009】本発明に用いるコンクリート補強用繊維の
基材となる繊維の断面形状は、円形または異形の形状と
することができる。異形断面の場合には、例えば偏平
形、三角〜八角形等の角型、T字形、多葉形、中空断面
形等任意の形状とすることができ、特に限定されるもの
ではない。繊維表面についても、凹凸の有無、他素材に
よる表面荒れの有無等の形状を特に限定されるものでは
ない。さらに、繊維の長さ、太さ、混率およびセメント
の種類、骨材の種類、コンクリート成形体の製造方法に
ついても、特に限定されるものではない。
The cross-sectional shape of the fiber serving as the base material of the concrete reinforcing fiber used in the present invention may be circular or irregular. In the case of an irregular cross-section, any shape such as a flat shape, a square shape such as a triangular to octagonal shape, a T-shape, a multi-lobe shape, a hollow cross-sectional shape, etc., is not particularly limited. The shape of the fiber surface, such as the presence or absence of irregularities and the presence or absence of surface roughness due to other materials, is not particularly limited. Further, the length, thickness, mixing ratio, type of cement, type of aggregate, and method of producing a concrete molded product are not particularly limited.

【0010】本発明のコンクリート補強用繊維の種類に
ついては、無機繊維、有機合成繊維、天然繊維等のいず
れでもよく、要は単糸伸度500%以上を有するものであれ
ば、特に限定されるものではない。
The type of the fiber for reinforcing concrete of the present invention may be any of inorganic fiber, organic synthetic fiber, natural fiber and the like, and it is particularly limited as long as it has a single yarn elongation of 500% or more. Not something.

【0011】望ましくは、ポリオレフィン系繊維が好ま
しい。特にポリプロピレンを主体とするポリオレフィン
系繊維は、衝撃吸収エネルギーの向上が特に優れている
ためである。
[0011] Desirably, polyolefin fibers are used. In particular, polyolefin-based fibers mainly composed of polypropylene are particularly excellent in the improvement of impact absorption energy.

【0012】ポリオレフィン系繊維であるポリプロピレ
ン繊維をコンクリート補強用繊維とした場合、その基材
となるポリプロピレン繊維は、原料のポリプロピレン
が、100%プロピレン単位からなるもの、その他重合体中
2重量%以下のエチレン単位もしくはC4以上の例えばブ
テン−1、ペンテン−1,4−メチルペンテン−1、ヘ
キセン−1、オクテン−1等のα−オレフィン単位を含
有する実質的なポリプロピレン単独重合体であってもよ
い。またポリプロピレン樹脂に、プロピレンとエチレ
ン、オレフィンとの結晶ランダム共重合体もしくはブロ
ック共重合体の混合物であってもよい。
When the polypropylene fiber which is a polyolefin fiber is used as a fiber for concrete reinforcement, the polypropylene fiber used as the base material is composed of 100% propylene units of the raw material polypropylene and 2% by weight or less in other polymers. It may be a substantial polypropylene homopolymer containing an ethylene unit or an α-olefin unit such as butene-1, pentene-1,4-methylpentene-1, hexene-1, octene-1, etc. having C4 or more. . Further, a mixture of a crystal random copolymer or a block copolymer of propylene, ethylene and olefin may be used as the polypropylene resin.

【0013】本発明に関わるポリプロピレン樹脂には、
本発明の効果を妨げない範囲内でさらに、酸化防止剤、
光安定剤、紫外線吸収剤、中和剤、造核剤、エポキシ安
定剤、滑剤、抗菌剤、難燃剤、帯電防止剤、顔料、可塑
剤などの添加剤を適宜必要に応じて添加してもよい。
The polypropylene resin according to the present invention includes:
Further, within the range not hindering the effects of the present invention, an antioxidant,
Light stabilizers, ultraviolet absorbers, neutralizers, nucleating agents, epoxy stabilizers, lubricants, antibacterial agents, flame retardants, antistatic agents, pigments, plasticizers, etc. Good.

【0014】次に本発明のコンクリート補強用繊維の基
材となる単糸伸度500%以上の繊維(A)であるポリプロ
ピレン繊維の原料としてQ値が4以下でかつ、メルトフ
ローレートが1〜30g/10minのポリプロピレン樹脂を
用いた場合の製造法について説明する。まず紡糸温度
は、250〜350℃の範囲で紡糸することが好ましく、より
好ましくは、310〜340℃の範囲で溶融紡糸することが繊
維の配向を抑えた未延伸糸とすることができ好ましい。
紡糸温度が250℃未満であると、押出機で溶融したポリ
プロピレン溶融物を紡糸口金から押出した繊維状のポリ
プロピレン溶融物は急激に冷却され、固化点での繊維の
変形が大きく、配向がより進んだ未延伸糸となるため好
ましくはない。また紡糸温度が350℃を超えると急激に
ポリプロピレン樹脂の分解が進み、繊維の発砲などから
曳糸性の良い未延伸糸を得ることが困難であるばかりで
なく、繊維の分子鎖が著しく切断されてしまい、低分子
量化して希望である高伸度なポリプロピレン繊維となら
ない。
Next, as a raw material of a polypropylene fiber which is a fiber (A) having a single yarn elongation of 500% or more as a base material of the concrete reinforcing fiber of the present invention, the Q value is 4 or less and the melt flow rate is 1 to 4. A production method using a polypropylene resin of 30 g / 10 min will be described. First, spinning is preferably performed at a spinning temperature in the range of 250 to 350 ° C, and more preferably in the range of 310 to 340 ° C, because it is possible to obtain an undrawn yarn with reduced fiber orientation.
When the spinning temperature is less than 250 ° C., the fibrous polypropylene melt extruded from the spinneret from the polypropylene melt melted by the extruder is rapidly cooled, and the fiber deformation at the solidification point is large, and the orientation is further advanced. However, it is not preferable because it is an undrawn yarn. In addition, when the spinning temperature exceeds 350 ° C, the decomposition of the polypropylene resin rapidly progresses, and it is difficult not only to obtain an undrawn yarn having good spinnability due to fiber firing, but also the molecular chains of the fiber are severely cut. As a result, the molecular weight is not reduced to the desired high elongation polypropylene fiber.

