JPH1114717A - Deterioration detecting method of secondary battery and capacity estimating method - Google Patents

Deterioration detecting method of secondary battery and capacity estimating method

Info

Publication number
JPH1114717A
JPH1114717A JP9167499A JP16749997A JPH1114717A JP H1114717 A JPH1114717 A JP H1114717A JP 9167499 A JP9167499 A JP 9167499A JP 16749997 A JP16749997 A JP 16749997A JP H1114717 A JPH1114717 A JP H1114717A
Authority
JP
Japan
Prior art keywords
secondary battery
battery
deterioration
discharge
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9167499A
Other languages
Japanese (ja)
Other versions
JP3263336B2 (en
Inventor
Teruhisa Kanbara
輝壽 神原
Hajime Seri
肇 世利
Yoshinori Yamada
義則 山田
Kenichi Takeyama
健一 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16749997A priority Critical patent/JP3263336B2/en
Priority to DE69826929T priority patent/DE69826929T2/en
Priority to EP98111525A priority patent/EP0887654B1/en
Priority to CN98115162A priority patent/CN1091881C/en
Priority to US09/103,982 priority patent/US5994877A/en
Publication of JPH1114717A publication Critical patent/JPH1114717A/en
Application granted granted Critical
Publication of JP3263336B2 publication Critical patent/JP3263336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method unitedly and quantitatively detecting the deterio rating condition of a secondary battery after repeated charging/discharging cycle. SOLUTION: Voltage after impressing a fixed current for a fixed time on a secondary battery to be detected is measured, the decrement (or increment) from the initial voltage of the battery is computed, the value is fitted by a secondary function indicated by V=ai<2> +bi+c (V: voltage decrement, i: impressed current), and the degree of deterioration of the secondary battery to be detected is quantitatively indicated by a secondary factor (a) obtained by this. By inputting and computing the parameter (a) to discharge capacity = k1 -ak2 (k1 , k2 are constants particular to the battery), the discharge capacity of the battery to be detected is estimated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池などの二次電池の劣化の度合いを検出するための
検出方法、及びこれを基にして電池の放電容量を推測す
る二次電池の容量推測方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a detection method for detecting the degree of deterioration of a secondary battery such as a lithium ion secondary battery, and a method of estimating a discharge capacity of the battery based on the method. It relates to a capacity estimation method.

【0002】[0002]

【従来の技術】現在、ノート型パソコン、携帯電話等、
高容量二次電池を電源とした携帯機器が急速に普及しつ
つある。これらの機器には通常、使用可能時間を表す残
存容量計が搭載されており、利用者の使用上の便宜を図
っている。しかしながら、これら携帯機器の電源である
二次電池は、充放電の回数を繰り返すと、必ず性能低下
を引き起こすものである。しかし、この劣化の度合いを
機器使用者に表示している例はきわめて少なく、使用者
は曖昧に使用機器の実働時間が何となく減少していると
いう形で、電池の性能低下を感じているにすぎない。こ
れまで提案された二次電池の劣化の度合いを検出する方
法は、以下に記載した方法に大別できる。 (1)電池の内部インピーダンスを計測する方法(特開
昭53−42327、特開昭61−170678、特開
平1−253175、特開平4−141966、特開平
8−254573、特開平8−273705) (2)電池の内部インピーダンスを周波数の異なる信号
で測定し、その値を演算式に従って処理する方法(特開
平8−43506,特開平8−250159)(3)電
池の構成要素である活物質の電気抵抗を測定する方法
(特開昭56−103875) (4)所定の電流を通電したときの電圧を測定し、それ
を予め定めた基準値と比較する方法(特開昭59−48
661、特開平3−95872 特開平8−25457
3、特開平8−55642、特開平9−33620) (5)充放電のサイクル数をカウントする方法(特開平
5−74501)。
2. Description of the Related Art Currently, notebook computers, mobile phones, etc.
Portable devices using a high-capacity secondary battery as a power source are rapidly spreading. These devices are usually equipped with a remaining capacity meter that indicates the available time, which is convenient for users. However, the performance of the secondary battery, which is the power source of these portable devices, always decreases when the number of times of charging and discharging is repeated. However, there are very few cases in which the degree of this deterioration is indicated to the user of the device, and the user only feels that the performance of the battery has deteriorated in a form that the working time of the used device is somewhat reduced. Absent. The methods for detecting the degree of deterioration of a secondary battery proposed so far can be broadly classified into the following methods. (1) Method for measuring the internal impedance of a battery (JP-A-53-42327, JP-A-61-170678, JP-A-1-253175, JP-A-4-141966, JP-A-8-254573, JP-A-8-273705) (2) A method of measuring the internal impedance of a battery with signals having different frequencies and processing the value according to an arithmetic expression (JP-A-8-43506, JP-A-8-250159). Method for measuring electric resistance (JP-A-56-103875) (4) A method for measuring a voltage when a predetermined current is applied and comparing the measured voltage with a predetermined reference value (JP-A-59-48)
661, JP-A-3-95872, JP-A-8-25457
3, JP-A-8-55642, JP-A-9-33620. (5) A method of counting the number of charge / discharge cycles (JP-A-5-74501).

