JPH11147264A - Production of porous structure - Google Patents

Production of porous structure

Info

Publication number
JPH11147264A
JPH11147264A JP9318243A JP31824397A JPH11147264A JP H11147264 A JPH11147264 A JP H11147264A JP 9318243 A JP9318243 A JP 9318243A JP 31824397 A JP31824397 A JP 31824397A JP H11147264 A JPH11147264 A JP H11147264A
Authority
JP
Japan
Prior art keywords
reinforcing fiber
resin
biodegradable polymer
large number
porous structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9318243A
Other languages
Japanese (ja)
Other versions
JP3847925B2 (en
Inventor
Tetsuya Nakamura
哲也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakura Rubber Co Ltd
Original Assignee
Sakura Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakura Rubber Co Ltd filed Critical Sakura Rubber Co Ltd
Priority to JP31824397A priority Critical patent/JP3847925B2/en
Priority to CA002253037A priority patent/CA2253037C/en
Priority to DE69811606T priority patent/DE69811606T2/en
Priority to EP98121159A priority patent/EP0916464B1/en
Priority to AT98121159T priority patent/ATE233159T1/en
Priority to ES98121159T priority patent/ES2193462T3/en
Priority to US09/190,388 priority patent/US6350337B1/en
Publication of JPH11147264A publication Critical patent/JPH11147264A/en
Priority to HK99105361A priority patent/HK1020699A1/en
Priority to US09/994,172 priority patent/US6666941B2/en
Application granted granted Critical
Publication of JP3847925B2 publication Critical patent/JP3847925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a lightweight porous structure having a three-dimensional structure and sufficient strength against vertical and lateral loads. SOLUTION: A porous structure producing method consists of a first process for winding reinforcing fibers 13 impregnated with an uncured resin 12 around the outer peripheral surfaces of spherical elements 11 comprising a biodegradable polymer to form a large number of reinforcing fiber spherical elements 14, a second process for packing a mold 16 with a large number of the reinforcing fiber spherical elements 14 in a crowded state and curing the uncured resin 12 to mutually bond the reinforcing fiber spherical elements 14, and a third process for introducing a biochemically active substance 19 into the spherical elements 11 composed of the biodegradable polymer to decompose the spherical elements 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、補強繊維で強化
された複合材製品のコア材として利用できる多孔質構造
体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous structure usable as a core material of a composite product reinforced with reinforcing fibers.

【0002】[0002]

【従来の技術】近年、軽量化並びに高強度化などの要請
で、エポキシ樹脂や不飽和ポリエステル等の熱硬化性樹
脂をマトリックスとしカーボン繊維やアラミド繊維或い
はガラス繊維等の強化材を加えたプリプレグの開発がめ
ざましく、これらプリプレグを用いた各種製品のニーズ
が非常に高まって来ている。
2. Description of the Related Art In recent years, in response to demands for weight reduction and high strength, a prepreg made of a thermosetting resin such as an epoxy resin or an unsaturated polyester as a matrix and added with a reinforcing material such as carbon fiber, aramid fiber or glass fiber has been developed. Development is remarkable, and the needs of various products using these prepregs are increasing very much.

【0003】これに加えて、最近では、ナイロンやポリ
エーテルエーテルケトン(PEEK)などの熱可塑性樹
脂をマトリックスとした複合材製品のニーズも高まって
来ている。
[0003] In addition, recently, there has been an increasing need for composite products using a thermoplastic resin such as nylon or polyetheretherketone (PEEK) as a matrix.

【0004】特に、この種のプリプレグは軽量で高強度
の構造体製品を製作できる優れた特性を持つ素材である
から、航空宇宙分野等の極限的条件で用いられる各種部
材としては複合材が大きな力を発揮すると考えられる。
In particular, since this kind of prepreg is a material having excellent characteristics capable of manufacturing a lightweight and high-strength structural product, composite materials are large as various members used under extreme conditions in the aerospace field and the like. It is thought to exert power.

【0005】複合材構造体で用いられるハニカム構造の
コアとして熱硬化性樹脂または熱可塑性樹脂をマトリク
スとし、補強繊維として長繊維の炭素繊維強化プラスチ
ック(以下、CFRPという)やガラス繊維強化プラス
チック(以下、GFRPという)を用いる場合、従来は
台形状の凹凸のある型にプリプレグを積層してオートク
レーブまたはプレス機などで硬化させる必要があった。
[0005] A honeycomb structure core used in a composite material structure is made of a thermosetting resin or a thermoplastic resin as a matrix, and long fibers of carbon fiber reinforced plastic (hereinafter, referred to as CFRP) or glass fiber reinforced plastic (hereinafter, referred to as CFRP) are used as reinforcing fibers. In the case of using GFRP), it has conventionally been necessary to laminate a prepreg on a trapezoidal mold having irregularities and to cure it by an autoclave or a press machine.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、補強繊
維として長繊維のCFRPやGFRPをコア材とすれ
ば、強度、剛性の高いハニカム板ができることは既知の
ことであるが、このコア材を作るための波板の成形にお
ける型への仕込みまたは積層作業に手間がかかるという
問題があった。また、ハニカム板は2次元的な構造であ
るため、ハニカム板を構成する縦板方向の荷重に対して
は高い強度を有するが、縦板に対して垂直方向の荷重に
対して強度が落ちるという問題がある。
However, it is known that if a long fiber CFRP or GFRP is used as a reinforcing fiber as a core material, a honeycomb plate having high strength and rigidity can be obtained. However, there is a problem that it takes time and effort to charge or laminate a mold in forming a corrugated sheet. In addition, since the honeycomb plate has a two-dimensional structure, it has high strength with respect to the load in the direction of the vertical plate forming the honeycomb plate, but the strength decreases with respect to the load in the direction perpendicular to the vertical plate. There's a problem.

