JPH11148372A - Gas turbine - Google Patents

Gas turbine

Info

Publication number
JPH11148372A
JPH11148372A JP31482497A JP31482497A JPH11148372A JP H11148372 A JPH11148372 A JP H11148372A JP 31482497 A JP31482497 A JP 31482497A JP 31482497 A JP31482497 A JP 31482497A JP H11148372 A JPH11148372 A JP H11148372A
Authority
JP
Japan
Prior art keywords
gas turbine
water
temperature
pump
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31482497A
Other languages
Japanese (ja)
Inventor
Masahiko Yamagishi
雅彦 山岸
Shigeo Hatamiya
重雄 幡宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31482497A priority Critical patent/JPH11148372A/en
Publication of JPH11148372A publication Critical patent/JPH11148372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high moisture gas turbine system with high efficiency and good operability by providing a flow passage bypassing a humidification tower and varying flow through the flow passage according to operation condition of the gas turbine. SOLUTION: After self sustaining is started by separating a starter, temperature of liquid phase water 16 is varied by supply of low temperature make-up water 24 and a heater 32, and is adjusted to maximize system efficiency according to each load condition. Operation speed of pumps 18, 22 is also adjusted to maximize system efficiency, referring to indication value of each thermometer. Operations of the pump 18 and the pump 22 are controlled by a controller. If a pump 25 is operated to feed water of amount equivalent to that of water flowing to air 8 referring to indication value of a water gauge 31, troubles such as overflow of a humidification tower 7 or lack of water amount can be avoided. For stopping a gas turbine, the pump 25 is operated with a valve 33 opened and a valve 34 closed. This decreases the temperature of the air 8 as low as possible and facilitates stopping of the gas turbine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気/蒸気混合物
によってガスタービン排ガスの熱回収および圧縮機中間
冷却または後置冷却を行うガスタービンに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine for recovering heat of a gas turbine exhaust gas and intercooling or post-cooling a compressor by using an air / steam mixture.

【0002】[0002]

【従来の技術】加熱された液相水と空気とを増湿塔内部
で接触させ、空気/水蒸気の混合物と冷却された液相水
を得て、前者を排ガスからの熱回収に、後者を圧縮機中
間冷却に用いるガスタービンシステムについて、特公平
1−19053号公報,平1−31012号公報に記載がある。しか
し、いずれも定格運転時の静的特性に関する記述であ
り、起動や負荷変化など過渡特性時の課題は考慮されて
いなかった。
2. Description of the Related Art Heated liquid water and air are brought into contact inside a humidification tower to obtain a mixture of air / steam and cooled liquid water. The former is used for heat recovery from exhaust gas, and the latter is used for heat recovery. About gas turbine system used for compressor intermediate cooling
These are described in JP-A-1-19053 and JP-A-1-31012. However, all of them are descriptions regarding static characteristics at the time of rated operation, and do not consider issues at the time of transient characteristics such as starting and load change.

【0003】[0003]

【発明が解決しようとする課題】実際に高湿分ガスター
ビンシステムを運用する場合には、起動から停止までの
操作を行う間に、システムを構成する各機器を、システ
ムの効率ができるだけ高くなるように運転することが望
ましい。
When the high-humidity gas turbine system is actually operated, during the operation from start to stop, the efficiency of the system is increased as much as possible in the components constituting the system. It is desirable to operate as follows.

【0004】高湿分ガスタービンシステムが有する増湿
系統は、気体よりも熱容量が大きく応答特性の悪い液相
の水を使用するために、起動時間が長くなる、負荷変化
時に安定するまで時間を要するといった問題点がある。
また高湿分ガスタービンシステムでは高湿分空気を燃焼
の酸化剤とするが、その湿分含有率が不適当な場合は燃
焼器着火性能の不良や燃焼不安定といった事態が発生す
る。
A humidification system included in a high-humidity gas turbine system uses liquid-phase water having a larger heat capacity than gas and poor response characteristics. Therefore, the start-up time becomes longer. There is a problem that it costs.
Further, in a high-humidity gas turbine system, high-humidity air is used as an oxidizing agent for combustion. If the moisture content is not appropriate, a situation such as poor combustor ignition performance and unstable combustion occurs.