【0015】また、押し出した繊維状のポリプロピレン
溶融物を冷却する場合、従来の方法、例えば空気、水、
グリセリン等の媒体中で融点以下の温度まで冷却し、引
き取ることができるが、未延伸糸の配向を極力抑えるに
は、液体で急冷却するのではなく、空気で冷却すること
が好ましい。空気の温度、風量は任意に設定できるが、
より配向を抑えた未延伸糸とするため、徐冷却、即ち風
量は弱く、温度はあまり低温すぎないことが好ましい。
このように徐冷することにより、ラメラが繊維軸方向に
対して直角に配列したような結晶の高次構造を充分に形
成させることができ好ましい。
When the extruded fibrous polypropylene melt is cooled, conventional methods such as air, water,
It can be cooled in a medium such as glycerin or the like to a temperature lower than the melting point, and can be drawn. However, in order to suppress the orientation of the undrawn yarn as much as possible, it is preferable to cool with air instead of quenching with liquid. Air temperature and air volume can be set arbitrarily,
In order to obtain an undrawn yarn with further suppressed orientation, it is preferable that the temperature is gradually cooled, that is, the air volume is weak and the temperature is not too low.
Such slow cooling is preferable because a higher-order crystal structure in which the lamellas are arranged at right angles to the fiber axis direction can be sufficiently formed.

【0016】未延伸糸の巻取り速度は、繊維状のポリプ
ロピレン溶融物の固化点での変形が小さく、配向が進ま
ない未延伸糸とするために引き取り速度が200〜1000m/m
inであることが好ましい。より好ましくは、200m/min未
満にならない程度で、なるべく低速で引き取ることが好
ましい。また、引き取り速度が1000m/min以上であると
繊維状のポリプロピレン溶融物の固化点での変形が大き
く、配向が進んだ未延伸糸となり、伸度が減少してしま
う。また、200m/min未満では、高温度紡糸により、溶融
粘度が低くなったポリプロピレン溶融物の自然落下速度
よりも遅く均一な未延伸糸とすることができない。
The take-up speed of the undrawn yarn is 200 to 1000 m / m in order to make the undrawn yarn in which the deformation at the solidification point of the fibrous polypropylene melt is small and the orientation does not proceed.
It is preferably in. More preferably, it is preferable to take off at as low a speed as possible, so as not to be less than 200 m / min. On the other hand, if the take-up speed is 1000 m / min or more, the fibrous polypropylene melt is greatly deformed at the solidification point, becomes an oriented undrawn yarn, and the elongation is reduced. On the other hand, if it is less than 200 m / min, high-temperature spinning cannot produce a uniform undrawn yarn which is slower than the natural falling speed of the polypropylene melt having a lowered melt viscosity.

【0017】次に延伸について説明する。前述の方法で
得たポリプロピレン未延伸糸を延伸して伸度の高いポリ
プロピレン繊維を得る。ポリプロピレン未延伸糸の延伸
法は、熱ロール延伸、温水延伸、加熱プレートなど公知
の方法が採用される。延伸操作は、1段延伸、2段延
伸、多段延伸のいずれによっても行うことができるが、
1段延伸よりも2段延伸以上の延伸操作を行うことが好
ましい。延伸温度は、50〜90℃の比較的低温度で延伸す
る。90℃以上の温度で延伸した場合、急激に未延伸糸の
配向結晶化が進行し、50℃未満では延伸性が低下し伸度
が著しく減少する。また、前述の方法で得られたポリプ
ロピレン未延伸糸を延伸工程をせずコンクリート補強用
繊維としてもかまわない。伸度1000%以上のポリプロピ
レン繊維とするには、延伸工程を省略することが好まし
い。
Next, stretching will be described. The polypropylene undrawn yarn obtained by the above-described method is drawn to obtain a polypropylene fiber having high elongation. A known method such as hot roll drawing, hot water drawing, and a heating plate is employed as a method for drawing the undrawn polypropylene yarn. The stretching operation can be performed by any of one-stage stretching, two-stage stretching, and multi-stage stretching.
It is preferable to perform two or more stretching operations rather than one-stage stretching. Stretching is performed at a relatively low temperature of 50 to 90 ° C. When drawn at a temperature of 90 ° C. or higher, the oriented crystallization of the undrawn yarn proceeds rapidly, and at a temperature lower than 50 ° C., the drawability is reduced and the elongation is significantly reduced. Further, the polypropylene undrawn yarn obtained by the above method may be used as a concrete reinforcing fiber without performing the drawing step. In order to obtain a polypropylene fiber having an elongation of 1000% or more, the stretching step is preferably omitted.

【0018】この時の延伸倍率は、1.0〜1.8倍の範囲が
好ましい。1.8倍を超えては単糸伸度が低下する。次
に、2段延伸を行う場合は、1段延伸で全延伸倍率の40
%以上好ましくは50%以上の延伸倍率で延伸し、ついで2
段目で単糸切れ、ケバ立ちが起きない範囲まで延伸し、
トータル延伸倍率が前記の範囲内とすることが好まし
い。1段延伸で全延伸倍率の40%未満の延伸倍率で延伸
した場合、前記の全延伸倍率の40%以上で1段延伸した
場合に比べて全延伸倍率が同じであっても、高伸度ポリ
プロピレン繊維を得ることはできない。これは、1段延
伸で配向結晶化は著しく進行するため、2段以上の延伸
では無理な延伸がかかり結果として伸度が低下する。こ
こで延伸倍率とは、供給ロール速度と引き取りロール速
度の比で表したものである。
The stretching ratio at this time is preferably in the range of 1.0 to 1.8 times. If it exceeds 1.8 times, the single yarn elongation will decrease. Next, in the case of performing two-stage stretching, one-stage stretching requires a total stretching ratio of 40%.
% Or more, preferably at a stretch ratio of 50% or more.
Stretched to the extent that single yarn breakage and fluffing do not occur at the stage,
It is preferable that the total stretching ratio be within the above range. When the single-stage stretching is performed at a stretching ratio of less than 40% of the total stretching ratio, even if the total stretching ratio is the same as compared to the case where the single-stage stretching is performed at 40% or more of the total stretching ratio, a high elongation is obtained. No polypropylene fiber can be obtained. This is because orientation crystallization remarkably progresses in one-stage stretching, and stretching in two or more stages results in excessive stretching, resulting in lower elongation. Here, the stretching ratio is represented by a ratio between a supply roll speed and a take-up roll speed.