【0007】また、従来から知られているハニカム構造
で、航空機の翼を製造する場合、図7に示すように、翼
1の本体の部分はなるべく密度が低い、つまりセルサイ
ズの大きい(6角形の1辺の長さが長い)ハニカムコア
2を使用する方が翼1を軽量化できる。一方、翼1の外
表面は滑らかにしたり、物体が衝突したときの強度をあ
る程度大きくしたい場合には、密度の高い、つまりセル
サイズの小さい(6角形の1辺の長さが短い)ハニカム
コア3を使用する方がよい。
When an aircraft wing is manufactured using a conventionally known honeycomb structure, as shown in FIG. 7, the body portion of the wing 1 has a density as low as possible, that is, a large cell size (a hexagonal shape). The length of one side of the honeycomb core 2 is longer), so that the weight of the wing 1 can be reduced. On the other hand, when it is desired to smooth the outer surface of the wing 1 or to increase the strength at the time of collision with an object to some extent, a honeycomb core having a high density, that is, a small cell size (a length of one side of a hexagon is short) is used. It is better to use 3.

【0008】このため、セルサイズの大きいハニカムコ
ア2とセルサイズの小さいハニカムコア3とのプリプレ
グ4を介して二層構造とすることが試みられているが、
製造に手間が掛かり、複雑な3次元曲面を製造すること
が困難で実用的ではない。すなわち、ハニカムコアを高
温でプリフォームすることもできるが、プリフォームす
るためには大型の耐熱型が必要があり、コストアップの
原因となる。
For this reason, it has been attempted to form a two-layer structure through a prepreg 4 of a honeycomb core 2 having a large cell size and a honeycomb core 3 having a small cell size.
The production is troublesome, and it is difficult to produce a complicated three-dimensional curved surface, which is not practical. That is, the honeycomb core can be preformed at a high temperature, but a large heat-resistant type is required to perform the preform, which causes an increase in cost.

【0009】また、ハニカムコアを用いて3次元曲面を
製造する場合、図8(a)に示すように、コア材5を矩
形ブロック形状から3次元曲面になるように切削加工す
るか、同図(b)に示すように、3次元曲面用のハニカ
ムコア材6を用いるしかないが、いずれもコストアップ
の原因となっている。
When manufacturing a three-dimensional curved surface using a honeycomb core, as shown in FIG. 8A, the core material 5 is cut from a rectangular block shape to a three-dimensional curved surface, or As shown in (b), the only choice is to use a honeycomb core material 6 for a three-dimensional curved surface, but all of them cause an increase in cost.

【0010】この発明は、前記事情に着目してなされた
もので、その目的とするところは、3次元的構造で、上
下方向及び横方向からの荷重に十分な強度を有し、また
軽量の多孔質構造体を容易に製造できる多孔質構造体の
製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object a three-dimensional structure, which has sufficient strength against loads in vertical and lateral directions, and has a light weight. An object of the present invention is to provide a method for manufacturing a porous structure, which can easily manufacture a porous structure.

【0011】[0011]

【課題を解決するための手段】この発明は、前記目的を
達成するために、請求項1は、生分解性ポリマーからな
る球状体の外周面に未硬化樹脂を含浸させた補強繊維を
巻装し、多数の補強繊維球状体を形成する第1の工程
と、前記多数の補強繊維球状体を成形型の内部に密集状
態に充填し、前記未硬化樹脂を硬化し、前記補強繊維球
状体相互を結合させる第2の工程と、前記生分解性ポリ
マーからなる球状体に生化学活性物質を導入して分解す
る第3の工程とからなることを特徴とする多孔質構造体
の製造方法にある。
According to the present invention, in order to achieve the above object, a first aspect of the present invention is to wind a reinforcing fiber impregnated with an uncured resin on an outer peripheral surface of a spherical body made of a biodegradable polymer. A first step of forming a large number of reinforcing fiber spheres, and filling the large number of reinforcing fiber spheres in a dense state inside a mold, curing the uncured resin, and forming the reinforcing fiber spheres. And a third step of introducing a biochemically active substance into a spherical body made of the biodegradable polymer to decompose the spherical body, the method comprising the steps of: .