【0005】本発明の目的は、増湿系統の工夫により、
効率が高く運用性に優れた高湿分ガスタービンシステム
を提供しようとするものである。
[0005] The object of the present invention is to devise
It is an object of the present invention to provide a high-humidity gas turbine system having high efficiency and excellent operability.

【0006】[0006]

【課題を解決するための手段】前述の課題を解決するた
めに、増湿塔をバイパスする流路を設け、該流路の流量
をガスタービン運転状態に応じて変化させる。
In order to solve the above-mentioned problems, a flow path bypassing the humidification tower is provided, and the flow rate in the flow path is changed according to the operating condition of the gas turbine.

【0007】また増湿系統の液相水の温度,増湿塔の供
給・排出水量をガスタービンの運転状態に応じて任意に
変化させるための冷水供給系統,ヒータを設ける。
A chilled water supply system and a heater for arbitrarily changing the temperature of the liquid phase water of the humidification system and the supply / discharge amount of the humidification tower in accordance with the operation state of the gas turbine are provided.

【0008】また圧縮機中間冷却または後置冷却を行う
熱交換器と、ガスタービン排ガス熱回収を行う熱交換器
を、それぞれバイパスする流路を設け、該流路の流量を
ガスタービン運転状態に応じて変化させる。
A flow path is provided for bypassing a heat exchanger for performing intermediate cooling or post-cooling of a compressor and a heat exchanger for recovering heat of exhaust gas from a gas turbine. Vary accordingly.

【0009】また圧縮機中間冷却または後置冷却を行う
熱交換器と、ガスタービン排ガス熱回収を行う熱交換器
を、それぞれ伝熱面積を任意に変えうる構造とする。
Further, the heat exchanger for performing the intermediate cooling or the post-cooling of the compressor and the heat exchanger for recovering the heat of the exhaust gas from the gas turbine have a structure in which a heat transfer area can be arbitrarily changed.

【0010】[0010]

【発明の実施の形態】以下、図面によって本発明の具体
的な実施例について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

【0011】図1は本発明の第一の実施例であるガスタ
ービンシステムを示す系統図である。図1に示すガスタ
ービンシステムでは、空気3は圧縮機2で圧縮された
後、後置冷却器5を経て増湿塔7に入る。増湿塔7で
は、空気6が、高温水20,23と向流接触して昇温増
湿され、高湿分空気8となる。高湿分空気8は再生器1
3で加熱され、燃焼器10で燃料35と反応し高温ガス
となってタービン11を駆動する。タービン11を駆動
したガス12は再生器13と給水加熱器15で熱交換を
行い、大気へ放出される。
FIG. 1 is a system diagram showing a gas turbine system according to a first embodiment of the present invention. In the gas turbine system shown in FIG. 1, the air 3 is compressed by the compressor 2 and then enters the humidification tower 7 via the post-cooler 5. In the humidification tower 7, the air 6 is brought into countercurrent contact with the high-temperature waters 20 and 23 to be heated and humidified, and becomes high-humidity air 8. High humidity air 8 is regenerator 1
The fuel is heated in 3, reacts with the fuel 35 in the combustor 10, becomes high-temperature gas, and drives the turbine 11. The gas 12 that drives the turbine 11 exchanges heat with the regenerator 13 and the feedwater heater 15 and is released to the atmosphere.