【0019】また、延伸したポリプロピレン繊維の延伸
物を融点付近の温度で定長熱処理、弛緩熱処理等でアニ
ール処理を行うことにより熱収縮が改善されたポリプロ
ピレン繊維を得ることができる。
Further, by subjecting the drawn product of the drawn polypropylene fiber to an annealing treatment at a temperature near the melting point by a constant-length heat treatment, a relaxation heat treatment, or the like, a polypropylene fiber having improved heat shrinkage can be obtained.

【0020】この様な紡糸、延伸行程を経ることで単糸
伸度500%以上の物性を有するポリプロピレン繊維が得ら
れる。特に、310℃以上の高温で紡糸し、低温延伸、ま
たは延伸工程の省略を行うとコンクリート補強に最適な
単糸伸度500%以上の高伸度ポリプロピレン繊維が得られ
るのである。
Through such a spinning and drawing process, a polypropylene fiber having a physical property of a single yarn elongation of 500% or more can be obtained. In particular, when the fiber is spun at a high temperature of 310 ° C. or higher, and the low-temperature drawing or the drawing step is omitted, a high elongation polypropylene fiber having a single yarn elongation of 500% or more, which is optimal for concrete reinforcement, can be obtained.

【0021】更に、本発明のコンクリート補強用繊維の
基材となる単糸強度5g/d以上の繊維(B)であるポリプ
ロピレン繊維の原料としてQ値が4以下でかつ、メルト
フローレートが1〜30g/10minのポリプロピレン樹脂
を用いた場合の製造法について説明する。まず紡糸温度
は、250〜350℃の範囲で紡糸することが好ましく、より
好ましくは、310〜340℃の範囲で溶融紡糸することが繊
維の配向を抑えた未延伸糸とすることができ好ましい。
紡糸温度が250℃未満であると、押出機で溶融したポリ
プロピレン溶融物を紡糸口金から押出した繊維状のポリ
プロピレン溶融物は急激に冷却され、固化点での繊維の
変形が大きく、配向がより進んだ未延伸糸となるため好
ましくはない。また紡糸温度が350℃を超えると急激に
ポリプロピレン樹脂の分解が進み、繊維の発砲などから
曳糸性の良い未延伸糸を得ることが困難であるばかりで
なく、繊維の分子鎖が著しく切断されてしまい、低分子
量化し、延伸しても高強度なポリプロピレン繊維となら
ない。
Further, as a raw material of a polypropylene fiber which is a fiber (B) having a single yarn strength of 5 g / d or more as a base material of the concrete reinforcing fiber of the present invention, the Q value is 4 or less, and the melt flow rate is 1 to 4. A production method using a polypropylene resin of 30 g / 10 min will be described. First, spinning is preferably performed at a spinning temperature in the range of 250 to 350 ° C, and more preferably in the range of 310 to 340 ° C, because it is possible to obtain an undrawn yarn with reduced fiber orientation.
When the spinning temperature is less than 250 ° C., the fibrous polypropylene melt extruded from the spinneret from the polypropylene melt melted by the extruder is rapidly cooled, and the fiber deformation at the solidification point is large, and the orientation is further advanced. However, it is not preferable because it is an undrawn yarn. In addition, when the spinning temperature exceeds 350 ° C, the decomposition of the polypropylene resin rapidly progresses, and it is difficult not only to obtain an undrawn yarn having good spinnability due to fiber firing, but also the molecular chains of the fiber are severely cut. Even if it is reduced in molecular weight and stretched, it does not become a high-strength polypropylene fiber.

【0022】また、押し出した繊維状のポリプロピレン
溶融物を冷却する場合、従来の方法、例えば空気、水、
グリセリン等の媒体中で融点以下の温度まで冷却し、引
き取ることができるが、未延伸糸の配向を極力抑えるに
は、液体で急冷却するのではなく、空気で冷却すること
が好ましい。空気の温度、風量は任意に設定できるが、
より配向を抑えた未延伸糸とするため、徐冷却、即ち風
量は弱く、温度はあまり低温すぎないことが好ましい。
このように徐冷することにより、ラメラが繊維軸方向に
対して直角に配列したような結晶の高次構造を充分に形
成させることができ好ましい。
When the extruded fibrous polypropylene melt is cooled, conventional methods such as air, water,
It can be cooled in a medium such as glycerin or the like to a temperature lower than the melting point, and can be drawn. However, in order to suppress the orientation of the undrawn yarn as much as possible, it is preferable to cool with air instead of quenching with liquid. Air temperature and air volume can be set arbitrarily,
In order to obtain an undrawn yarn with further suppressed orientation, it is preferable that the temperature is gradually cooled, that is, the air volume is weak and the temperature is not too low.
Such slow cooling is preferable because a higher-order crystal structure in which the lamellas are arranged at right angles to the fiber axis direction can be sufficiently formed.

