JPH11148997A - Processing method and device of gas waste - Google Patents

Processing method and device of gas waste

Info

Publication number
JPH11148997A
JPH11148997A JP31533897A JP31533897A JPH11148997A JP H11148997 A JPH11148997 A JP H11148997A JP 31533897 A JP31533897 A JP 31533897A JP 31533897 A JP31533897 A JP 31533897A JP H11148997 A JPH11148997 A JP H11148997A
Authority
JP
Japan
Prior art keywords
gaseous waste
reprocessing
chlorine
recovered
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31533897A
Other languages
Japanese (ja)
Inventor
Hirotsugu Nagayasu
弘貢 長安
Takashi Miyake
崇史 三宅
Wataru Kawamura
亘 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP31533897A priority Critical patent/JPH11148997A/en
Publication of JPH11148997A publication Critical patent/JPH11148997A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a processing method and device of gas waste which is capable of continuously executing separation and recovery of harmful gas, chloride and also continuously executing separation and removal of various radionuclicles properly. SOLUTION: In order to process gas waste containing radionuclides generating in dry reprocessing of nuclear fuel in dry reprocessing process, chloride in gas waste is recovered as liquid or solid by a chilling method and the recovered chloride is returned to the reprocessing process to reuse. The device to perform the chilling method is provided with at least a concentrated sulfuric acid absorption tower 3, an absorption tower 5 recovering the dehumidified chloride in the gas waste as liquid or solid by chilling method and a system returning the chloride recovered in a cooling tower to the reprocessing process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放射性核種を含む
気体廃棄物、特に、原子燃料の乾式再処理時に発生し多
量の塩素と放射性核種を含むオフガスの処理に好適な方
法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus suitable for treating gaseous waste containing radionuclides, in particular, off-gas generated during dry reprocessing of nuclear fuel and containing a large amount of chlorine and radionuclides. is there.

【0002】[0002]

【従来の技術】再処理工場で発生するオフガス(廃気)
は、各再処理工程からの放射性物質等を伴うものもあ
り、必要に応じた浄化系で処理した後、最終的に、スタ
ックもしくは排気筒から大気へ放出される。
2. Description of the Related Art Offgas (waste gas) generated in reprocessing plants
Some of them involve radioactive substances from each reprocessing step, and after being processed by a purification system as required, are finally released from the stack or the exhaust stack to the atmosphere.

【0003】原子燃料の乾式再処理から発生するオフガ
スに同伴する物質としては、H−3,C−14,Kr−
85,Ru−106,I−129,Cs−137等の放
射性核種や、固形分、ミスト等があり、これらは、最終
的な大気放出の前に、捕集して除去するか回収すること
が望まれる。また、オフガスには乾式再処理時に必要な
塩素が多量に含まれており、これも有害ガスであること
から直接放出することはできず、捕集して除去するか回
収することが望まれる。
[0003] H-3, C-14, and Kr- are substances that accompany off-gas generated from dry reprocessing of nuclear fuel.
There are radionuclides such as 85, Ru-106, I-129, Cs-137, solids, mist, etc., which can be collected and removed or recovered before final release to the atmosphere. desired. Further, the off-gas contains a large amount of chlorine required for dry reprocessing, which is also a harmful gas and cannot be directly released. Therefore, it is desired to collect and remove or collect the off-gas.

【0004】[0004]

【発明が解決しようとする課題】しかし、原子燃料の乾
式再処理時に発生するオフガスに関しては、上述した種
々の物質を含むオフガスを連続的に処理する技術は未だ
開発されていない。従って、本発明の主な目的は、有害
ガスである塩素の分離・回収を連続的に実行することが
可能な気体廃棄物の処理方法及び装置を提供することで
ある。また、本発明の別の目的は、塩素の分離・回収だ
けでなく、種々の放射性核種の分離・除去も連続的に実
行することが可能な気体廃棄物の処理方法及び装置を提
供することである。
However, as for the offgas generated during the dry reprocessing of nuclear fuel, a technique for continuously processing the offgas containing the various substances described above has not yet been developed. Accordingly, a main object of the present invention is to provide a method and an apparatus for treating gaseous waste, which can continuously perform separation and recovery of chlorine, which is a harmful gas. Another object of the present invention is to provide a method and an apparatus for treating gaseous waste that can continuously perform not only separation and recovery of chlorine but also separation and removal of various radionuclides. is there.