【0012】一方、空気6を加熱増湿した高温水20,
23は、空気6と接触する際にその一部が蒸発気化し、
気化熱を奪われることにより低温の液相水16となって
増湿塔7の下部へ滞留する。液相水16の一部はポンプ
18によって昇圧し、後置冷却器5で熱交換し高温水2
0として増湿塔内部へ噴霧する。他の液相水16はポン
プ22で昇圧し、給水加熱器15で熱交換し高温水23
として増湿塔内部へ噴霧する。増湿塔7の内部で高温水
20,23から空気へ移行した量に相当する水分は低温
補給水24をポンプ25で昇圧し補給する。
On the other hand, high-temperature water 20, which is obtained by heating and humidifying air 6,
23 evaporates a part when it comes into contact with the air 6,
By being deprived of heat of vaporization, it becomes low-temperature liquid phase water 16 and stays in the lower part of the humidification tower 7. A part of the liquid-phase water 16 is pressurized by a pump 18 and heat-exchanged by a post-cooler 5 to remove the high-temperature water 2.
It is sprayed into the humidification tower as 0. The other liquid phase water 16 is pressurized by the pump 22, heat exchanged by the feed water heater 15, and
And spray it into the humidification tower. The amount of water corresponding to the amount transferred from the high-temperature waters 20 and 23 to the air inside the humidification tower 7 is supplied by increasing the pressure of the low-temperature supply water 24 by the pump 25.

【0013】本ガスタービンシステムにおいては、各負
荷状態において効率が最大となる各機器の温度の組み合
わせをあらかじめ算出し、それに合致するように増湿系
統の運転制御を行えば、常に最高効率が得られる。
In the present gas turbine system, the maximum efficiency is always obtained by calculating in advance the combination of the temperatures of the respective devices at which the efficiency becomes maximum under each load condition, and controlling the operation of the humidifying system so as to match the combination. Can be

【0014】増湿系統の運転は次のようにして行う。ガ
スタービン起動前には水位計31の計測値を監視しなが
らポンプ25を運転し、増湿塔7の内部に一定量の水を
貯めておく。この水量はポンプ18,ポンプ22が運転
を開始したときに水が循環するのに十分な量である。
The operation of the humidification system is performed as follows. Before starting the gas turbine, the pump 25 is operated while monitoring the measurement value of the water level gauge 31 to store a certain amount of water inside the humidification tower 7. This amount of water is sufficient to circulate water when the pumps 18 and 22 start operating.

【0015】ガスタービン起動と同時に増湿系統を予熱
するためにポンプ18の運転を開始する。このとき、ポ
ンプ18は温度計26,29の指示値を参照して、T1
とT3が適切な温度差になるように運転し、空気4から
の回収熱量をなるべく多くする。
The operation of the pump 18 is started simultaneously with the start of the gas turbine in order to preheat the humidification system. At this time, the pump 18 refers to the indicated values of the thermometers 26 and 29 and
And T3 are operated so as to have an appropriate temperature difference, and the amount of heat recovered from the air 4 is increased as much as possible.

【0016】燃料投入後、燃焼器着火が確認されたらポ
ンプ22の運転を開始する。ポンプ22はポンプ18と
同様に温度計28,30の指示値を参照し、排ガス14
からの回収熱量を多くするように運転する。
After the fuel is injected, the operation of the pump 22 is started when the combustion of the combustor is confirmed. The pump 22 refers to the indicated values of the thermometers 28 and 30 similarly to the pump 18 and
Is operated to increase the amount of heat recovered from.