【0023】未延伸糸の巻取り速度は、繊維状のポリプ
ロピレン溶融物の固化点での変形が小さく、配向が進ま
ない未延伸糸とするために引き取り速度が200〜1000m/m
inであることが好ましい。より好ましくは、200m/min未
満にならない程度で、なるべく低速で引き取ることが好
ましい。また、引き取り速度が1000m/min以上であると
繊維状のポリプロピレン溶融物の固化点での変形が大き
く、配向が進んだ未延伸糸となり、延伸性が悪く、高倍
率で延伸できない。また、200m/min未満では、高温度紡
糸により、溶融粘度が低くなったポリプロピレン溶融物
の自然落下速度よりも遅く均一な未延伸糸とすることが
できない。
The winding speed of the undrawn yarn is 200 to 1000 m / m in order to reduce the deformation at the solidification point of the fibrous polypropylene melt and to make the undrawn yarn unoriented.
It is preferably in. More preferably, it is preferable to take off at as low a speed as possible, so as not to be less than 200 m / min. On the other hand, if the take-up speed is 1000 m / min or more, the fibrous polypropylene melt is greatly deformed at the solidification point, becomes an oriented unstretched yarn, has poor stretchability, and cannot be stretched at a high magnification. On the other hand, if it is less than 200 m / min, high-temperature spinning cannot produce a uniform undrawn yarn which is slower than the natural falling speed of the polypropylene melt having a lowered melt viscosity.

【0024】次に延伸について説明する。前述の方法で
得たポリプロピレン未延伸糸を延伸して強度の高いポリ
プロピレン繊維を得る。ポリプロピレン未延伸糸の延伸
法は、熱ロール延伸、温水延伸、加熱プレートなど公知
の方法が採用される。延伸操作は、1段延伸、2段延
伸、多段延伸のいずれによっても行うことができるが、
1段延伸よりも2段延伸以上の延伸操作を行うことが好
ましい。延伸温度は、50〜90℃の比較的低温度で延伸す
る。90℃以上の温度で延伸した場合、急激に未延伸糸の
配向結晶化が進行し、50℃未満では延伸性が低下し高強
度化するに必要な延伸倍率とすることができない。
Next, stretching will be described. The polypropylene undrawn yarn obtained by the above-described method is drawn to obtain a high-strength polypropylene fiber. A known method such as hot roll drawing, hot water drawing, and a heating plate is employed as a method for drawing the undrawn polypropylene yarn. The stretching operation can be performed by any of one-stage stretching, two-stage stretching, and multi-stage stretching.
It is preferable to perform two or more stretching operations rather than one-stage stretching. Stretching is performed at a relatively low temperature of 50 to 90 ° C. When drawn at a temperature of 90 ° C. or more, the oriented crystallization of the undrawn yarn proceeds rapidly, and at a temperature lower than 50 ° C., the drawability is reduced and the draw ratio required for high strength cannot be obtained.

【0025】この時の延伸倍率は、4.2倍以上の範囲が
好ましい。4.2倍未満では単糸強度が低く、目標である
強度に達しない。次に、2段延伸を行う場合は、1段延
伸で全延伸倍率の40%以上好ましくは50%以上の延伸倍率
で延伸し、ついで2段目で単糸切れ、ケバ立ちが起きな
い範囲まで延伸し、トータル延伸倍率が前記の範囲内と
することが好ましい。1段延伸で全延伸倍率の40%未満
の延伸倍率で延伸した場合、前記の全延伸倍率の40%以
上で1段延伸した場合に比べて全延伸倍率が同じであっ
ても、高強度ポリプロピレン繊維を得ることはできな
い。これは、1段延伸で配向結晶化は著しく進行するた
め、2段以上の延伸では無理な延伸がかかり結果として
高強度化しない。ここで延伸倍率とは、供給ロール速度
と引き取りロール速度の比で表したものである。
The stretching ratio at this time is preferably in the range of 4.2 times or more. If it is less than 4.2 times, the single yarn strength is low and does not reach the target strength. Next, when performing two-stage drawing, the film is drawn at a draw ratio of 40% or more, preferably 50% or more of the total draw ratio in one-step drawing, and then to a range where single yarn breakage and fluffing do not occur in the second step. It is preferable that the film is stretched and the total stretching ratio is within the above range. Even if the total stretching ratio is the same as the case where the single-stage stretching is performed at a stretching ratio of less than 40% of the total stretching ratio and the single-stage stretching is performed at 40% or more of the total stretching ratio, the high-strength polypropylene is used. Fiber cannot be obtained. This is because the oriented crystallization remarkably progresses in one-stage stretching, and in two or more stages stretching, unreasonable stretching occurs, and as a result, the strength does not increase. Here, the stretching ratio is represented by a ratio between a supply roll speed and a take-up roll speed.

【0026】また、延伸したポリプロピレン繊維の延伸
物を融点付近の温度で定長熱処理、弛緩熱処理等でアニ
ール処理を行うことにより熱収縮が改善されたポリプロ
ピレン繊維を得ることができる。
Further, by subjecting the drawn product of the drawn polypropylene fiber to an annealing treatment at a temperature near the melting point by a constant-length heat treatment, a relaxation heat treatment, or the like, a polypropylene fiber having improved heat shrinkage can be obtained.

【0027】この様な紡糸、延伸行程を経ることで単糸
強度5g/d以上の物性を有するポリプロピレン繊維が得ら
れる。特に、310℃以上の高温で紡糸し、低温延伸、ま
たは2段延伸を行うとコンクリート補強に最適な単糸強
度7g/d以上の高強度ポリプロピレン繊維が得られるので
ある。
Through such a spinning and drawing process, a polypropylene fiber having physical properties of a single yarn strength of 5 g / d or more can be obtained. In particular, spinning at a high temperature of 310 ° C. or higher and low-temperature drawing or two-step drawing can provide a high-strength polypropylene fiber having a single-strength strength of 7 g / d or more, which is optimal for concrete reinforcement.

【0028】好ましくは、ポリプロピレン繊維表面を界
面活性剤等で処理し、セメントとの親和性を向上させる
ことが好ましい。
Preferably, the surface of the polypropylene fiber is treated with a surfactant or the like to improve the affinity with the cement.