【0012】請求項2は、生分解性ポリマーからなる球
状体の外周面に補強繊維を巻装し、多数の補強繊維球状
体を形成する第1の工程と、前記補強繊維球状体の補強
繊維に未硬化樹脂または溶融樹脂を塗布する第2の工程
と、前記多数の補強繊維球状体を成形型の内部に密集状
態に充填し、前記未硬化樹脂を硬化し、前記補強繊維球
状体相互を結合させる第3の工程と、前記生分解性ポリ
マーからなる球状体に生化学活性物質を導入して分解す
る第4の工程とからなることを特徴とする多孔質構造体
の製造方法にある。
[0012] The first step of winding a reinforcing fiber around an outer peripheral surface of a spherical body made of a biodegradable polymer to form a large number of reinforcing fiber spherical bodies, and a reinforcing fiber of the reinforcing fiber spherical body. A second step of applying an uncured resin or a molten resin to the mold, filling the large number of the reinforcing fiber spheres in a compact state in a molding die, curing the uncured resin, and allowing the reinforcing fiber spheres to contact each other. A method for producing a porous structure, comprising: a third step of bonding, and a fourth step of introducing a biochemically active substance into a sphere made of the biodegradable polymer to decompose the sphere.

【0013】請求項3は、生分解性ポリマーからなる球
状体の外周面にプリプレグを巻装して積層し、多数の補
強繊維球状体を形成する第1の工程と、前記多数の補強
繊維球状体を成形型の内部に密集状態に充填した後、加
熱してプリプレグ中の樹脂を硬化し、前記補強繊維球状
体相互を結合させる第2の工程と、前記生分解性ポリマ
ーからなる球状体に生化学活性物質を導入して分解する
第3の工程とからなることを特徴とする多孔質構造体の
製造方法にある。
[0013] The third step is that a prepreg is wound around an outer peripheral surface of a spherical body made of a biodegradable polymer and laminated to form a large number of spherical reinforcing fiber bodies; After the body is densely filled in the mold, the resin is heated to cure the resin in the prepreg, and the second step of bonding the reinforcing fiber spheres to each other is performed. And a third step of introducing and decomposing a biochemically active substance.

【0014】請求項4は、生分解性ポリマーからなる球
状体の外周面にプリプレグを巻装して積層し、多数の補
強繊維球状体を形成する第1の工程と、前記多数の補強
繊維球状体を成形型の内部に密集状態に充填した後、加
熱してプリプレグ中の樹脂を膨張させ、隣接する補強繊
維球状体が不規則多面形状で補強繊維球状体相互を密に
結合硬化させる第2の工程と、前記生分解性ポリマーか
らなる球状体に生化学活性物質を導入して分解する第3
の工程とからなることを特徴とする多孔質構造体の製造
方法にある。
[0014] In a fourth aspect, a prepreg is wound around an outer peripheral surface of a spherical body made of a biodegradable polymer and laminated to form a large number of spherical reinforcing fiber bodies; After the body is densely filled into the mold, the resin in the prepreg is expanded by heating, and the reinforcing fiber spheres adjacent to each other have an irregular polyhedral shape so that the reinforcing fiber spheres are tightly bonded and hardened. And a third step of introducing a biochemically active substance into a sphere made of the biodegradable polymer to decompose the sphere.
And a method for producing a porous structure.

【0015】球状体を生分解性ポリマーによって製作す
ることにより、この球状体に未硬化樹脂を含浸した補強
繊維を巻装し、未硬化樹脂を硬化した後、バクテリア、
酵素などの生化学活性物質の作用によって球状体を分解
することができ、補強繊維球状体からなる多孔質構造体
を形成できる。
The spherical body is made of a biodegradable polymer, so that the spherical body is wound with a reinforcing fiber impregnated with an uncured resin, and the uncured resin is cured.
The spherical body can be decomposed by the action of a biochemically active substance such as an enzyme, and a porous structure composed of reinforcing fiber spheres can be formed.

【0016】[0016]

【発明の実施の形態】以下、この発明の実施の形態を図
面に基づいて説明する。図1は第1の実施形態を示し、
中空構造物として容器を製造する方法を示す。図1
(a)における11は中空の球状体であり、これは生分
解性ポリマー、例えば微生物系のバイオポール(モンサ
ルト社商品名)で、組成はヒドロキシブチレートとバリ
レートの共重合体、あるいは化学合成系のビオノーレ
(昭和高分子社商品名)で、組成は脂肪族ポリエステ
ル、コハク酸とブタンジオール/エチレングリコールの
ポリエステル等からなり、バクテリア、酵素などの生化
学活性物質の作用によって分解するポリマーである。こ
の球状体11はブロー成形、射出成形等によって成形さ
れ、球状体本体11aの一部には開口部11bを有して
いる。球状体本体11aの球径は、数mm〜数十mmで
あり、同一球径に限らず、大小異なる球径のものを混合
して用いることが好ましい。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment,
A method for producing a container as a hollow structure will be described. FIG.
Numeral 11 in (a) denotes a hollow sphere, which is a biodegradable polymer, for example, a microbial biopol (trade name of Monsart Co.), the composition of which is a copolymer of hydroxybutyrate and valerate, or a chemically synthesized system. Is a polymer composed of aliphatic polyester, polyester of succinic acid and butanediol / ethylene glycol, etc., and decomposed by the action of biochemically active substances such as bacteria and enzymes. The spherical body 11 is formed by blow molding, injection molding or the like, and has an opening 11b in a part of the spherical body 11a. The spherical diameter of the spherical body 11a is several mm to several tens of mm, and it is preferable to use not only the same spherical diameter but also a mixture of spherical diameters different in size.