【0005】[0005]

【課題を解決するための手段】この目的から、請求項1
に係る本発明によると、再処理工程における原子燃料の
乾式再処理時に発生する放射性核種を含む気体廃棄物の
処理方法は、深冷法により前記気体廃棄物中の塩素を液
体又は固体として回収し、回収した塩素を前記再処理工
程に戻して再利用することを特徴としている。この場
合、請求項2に係る本発明のように、前記塩素を液体又
は固体として回収する前に、濃硫酸吸収塔で前記気体廃
棄物中の水分を除去することが好適である。また、この
場合、請求項3に係る本発明のように、気体廃棄物処理
方法は、前記放射性核種を除去するため、前記気体廃棄
物をフィルタに通し捕集する工程と、前記気体廃棄物か
ら濃硫酸吸収塔により水分として除去する工程と、前記
気体廃棄物の冷却により固体として分離する工程と、低
温活性炭により吸着し分離する工程とのうちの少なくと
も1つの工程を含むことが好適である。更に、上述した
目的を達成するため、請求項4に係る本発明によると、
再処理工程における原子燃料の乾式再処理時に発生する
放射性核種を含む気体廃棄物の処理装置は、前記気体廃
棄物から水分を除去するための濃硫酸吸収塔と、水分を
除去した前記気体廃棄物中の塩素を深冷法により液体又
は固体として回収する吸収塔と、該冷却塔で回収された
塩素を再処理工程に戻す系とを備えている。
For this purpose, a first aspect of the present invention is provided.
According to the present invention according to the method for treating gaseous waste containing radionuclides generated during dry reprocessing of nuclear fuel in the reprocessing step, recovering chlorine in the gaseous waste as a liquid or solid by a cryogenic method The recovered chlorine is returned to the reprocessing step and reused. In this case, as in the present invention according to claim 2, it is preferable to remove water in the gaseous waste with a concentrated sulfuric acid absorption tower before recovering the chlorine as a liquid or a solid. In this case, as in the present invention according to claim 3, the gaseous waste treatment method comprises the steps of: collecting the gaseous waste through a filter to remove the radionuclide; It is preferable to include at least one of a step of removing as moisture by a concentrated sulfuric acid absorption tower, a step of separating the gaseous waste as a solid by cooling, and a step of adsorbing and separating by low-temperature activated carbon. Furthermore, in order to achieve the above-mentioned object, according to the present invention according to claim 4,
An apparatus for treating gaseous waste containing radionuclides generated during dry reprocessing of nuclear fuel in a reprocessing step includes a concentrated sulfuric acid absorption tower for removing moisture from the gaseous waste, and the gaseous waste from which moisture has been removed. An absorption tower for recovering chlorine therein as a liquid or a solid by a deep cooling method, and a system for returning the chlorine recovered in the cooling tower to a reprocessing step are provided.

【0006】[0006]

【発明の実施の形態】次に、本発明の好適な実施形態に
ついて添付図面を参照して詳細に説明するが、図中、同
一符号は同一又は相当部分を示すものとする。図1は、
本発明の実施形態によるオフガス処理システムを示す系
統図で、同処理システムの構成機器をオフガスの流れ方
向に関して上流側から列挙すると、HEPAフィルタ
(High Efficiency Particulate Air Filter=高性能微
粒子除去フィルタ)、樹脂コーティング型フィルタ2、
濃硫酸吸収塔3、第1冷却塔4、第2冷却塔5、凝縮型
冷却塔6a及び再生側冷却塔6bからなる第3冷却塔
6、吸着側吸着塔7a及び再生側吸着塔7bからなる第
1吸着塔7、並びに第2吸着塔8を含んでいる。これら
の構成機器自体の構造はいずれも周知であり、その詳細
な説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the drawings, the same reference numerals indicate the same or corresponding parts. FIG.
In the system diagram showing the off-gas processing system according to the embodiment of the present invention, when the components of the processing system are listed from the upstream side in the flow direction of the off-gas, the HEPA filter (High Efficiency Particulate Air Filter), the resin Coating type filter 2,
A concentrated sulfuric acid absorption tower 3, a first cooling tower 4, a second cooling tower 5, a third cooling tower 6 including a condensing type cooling tower 6a and a regeneration side cooling tower 6b, an adsorption side adsorption tower 7a and a regeneration side adsorption tower 7b. The first adsorption tower 7 and the second adsorption tower 8 are included. The structure of each of these components itself is well known, and a detailed description thereof will be omitted.