【0029】ポリプロピレン繊維への界面活性剤の付着
は紡糸工程、延伸工程、のいずれの段階で付着させても
良い。また、付着方法は、ローラ法、浸漬法、噴霧法、
パットドライ法などを用いることができる。好ましく
は、紡糸工程、延伸工程で付着させるのが均一付着がで
きてよい。
The surfactant may be attached to the polypropylene fiber in any of the spinning step and the drawing step. The adhesion method is a roller method, a dipping method, a spray method,
A pad dry method or the like can be used. Preferably, the attachment in the spinning step and the drawing step may provide uniform attachment.

【0030】ポリオレフィン系繊維表面の処理剤として
は、ポリオレフィン系繊維の表面に高級脂肪酸金属塩、
高級アルコール硫酸エステル金属塩、高級アルキルエー
テル硫酸エステル金属塩、アルキルベンゼンスルホン酸
金属塩、アルキルベンゼンナフタレンスルホン酸金属
塩、パラフィンスルホン酸金属塩の群から選ばれた少な
くとも1種で炭素数が8〜22のアルキル基を有し、金
属塩としては、Na,Li,Kから選ばれた少なくとも1種
のアルカリ金属塩が用いられている界面活性剤をポリオ
レフィン系繊維重量に対し、0.1〜10重量%付着させる方
法を例示できる。
As a treating agent for the surface of the polyolefin fiber, a metal salt of a higher fatty acid,
At least one selected from the group consisting of higher alcohol sulfate metal salts, higher alkyl ether sulfate metal salts, alkylbenzenesulfonic acid metal salts, alkylbenzenenaphthalenesulfonic acid metal salts, and paraffinsulfonic acid metal salts; A surfactant containing an alkyl group and at least one alkali metal salt selected from Na, Li, and K is used as a metal salt. 0.1 to 10% by weight of the surfactant is attached to the weight of the polyolefin fiber. The method can be exemplified.

【0031】ポリオレフィン系繊維の表面に、前記の界
面活性剤を付着させることにより、セメントとの親和性
と分散性が向上する。前記界面活性剤は、親水基と疎水
基の両方の極性を併せ持つ化合物である。前記界面活性
剤をポリオレフィン系繊維表面に付着させることによ
り、疎水性であるポリオレフィン系繊維と前記界面活性
剤の間では疎水基同士が親和性を持ち結合力が得られ、
前記界面活性剤とセメントとの間では親水基同士が向き
合いセメント中のカルシウムイオンと前記界面活性剤の
塩が置換され、前記界面活性剤のカルシウム塩となって
不溶性で粘着性のある物質となり、コンクリート補強用
繊維の表面にセメント粒子が付着する。即ち、前記界面
活性剤をポリオレフィン系繊維とセメントとの間に介在
させることによってセメントとコンクリート補強用繊維
の接着性が強固になり親和性を向上させ、セメント中に
コンクリート補強用繊維が均一に分散しやすくなり分散
性も向上する。0.1重量%未満の付着量では前記効果が十
分得られず、また、10重量%の付着量を超えると前記効
果が飽和状態となり曲げ強度、衝撃強度、曲げ衝撃エネ
ルギー吸収能が平衡に達してしまうため不経済である。
By attaching the above-mentioned surfactant to the surface of the polyolefin fiber, the affinity for cement and the dispersibility are improved. The surfactant is a compound having both polarities of a hydrophilic group and a hydrophobic group. By adhering the surfactant to the surface of the polyolefin-based fiber, between the hydrophobic polyolefin-based fiber and the surfactant, hydrophobic groups have an affinity between the hydrophobic groups and a binding force is obtained,
Between the surfactant and the cement, the hydrophilic groups face each other and the calcium ions in the cement and the salt of the surfactant are replaced, and the calcium salt of the surfactant becomes an insoluble and sticky substance, Cement particles adhere to the surface of the concrete reinforcing fiber. That is, by interposing the surfactant between the polyolefin-based fiber and the cement, the adhesion between the cement and the concrete reinforcing fiber is strengthened and the affinity is improved, and the concrete reinforcing fiber is uniformly dispersed in the cement. And the dispersibility is improved. If the amount of adhesion is less than 0.1% by weight, the above effect is not sufficiently obtained, and if the amount exceeds 10% by weight, the effect becomes saturated, and the bending strength, the impact strength, and the bending impact energy absorbing ability reach equilibrium. It is uneconomical.

【0032】本発明のコンクリート補強用繊維は、単糸
伸度が500%以上、好ましくは1000%以上の高伸度繊維
(A)である。更に好ましくは単糸強度5g/d以上、より
好ましくは7g/d以上の高強度繊維(B)との混合ブレン
ドで使用することが望ましい。該繊維を混入させたコン
クリート成形体において、X軸に伸び、Y軸に曲げ応力
をとった場合、使用する繊維が単糸伸度500%以上である
ことによりX軸方向に衝撃吸収エネルギーが上昇する。
また、単糸強度5g/d以上であることによりY軸方向に衝
撃吸収エネルギーが上昇する。すなわち、単糸伸度500%
以上の高伸度繊維(A)によって、1方向に衝撃エネル
ギーが上昇するが、これに単糸強度5g/d以上の高強度繊
維(B)を混合ブレンドすることにより2方向に衝撃吸
収エネルギーが向上するため、コンクリート成形体の曲
げ強度や圧縮強度、特に衝撃強度が著しく高くなる。
The concrete reinforcing fiber of the present invention is a high elongation fiber (A) having a single yarn elongation of 500% or more, preferably 1000% or more. More preferably, it is used in a mixed blend with a high-strength fiber (B) having a single yarn strength of 5 g / d or more, more preferably 7 g / d or more. When a concrete molded article mixed with the fiber is stretched in the X-axis and a bending stress is applied in the Y-axis, the impact absorption energy increases in the X-axis direction because the single fiber elongation is 500% or more. I do.
When the single yarn strength is 5 g / d or more, the impact absorption energy increases in the Y-axis direction. That is, single yarn elongation 500%
The impact energy increases in one direction due to the above high elongation fiber (A), but the impact absorption energy in two directions is increased by mixing and blending the high strength fiber (B) with a single yarn strength of 5 g / d or more. In order to improve, the flexural strength and compressive strength, especially impact strength, of the concrete molded body are significantly increased.