【0017】前記球状体11の外周面にCFRPまたは
GFRPの樹脂層を形成するが、この樹脂層を形成する
手段として、まず、同図(b)に示すように、球状体1
1の外周面に例えば不飽和ポリエステル、エポキシ樹
脂、フェノール樹脂等の未硬化樹脂12を含浸させた炭
素繊維またはガラス繊維からなる補強繊維13を略均一
に目が透く程度(あまり密巻過ぎると、バクテリア、酵
素などの生化学活性物質が侵入しにくくなるため、粗巻
き)に巻装し、補強繊維球状体14を形成する(第1の
工程)。
A resin layer of CFRP or GFRP is formed on the outer peripheral surface of the spherical body 11. As means for forming the resin layer, first, as shown in FIG.
A reinforcing fiber 13 made of carbon fiber or glass fiber impregnated with an uncured resin 12 such as an unsaturated polyester, epoxy resin, phenol resin or the like is almost uniformly pierced on the outer peripheral surface of the device 1 (if the winding is too tight, In order to make it difficult for biochemically active substances such as bacteria and enzymes to invade, it is wound around a coarse winding to form the reinforcing fiber spherical body 14 (first step).

【0018】次に、同図(c)に示すように、上型15
aと下型15bからなる成形型16のキャビティ17に
前記多数の補強繊維球状体14を密集状態に充填し、補
強繊維球状体14を常温または加熱して未硬化樹脂12
を硬化させると、補強繊維球状体14相互は未硬化樹脂
12の硬化とともに一体に結合する(第2の工程)。こ
の場合、同一球径の補強繊維球状体14を密集状態に充
填してもよいが、例えば球径の小さい補強繊維球状体1
4aをキャビティ17の外周部に配置し、球径の大きい
補強繊維球状体14bをキャビティ17の中央部に配置
すると、外層は補強繊維球状体14が高密度となり、内
層は低密度となる。
Next, as shown in FIG.
a and a lower mold 15b, the cavity 17 of the molding die 16 is filled with the large number of the reinforcing fiber spheres 14 in a dense state, and the reinforcing fiber spheres 14 are cooled to room temperature or unheated resin 12
Is cured, the reinforcing fiber spheres 14 are integrally bonded together with the curing of the uncured resin 12 (second step). In this case, the reinforcing fiber spheres 14 having the same sphere diameter may be densely packed.
If 4a is arranged on the outer peripheral portion of the cavity 17 and the reinforcing fiber sphere 14b having a large sphere diameter is arranged in the center of the cavity 17, the reinforcing fiber sphere 14 has a high density in the outer layer and a low density in the inner layer.

【0019】このようにして多数の補強繊維球状体14
からなる球状体集合体18が成形された後、成形型16
から球状体集合体18を取り出し、同図(d)に示すよ
うに、バクテリア、酵素などの生化学活性物質19、具
体的には微生物を含む泥水を収容した槽20に入れて球
状体集合体18を生化学活性物質19を浸漬し、数日か
ら数週間放置すると、生化学活性物質19が補強繊維球
状体14を透過して内部の生分解性ポリマーからなる球
状体11に導入し、球状体11が分解(主として二酸化
炭素と水)する(第3の工程)。
Thus, a large number of reinforcing fiber spheres 14
After the spherical aggregate 18 made of
The sphere aggregate 18 is taken out from the container and placed in a tank 20 containing a biochemically active substance 19 such as bacteria and enzymes, specifically muddy water containing microorganisms, as shown in FIG. When the biochemically active substance 19 is immersed and left for several days to several weeks, the biochemically active substance 19 penetrates the reinforcing fiber spheres 14 and is introduced into the spheres 11 made of biodegradable polymer inside, and The body 11 is decomposed (mainly carbon dioxide and water) (third step).

【0020】球状体11が分解した後、その残滓を排出
することにより、同図(e)に示すように、補強繊維1
3と樹脂とからなる多孔質構造体21が得られ、これを
コア材として表層に表層板22を施すことにより、複合
材からなる航空機の翼等を形成することができる。
After the spherical body 11 has been decomposed, the residue is discharged, and as shown in FIG.
A porous structure 21 made of resin 3 and resin is obtained. By using this as a core material and applying a surface plate 22 to the surface layer, an aircraft wing or the like made of a composite material can be formed.

【0021】図2は第2の実施形態を示し、第1の実施
形態とは樹脂層の形成方法が異なる。すなわち、図2
(a)に示すように、生分解性ポリマーからなる球状体
11に炭素繊維またはガラス繊維からなる補強繊維13
を略均一に目が透く程度に巻装(第1の工程)した後、
補強繊維13に触媒を添加し、次に、同図(b)に示す
ように、補強繊維13に不飽和ポリエステル、エポキシ
樹脂、フェノール樹脂等の未硬化樹脂または溶融樹脂2
3を塗布する(第2の工程)。溶融樹脂23を添加する
手段としては、トレイ24に収容されている未硬化樹脂
または溶融樹脂23をローラ25に付着させ、補強繊維
13上に塗布してもよく、図示しないが溶融樹脂槽中に
球状体11とともに浸漬してもよい。なお、第3の工程
は第1の実施形態と同様である。
FIG. 2 shows the second embodiment, which differs from the first embodiment in the method of forming the resin layer. That is, FIG.
As shown in (a), a reinforcing fiber 13 made of carbon fiber or glass fiber is provided on a spherical body 11 made of biodegradable polymer.
Is wound so that the eyes can be seen almost uniformly (the first step),
A catalyst is added to the reinforcing fibers 13, and then, as shown in FIG. 4B, an uncured resin such as unsaturated polyester, epoxy resin,
3 (second step). As a means for adding the molten resin 23, the uncured resin or the molten resin 23 contained in the tray 24 may be adhered to the roller 25 and applied on the reinforcing fiber 13. It may be immersed together with the spherical body 11. Note that the third step is the same as in the first embodiment.

