JPH11150002A - Overcurrent protective element - Google Patents

Overcurrent protective element

Info

Publication number
JPH11150002A
JPH11150002A JP31370497A JP31370497A JPH11150002A JP H11150002 A JPH11150002 A JP H11150002A JP 31370497 A JP31370497 A JP 31370497A JP 31370497 A JP31370497 A JP 31370497A JP H11150002 A JPH11150002 A JP H11150002A
Authority
JP
Japan
Prior art keywords
mixture
ptc
primary
pct
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31370497A
Other languages
Japanese (ja)
Inventor
Kaoru Sato
薫 佐藤
Mitsuo Tamura
光男 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP31370497A priority Critical patent/JPH11150002A/en
Publication of JPH11150002A publication Critical patent/JPH11150002A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an overcurrent interrupt element responsiveness of which is satisfactory, in which the energy loss due to the existence of the element itself can be sufficiently suppressed within a use temperature range. SOLUTION: A primary layered product 10 is formed by interposing the both faces of a sheet being a PCT mixed body A between nickel electrodes, and two notched parts 10a are formed by removing the nickel electrodes. Primary layered products 20 are formed by pressurizing nickel electrodes to one face of a sheet which is a PCT mixed body B having an operating temperature lower than that of the PCT mixed body A which is different from the PCT mixed body A, and the faces of the primary laminate 20 opposite to the faces having the nickel electrodes are allowed to cover the two notched parts 10a. Then, a secondary laminate 30 is formed by laminating the both primary laminate 10 and 20. Thus, the secondary laminate 30 is cut, and the primary laminate 20 are allowed to cover the electrode separating parts of the primary laminate 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として電子機器
等の回路に適用され、回路内で何らかの異常によって過
剰な電流が流れたときに他の回路素子や電池類の破損を
保護するために瞬間的に電流を遮断する過電流保護素子
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is mainly applied to a circuit of an electronic device or the like. When an excessive current flows due to some abnormality in the circuit, an instantaneous protection is provided for protecting other circuit elements and batteries from being damaged. The present invention relates to an overcurrent protection element that cuts off current.

【0002】[0002]

【従来の技術】従来、この種の過電流保護素子として
は、高分子粉末及び導電性フィラー粉末のPTC混合体
を導体板から成る電極に挟んで構成されるPTC素子が
幅広く利用されている。例えば高分子であるポリエチレ
ンと導電性フィラーであるカーボンブラックとによる混
合体は、カーボンブラックの体積比が10%を越えると
カーボン粒子間のネットワークが形成されるために室温
近辺ではほぼ完全な導体となるが、温度が上昇してポリ
エチレンの融点に達するとカーボン粒子間のネットワー
クが寸断されるために導電性が急激に低下して絶縁体と
なる。
2. Description of the Related Art Heretofore, as this kind of overcurrent protection element, a PTC element formed by sandwiching a PTC mixture of a polymer powder and a conductive filler powder between electrodes made of a conductive plate has been widely used. For example, a mixture of polyethylene, which is a polymer, and carbon black, which is a conductive filler, forms a network between carbon particles when the volume ratio of carbon black exceeds 10%. However, when the temperature rises and reaches the melting point of polyethylene, the network between the carbon particles is cut, so that the conductivity sharply decreases and the material becomes an insulator.

【0003】こうした性質を利用し、端子間にこのよう
な導電性及び絶縁性の両方の特性を合わせ持つ混合体を
挟み込んで一定の抵抗値として構成されたPTC素子を
電子機器等の回路内に接続して用いると、通常の電流値
に対しては低抵抗のために単なる回路内の導通経路に過
ぎないように働くが、回路の異常等により一定以上の大
電流が流れると自身で発生するジュール熱により急激な
温度上昇が起こり、それによってポリエチレンの融点近
傍に達して抵抗値が急上昇することによって電流を遮断
できる。この抵抗値が急上昇する温度は動作温度と呼ば
れるが、過電流保護素子(PTC素子)においては、こ
の動作温度を高分子の融点や使用する導電性フィラーの
種類によって変えることができる。
Utilizing such properties, a PTC element having a constant resistance value by sandwiching a mixture having both such conductive and insulating properties between terminals is used in a circuit of an electronic device or the like. When connected and used, it acts as a mere conduction path in the circuit due to low resistance for normal current values, but it is generated by itself when a large current exceeding a certain level flows due to abnormality of the circuit etc. The Joule heat causes a sharp rise in temperature, which causes the current to be cut off by reaching a temperature near the melting point of polyethylene and causing a sharp rise in resistance. The temperature at which the resistance value rises sharply is called the operating temperature. In an overcurrent protection element (PTC element), this operating temperature can be changed depending on the melting point of the polymer and the type of conductive filler used.