【0033】[0033]

【実施例】以下、実施例により本発明を説明するが、本
発明はこれらの実施例に限定されるものではない。コン
クリート成形体の物性の評価方法に関し、曲げ強度の
測定は、JIS-A1408に準じて行った。衝撃強度の測定
は、JIS-B7722シャルピー衝撃試験に準じて行った。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. Regarding the method for evaluating the physical properties of the concrete molded body, the measurement of the bending strength was performed according to JIS-A1408. The impact strength was measured according to JIS-B7722 Charpy impact test.

【0034】「実施例1〜9、比較例1〜2」で使用さ
れる、繊維の製造法及び糸物性を表1に示す。表中のメ
ルトフローレートは、JIS-K7210に準じて測定し、単糸
強伸度の測定は、JIS-L-1015に準じて行った。また、Q
値とは、重量平均分子量/数平均分子量のことである。
Table 1 shows fiber production methods and yarn properties used in "Examples 1 to 9 and Comparative Examples 1 and 2". The melt flow rate in the table was measured according to JIS-K7210, and the measurement of single-strength elongation was performed according to JIS-L-1015. Also, Q
The value is weight average molecular weight / number average molecular weight.

【0035】[0035]

【表1】 [Table 1]

【0036】実施例1 表1の(1)のポリプロピレン繊維0.18kgと普通ポルトラ
ンドセメント18kgと水6リットルを混合し、120kg/cm2
圧力で10秒間圧縮し、1サンプル30cm×25cm×1.1cmの
サイズでコンクリート成形体とした。この成形体を、60
℃の蒸気の中で5時間養生させた後、28日間室内に放
置し前記測定項目について測定を行った。
Example 1 0.18 kg of the polypropylene fiber (1) in Table 1 was mixed with 18 kg of ordinary Portland cement and 6 liters of water, and the mixture was compressed at a pressure of 120 kg / cm 2 for 10 seconds. One sample was 30 cm × 25 cm × 1.1 cm. A compact was formed at a size of. This compact is
After aging in steam at 5 ° C. for 5 hours, the sample was left in a room for 28 days to measure the measurement items.

【0037】実施例2 表1の(1)のポリプロピレン繊維表面にオレイン酸カリ
ウム塩を繊維重量に対し2.2%付着させてある繊維とした
以外は、実施例1と同様としてコンクリート成形体を得
た。
Example 2 A concrete molded product was obtained in the same manner as in Example 1 except that the fiber was obtained by adhering 2.2% by weight of potassium oleate to the surface of the polypropylene fiber in Table 1 (1). .

【0038】実施例3 繊維を表1の(2)のポリプロピレン繊維とした以外は、
実施例1と同様としてコンクリート成形体を得た。
Example 3 Except that the fiber was the polypropylene fiber of (2) in Table 1,
In the same manner as in Example 1, a concrete molded body was obtained.

【0039】実施例4 繊維を表1の(3)のポリプロピレン繊維50%と表1の
(4)のポリプロピレン繊維50%の混繊とした以外は、実
施例1と同様としてコンクリート成形体を得た。
Example 4 The fiber was prepared by mixing 50% of the polypropylene fiber of Table 1 (3) with the fiber of Table 1.
A concrete molded product was obtained in the same manner as in Example 1 except that the fiber mixture of (4) was made of 50% polypropylene fiber.

【0040】実施例5 繊維を表1の(3)のポリプロピレン繊維30%と表1の
(4)のポリプロピレン繊維70%の混繊とした以外は、実
施例1と同様としてコンクリート成形体を得た。
Example 5 The fiber was prepared by mixing 30% of the polypropylene fiber of Table 1 (3) with the fiber of Table 1.
A concrete molded product was obtained in the same manner as in Example 1 except that the mixed fiber of (4) was made of 70% of polypropylene fiber.

【0041】実施例6 繊維を表1の(3)のポリプロピレン繊維70%と表1の
(4)のポリプロピレン繊維30%の混繊とした以外は、実
施例1と同様としてコンクリート成形体を得た。
Example 6 A fiber was prepared by mixing 70% of the polypropylene fiber of Table 1 (3) with the fiber of Table 1.
A concrete molded product was obtained in the same manner as in Example 1 except that the fiber mixture of (4) was used, in which the polypropylene fiber was 30%.

【0042】実施例7 繊維を表1の(5)のポリプロピレン繊維50%と表1の
(6)のポリプロピレン繊維50%の混繊とした以外は、実
施例1と同様としてコンクリート成形体を得た。
Example 7 A fiber was prepared by mixing 50% of the polypropylene fiber of Table 1 (5) with the fiber of Table 1.
A concrete molded product was obtained in the same manner as in Example 1 except that the fiber mixture of (6) was made of 50% of polypropylene fiber.

【0043】実施例8 繊維を表1の(7)のポリプロピレン繊維50%と表1の
(8)のポリプロピレン繊維50%の混繊とした以外は、実
施例1と同様としてコンクリート成形体を得た。
Example 8 A fiber was prepared by mixing 50% of the polypropylene fiber of Table 1 (7) with the fiber of Table 1.
A concrete molded product was obtained in the same manner as in Example 1, except that the fiber mixture of (8) was made of 50% of polypropylene fiber.

【0044】実施例9 繊維を表1の(9)のポリプロピレン繊維50%と表1の(1
0)のポリプロピレン繊維50%の混繊とした以外は、実施
例1と同様としてコンクリート成形体を得た。
Example 9 The fiber was prepared by mixing 50% of the polypropylene fiber of (9) in Table 1 with (1) in Table 1.
A concrete molded article was obtained in the same manner as in Example 1 except that the fiber mixture of 0) was made of 50% polypropylene fiber.

【0045】比較例1 繊維を未使用とした以外は、実施例1と同様としてコン
クリート成形体を得た。
Comparative Example 1 A concrete molding was obtained in the same manner as in Example 1 except that the fiber was not used.