【0007】このオフガス処理システムは、その他に、
濃硫酸吸収塔3を出たガス及び第2吸着塔8を出たガス
と熱交換を行う熱交換器12と、第2冷却塔5及び第3
冷却塔6に接続された固形分除去フィルタ9と、その下
流側にあり再処理系に連絡する液化Cl2タンク10
と、第1吸着塔7に接続されたアルカリ吸収塔11とを
含んでいる。また、符号13〜21で示されたバルブ、
冷却器等の種々の機器も適宜設けられている。
[0007] The off-gas processing system additionally includes:
A heat exchanger 12 for exchanging heat with the gas exiting the concentrated sulfuric acid absorption tower 3 and the gas exiting the second adsorption tower 8, a second cooling tower 5 and a third
A solids removal filter 9 connected to a cooling tower 6 and a liquefied Cl 2 tank 10 downstream of the filter 9 and connected to a reprocessing system.
And an alkali absorption tower 11 connected to the first adsorption tower 7. Also, valves indicated by reference numerals 13 to 21,
Various devices such as a cooler are provided as appropriate.

【0008】次に、図1及び図2を参照して、このオフ
ガス処理システムと、同システムによる気体廃棄物の処
理方法とについて詳細に説明する。先ず、前述したよう
に固形分、ミスト、多量の塩素(Cl2)、H−3,C−
14,Kr−85,Ru−106,I−129,Cs−
137等の放射性核種を含む原子燃料の乾式再処理オフ
ガスは、後段のガス吸着・捕集の際の目詰まりや結露及
び材料腐食等を防止するために、HEPAフィルタ1に
おいて、固形分及びミスト等の微粒子が事前に除去され
る。HEPAフィルタは原子力関連プラントで実績があ
り好適に使用される。このフィルタは、目詰まり等によ
る圧損上昇の際に適宜新しいものと交換する。
Next, with reference to FIG. 1 and FIG. 2, the off-gas processing system and a method for processing gaseous waste by the system will be described in detail. First, as described above, solid content, mist, a large amount of chlorine (Cl 2 ), H-3, C-
14, Kr-85, Ru-106, I-129, Cs-
The dry reprocessing offgas of nuclear fuel containing radioactive nuclides such as 137 is used to prevent solids and mist in the HEPA filter 1 in order to prevent clogging, dew condensation, and material corrosion during the subsequent gas adsorption and collection. Of fine particles are removed in advance. HEPA filters have been used in nuclear power plants and are preferably used. This filter is appropriately replaced with a new one when the pressure loss increases due to clogging or the like.