【0004】[0004]

【発明が解決しようとする課題】上述した過電流保護素
子(PTC素子)の場合、その使用目的上、正常な状態
では可能な限り低抵抗であり、素子自体の存在による余
分なエネルギー損失を抑制しなければならないが、動作
温度までの抵抗値が極端に低いままで急激に一定の温度
で上昇する場合、過電流発生から遮断までの時間が長く
なって応答性が悪くなってしまうという問題がある。例
えば高密度ポリエチレン及びカーボンブラックの混合体
では、抵抗率の変化は室温近辺の25℃から100℃ま
では僅かに2倍程度である。この程度の温度依存性があ
るとその応答時間が長くなり、用途によって無視できな
くなる。
In the case of the above-mentioned overcurrent protection element (PTC element), the resistance is as low as possible in a normal state for the purpose of use, and excess energy loss due to the presence of the element itself is suppressed. However, if the resistance value up to the operating temperature rises sharply at a constant temperature while the resistance value is extremely low, the time from the occurrence of overcurrent to the cutoff becomes longer, resulting in poor response. is there. For example, in a mixture of high-density polyethylene and carbon black, the change in resistivity is only about twice from 25 ° C near room temperature to 100 ° C. With such a degree of temperature dependence, the response time becomes long and cannot be ignored depending on the application.

【0005】そこで、過電流保護素子(PTC素子)に
は、常温での正常状態での抵抗値をできる限り小さく抑
え、温度上昇の過程で80℃程度からの抵抗値を4〜1
0倍に上昇させることでジュール熱の発生を加速すると
共に、遮断時間を短くすること、即ち、基本的に使用温
度範囲内では素子自体の存在によるエネルギー損失を抑
制した上で応答性を良くする性能が望まれている。
Therefore, the resistance value of the overcurrent protection element (PTC element) in a normal state at room temperature is kept as small as possible, and the resistance value from about 80 ° C. to 4 to 1 during the temperature rise is increased.
By increasing the temperature to 0 times, the generation of Joule heat is accelerated and the cutoff time is shortened. That is, the energy loss due to the presence of the element itself is basically suppressed within the operating temperature range, and the response is improved. Performance is desired.

【0006】本発明は、このような問題点を解決すべく
なされたもので、その技術的課題は、使用温度範囲内で
素子自体の存在によるエネルギー損失を十分に抑制でき
る応答性の良い過電流遮断素子を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and a technical problem thereof is to provide an overcurrent having good responsiveness which can sufficiently suppress energy loss due to the presence of the element itself within a use temperature range. An object of the present invention is to provide a blocking element.

【0007】[0007]

【課題を解決するための手段】本発明によれば、高分子
粉末及び導電性フィラー粉末を混合して得られる第1の
PTC混合体を導体板から成る電極に挟んで構成される
過電流保護素子において、電極は一面上で複数個に分離
されており、且つ該電極の相互間には高分子及び導電性
フィラー粉末の種類がそれぞれ異なるものを混合して得
られる第1のPTC混合体とは異なる第2のPTC混合
体を電気的に結合して成る過電流遮断素子が得られる。
According to the present invention, there is provided an overcurrent protection device comprising a first PTC mixture obtained by mixing a polymer powder and a conductive filler powder between electrodes made of a conductive plate. In the device, the electrodes are separated into a plurality of pieces on one surface, and a first PTC mixture obtained by mixing different kinds of polymer and conductive filler powder between the electrodes is used. Is obtained by electrically coupling different second PTC mixtures.