【0046】比較例2 繊維を表1の(11)のポリプロピレン繊維とした以外は、
実施例1と同様としてコンクリート成形体を得た。
COMPARATIVE EXAMPLE 2 Except that the fiber was the polypropylene fiber of (11) in Table 1,
In the same manner as in Example 1, a concrete molded body was obtained.

【0047】上記「実施例1〜9」及び「比較例1〜
2」のコンクリート成形体の物性を評価した結果を、表
2に示す。
The above Examples 1 to 9 and Comparative Examples 1 to 9
Table 2 shows the results of evaluating the physical properties of the 2 "concrete molded product.

【0048】[0048]

【表2】 [Table 2]

【0049】表2から明らかな通り、実施例1〜9はコ
ンクリート成形体の曲げ強度や圧縮強度特に衝撃強度に
優れていることが判る。
As is clear from Table 2, Examples 1 to 9 are superior in flexural strength and compressive strength, particularly impact strength, of the concrete molded product.

【0050】比較例1〜2と比較して実施例1〜9がコ
ンクリート成形体の曲げ強度や圧縮強度特に衝撃強度に
より優れている。実施例2は実施例1の繊維表面処理を
行なったことによる効果が見られる。実施例3は単糸伸
度が1000%以上である高伸度糸の補強作用効果が顕著で
ある。実施例4〜9については、単糸強度5g/d以上ある
いは7g/d以上の繊維と混合ブレンドで使用しているため
一層優れた曲げ強度や衝撃強度が得られる。特に、実施
例9で示すように単糸強度7g/d以上の繊維と単糸伸度10
00%以上の繊維を混合するとコンクリート成形体の曲げ
強度や圧縮強度特に衝撃強度が著しく飛躍していること
が明確である。
Examples 1 to 9 are superior to Comparative Examples 1 and 2 in terms of flexural strength and compressive strength, particularly impact strength, of the concrete molded product. Example 2 shows the effect of performing the fiber surface treatment of Example 1. In Example 3, the effect of reinforcing a high elongation yarn having a single yarn elongation of 1000% or more is remarkable. In Examples 4 to 9, more excellent bending strength and impact strength can be obtained because they are used as a blend with fibers having a single yarn strength of 5 g / d or more or 7 g / d or more. Particularly, as shown in Example 9, a fiber having a single yarn strength of 7 g / d or more and a single yarn elongation of 10 g / d were used.
It is clear that the mixing strength of the fibers of not less than 00% significantly increases the flexural strength and the compressive strength, especially the impact strength of the concrete molding.

【0051】比較例1については、単糸伸度500%の繊維
を添加していないためコンクリート成形体の曲げ強度や
圧縮強度特に衝撃強度が低くなっている。
In Comparative Example 1, the flexural strength and compressive strength, particularly impact strength, of the concrete molded product were low because no fiber with a single yarn elongation of 500% was added.

【0052】比較例2については、繊維を添加している
が単糸伸度が500%未満であるため十分な効果が得られて
いない。
In Comparative Example 2, the fiber was added, but the single yarn elongation was less than 500%, so that a sufficient effect was not obtained.

【0053】[0053]

【発明の効果】本発明のコンクリート補強用繊維は、優
れたコンクリート補強効果を有する。即ち、コンクリー
ト成形体の曲げ強度や圧縮強度特に衝撃強度の向上を示
す。コンクリート補強用繊維の単糸伸度が高いことによ
って、コンクリート成形体の伸び応力が向上し、衝撃吸
収エネルギーが増加する。よって、コンクリート成形体
の曲げ強度や圧縮強度特に衝撃強度の向上を示す。ま
た、コンクリート補強用繊維の単糸強度が高いものと混
合ブレンドすることにより、更に、コンクリート成形体
の伸び応力が向上し、衝撃吸収エネルギーが著しく増加
する。上記のことから、コンクリート補強用繊維の伸度
を高くすることによって、コンクリート成形体の曲げ強
度や圧縮強度特に衝撃強度を向上させるコンクリート補
強用繊維を得ることができた。
The fiber for reinforcing concrete of the present invention has an excellent concrete reinforcing effect. That is, it shows improvement in bending strength and compressive strength, particularly impact strength of the concrete molded body. Due to the high single yarn elongation of the concrete reinforcing fiber, the elongation stress of the concrete molded body is improved, and the impact absorption energy is increased. Therefore, it shows improvement in bending strength and compressive strength, particularly impact strength of the concrete molded body. In addition, by mixing and blending the concrete reinforcing fiber with a high single-strength fiber, the elongation stress of the concrete molded body is further improved, and the impact absorption energy is significantly increased. As described above, by increasing the elongation of the concrete reinforcing fiber, a concrete reinforcing fiber capable of improving the bending strength and the compressive strength, particularly the impact strength, of the concrete molded body could be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI D06M 13/00 D06M 13/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI D06M 13/00 D06M 13/00