【0017】始動機を切り離し、自立運転に入ってから
は、液相水16の温度を低温補給水24の注水とヒータ
32によって変化させ、各負荷状態に応じシステム効率
が最大となるように調節を行う。同様にポンプ18,2
2の運転速度も、各温度計の指示値を参照しシステム効
率が最大となるように調節する。ポンプ18及びポンプ
22の運転は、制御器(図示しない)により制御され
る。ポンプ25は、水位計31の指示値を参照し空気8
へ移行する水分相当量を補給するように運転すれば、増
湿塔のオーバーフローや水量不足といった事態を避ける
ことができる。
After the starter is disconnected and the self-sustaining operation is started, the temperature of the liquid phase water 16 is changed by injecting the low-temperature make-up water 24 and the heater 32 so that the system efficiency is maximized according to each load condition. I do. Similarly, pumps 18 and 2
The operation speed 2 is also adjusted so as to maximize the system efficiency by referring to the indicated value of each thermometer. The operation of the pump 18 and the pump 22 is controlled by a controller (not shown). The pump 25 refers to the indicated value of the water level
If the operation is performed so as to replenish the water equivalent amount that shifts to, it is possible to avoid a situation such as overflow of the humidification tower or a shortage of water.

【0018】ガスタービンを停止するときには、弁33
を開、弁34を閉としてポンプ25を運転する。これは
空気8の温度をできるだけ下げて、ガスタービンを停止
しやすくするためである。
When the gas turbine is stopped, the valve 33
Is opened, the valve 34 is closed, and the pump 25 is operated. This is to reduce the temperature of the air 8 as much as possible to make it easier to stop the gas turbine.

【0019】図2は本発明の第二の実施例であるガスタ
ービンシステムを示す系統図である。図2の実施例が図
1の実施例と異なる点のみを取り上げ、その特徴につい
て説明する。
FIG. 2 is a system diagram showing a gas turbine system according to a second embodiment of the present invention. Only the differences between the embodiment of FIG. 2 and the embodiment of FIG. 1 will be described, and the features thereof will be described.

【0020】図2の実施例は、圧縮機吐出空気4の一部
を、増湿系統を経由せず燃焼器10へ供給するための系
統を設け、かつその系統を流れる空気流量を弁36,3
7によって任意に変化させうるようにした点に特徴があ
る。すなわち、燃焼器の着火性向上や、燃焼安定性向上
のために高湿分空気8の温度を高くしたい、あるいは含
まれる湿分を低下させたい場合には、弁36,37の操
作によって後置冷却器5および増湿塔7を通過する空気
流量を減少させることができる。従ってシステムの運用
性を向上させることができる。
In the embodiment shown in FIG. 2, a system for supplying a part of the compressor discharge air 4 to the combustor 10 without passing through a humidifying system is provided, and the air flow rate flowing through the system is controlled by a valve 36, 3
7 is characterized in that it can be changed arbitrarily by using. That is, when the temperature of the high-humidity air 8 is to be increased or the contained moisture is to be reduced in order to improve the ignitability of the combustor and the combustion stability, the valves 36 and 37 are operated to provide the post-humidification. The flow rate of the air passing through the cooler 5 and the humidification tower 7 can be reduced. Therefore, the operability of the system can be improved.

【0021】図3は本発明の第三の実施例である。図3
の実施例が図1の実施例と異なる点のみを取り上げ、そ
の特徴について説明する。
FIG. 3 shows a third embodiment of the present invention. FIG.
Only the differences between the embodiment of FIG. 1 and the embodiment of FIG. 1 will be described, and the features thereof will be described.

【0022】図3の実施例は、後置冷却器5および給水
加熱器15をバイパスする流路を設け、かつバイパス流
量を弁38,39,40,41によって変化させうるよ
うにした点に特徴がある。すなわち後置冷却器5および
給水加熱器15における交換熱量をガスタービン運転状
態にあわせて変えて、増湿系統の各温度を変化させ、効
率が最大となるようにすることができる。従ってシステ
ムの効率を向上させることができる。
The embodiment shown in FIG. 3 is characterized in that a flow path bypassing the post-cooler 5 and the feed water heater 15 is provided, and the bypass flow rate can be changed by valves 38, 39, 40 and 41. There is. That is, the amount of heat exchanged in the post-cooler 5 and the feedwater heater 15 is changed in accordance with the gas turbine operation state, and each temperature of the humidification system is changed so that the efficiency is maximized. Therefore, the efficiency of the system can be improved.