【0008】又、本発明によれば、上記過電流遮断素子
において、第1のPTC混合体は、高分子粉末として高
密度ポリエチレンを用いると共に、導電性フィラー粉末
としてカーボンブラックを用いて成るもので、第2のP
TC混合体は、高分子粉末として高密度ポリエチレン及
びエチレンエチルアクリエートを混合したものを用いる
と共に、導電性フィラー粉末としてチタンカーバイトを
用いて成る過電流遮断素子が得られる。
Further, according to the present invention, in the above-mentioned overcurrent interrupting device, the first PTC mixture comprises high-density polyethylene as a polymer powder and carbon black as a conductive filler powder. , The second P
As the TC mixture, an overcurrent interrupting element using a mixture of high-density polyethylene and ethylene ethyl acrylate as a polymer powder and using titanium carbide as a conductive filler powder can be obtained.

【0009】更に、本発明によれば、上記何れかの過電
流遮断素子において、第1のPTC混合体の動作温度
は、第2のPTC混合体の動作温度よりも高い過電流遮
断素子が得られる。
Further, according to the present invention, in any one of the above-mentioned overcurrent cutoff devices, the operating temperature of the first PTC mixture is higher than the operation temperature of the second PTC mixture. Can be

【0010】[0010]

【作用】一般に、過電流遮断素子における室温抵抗は、
素子自体の厚みが一定であれば電極面積に比例する。そ
こで、本発明の過電流遮断素子では、適用対象とする電
子機器の使用温度範囲を想定し、例えば80℃までは有
効電極面積を一素子の全面として極力低抵抗に抑える一
方、80℃を越えた場合には電極の一部を分離して有効
電極面積を数分の一に縮小された状態とすることで抵抗
値をその温度以上で数倍にし、応答性を加速できるよう
な性能の具現を計っている。このための電極分離構成と
して、予め一面上の電極を分割し、分割した電極間を例
えば動作温度80℃のPTC複合材料(PTC混合体)
で結合しておくことで可能となる。即ち、80℃に達す
ると主電極(電極端子と接続された電極)と副電極とを
電気的に結合する部分がほぼ絶縁体になり、両者は電気
的に分離されるため、有効電極面積が減少して抵抗値が
増大する。従って、過剰電流は分離された後、特定部分
のみにしか流れなくなってジュール熱の発生を加速し、
動作温度として例えば120℃に至るまでの時間を大幅
に縮小できることになる。
Generally, the room temperature resistance of the overcurrent cutoff element is
If the thickness of the element itself is constant, it is proportional to the electrode area. Therefore, in the overcurrent interruption element of the present invention, the operating temperature range of the electronic device to be applied is assumed, and for example, the effective electrode area is suppressed to as low as possible the entire surface of the element up to 80 ° C, while exceeding 80 ° C. In this case, the resistance is increased several times above that temperature by separating a part of the electrode to reduce the effective electrode area by a factor of several, thus realizing performance that can accelerate response. Is being measured. As an electrode separation structure for this, an electrode on one surface is divided in advance, and a space between the divided electrodes is, for example, a PTC composite material (PTC mixture) having an operating temperature of 80 ° C.
It becomes possible by combining with. That is, when the temperature reaches 80 ° C., the portion electrically connecting the main electrode (the electrode connected to the electrode terminal) and the sub-electrode becomes almost an insulator, and the two are electrically separated from each other. The resistance decreases and the resistance increases. Therefore, after the excess current is separated, it flows only to a specific part and accelerates the generation of Joule heat,
The time required to reach, for example, 120 ° C. as the operating temperature can be greatly reduced.

【0011】[0011]

【発明の実施の形態】以下に実施例を挙げ、本発明の過
電流遮断素子について、図面を参照して詳細に説明す
る。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0012】最初に、本発明の過電流遮断素子の基本構
成の概要を簡単に説明する。この過電流遮断素子は、高
分子粉末及び導電性フィラー粉末を混合して得られる第
1のPTC混合体を導体板から成る電極に挟んで構成さ
れる部分を有する点は従来のものと共通するが、電極は
一面上で複数個に分離されており、且つそれらの電極の
相互間には高分子及び導電性フィラー粉末の種類がそれ
ぞれ異なるものを混合して得られる第1のPTC混合体
とは異なる第2のPTC混合体を電気的に結合して成っ
てる。
First, the outline of the basic configuration of the overcurrent cutoff device of the present invention will be briefly described. This overcurrent cutoff element has a common point with a conventional one in that it has a portion formed by sandwiching a first PTC mixture obtained by mixing a polymer powder and a conductive filler powder between electrodes made of a conductive plate. However, the electrode is separated into a plurality on one surface, and between the electrodes is a first PTC mixture obtained by mixing different types of polymer and conductive filler powder respectively. Comprises a different second PTC mixture electrically coupled.