【0022】図3は第3の実施形態を示し、第1及び第
2の実施形態とは樹脂層の形成方法が異なる。すなわ
ち、図3(a)に示すように、生分解性ポリマーからな
る球状体11の外周面にプリプレグ26を巻装(第1の
工程)した後、同図(b)に示すように、プリプレグ2
6を巻装した球状体11、すなわち多数の補強繊維球状
体27を上型15aと下型15bからなる成形型16の
キャビティ17に密集状態に充填し、補強繊維球状体2
7を加熱してプリプレグ26中の樹脂を硬化させると、
補強繊維球状体27相互は樹脂の硬化とともに一体に結
合する(第2の工程)。なお、第3の工程は第1の実施
形態と同様である。
FIG. 3 shows a third embodiment, which differs from the first and second embodiments in the method of forming the resin layer. That is, as shown in FIG. 3A, the prepreg 26 is wound around the outer peripheral surface of the spherical body 11 made of a biodegradable polymer (first step), and then, as shown in FIG. 2
6, the spherical body 11 around which a large number of reinforcing fiber spheres 27 are densely filled in the cavity 17 of the molding die 16 composed of the upper die 15a and the lower die 15b.
7 is heated to cure the resin in the prepreg 26,
The reinforcing fiber spheres 27 are integrally bonded together with the curing of the resin (second step). Note that the third step is the same as in the first embodiment.

【0023】図4は第4の実施形態を示し、第1〜第3
の実施形態とは補強繊維球状体27の加熱硬化方法が異
なる。すなわち、図4(a)に示すように、生分解性ポ
リマーからなる球状体11の外周面にプリプレグ26を
巻装(第1の工程)した後、同図(b)に示すように、
プリプレグ26を巻装した球状体11、すなわち多数の
補強繊維球状体27を上型15aと下型15bからなる
成形型16のキャビティ17に密集状態に充填し、補強
繊維球状体27を加熱すると、プリプレグ26中の樹脂
が膨張し、結果的に隣接する補強繊維球状体27相互が
押し合って隙間を埋め、補強繊維球状体27は断面が6
角形、8角形等の多角形となり、不規則多面形状となっ
て硬化するとともに、補強繊維球状体27相互は樹脂の
硬化とともに一体に結合する(第2の工程)。なお、第
3の工程は第1の実施形態と同様である。
FIG. 4 shows a fourth embodiment, in which first to third embodiments are shown.
The method of heating and curing the reinforcing fiber spherical body 27 is different from that of the embodiment. That is, as shown in FIG. 4A, after the prepreg 26 is wound around the outer peripheral surface of the spherical body 11 made of the biodegradable polymer (first step), as shown in FIG.
When the spherical body 11 around which the prepreg 26 is wound, that is, a large number of reinforcing fiber spherical bodies 27 are densely filled in the cavity 17 of the molding die 16 including the upper mold 15a and the lower mold 15b, and the reinforcing fiber spherical bodies 27 are heated, The resin in the prepreg 26 expands, and consequently, the adjacent reinforcing fiber spheres 27 press against each other to fill the gap, and the reinforcing fiber sphere 27 has a cross section of 6 mm.
It becomes a polygon such as a square or an octagon, becomes an irregular polyhedral shape, and cures, and the reinforcing fiber spheres 27 are integrally joined together with the curing of the resin (second step). Note that the third step is the same as in the first embodiment.

【0024】なお、成形型16のキャビティ17に密集
状態に充填した補強繊維球状体27を加熱すると同時に
成形型16の周囲から真空吸引すると、樹脂の熱膨張を
助長させることができ、また補強繊維球状体27相互の
密着度が増すという効果がある。また、球状体11を中
空構造とし、この中に空気または揮発性の液体などを予
め封入しておくことにより、加熱時にこれらの流体が膨
張し、結果として球状体11の膨張を助けたり内圧を高
めたりする効果によって、補強繊維球状体27相互の密
着度を増加させることができる。
When the reinforcing fiber spheres 27 filled in the cavity 17 of the molding die 16 in a dense state are heated and simultaneously vacuum-evacuated from around the molding die 16, the thermal expansion of the resin can be promoted. There is an effect that the degree of adhesion between the spherical bodies 27 increases. In addition, the spherical body 11 has a hollow structure, and air or a volatile liquid or the like is previously sealed therein, so that these fluids expand during heating, and as a result, the expansion of the spherical body 11 is assisted or the internal pressure is reduced. By increasing the effect, the degree of adhesion between the reinforcing fiber spheres 27 can be increased.