【0023】図4は本発明の第四の実施例である。図4
の実施例が図1の実施例と異なる点のみを取り上げ、そ
の特徴について説明する。
FIG. 4 shows a fourth embodiment of the present invention. FIG.
Only the differences between the embodiment of FIG. 1 and the embodiment of FIG. 1 will be described, and the features thereof will be described.

【0024】図4は、図1のガスタービンシステムにお
ける後置冷却器5または給水加熱器15を、伝熱面積を
変化させうるような構造とした構造例を示している。図
4において、43は被加熱流体(図1における液相水1
9または21)であり、伝熱管44,45,46,4
7,48,49,50を通過して加熱流体42(図1に
おける空気4または排ガス14)によって加熱される。
FIG. 4 shows an example of a structure in which the post-cooler 5 or the feed water heater 15 in the gas turbine system of FIG. 1 has a structure capable of changing the heat transfer area. In FIG. 4, reference numeral 43 denotes a fluid to be heated (the liquid phase water 1 in FIG. 1).
9 or 21), and the heat transfer tubes 44, 45, 46, 4
The heating fluid 42 (the air 4 or the exhaust gas 14 in FIG. 1) is heated by passing through 7, 48, 49, and 50.

【0025】伝熱面積を最小とするときは弁51を開、
弁52を閉とし、最大とするときは弁51,53,55
を閉、弁52,54,56を開とすればよく、その中間
の状態をとることもできる。すなわち後置冷却器5およ
び給水加熱器15における交換熱量を、通過流量を一定
としながらガスタービン運転状態にあわせて変えて、増
湿系統の各温度を変化させ、効率が最大となるようにす
ることができる。従ってシステムの効率を向上させるこ
とができる。
To minimize the heat transfer area, open the valve 51,
When the valve 52 is closed and maximized, the valves 51, 53, 55
, And the valves 52, 54, 56 may be opened, and an intermediate state may be taken. That is, the amount of heat exchanged in the post-cooler 5 and the feed water heater 15 is changed in accordance with the gas turbine operation state while keeping the flow rate constant, so that each temperature of the humidification system is changed so that the efficiency is maximized. be able to. Therefore, the efficiency of the system can be improved.

【0026】[0026]

【発明の効果】本発明によれば、全負荷領域において高
効率で運用性に優れた高湿分ガスタービンシステムを提
供することができる。
According to the present invention, it is possible to provide a high-humidity gas turbine system having high efficiency and excellent operability in all load ranges.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例であるガスタービンシス
テムの系統図。
FIG. 1 is a system diagram of a gas turbine system according to a first embodiment of the present invention.

【図2】本発明の第2の実施例であるガスタービンシス
テムの系統図。
FIG. 2 is a system diagram of a gas turbine system according to a second embodiment of the present invention.

【図3】本発明の第3の実施例であるガスタービンシス
テムの系統図。
FIG. 3 is a system diagram of a gas turbine system according to a third embodiment of the present invention.

【図4】図1に使用した後置冷却器の構成図。FIG. 4 is a configuration diagram of a post-cooler used in FIG. 1;

【符号の説明】[Explanation of symbols]