【0009】その後、いわゆる樹脂コーティング型フィ
ルタ2に通され、そこで、粒子状物質であるRu−10
6,Cs−137が分離・除去される。Ru及びCsは
比較的に各部に吸着し易く、例えば定期点検時等におけ
るプラント補修の際の作業員の被曝原因ともなり易いの
で、できる限り前段で回収・除去することが望ましく、
好適には、HEPAフィルタ1の直後に樹脂コーティン
グ型フィルタ2が設置されている。揮発性のRu(ルテ
ニウム)はRuO4(又はRuO4・H2O)であり、沸点
は約100℃であるが、一般に常温でも揮発し易い。ま
た、これは有機物とも速やかに反応し還元されて固体状
ルテニウム(RuO2)となる。従って、このようなルテ
ニウムを除去するために、樹脂コーティング型繊維フィ
ルタ(エアフィルタ)が最適である。
After that, it is passed through a so-called resin-coated filter 2, where Ru-10, which is particulate
6, Cs-137 is separated and removed. Ru and Cs are relatively easily adsorbed to various parts, and for example, it is easy to cause exposure of workers at the time of repairing a plant at the time of a periodic inspection or the like.
Preferably, the resin-coated filter 2 is provided immediately after the HEPA filter 1. Volatile Ru (ruthenium) is RuO 4 (or RuO 4 .H 2 O) and has a boiling point of about 100 ° C., but generally easily volatizes even at room temperature. It also reacts quickly with organic substances and is reduced to solid ruthenium (RuO 2 ). Therefore, in order to remove such ruthenium, a resin-coated fiber filter (air filter) is optimal.

【0010】次に、後段の深冷分離法による固形分析出
量の低減のために、殆どがH2Oとして存在するH−3
を含む水分を除去することが望ましい。水分除去法とし
ては、Cl2の影響を受けない濃硫酸吸収塔3を採用す
る。濃硫酸濃度は98%以上に保ってガス中の水分濃度
を0.02%以下にする。従って、水分除去の際に、H
TOもしくはT2Oの形態で存在しているトリチウム(T
=H−3)を同時に回収することができる。
Next, in order to reduce the amount of solid analysis output by the subsequent cryogenic separation method, H-3, which is mostly present as H 2 O, is used.
It is desirable to remove water containing. As the water removal method, a concentrated sulfuric acid absorption tower 3 which is not affected by Cl 2 is employed. The concentration of concentrated sulfuric acid is kept at 98% or more, and the concentration of water in the gas is made 0.02% or less. Therefore, when water is removed, H
Tritium present in the form of TO or T 2 O (T
= H-3) can be recovered simultaneously.

【0011】水分除去の後、I−129の捕集のために
分離回収を行う。ヨウ素は主としてI2として存在して
おり、ヨウ素の分離回収は、第1冷却塔4において、ガ
ス温度を冷却することにより行う。深冷分離法(深冷法
とも称する)では、融点が高く蒸気圧が低いI2を先に
固化分離し、後段にてCl2液化回収することが可能で
ある。
After the removal of water, separation and recovery are performed for collecting I-129. Iodine exists mainly as I 2 , and separation and recovery of iodine is performed by cooling the gas temperature in the first cooling tower 4. In the cryogenic separation method (also referred to as the cryogenic method), it is possible to first solidify and separate I 2 having a high melting point and a low vapor pressure, and to collect and collect Cl 2 at a later stage.

【0012】先ず、第1冷却塔4の操作温度をI2の飽
和蒸気圧が小さく、Cl2の液化凝縮が起こらない温度
条件(例えば−30℃)に設定し、I2を凝縮・固化す
る。この工程では、I2による配管の閉塞に留意する必
要がある。また、配管の閉塞による圧力損失の上昇によ
り、適宜冷却固化したI2を回収する。
First, the operating temperature of the first cooling tower 4 is set to a temperature condition (for example, −30 ° C.) at which the saturated vapor pressure of I 2 is small and liquefaction and condensation of Cl 2 does not occur, and I 2 is condensed and solidified. . In this step, it is necessary to pay attention to clogging of the pipe due to I 2. In addition, due to an increase in pressure loss due to blockage of the pipe, I 2 that has been appropriately cooled and solidified is recovered.