【0013】第1のPTC混合体としては、高分子粉末
に高密度ポリエチレンを用いると共に、導電性フィラー
粉末にカーボンブラックを用いる場合を例示でき、第2
のPTC混合体としては、高分子粉末に高密度ポリエチ
レン及びエチレンエチルアクリエートを混合したものを
用いると共に、導電性フィラー粉末にチタンカーバイト
を用いる場合を例示できる。ここでは第1のPTC混合
体の動作温度が第2のPTC混合体の動作温度よりも高
くなっている。
Examples of the first PTC mixture include a case where high-density polyethylene is used as the polymer powder and carbon black is used as the conductive filler powder.
Examples of the PTC mixture include a mixture of a polymer powder and high-density polyethylene and ethylene ethyl acrylate, and a case where titanium carbide is used as a conductive filler powder. Here, the operating temperature of the first PTC mixture is higher than the operating temperature of the second PTC mixture.

【0014】以下は、このような過電流遮断素子の製造
方法並びに作製方法を具体的に説明する。最初に、この
過電流遮断素子に用いられると共に、高分子及び導電性
フィラー粉末の種類がそれぞれ異なるものを混合して成
る異なるPCT混合体A(第1のPTC混合体),PC
T混合体B(第2のPTC混合体)の成分構成を表1に
示す。
Hereinafter, a method of manufacturing such an overcurrent cutoff device and a method of manufacturing the same will be specifically described. First, a different PCT mixture A (first PTC mixture), PC, which is used in this overcurrent blocking element and is made by mixing different types of polymer and conductive filler powder.
Table 1 shows the component constitution of the T mixture B (second PTC mixture).

【0015】[0015]

【表1】 [Table 1]

【0016】図1は、これらのPCT混合体A,Bをそ
れぞれニッケル箔によるニッケル電極に挟んで抵抗率の
温度変化を測定した結果を示したものである。図1から
は、抵抗率Aで示されるPCT混合体Aの動作温度は1
20℃〜125℃であり、抵抗率Bで示されるPCT混
合体Bの動作温度は85℃程度であることが判る。
FIG. 1 shows the results of measuring the temperature change of the resistivity with each of these PCT mixtures A and B sandwiched between nickel electrodes made of nickel foil. From FIG. 1, the operating temperature of the PCT mixture A represented by the resistivity A is 1
20 ° C. to 125 ° C., indicating that the operating temperature of the PCT mixture B represented by the resistivity B is about 85 ° C.

【0017】そこで、これらのPCT混合体A,Bを用
いて過電流遮断素子を作製する手順として、先ず表1に
示す配合比に従って高分子及び導電性フィラーを150
℃以上の熱間ロールを用いて混合し、導電性フィラーを
分散させた。
Therefore, as a procedure for fabricating an overcurrent interrupting device using these PCT mixtures A and B, first, a polymer and a conductive filler were added in a proportion of 150 as shown in Table 1.
The mixture was mixed using a hot roll at a temperature of at least ℃ to disperse the conductive filler.

【0018】次に、PCT混合体A,Bのそれぞれを再
度加熱ロールで圧延し、厚みが500μmで幅が50m
mのシートとした。
Next, each of the PCT mixtures A and B is rolled again by a heating roll, and has a thickness of 500 μm and a width of 50 m.
m sheet.

【0019】更に、PCT混合体Aによるシートに関し
ては、その両面を厚みが50μmの2枚のニッケル箔に
よるニッケル電極に挟んで150℃以上の温度で熱間プ
レスして積層したものの端面を裁断することにより、図
2(a)にその平面図、同図(b)にその側面図を示す
ように、幅Wが30mm,長さLが50mm,厚みDが
300μmの一次積層体10を得た。但し、この一次積
層体10には、引き続いて片面のニッケル電極に対して
ダイシングソーで幅W方向の両端から5mmの位置にお
いて間隔dを20mmとして長さL方向に平行して2箇
所に幅1mmの切り込み部10aを入れた後、この切り
込み部10aのニッケル電極を引き剥がした。
Further, with respect to the sheet made of the PCT mixture A, both sides thereof are sandwiched between two nickel electrodes made of nickel foil having a thickness of 50 μm and hot-pressed at a temperature of 150 ° C. or more, and the end faces are cut. As a result, a primary laminate 10 having a width W of 30 mm, a length L of 50 mm, and a thickness D of 300 μm was obtained as shown in a plan view of FIG. 2A and a side view of FIG. . However, in the primary laminated body 10, the distance d was set to 20 mm at a position 5 mm from both ends in the width W direction with a dicing saw with respect to the nickel electrode on one side, and the width 1 mm was parallel to the length L direction at two places. After the cut portion 10a was formed, the nickel electrode in the cut portion 10a was peeled off.