【0025】図5は第5の実施形態を示し、第1の実施
形態の中空構造物の製造方法に加え、強度的に最も必要
とする部分に別の補強材28を追加したものであり、成
形型16のキャビティ17に補強繊維球状体14を充填
する際に、キャビティ17に補強材28をセットするこ
とにより、強度的に優れた中空構造物を製造できる。
FIG. 5 shows a fifth embodiment, in which, in addition to the method of manufacturing a hollow structure according to the first embodiment, another reinforcing member 28 is added to the most necessary part in terms of strength. By setting the reinforcing material 28 in the cavity 17 when filling the reinforcing fiber spherical body 14 into the cavity 17 of the mold 16, a hollow structure excellent in strength can be manufactured.

【0026】図6は第6の実施形態を示し、第1の実施
形態の中空構造物の製造方法に加え、断熱性に優れた中
空構造物を製造する場合に多数の例えば球状断熱材29
aを充填して断熱層29を構成したものである。この場
合、球状断熱材29aの周囲には球状体11の周囲に施
したものと同様な方法による補強繊維層を形成してお
く。
FIG. 6 shows a sixth embodiment. In addition to the method of manufacturing a hollow structure according to the first embodiment, when manufacturing a hollow structure having excellent heat insulating properties, a large number of, for example, spherical heat insulating materials 29 are used.
a to form a heat insulating layer 29. In this case, a reinforcing fiber layer is formed around the spherical heat insulating material 29a by the same method as that applied around the spherical body 11.

【0027】そして、成形型16のキャビティ17に補
強繊維球状体14を充填する際に、キャビティ17に多
数の球状断熱材29aを層状に充填した後、加熱して補
強繊維球状体14と球状断熱材29aを結合することに
より断熱性に優れた中空構造物を製造できる。なお、こ
こでは断熱材を入れる場合について説明したが、構造体
に吸音特性や遮音特性を持たせたい場合には、球状断熱
材29aの代りに球状に加工した吸音材を用いることに
よって前述と同様な方法によって吸音特性に優れた多孔
質構造体を用いた構造を得ることができる。
When the cavity 17 of the molding die 16 is filled with the reinforcing fiber spheres 14, the cavity 17 is filled with a large number of spherical insulating materials 29a, and then heated to heat the reinforcing fiber spheres 14 and the spherical insulating material 29a. By combining the material 29a, a hollow structure having excellent heat insulating properties can be manufactured. Here, the case where the heat insulating material is inserted has been described. However, when it is desired to provide the structure with sound absorbing properties or sound insulating properties, the sound absorbing material processed into a sphere is used in place of the spherical heat insulating material 29a, and the same as described above. By using a simple method, a structure using a porous structure excellent in sound absorption characteristics can be obtained.

【0028】なお、従来のハニカムサンドイッチ板で断
熱層を形成しようとした場合、ハニカムコアは厚さ方向
に仕切りがないので断熱材を充填した場合、厚さ方向全
体に断熱材が入り、仕切られた断熱層を形成することが
できないが、第6の実施形態を採用することにより、使
用目的に応じて任意の厚さの断熱層を形成することがで
きる。
When a heat insulating layer is formed from a conventional honeycomb sandwich plate, since the honeycomb core has no partition in the thickness direction, when the heat insulating material is filled, the heat insulating material enters the entire thickness direction and is separated. Although the heat insulating layer cannot be formed, the heat insulating layer having an arbitrary thickness can be formed according to the purpose of use by adopting the sixth embodiment.

【0029】なお、前記各実施形態においては、球状体
はブロー成形、射出成形等によって成形し、真球の球状
体を用いているが、必ずしも真球である必要はなく、角
部に丸みを付けた立方体、断面が楕円形状でもよい。
In each of the above embodiments, the spherical body is formed by blow molding, injection molding, or the like, and a true spherical spherical body is used. The attached cube and cross section may be elliptical.

【0030】さらに、前記各実施形態においては、独立
した球状の中空部を有する複合成形品、航空機の翼のコ
ア材の製造方法について説明したが、この発明は、前記
実施形態に限定されるものではなく、船舶構造物、建築
構造物、美術品等の製造にも適用できる。
Furthermore, in each of the above embodiments, a method of manufacturing a composite molded article having an independent spherical hollow portion and a core material of an aircraft wing has been described. However, the present invention is not limited to the above embodiments. Instead, the present invention can be applied to the manufacture of ship structures, architectural structures, works of art, and the like.

【0031】[0031]

【発明の効果】以上説明したように、この発明によれ
ば、球状体を生分解性ポリマーによって形成することに
より、バクテリア、酵素などの生化学活性物質の作用に
よって球状体を分解することができ、補強繊維球状体か
らなる多孔質構造体を形成できる。したがって、3次元
的構造で、上下方向及び横方向からの荷重に十分な強度
を有し、また軽量の多孔質構造体を容易に製造できると
いう効果がある。
As described above, according to the present invention, by forming a sphere with a biodegradable polymer, the sphere can be decomposed by the action of biochemically active substances such as bacteria and enzymes. Thus, a porous structure made of reinforcing fiber spheres can be formed. Therefore, there is an effect that a lightweight porous structure having a three-dimensional structure, having sufficient strength against loads in the vertical direction and the lateral direction, and being lightweight can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施形態を示す多孔質構造体
の製造方法を示す説明図。
FIG. 1 is an explanatory view showing a method for manufacturing a porous structure according to a first embodiment of the present invention.