【0013】次に、第1冷却塔4の出口ガスについて、
Cl2の液化回収及びCO2の固化分離・除去を行う。C
2の沸点は−34.6℃であるため、これ以下の温度
まで冷却することにより、液化塩素として回収すること
が可能である。Cl2の融点は−101.6℃であるた
め、この温度以下まで冷却すると固化により配管の閉塞
を引き起こす可能性がある。従って、第1冷却塔4の出
口ガスが送り込まれる第2冷却塔5は、−80〜−10
0℃、例えば−90℃の操作温度に設定されており、そ
こで塩素(Cl2)の液化回収が行われる。第2冷却塔5
の出口での塩素ガス濃度は、−90℃での塩素ガスの飽
和蒸気圧に相当すると予想することができ、ほぼ2.3
容量%である。回収された液化塩素は、再処理系(図示
せず)に連絡する液化Cl2タンク10に送られ乾式再
処理プロセスに再利用されるが、その前段階として、前
段で捕集しきれなかったI2とC−14を含む固体CO2
等が固形物除去フィルタ9によって除去される。
Next, regarding the outlet gas of the first cooling tower 4,
Liquefaction recovery of Cl 2 and solidification separation / removal of CO 2 are performed. C
Since the boiling point of l 2 is −34.6 ° C., it can be recovered as liquefied chlorine by cooling to a temperature lower than this. Since the melting point of Cl 2 is −101.6 ° C., cooling to below this temperature may cause solidification and blockage of the piping. Therefore, the second cooling tower 5 into which the outlet gas of the first cooling tower 4 is sent is -80 to -10
The operating temperature is set to 0 ° C., for example, −90 ° C., where the liquefaction and recovery of chlorine (Cl 2 ) is performed. Second cooling tower 5
Can be expected to correspond to the saturated vapor pressure of chlorine gas at -90 ° C., which is approximately 2.3.
% By volume. The recovered liquefied chlorine is sent to a liquefied Cl 2 tank 10 which communicates with a reprocessing system (not shown), and is reused in the dry reprocessing process. Solid CO 2 containing I 2 and C-14
And the like are removed by the solid removal filter 9.

【0014】第2冷却塔5において液化回収が行われた
ガス中に残留しているかも知れないCl2を除去するた
め、更に低温条件にしてCl2の固化回収を行うことが
望ましい。そのため、第2冷却塔5を出たオフガスは、
操作温度−120℃に設定された第3冷却塔6に導入さ
れ、残留する塩素ガスがそこで固化回収される。固化に
よる固体塩素のため配管の閉塞が予想されるので、この
固化回収工程を行う第3冷却塔6は、凝縮側冷却塔6a
と再生側冷却塔6bとに分かれた2塔切り替え式であ
り、一方で固化を行っている間に、他方では、固化した
固体塩素の温度を上げて液化し、液化Cl2タンク10
に導入し再利用する。なお、第3冷却塔6の出口の塩素
ガス濃度は約0.2%である。
In order to remove Cl 2 which may remain in the gas which has been liquefied and recovered in the second cooling tower 5, it is desirable to further solidify and recover Cl 2 under lower temperature conditions. Therefore, the off-gas exiting the second cooling tower 5 is
The chlorine gas is introduced into the third cooling tower 6 set to the operation temperature of -120 ° C, and the remaining chlorine gas is solidified and recovered there. Since the solid chlorine due to solidification is expected to block the pipes, the third cooling tower 6 that performs this solidification recovery step includes a condensing-side cooling tower 6a
And a two-column switchable, divided into a reproduction-side cooling tower 6b, while the other hand is performed solidification, on the other hand, liquefied by raising the temperature of the solidified solid chlorine, liquefied Cl 2 tank 10
And reuse it. The chlorine gas concentration at the outlet of the third cooling tower 6 is about 0.2%.

【0015】更に、オフガス中の塩素ガス濃度の低減の
ため、第3冷却塔6の出口ガスは操作温度−120℃に
設定された第1吸着塔7に送られ、そこで活性炭による
塩素ガスの低温吸着が行われる。この吸着工程では、活
性炭吸着塔のコンパクト化のため吸着側吸着塔7aと再
生側吸着塔7bとに分かれた2塔切り替え式を採用して
おり、昇温により脱着再生する。脱着の際に放出される
Cl2はアルカリ吸収塔11で中和反応して固定し、固
体廃棄物として処分する。この工程により、第1吸着塔
7の出口でのオフガス中のCl2濃度は5ppm以下に
なる。
Further, in order to reduce the concentration of chlorine gas in the off-gas, the outlet gas of the third cooling tower 6 is sent to the first adsorption tower 7 set at an operating temperature of -120 ° C. Adsorption is performed. In this adsorption step, a two-column switching type, which is divided into an adsorption side adsorption tower 7a and a regeneration side adsorption tower 7b, is adopted in order to make the activated carbon adsorption tower compact, and desorption regeneration is performed by raising the temperature. Cl 2 released at the time of desorption is neutralized and fixed in the alkali absorption tower 11, and is disposed as solid waste. By this step, the Cl 2 concentration in the off-gas at the outlet of the first adsorption tower 7 becomes 5 ppm or less.