1…負荷、2…圧縮機、3,4…空気、5…後置冷却
器、6…管、7…増湿塔、8,9…高湿分空気、10…
燃焼器、11…タービン、12,14…ガス、13…再
生器、15…給水加熱器、16,17,19,21…液
相水、18,22,25…ポンプ、20,23…高温
水、24…低温補給水、26,27,28,29,30
…温度計、31…水位計、32…ヒータ、33,34,
36,37,38,39,40,41,51,52,5
3,54,55…弁、35…燃料、42,56…加熱流
体、43…被加熱流体、44,45,46,47,4
8,49,50…伝熱管。
DESCRIPTION OF SYMBOLS 1 ... Load, 2 ... Compressor, 3,4 ... Air, 5 ... Post-cooler, 6 ... Tube, 7 ... Humidifying tower, 8,9 ... High humidity air, 10 ...
Combustor, 11 turbine, 12, 14 gas, 13 regenerator, 15 feed water heater, 16, 17, 19, 21 liquid phase water, 18, 22, 25 pump, 20, 23 high temperature water , 24 ... Low temperature make-up water, 26,27,28,29,30
... thermometer, 31 ... water level gauge, 32 ... heater, 33, 34,
36, 37, 38, 39, 40, 41, 51, 52, 5
3, 54, 55 ... valve, 35 ... fuel, 42, 56 ... heated fluid, 43 ... heated fluid, 44, 45, 46, 47, 4
8, 49, 50 ... heat transfer tubes.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】空気を圧縮する圧縮機と、前記圧縮機で圧
縮された圧縮空気を加湿する増湿塔と、前記増湿塔で加
湿された加湿空気と燃料とを混合して燃焼し燃焼ガスを
生成する燃焼器と、前記燃焼器で生成した燃焼ガスによ
り駆動するタービンと、前記増湿塔内の液相水を前記圧
縮空気と熱交換した後前記増湿塔内に噴霧する循環系統
とを有するガスタービンにおいて、前記循環系統の熱交
換前の液相水の温度を検出する第一の温度検出器と、前
記循環系統の熱交換後の液相水の温度を検出する第二の
温度検出器と、前記第一の温度検出器からの信号と前記
第二の温度検出器からの信号とに基づいて前記循環系統
の液相水の流量を制御する制御器とを有することを特徴
とするガスタービン。
1. A compressor for compressing air, a humidifying tower for humidifying the compressed air compressed by the compressor, and a humidified air humidified by the humidifying tower mixed with fuel for combustion and combustion. A combustor for generating gas, a turbine driven by the combustion gas generated by the combustor, and a circulation system for exchanging liquid-phase water in the humidification tower with the compressed air and then spraying the liquid phase water into the humidification tower. In the gas turbine having a first temperature detector for detecting the temperature of the liquid phase water before the heat exchange of the circulation system, and a second temperature detector for detecting the temperature of the liquid phase water after the heat exchange of the circulation system A temperature detector, and a controller that controls a flow rate of the liquid-phase water in the circulation system based on a signal from the first temperature detector and a signal from the second temperature detector. And gas turbine.
【請求項2】空気を圧縮する圧縮機と、前記圧縮機で圧
縮された圧縮空気を加湿する増湿塔と、前記増湿塔で加
湿された加湿空気と燃料とを混合して燃焼し燃焼ガスを
生成する燃焼器と、前記燃焼器で生成した燃焼ガスによ
り駆動するタービンと、前記増湿塔内の液相水を前記ガ
スタービンからの排ガスと熱交換した後前記増湿塔内に
噴霧する循環系統とを有するガスタービンにおいて、前
記循環系統の熱交換前の液相水の温度を検出する第一の
温度検出器と、前記循環系統の熱交換後の液相水の温度
を検出する第二の温度検出器と、前記第一の温度検出器
からの信号と前記第二の温度検出器からの信号とに基づ
いて前記循環系統の液相水の流量を制御する制御器とを
有することを特徴とするガスタービン。
2. A compressor for compressing air, a humidifying tower for humidifying the compressed air compressed by the compressor, and a humidified air humidified by the humidifying tower mixed with fuel for combustion and combustion. A combustor for generating gas, a turbine driven by the combustion gas generated by the combustor, and spraying liquid phase water in the humidification tower into the humidification tower after exchanging heat with exhaust gas from the gas turbine. A first temperature detector for detecting the temperature of liquid-phase water before heat exchange in the circulation system, and detecting the temperature of liquid-phase water after heat exchange in the circulation system. A second temperature detector, and a controller that controls a flow rate of the liquid-phase water in the circulation system based on a signal from the first temperature detector and a signal from the second temperature detector. A gas turbine characterized by the above.
JP31482497A 1997-11-17 1997-11-17 Gas turbine Pending JPH11148372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31482497A JPH11148372A (en) 1997-11-17 1997-11-17 Gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31482497A JPH11148372A (en) 1997-11-17 1997-11-17 Gas turbine