【図2】この発明の第2の実施形態を示す多孔質構造体
の製造方法を示す説明図。
FIG. 2 is an explanatory view showing a method for manufacturing a porous structure according to a second embodiment of the present invention.

【図3】この発明の第3の実施形態を示す多孔質構造体
の製造方法を示す説明図。
FIG. 3 is an explanatory view showing a method for manufacturing a porous structure according to a third embodiment of the present invention.

【図4】この発明の第4の実施形態を示す多孔質構造体
の製造方法を示す説明図。
FIG. 4 is an explanatory view showing a method for manufacturing a porous structure according to a fourth embodiment of the present invention.

【図5】この発明の第5の実施形態を示す多孔質構造体
の製造方法を示す説明図。
FIG. 5 is an explanatory view showing a method for manufacturing a porous structure according to a fifth embodiment of the present invention.

【図6】この発明の第6の実施形態を示す多孔質構造体
の製造方法を示す説明図。
FIG. 6 is an explanatory view showing a method for manufacturing a porous structure according to a sixth embodiment of the present invention.

【図7】従来のハニカムコアを示す縦断側面図。FIG. 7 is a longitudinal side view showing a conventional honeycomb core.

【図8】従来のハニカムコアを用いて3次元曲面を製造
する場合の説明図。
FIG. 8 is an explanatory diagram in the case of manufacturing a three-dimensional curved surface using a conventional honeycomb core.

【符号の説明】[Explanation of symbols]

11…球状体 12…未硬化樹脂 13…補強繊維 14…補強繊維球状体 16…成形型 19…生化学活性物質 DESCRIPTION OF SYMBOLS 11 ... Spherical body 12 ... Uncured resin 13 ... Reinforcing fiber 14 ... Reinforcing fiber spherical body 16 ... Molding mold 19 ... Biochemical active substance

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29K 105:06 ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification code FI B29K 105: 06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 生分解性ポリマーからなる球状体の外周
面に未硬化樹脂を含浸させた補強繊維を巻装し、多数の
補強繊維球状体を形成する第1の工程と、 前記多数の補強繊維球状体を成形型の内部に密集状態に
充填し、前記未硬化樹脂を硬化し、前記補強繊維球状体
相互を結合させる第2の工程と、 前記生分解性ポリマーからなる球状体に生化学活性物質
を導入して分解する第3の工程と、 からなることを特徴とする多孔質構造体の製造方法。
1. a first step of winding a reinforcing fiber impregnated with an uncured resin on the outer peripheral surface of a spherical body made of a biodegradable polymer to form a large number of reinforcing fiber spherical bodies; A second step in which the fiber spheres are densely packed in a molding die, the uncured resin is cured, and the reinforcing fiber spheres are bonded to each other; A third step of introducing and decomposing an active substance, and a method for producing a porous structure.
【請求項2】 生分解性ポリマーからなる球状体の外周
面に補強繊維を巻装し、多数の補強繊維球状体を形成す
る第1の工程と、 前記補強繊維球状体の補強繊維に未硬化樹脂または溶融
樹脂を塗布する第2の工程と、 前記多数の補強繊維球状体を成形型の内部に密集状態に
充填し、前記未硬化樹脂を硬化し、前記補強繊維球状体
相互を結合させる第3の工程と、 前記生分解性ポリマーからなる球状体に生化学活性物質
を導入して分解する第4の工程と、 からなることを特徴とする多孔質構造体の製造方法。
2. A first step in which reinforcing fibers are wound around an outer peripheral surface of a spherical body made of a biodegradable polymer to form a large number of reinforcing fiber spherical bodies, and the reinforcing fibers of the reinforcing fiber spherical bodies are uncured. A second step of applying a resin or a molten resin; and filling the plurality of reinforcing fiber spheres in a compact state in a molding die, curing the uncured resin, and bonding the reinforcing fiber spheres to each other. 3. A method for producing a porous structure, comprising: a third step; and a fourth step of introducing a biochemically active substance into a sphere made of the biodegradable polymer to decompose the sphere.
【請求項3】 生分解性ポリマーからなる球状体の外周
面にプリプレグを巻装して積層し、多数の補強繊維球状
体を形成する第1の工程と、 前記多数の補強繊維球状体を成形型の内部に密集状態に
充填した後、加熱してプリプレグ中の樹脂を硬化し、前
記補強繊維球状体相互を結合させる第2の工程と、 前記生分解性ポリマーからなる球状体に生化学活性物質
を導入して分解する第3の工程と、 からなることを特徴とする多孔質構造体の製造方法。
3. A first step of winding and laminating a prepreg around an outer peripheral surface of a spherical body made of a biodegradable polymer to form a large number of reinforcing fiber spherical bodies, and forming the large number of reinforcing fiber spherical bodies. A second step of heating the resin in the prepreg to cure the resin in the prepreg and bonding the reinforcing fiber spheres to each other; 3. A method for producing a porous structure, comprising: a third step of introducing and decomposing a substance.
【請求項4】 生分解性ポリマーからなる球状体の外周
面にプリプレグを巻装して積層し、多数の補強繊維球状
体を形成する第1の工程と、 前記多数の補強繊維球状体を成形型の内部に密集状態に
充填した後、加熱してプリプレグ中の樹脂を膨張させ、
隣接する補強繊維球状体が不規則多面形状で補強繊維球
状体相互を密に結合硬化させる第2の工程と、 前記生分解性ポリマーからなる球状体に生化学活性物質
を導入して分解する第3の工程と、 からなることを特徴とする多孔質構造体の製造方法。
4. A first step of winding and laminating a prepreg on an outer peripheral surface of a spherical body made of a biodegradable polymer to form a large number of reinforcing fiber spherical bodies, and forming the large number of reinforcing fiber spherical bodies. After filling the mold in a dense state, heat it to expand the resin in the prepreg,
A second step in which adjacent reinforcing fiber spheres are tightly bonded and hardened to each other in an irregular polyhedral shape; and a step of introducing a biochemically active substance into the sphere made of the biodegradable polymer to decompose. 3. A method for producing a porous structure, comprising the steps of:
JP31824397A 1997-11-12 1997-11-19 Method for producing porous structure Expired - Lifetime JP3847925B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP31824397A JP3847925B2 (en) 1997-11-19 1997-11-19 Method for producing porous structure
CA002253037A CA2253037C (en) 1997-11-12 1998-11-05 Method of manufacturing structure by using biodegradable mold
EP98121159A EP0916464B1 (en) 1997-11-12 1998-11-11 Method of manufacturing structure by using biodegradable mold
AT98121159T ATE233159T1 (en) 1997-11-12 1998-11-11 METHOD FOR PRODUCING A STRUCTURE BY USING A BIOLOGICALLY DEGRADABLE MOLDING TOOL
DE69811606T DE69811606T2 (en) 1997-11-12 1998-11-11 Process for making a structure using a biodegradable mold
ES98121159T ES2193462T3 (en) 1997-11-12 1998-11-11 PROCEDURE OF MANUFACTURE OF A STRUCTURE THROUGH THE USE OF A BIODEGRADABLE MOLD.
US09/190,388 US6350337B1 (en) 1997-11-12 1998-11-12 Method of manufacturing structure by using biodegradable mold
HK99105361A HK1020699A1 (en) 1997-11-12 1999-11-19 Method of manufacturing structure by using biodegradable mold
US09/994,172 US6666941B2 (en) 1997-11-12 2001-11-26 Method of manufacturing ribbed structure by using biodegradable mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31824397A JP3847925B2 (en) 1997-11-19 1997-11-19 Method for producing porous structure