【0016】最後に、操作温度−150℃の第2吸着塔
8において、低温活性炭吸着によりKr−85及びXe
の吸着分離を行ってから、クリーンガスとして放出す
る。第2吸着塔8で分離されるKrは僅かであるため、
再生は定期点検時(半年もしくは1年に一回)に行って
よい。熱交換器12は、熱回収を行って冷熱を有効利用
するため第1冷却塔前段と第2吸着塔出口とにわたり設
置されている。
Finally, in the second adsorption tower 8 at an operating temperature of -150 ° C., Kr-85 and Xe
Is released as clean gas after adsorption separation. Since Kr separated in the second adsorption tower 8 is very small,
Rehabilitation may be performed at the time of regular inspection (once a year or once a year). The heat exchanger 12 is installed between the first stage of the first cooling tower and the outlet of the second adsorption tower in order to perform heat recovery and effectively use cold energy.

【0017】[0017]

【発明の効果】以上のように、請求項1に係る本発明に
よれば、再処理工程における原子燃料の乾式再処理時に
発生する放射性核種を含む気体廃棄物の処理方法は、深
冷法により前記気体廃棄物中の塩素を液体又は固体とし
て回収し、回収した塩素を前記再処理工程に戻して再利
用することを特徴としているので、乾式再処理に必要な
多量の塩素に関しては、大部分を連続的に回収して再利
用することが可能となり、廃棄物量の低減に寄与すると
共に、最終的な排ガス中の塩素含有量を低減させること
が可能となる。
As described above, according to the first aspect of the present invention, a method for treating gaseous waste containing radionuclides generated during dry reprocessing of nuclear fuel in a reprocessing step is performed by a cryogenic method. The chlorine in the gaseous waste is recovered as a liquid or a solid, and the recovered chlorine is characterized by being returned to the reprocessing step and reused, so that a large amount of chlorine required for dry reprocessing is mostly used. Can be continuously collected and reused, which contributes to the reduction of the amount of waste and the chlorine content in the final exhaust gas.

【0018】また、その際に、請求項2に記載のよう
に、前記塩素を液体又は固体として回収する前に、濃硫
酸吸収塔で前記気体廃棄物中の水分を除去すれば、ほと
んどがH2Oとして存在しているH−3が除去され、放
射性核種の捕集除去率が更に向上する。
At this time, if the water in the gaseous waste is removed by a concentrated sulfuric acid absorption column before the chlorine is recovered as a liquid or a solid, as described in claim 2, most of the H2O is recovered. Is removed, and the collection and removal rate of radionuclides is further improved.

【0019】更に、その際に、請求項3に記載のよう
に、前記放射性核種を除去するため、前記気体廃棄物を
フィルタに通し捕集する工程と、前記気体廃棄物から濃
硫酸吸収塔により水分として除去する工程と、前記気体
廃棄物の冷却により固体として分離する工程と、低温活
性炭により吸着し分離する工程とのうちの少なくとも1
つの工程を含むように構成すれば、放射性核種の捕集除
去率が更に向上する。
Further, at this time, in order to remove the radioactive nuclide, a step of collecting the gaseous waste through a filter and collecting the gaseous waste from the gaseous waste by a concentrated sulfuric acid absorption tower is performed. At least one of a step of removing as moisture, a step of separating the gaseous waste as a solid by cooling, and a step of adsorbing and separating by low-temperature activated carbon.
If it is configured to include three steps, the collection and removal rate of radionuclides is further improved.