【0020】一方、PCT混合体Bによるシートに関し
ては、その片面のみに厚みが50μmの1枚のニッケル
箔によるニッケル電極を押し付けて150℃以上の温度
で熱間プレスして積層したものの端面を裁断することに
より、図3(a)にその平面図、同図(b)にその側面
図を示すように、幅Wが5mm,長さLが50mm,厚
みDが200μmの別な一次積層体20を得た。
On the other hand, with respect to the sheet made of the PCT mixture B, a nickel electrode made of a single nickel foil having a thickness of 50 μm is pressed on only one side of the sheet and hot-pressed at a temperature of 150 ° C. or more, and the end face is cut. By doing so, another primary laminate 20 having a width W of 5 mm, a length L of 50 mm, and a thickness D of 200 μm is shown in a plan view of FIG. 3A and a side view of FIG. I got

【0021】この後、一次積層体10,20に関して、
一次積層体10のニッケル電極を取り去った2箇所の切
り込み部10aにそれぞれ一次積層体20をニッケル電
極を有する面と反対の面を被せて再度150℃以上の熱
間プレスで両者を積層し、図4(a)にその平面図、同
図(b)にその側面図、同図(c)にその部分的な斜視
図を示すように、厚みDが最大で450μmの二次積層
体30を得た。
Thereafter, regarding the primary laminates 10 and 20,
The primary laminate 20 was placed on the two cut portions 10a of the primary laminate 10 from which the nickel electrodes had been removed, and the surfaces opposite to the surface having the nickel electrodes were respectively covered, and both were laminated again by hot pressing at 150 ° C. or higher. 4 (a) shows a plan view, FIG. 4 (b) shows a side view, and FIG. 4 (c) shows a partial perspective view of the secondary laminate 30 having a maximum thickness D of 450 μm. Was.

【0022】最後に、二次積層体30に関して、図5
(a),(b)の平面図にそれぞれ示されるような形状
に裁断してPTC素子試料11,12を得た。PTC素
子試料11は、図5(a)に示されるように一次積層体
10の電極分離部に一次積層体20が被せられた本発明
の一実施例に係る構造であり、PTC素子試料12は、
図5(b)に示されるように比較のためにPTC素子試
料11と外形寸法が同じで一次積層体10から裁断した
比較例に係る構造のものである。
Finally, regarding the secondary laminate 30, FIG.
PTC element samples 11 and 12 were obtained by cutting into shapes as shown in the plan views of (a) and (b). As shown in FIG. 5A, the PTC element sample 11 has a structure according to one embodiment of the present invention in which the primary separation body 20 is covered on the electrode separation part of the primary stack 10. ,
As shown in FIG. 5B, for comparison, the outer dimensions of the PTC element sample 11 were the same, and the structure according to the comparative example was cut from the primary laminate 10.

【0023】要するに、上述した本発明の過電流遮断素
子(PTC素子試料11)は、PCT混合体Aによるシ
ートの両面をニッケル電極に挟んで積層して成る一次積
層体10のニッケル電極を取り去った2箇所の切り込み
部10aに対し、それぞれPCT混合体Aとは異なり、
且つPCT混合体Aよりも低い動作温度を有するPCT
混合体Bによるシートの片面にニッケル電極を押し付け
て積層して成る一次積層体20をそのニッケル電極を有
する面と反対の面を被せて両者を積層して成る二次積層
体30を裁断し、一次積層体10の電極分離部に一次積
層体20が被せられた構造として得られる。
In short, in the above-described overcurrent interrupting element (PTC element sample 11) of the present invention, the nickel electrode of the primary laminate 10 formed by laminating the both surfaces of the sheet made of the PCT mixture A between the nickel electrodes was removed. The two cut portions 10a are different from the PCT mixture A, respectively.
PCT having lower operating temperature than PCT mixture A
A primary laminate 20 formed by pressing a nickel electrode against one surface of the sheet of the mixture B is covered with a surface opposite to the surface having the nickel electrode, and a secondary laminate 30 formed by laminating both is cut; It is obtained as a structure in which the primary laminate 20 is covered on the electrode separation portion of the primary laminate 10.