Publications (1)

Publication Number Publication Date
JPH11148372A true JPH11148372A (en) 1999-06-02

Family

ID=18058048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31482497A Pending JPH11148372A (en) 1997-11-17 1997-11-17 Gas turbine

Country Status (1)

Country Link
JP (1) JPH11148372A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329153A (en) * 2005-05-30 2006-12-07 Hitachi Ltd High moisture gas turbine facility, its controller, and its control method
JP2007107464A (en) * 2005-10-14 2007-04-26 Hitachi Ltd Gas turbine system, and method for operating gas turbine system
JP2008175098A (en) * 2007-01-17 2008-07-31 Hitachi Ltd Gas turbine using high moisture content air and method for operating the same
JP2008274939A (en) * 2007-05-01 2008-11-13 General Electric Co <Ge> Method and system for gas humidification control
US8006499B2 (en) 2007-03-19 2011-08-30 Hitachi, Ltd. Humid air turbine, humid air turbine control system, and humid air turbine control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329153A (en) * 2005-05-30 2006-12-07 Hitachi Ltd High moisture gas turbine facility, its controller, and its control method
JP2007107464A (en) * 2005-10-14 2007-04-26 Hitachi Ltd Gas turbine system, and method for operating gas turbine system
JP4648152B2 (en) * 2005-10-14 2011-03-09 株式会社日立製作所 Gas turbine system and method of operating gas turbine system
JP2008175098A (en) * 2007-01-17 2008-07-31 Hitachi Ltd Gas turbine using high moisture content air and method for operating the same
US8006499B2 (en) 2007-03-19 2011-08-30 Hitachi, Ltd. Humid air turbine, humid air turbine control system, and humid air turbine control method
EP1972760A3 (en) * 2007-03-19 2016-03-30 Mitsubishi Hitachi Power Systems, Ltd. Humid air turbine, humid air turbine control system, and humid air turbine control method
JP2008274939A (en) * 2007-05-01 2008-11-13 General Electric Co <Ge> Method and system for gas humidification control

Similar Documents

Publication Publication Date Title
JP4099944B2 (en) Gas turbine power generation equipment and air humidifier
JP4285781B2 (en) Gas turbine power generation equipment
US6247302B1 (en) Gas turbine power plant
US7082749B2 (en) Gas turbine electric power generation equipment and air humidifier
US6578354B2 (en) Gas turbine electric power generation equipment and air humidifier
US20090293493A1 (en) Advanced humid air turbine power plant
JPH10176504A (en) Maintaining method for frequency when power plant device is operated
JPS60156910A (en) Steam turbine apparatus
JPH10115229A (en) Gas turbine and operation method thereof
JP4299313B2 (en) Gas turbine equipment
WO2010089883A1 (en) Hybrid power generation system
JPH11148372A (en) Gas turbine
JPH11257006A (en) Power generation system
JP3777875B2 (en) Gas turbine power generation system and operation method thereof
JPH0688538A (en) Gas turbine plant
JPH10121912A (en) Combustion turbine cycle system
JP4120699B2 (en) Gas turbine power generation equipment and air humidifier
JPH11257096A (en) Gas turbine power plant
JP4315625B2 (en) Gas turbine equipment
JP2000282895A (en) Intake air cooling device and method for gas turbine
JP4020601B2 (en) High humidity gas turbine system
JPH0110417Y2 (en)
JPH09177509A (en) Cryogenic power generating facility
JP2000230432A (en) Gas turbine power plant
JPH11173160A (en) Gas turbine power generation system and control method thereof