【0020】請求項4に係る本発明によれば、再処理工
程における原子燃料の乾式再処理時に発生する放射性核
種を含む気体廃棄物の処理装置は、前記気体廃棄物から
水分を除去するための濃硫酸吸収塔と、水分を除去した
前記気体廃棄物中の塩素を深冷法により液体又は固体と
して回収する吸収塔と、該冷却塔で回収された塩素を再
処理工程に戻す系とを備えているため、乾式再処理に必
要な多量の塩素に関しては、大部分を連続的に回収して
再利用することが可能となり、廃棄物量の低減に寄与す
ると共に、最終的な排ガス中の塩素含有量を低減させる
ことが可能となるだけでなく、放射性核種の捕集除去を
効果的に行って、最終的な排ガスを大気放出することが
できる。
According to the present invention, there is provided an apparatus for treating gaseous waste containing radionuclides generated during dry reprocessing of nuclear fuel in a reprocessing step, for removing water from the gaseous waste. A concentrated sulfuric acid absorption tower, an absorption tower for recovering chlorine in the gaseous waste from which water has been removed as a liquid or solid by a deep cooling method, and a system for returning the chlorine recovered in the cooling tower to a reprocessing step. As a result, the large amount of chlorine required for dry reprocessing can be continuously recovered and reused for the most part, contributing to a reduction in the amount of waste, and the chlorine content in the final exhaust gas. Not only can the amount be reduced, but also the collection and removal of radionuclides can be performed effectively, and the final exhaust gas can be released to the atmosphere.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態によるオフガス処理方法
を遂行するための処理装置の一例を示す系統図である。
FIG. 1 is a system diagram showing an example of a processing apparatus for performing an off-gas processing method according to an embodiment of the present invention.

【図2】 図1の処理装置によるオフガス処理の種々の
工程を示すフローチャートである。
FIG. 2 is a flowchart showing various steps of off-gas processing by the processing apparatus of FIG.

【符号の説明】[Explanation of symbols]

1…HEPAフィルタ、2…樹脂コーティング型機能フ
ィルタ、3…濃硫酸吸収塔、4…第1冷却塔、5…第2
冷却塔、6…第3冷却塔、7…第1吸着塔、8…第2吸
着塔。
DESCRIPTION OF SYMBOLS 1 ... HEPA filter, 2 ... resin coating type functional filter, 3 ... concentrated sulfuric acid absorption tower, 4 ... 1st cooling tower, 5 ... 2nd
Cooling tower, 6: third cooling tower, 7: first adsorption tower, 8: second adsorption tower.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 再処理工程における原子燃料の乾式再処
理時に発生する放射性核種を含む気体廃棄物の処理方法
において、深冷法により前記気体廃棄物中の塩素を液体
又は固体として回収し、回収した塩素を前記再処理工程
に戻して再利用することを特徴とする気体廃棄物処理方
法。
1. A method for treating gaseous waste containing radionuclides generated during dry reprocessing of nuclear fuel in a reprocessing step, wherein chlorine in said gaseous waste is recovered as a liquid or solid by a cryogenic method, and recovered. A method for treating gaseous waste, comprising recycling the chlorine returned to the reprocessing step.
【請求項2】 前記塩素を液体又は固体として回収する
前に、濃硫酸吸収塔で前記気体廃棄物中の水分を除去す
る請求項1に記載の気体廃棄物処理方法。
2. The gas waste treatment method according to claim 1, wherein the water in the gas waste is removed by a concentrated sulfuric acid absorption tower before the chlorine is recovered as a liquid or a solid.
【請求項3】 前記放射性核種を除去するため、前記気
体廃棄物をフィルタに通し捕集する工程と、前記気体廃
棄物から濃硫酸吸収塔により水分として除去する工程
と、前記気体廃棄物の冷却により固体として分離する工
程と、低温活性炭により吸着し分離する工程とのうちの
少なくとも1つの工程を含む請求項1に記載の気体廃棄
物処理方法。
3. A step of collecting the gaseous waste through a filter to remove the radionuclide, a step of removing the gaseous waste as moisture from the gaseous waste by a concentrated sulfuric acid absorption tower, and a step of cooling the gaseous waste. The method for treating gaseous waste according to claim 1, comprising at least one of a step of separating as a solid by the method and a step of adsorbing and separating with low-temperature activated carbon.
【請求項4】 再処理工程における原子燃料の乾式再処
理時に発生する放射性核種を含む気体廃棄物の処理装置
において、前記気体廃棄物から水分を除去するための濃
硫酸吸収塔と、水分を除去した前記気体廃棄物中の塩素
を深冷法により液体又は固体として回収する吸収塔と、
該冷却塔で回収された塩素を再処理工程に戻す系とを備
えることを特徴とする気体廃棄物処理装置。
4. An apparatus for treating gaseous waste containing radionuclides generated during dry reprocessing of nuclear fuel in a reprocessing step, comprising: a concentrated sulfuric acid absorption tower for removing water from the gaseous waste; An absorption tower that recovers chlorine in the gaseous waste as a liquid or a solid by a cryogenic method,
A system for returning chlorine recovered in the cooling tower to a reprocessing step.
JP31533897A 1997-11-17 1997-11-17 Processing method and device of gas waste Withdrawn JPH11148997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31533897A JPH11148997A (en) 1997-11-17 1997-11-17 Processing method and device of gas waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31533897A JPH11148997A (en) 1997-11-17 1997-11-17 Processing method and device of gas waste