【0024】PTC素子試料11の場合、一次積層体1
0における表面側の局部が電極端子T1となり、裏面側
の局部が電極端子T2となる。同様にPTC素子試料1
2の場合も一次積層体10における表面側の任意な箇所
が電極端子T1となり、裏面側の任意な箇所が電極端子
T2となる。
In the case of the PTC element sample 11, the primary laminate 1
The local part on the front side at 0 is the electrode terminal T1, and the local part on the back side is the electrode terminal T2. Similarly, PTC element sample 1
Also in the case of No. 2, an arbitrary portion on the front side of the primary laminate 10 becomes the electrode terminal T1, and an arbitrary portion on the back side becomes the electrode terminal T2.

【0025】そこで、これらのPTC素子試料11,1
2に関して、電極端子T1,T2間の電気抵抗を測定し
たところ、表2に示すような結果(尚、表2中ではPT
C素子試料11をα,PTC素子試料12をβとしてい
る)となった。
Therefore, these PTC element samples 11, 1
2 was measured for the electrical resistance between the electrode terminals T1 and T2, and the results as shown in Table 2 (in Table 2, PT
C element sample 11 is α, and PTC element sample 12 is β).

【0026】[0026]

【表2】 [Table 2]

【0027】表2からは、PTC素子試料11,12の
何れの場合も、電気抵抗はほぼ20mmΩの値を示して
いることが判る。
From Table 2, it can be seen that the electrical resistance of each of the PTC element samples 11 and 12 is approximately 20 mmΩ.

【0028】次に、これらのPTC素子試料11,12
に関して、恒温槽及び4端子式抵抗計を用いて電極端子
T1,T2間の電気抵抗の温度変化を測定したところ、
図6に示すような結果(尚、図6中でもPTC素子試料
11をα,PTC素子試料12をβとしている)となっ
た。
Next, these PTC element samples 11, 12
With respect to, when the temperature change of the electric resistance between the electrode terminals T1 and T2 was measured using a thermostat and a four-terminal resistance meter,
The results shown in FIG. 6 were obtained (in FIG. 6, the PTC element sample 11 was α and the PTC element sample 12 was β).

【0029】図6からは、PTC素子試料11,12を
比較すれば80℃以上の電気抵抗の温度変化が異なって
おり、PTC素子試料11に関しては90℃でPTC素
子試料12に対して約5倍の抵抗値になっていることが
判る。
FIG. 6 shows that when the PTC element samples 11 and 12 are compared, the temperature change of the electric resistance of 80 ° C. or more is different. It can be seen that the resistance value is doubled.

【0030】更に、図7に示すような過電流遮断試験回
路を用いてPTC素子試料11,12に関する電流遮断
時間の比較を行った。因みに、この過電流遮断試験回路
は、例えば30Vの直流電源13,スイッチSW,5Ω
の保護抵抗R,PTC素子試料11又はPTC素子試料
12,及び電流計14を直列に閉回路として接続し、保
護抵抗Rに対してオシロスコープ15を並列に接続して
成っている。
Further, the current interruption time of the PTC element samples 11 and 12 was compared using an overcurrent interruption test circuit as shown in FIG. Incidentally, this overcurrent cutoff test circuit is, for example, a 30 V DC power supply 13, a switch SW, 5Ω
, A PTC element sample 11 or PTC element sample 12, and an ammeter 14 are connected in series as a closed circuit, and an oscilloscope 15 is connected in parallel to the protection resistance R.

【0031】図8は、この過電流遮断試験回路における
電流遮断時間を時間(sec)に対する電流(A)との
関係で比較した測定結果(尚、図8中でもPTC素子試
料11をα,PTC素子試料12をβとしている)を示
したものである。図8からは、電流遮断時間に関して、
PTC素子試料12では4秒であるのに対し、PTC素
子試料11では2.5秒と半分近くに短縮されることが
判る。
FIG. 8 shows the measurement results of comparing the current interruption time with the current (A) with respect to time (sec) in this overcurrent interruption test circuit. Sample 12 is denoted by β). From FIG. 8, regarding the current interruption time,
It can be seen that the time for the PTC element sample 12 is 4 seconds, whereas the time for the PTC element sample 11 is 2.5 seconds, which is almost half.