Publications (2)

Publication Number Publication Date
JPH11147264A true JPH11147264A (en) 1999-06-02
JP3847925B2 JP3847925B2 (en) 2006-11-22

Family

ID=18097037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31824397A Expired - Lifetime JP3847925B2 (en) 1997-11-12 1997-11-19 Method for producing porous structure

Country Status (1)

Country Link
JP (1) JP3847925B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004507387A (en) * 2000-08-30 2004-03-11 コミツサリア タ レネルジー アトミーク Multilayer thermoplastic resin structure for gas tank
JP2011001056A (en) * 2009-06-17 2011-01-06 Voith Patent Gmbh Adapter coupler for matching coupler of different design

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004507387A (en) * 2000-08-30 2004-03-11 コミツサリア タ レネルジー アトミーク Multilayer thermoplastic resin structure for gas tank
JP2011001056A (en) * 2009-06-17 2011-01-06 Voith Patent Gmbh Adapter coupler for matching coupler of different design

Also Published As

Publication number Publication date
JP3847925B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
JP6752860B2 (en) Composite sandwich with high flexural rigidity
US6666941B2 (en) Method of manufacturing ribbed structure by using biodegradable mold
US3841958A (en) Reinforced structural element and method of making the same
RU2676982C1 (en) Composition of cellular basis for multilayered part used as body part in automobile engineering
US7416401B2 (en) Lightweight composite fairing bar and method for manufacturing the same
US20220259857A1 (en) Sheet Material, Mold, and Methods of Making and Using the Sheet Material and Mold
SE521525C2 (en) Panels utilizing a pre-cured reinforced core and method for manufacturing the same
JP2001501714A (en) Plastic moldings and design structural members
JP2011042170A (en) Fiber-reinforced plastic structure and method for manufacturing the same
CN108284618B (en) Structural component made of composite material and method for the production thereof
JPS6248538A (en) Light-weight laminated structure and manufacture thereof
US10612237B1 (en) Composite panel
EP0293612A2 (en) Composite load-bearing structural element, particularly for vehicle bodies, and relative manufacturing process
JPH11147264A (en) Production of porous structure
JP2001162692A (en) Method for manufacturing lightweight composite panel and manufacturing device therefor
JPH08276441A (en) Light-weight composite molding strengthened at peripheral edge and manufacture thereof
JP5238152B2 (en) Laminate and automobile bonnet using the same
JP6644649B2 (en) Windmill blade
JP2019072891A (en) Resin structure and method for producing the same
JP2944765B2 (en) Method for producing plate-shaped foam core / sandwich laminate
KR20190074106A (en) Fiber reinforced composite material and methode for manufacturing the same
CN113306236A (en) High-strength composite board and preparation method thereof
JPH09169057A (en) Production of composite molded product having porous core
CN113547765A (en) High-strength composite board and preparation method thereof
JPH055003Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term