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】単糸伸度500%以上を有する高伸度繊維
(A)を含有するコンクリート補強用繊維。
A concrete reinforcing fiber containing a high elongation fiber (A) having a single yarn elongation of 500% or more.
【請求項2】単糸伸度500%以上を有する高伸度繊維
(A)を30〜100重量%と単糸強度5g/d以上を有する高強
度繊維(B)を0〜70重量%からなるコンクリート補強用
繊維。
2. A high elongation fiber (A) having a single yarn elongation of 500% or more is from 30 to 100% by weight and a high strength fiber (B) having a single yarn strength of 5 g / d or more is from 0 to 70% by weight. A fiber for reinforcing concrete.
【請求項3】高伸度繊維(A)が、単糸伸度1000%以上
である請求項1または2に記載のコンクリート補強用繊
維。
3. The concrete reinforcing fiber according to claim 1, wherein the high elongation fiber (A) has a single yarn elongation of 1000% or more.
【請求項4】高強度繊維(B)が、単糸強度7g/d以上で
ある請求項2または3に記載のコンクリート補強用繊
維。
4. The concrete reinforcing fiber according to claim 2, wherein the high-strength fiber (B) has a single-yarn strength of 7 g / d or more.
【請求項5】高伸度繊維(A)または高強度繊維(B)
が、ポリオレフィン系繊維である請求項1〜4のいずれ
かに記載のコンクリート補強用繊維。
5. High elongation fiber (A) or high strength fiber (B)
Is a polyolefin fiber, The fiber for concrete reinforcement according to any one of claims 1 to 4.
【請求項6】高伸度繊維(A)または高強度繊維(B)
の少なくとも一方に、高級脂肪酸金属塩,高級アルコー
ル硫酸エステル金属塩,アルキルベンゼンスルホン酸金
属塩,アルキルベンゼンナフタレンスルホン酸金属塩,
パラフィンスルホン酸金属塩,アルキルアミン塩,アル
キルアンモニウム塩の群から選ばれた少なくとも1種
で、かつ炭素数が8〜22のアルキル基を有する界面活性
剤が、前記高強度繊維(A)または高伸度繊維(B)の
重量に対し、0.1〜10重量%付着されている請求項1〜5
のいずれかに記載のコンクリート補強用繊維。
6. High elongation fiber (A) or high strength fiber (B)
A metal salt of a higher fatty acid, a metal salt of a higher alcohol sulfate, a metal salt of an alkylbenzenesulfonic acid, a metal salt of an alkylbenzenenaphthalenesulfonic acid,
The high-strength fiber (A) or the high-strength fiber (A) has at least one surfactant selected from the group consisting of a metal salt of paraffinsulfonic acid, an alkylamine salt and an alkylammonium salt and having an alkyl group having 8 to 22 carbon atoms. The amount of 0.1 to 10% by weight based on the weight of the elongation fiber (B) is applied.
The fiber for reinforcing concrete according to any one of the above.
【請求項7】前記金属塩が、Na,Li,Kから選ばれた少
なくとも1種のアルカリ金属塩である請求項6に記載の
コンクリート補強用繊維。
7. The concrete reinforcing fiber according to claim 6, wherein said metal salt is at least one kind of alkali metal salt selected from Na, Li and K.
【請求項8】請求項1〜7のいずれかに記載のコンクリ
ート補強用繊維を用いて成形したコンクリート成形体。
8. A concrete molded article molded using the fiber for reinforcing concrete according to any one of claims 1 to 7.
JP33365197A 1997-11-18 1997-11-18 Concrete reinforcing fiber and concrete molded body using the same Expired - Lifetime JP3755267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33365197A JP3755267B2 (en) 1997-11-18 1997-11-18 Concrete reinforcing fiber and concrete molded body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33365197A JP3755267B2 (en) 1997-11-18 1997-11-18 Concrete reinforcing fiber and concrete molded body using the same

Publications (2)

Publication Number Publication Date
JPH11152617A true JPH11152617A (en) 1999-06-08
JP3755267B2 JP3755267B2 (en) 2006-03-15

Family

ID=18268452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33365197A Expired - Lifetime JP3755267B2 (en) 1997-11-18 1997-11-18 Concrete reinforcing fiber and concrete molded body using the same

Country Status (1)

Country Link
JP (1) JP3755267B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19860335B4 (en) * 1997-12-25 2007-02-22 Chisso Corp. Concrete reinforcing fiber
WO2008038658A1 (en) * 2006-09-26 2008-04-03 Ube-Nitto Kasei Co., Ltd. Reinforcing short fiber for cement molding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19860335B4 (en) * 1997-12-25 2007-02-22 Chisso Corp. Concrete reinforcing fiber
WO2008038658A1 (en) * 2006-09-26 2008-04-03 Ube-Nitto Kasei Co., Ltd. Reinforcing short fiber for cement molding
JP2008081338A (en) * 2006-09-26 2008-04-10 Ube Nitto Kasei Co Ltd Reinforcing short fibers for cement-based moldings

Also Published As

Publication number Publication date
JP3755267B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
DK169699B1 (en) Reinforcing fibres, and process for producing them
TWI583651B (en) Cement reinforcing fiber and cement hardened body using the same
US4772328A (en) Hydraulic cementitious compositions reinforced with fibers containing polyacrylonitrile
US20060188719A1 (en) Synthetic fibers and cementitious systems including same
JP3274402B2 (en) Fiber for reinforcing concrete impact strength and concrete molding using the same
JP2017531744A (en) Drawn polyolefin fiber
JP4636693B2 (en) Synthetic fiber and cementitious structure containing the same
JP3960100B2 (en) High strength polyolefin fiber and concrete molded body using the same
JP3755267B2 (en) Concrete reinforcing fiber and concrete molded body using the same
JP2008266871A (en) Polypropylene fiber with excellent heat resistance
JPH0986984A (en) Polypropylene fiber for cement reinforcement
JP2000064116A (en) Concrete reinforcing fiber
JPH11240740A (en) Concrete reinforcing fiber
TW542859B (en) Concrete reinforcing fiber
KR102616017B1 (en) Polyolefin monofilament yarn having improved abrasion resistance, method of manufacturing the same, and molded article manufactured thereby
KR100389659B1 (en) Process for preparing high-tenacity polyvinyl alcohol fiber
KR102623732B1 (en) Polyolefin monofilament yarn having improved creep resistance, method of manufacturing the same, and molded article manufactured thereby
JPH04175252A (en) Acrylic synthetic fiber and its production
JP3166180B2 (en) Fiber-reinforced hydraulic molded article and method for producing the same
JP4364343B2 (en) Kneaded molded hydraulic material reinforcing material and kneaded molded body
JP2002348157A (en) Fiber for reinforcement of cement
JPH11152616A (en) Fiber for reinforcing concrete and concrete molding using the same
JPH05262545A (en) Fiber-reinforced hydraulic molding
JPH04175251A (en) Acrylic synthetic fiber and its production
JP2004256315A (en) Vinylon fiber for cement reinforcement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term