【0032】[0032]

【発明の効果】以上に述べた通り、本発明の過電流遮断
素子によれば、使用温度範囲内で素子自体の存在による
エネルギー損失(抵抗値)を十分に低く抑制できると共
に、応答性の良いものとなるため、電流遮断時間が短い
性能の優れたものとなる。
As described above, according to the overcurrent cutoff device of the present invention, the energy loss (resistance value) due to the presence of the device itself can be sufficiently suppressed within the operating temperature range, and the response is good. Therefore, the current interruption time is short and the performance is excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る過電流遮断素子に用い
られる異なるPCT混合体をニッケル電極に挟んで抵抗
率の温度変化を測定した結果を示したものである。
FIG. 1 shows the results of measuring the temperature change of resistivity with a different PCT mixture used for an overcurrent cutoff device according to one embodiment of the present invention interposed between nickel electrodes.

【図2】図1で説明した過電流遮断素子を作製するため
に異なるPCT混合体の一方のものを用いて作製した一
次積層体を示したもので、(a)はその平面図に関する
もの,(b)はその側面図に関するものである。
FIGS. 2A and 2B show a primary laminated body produced by using one of different PCT mixtures to produce the overcurrent cutoff device described with reference to FIG. 1, wherein FIG. (B) relates to the side view.

【図3】図1で説明した過電流遮断素子を作製するため
に異なるPCT混合体の他方のものを用いて作製した別
な一次積層体を示したもので、(a)はその平面図に関
するもの,(b)はその側面図に関するものである。
FIGS. 3A and 3B show another primary laminated body produced by using the other of the different PCT mixtures to produce the overcurrent cutoff device described with reference to FIG. 1, wherein FIG. (B) relates to the side view.

【図4】図2及び図3に示した一次積層体を積層して成
る二次積層体を示したもので、(a)はその平面図に関
するもの,(b)はその側面図に関するもの,(c)は
その部分的な斜視図に関するものである。
4A and 4B show a secondary laminate formed by laminating the primary laminates shown in FIGS. 2 and 3, wherein FIG. 4A is related to a plan view, FIG. 4B is related to a side view thereof, (C) relates to a partial perspective view thereof.

【図5】図4に示した二次積層体を裁断して成るPTC
素子試料を示したもので、(a)は一実施例に係る構造
の平面図に関するもの,(b)は比較例に係る構造の平
面図に関するものである。
5 is a PTC obtained by cutting the secondary laminate shown in FIG.
5A and 5B show element samples, in which FIG. 6A is a plan view of a structure according to an example, and FIG. 6B is a plan view of a structure according to a comparative example.

【図6】PTC素子試料の電極端子間の電気抵抗の温度
変化を測定した結果を示したものである。
FIG. 6 shows a result of measuring a temperature change of an electric resistance between electrode terminals of a PTC element sample.

【図7】PTC素子試料に適用される過電流遮断試験回
路の簡易構成を示したものである。
FIG. 7 shows a simplified configuration of an overcurrent cutoff test circuit applied to a PTC element sample.

【図8】図7に示す過電流遮断試験回路におけるPTC
素子試料の電流遮断時間の測定結果を示したものであ
る。
8 is a diagram showing a PTC in the overcurrent cutoff test circuit shown in FIG. 7;
5 shows a measurement result of a current interruption time of an element sample.