Publications (1)

Publication Number Publication Date
JPH11148997A true JPH11148997A (en) 1999-06-02

Family

ID=18064216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31533897A Withdrawn JPH11148997A (en) 1997-11-17 1997-11-17 Processing method and device of gas waste

Country Status (1)

Country Link
JP (1) JPH11148997A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101188680B1 (en) 2010-12-23 2012-10-09 한국수력원자력 주식회사 Solidification method of radioactive waste accompanying chloride recycling or radioactive iodide removing and the device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101188680B1 (en) 2010-12-23 2012-10-09 한국수력원자력 주식회사 Solidification method of radioactive waste accompanying chloride recycling or radioactive iodide removing and the device thereof

Similar Documents

Publication Publication Date Title
US4447353A (en) Method for treating a nuclear process off-gas stream
JP3159952B2 (en) Method for wet recycling of used impregnated activated carbon by organic solvent extraction method
JP6329489B2 (en) Method for filtering exhaust gas from industrial facilities
US3074776A (en) Gaseous disposal process
WO1981000413A1 (en) Method for treating a nuclear process off-gas stream
GB2118761A (en) Separating krypton from a radioactive waste gas mixture
JPH0664190B2 (en) Radionuclide-containing waste liquid treatment method
JPH11148997A (en) Processing method and device of gas waste
JP2629576B2 (en) Organic exhaust treatment equipment
JPS61195400A (en) Method of treating waste liquor containing radioactive nuclide
JPS5853760B2 (en) Tritium water vapor removal method
JP2648757B2 (en) Tritium water adsorbent regeneration method and regeneration device
JPH0631830B2 (en) High-concentration tritium coexisting heavy water recovery method and apparatus
JP2008237988A (en) Regeneration method of organic solvent
Cederberg et al. Containment of Iodine-131 Released by the RaLa Process
JPS6268530A (en) Apparatus for removing tritium water
JPS6231317B2 (en)
JP3197233B2 (en) Method for reducing volume of acidic radioactive waste solution and its treatment system
Lamberger et al. Tritium effluent removal system
Stephenson et al. APPLICATION OF THE SELECTIVE ABSORPTION PROCESS TO THE REMOVAL OF KRYPTON AND XENON FROM REACTOR OFF-GAS.
JPH0740078B2 (en) Radionuclide removal equipment in degraded heavy water
JP2000046991A (en) Metal waste disposal storage facility
Eby et al. Single-column-based absorption process for treating dissolver off-gas
JPS58180219A (en) Cleaning method of regenerated gas
Broothaerts et al. Gas purification project

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050201