【符号の説明】[Explanation of symbols]

10,20 一次積層体 10a 切り込み部 11,12 PTC素子試料 13 直流電源 14 電流計 15 オシロスコープ 30 二次積層体 A,B PCT混合体 R 保護抵抗 SW スイッチ T1,T2 電極端子 10, 20 Primary laminate 10a Cut portion 11, 12 PTC element sample 13 DC power supply 14 Ammeter 15 Oscilloscope 30 Secondary laminate A, B PCT mixture R Protection resistor SW switch T1, T2 Electrode terminal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高分子粉末及び導電性フィラー粉末を混
合して得られる第1のPTC混合体を導体板から成る電
極に挟んで構成される過電流保護素子において、前記電
極は一面上で複数個に分離されており、且つ該電極の相
互間には前記高分子及び前記導電性フィラー粉末の種類
がそれぞれ異なるものを混合して得られる前記第1のP
TC混合体とは異なる第2のPTC混合体を電気的に結
合して成ることを特徴とする過電流保護素子。
1. An overcurrent protection element comprising a first PTC mixture obtained by mixing a polymer powder and a conductive filler powder sandwiched between electrodes made of a conductive plate, wherein the plurality of electrodes are provided on one surface. The first P is obtained by mixing different kinds of the polymer and the conductive filler powder between the electrodes.
An overcurrent protection element, wherein a second PTC mixture different from the TC mixture is electrically coupled.
【請求項2】 請求項1記載の過電流保護素子におい
て、前記第1のPTC混合体は、前記高分子粉末として
高密度ポリエチレンを用いると共に、前記導電性フィラ
ー粉末としてカーボンブラックを用いて成るもので、前
記第2のPTC混合体は、前記高分子粉末として前記高
密度ポリエチレン及びエチレンエチルアクリエートを混
合したものを用いると共に、前記導電性フィラー粉末と
してチタンカーバイトを用いて成ることを特徴とする過
電流保護素子。
2. The overcurrent protection device according to claim 1, wherein the first PTC mixture uses high-density polyethylene as the polymer powder and uses carbon black as the conductive filler powder. In the second PTC mixture, a mixture of the high-density polyethylene and ethylene ethyl acrylate is used as the polymer powder, and titanium carbide is used as the conductive filler powder. Overcurrent protection element.
【請求項3】 請求項1又は2記載の過電流保護素子に
おいて、前記第1のPTC混合体の動作温度は、前記第
2のPTC混合体の動作温度よりも高いことを特徴とす
る過電流保護素子。
3. The overcurrent protection device according to claim 1, wherein an operating temperature of the first PTC mixture is higher than an operating temperature of the second PTC mixture. Protection element.
JP31370497A 1997-11-14 1997-11-14 Overcurrent protective element Withdrawn JPH11150002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31370497A JPH11150002A (en) 1997-11-14 1997-11-14 Overcurrent protective element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31370497A JPH11150002A (en) 1997-11-14 1997-11-14 Overcurrent protective element

Publications (1)

Publication Number Publication Date
JPH11150002A true JPH11150002A (en) 1999-06-02

Family

ID=18044524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31370497A Withdrawn JPH11150002A (en) 1997-11-14 1997-11-14 Overcurrent protective element

Country Status (1)

Country Link
JP (1) JPH11150002A (en)

Similar Documents

Publication Publication Date Title
EP1911047B1 (en) Circuit protection device having thermally coupled mov overvoltage element and pptc overcurrent element
US6074576A (en) Conductive polymer materials for high voltage PTC devices
US4233641A (en) Line protector for a communications circuit
US5602520A (en) Electrical resistance element and use of this resistance element in a current limiter
GB2074377A (en) Conductive polymer ptc circuit protection devices
JPH0241161B2 (en)
EP0363746B2 (en) Overcurrent protection device for electrical networks and apparatuses
JP5752354B2 (en) Circuit protection device
TW201705158A (en) Over-current protection device
JPH1098829A (en) Protective circuit employing ptc element and protective element therefor
JPH11150002A (en) Overcurrent protective element
TWI224343B (en) Conductive polymer compositions containing fibrillated fibers and devices
EP0970487B1 (en) Resettable automotive circuit protection device
CN109149539A (en) Electic protection unit including current limiter device
KR950013344B1 (en) Electric apparatus using ptc conductive high polymer
US9959958B1 (en) PTC circuit protection device and method of making the same
JP2009181732A (en) Sheet heating element
TW463443B (en) A PTC circuit protection device
JPS6134235B2 (en)
CN113299447B (en) Quick-break type oxidation film resistor
CN110491610A (en) Combined type electric line protection device
TW201112298A (en) Over-temperature and over-current dual protection device and method of manufacturing the same
JPH10270204A (en) Organic ptc composite material
JP2003317592A (en) Temperature protective device
JPH02148681A (en) Positive resistance-temperature coefficient heater

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050201