【0003】[0003]

【発明が解決しようとする課題】前述のように二次電池
の性能劣化を検出する方法は数多く提案されている。し
かし、二次電池の性能劣化の様子は、当然その使用方
法、つまり充放電電流、充放電電圧、充放電時間などに
より大きく異なることはいうまでもない。つまり、充放
電のサイクル数を単純にカウントしても、浅い充放電の
繰り返しと完全放電に近い深い充放電の繰り返しとで
は、同じ充放電サイクルを経た電池であったもその性能
劣化の程度が異なり、これを画一的な手法で劣化の程度
を数値化することは困難であった。本発明は、過去の充
放電履歴に関わらず簡単な試験によって容易に電池の劣
化の程度を検出できる方法を提供することを目的とす
る。
As described above, many methods have been proposed for detecting performance degradation of a secondary battery. However, it goes without saying that the performance deterioration of the secondary battery greatly depends on the method of use, that is, the charge / discharge current, the charge / discharge voltage, the charge / discharge time, and the like. In other words, even if the number of charge / discharge cycles is simply counted, the degree of deterioration in performance of a battery that has undergone the same charge / discharge cycle is not the same between a shallow charge / discharge cycle and a deep charge / discharge cycle near complete discharge. Unlike this, it was difficult to quantify the degree of deterioration using a uniform method. SUMMARY OF THE INVENTION It is an object of the present invention to provide a method capable of easily detecting the degree of deterioration of a battery by a simple test regardless of a past charge / discharge history.

【0004】[0004]

【課題を解決するための手段】本発明者らは、現在市販
されているリチウムイオン電池を用い、異なる放電電流
モードで充放電サイクル試験を行い、共通する劣化特性
を検討し、これを外部からの操作で検知する方法を見い
だした。共通する劣化特性とは、試験電池の製造メーカ
推奨の充電条件と放電停止電圧を遵守する限り、充電電
流や環境温度を変えても共通の劣化特性を示し、これは
電池性能としては、いわゆる出力電流のレート特性悪化
といわれるものであった。そこで、この出力電流のレー
ト特性を定量的に、かつ短時間で検出する方法を検討し
たところ、被検二次電池に互いに異なる複数の電流をそ
れぞれ所定時間印加し、この時の二次電池の電圧値を測
定し、これを所定の計算式に入力し、得られる値をその
電池の特性劣化の指数として表現することにより、二次
電池の劣化の度合いを定性的に評価できることを見いだ
し、本発明を完成するに至った。
Means for Solving the Problems The present inventors conducted a charge / discharge cycle test in different discharge current modes using a currently marketed lithium ion battery, examined common deterioration characteristics, and determined this from outside. And found a way to detect it. The common deterioration characteristics indicate the same deterioration characteristics even if the charging current or the environmental temperature is changed, as long as the charge conditions and discharge stop voltage recommended by the test battery manufacturer are observed. It was said that the current rate characteristics deteriorated. Therefore, when a method for quantitatively and quickly detecting the rate characteristic of the output current was studied, a plurality of currents different from each other were applied to the test secondary battery for a predetermined time, and the secondary battery at this time was applied. By measuring the voltage value, inputting it to a predetermined formula, and expressing the obtained value as an index of the characteristic deterioration of the battery, it was found that the degree of deterioration of the secondary battery could be qualitatively evaluated. The invention has been completed.

【0005】この手法は、電気化学反応系の分極特性を
解析するとき通常用いられるクロノポテンシオメトリー
と類似するが、特に本発明で新しく見いだした点は、印
加した電流値をi、測定された電圧値をVとし、これを
式V=ai2+bi+cで表される二次関数でフィッテ
ィングすると、二次の係数aが、充放電サイクルを行っ
ていないものでは非常に大きい、つまり印加電流と分極
電圧はほぼ比例関係にあるが、充放電のサイクルを繰り
返すと、この値が次第に小さく、つまり分極電圧は印加
電流により加速度的に増大することである。さらに、重
要なことは、様々なモードで充放電を行っても、このパ
ラメータaを用いると、充放電サイクルを繰り返した電
池の劣化の様子を統一的、かつ定量的に検出することが
可能となった。 例えば、前記のパラメータaを式Ccap
=k1−ak2(Ccapは放電容量、k1、k2はあらかじ
め定めた電池固有の値)に入力すると、過去の充放電履
歴に関わらずそのときの電池の放電容量を推定すること
が可能となった。
This technique is similar to chronopotentiometry usually used when analyzing the polarization characteristics of an electrochemical reaction system, but a new finding in the present invention is that the applied current value is measured by i. When the voltage value is set to V and fitted with a quadratic function represented by the equation V = ai 2 + bi + c, the quadratic coefficient a is very large in the case where the charge / discharge cycle is not performed, that is, the applied current and the polarization Although the voltage is in a substantially proportional relationship, when the charge / discharge cycle is repeated, this value gradually decreases, that is, the polarization voltage increases at an accelerated rate by the applied current. More importantly, even when charging and discharging are performed in various modes, the use of this parameter a makes it possible to uniformly and quantitatively detect the state of deterioration of a battery that has been repeatedly charged and discharged. became. For example, the above parameter a is calculated by the formula C cap
= K 1 -ak 2 (where C cap is the discharge capacity and k 1 and k 2 are predetermined battery-specific values) to estimate the discharge capacity of the battery at that time regardless of the past charge / discharge history. Became possible.

【0006】[0006]

【発明の実施の形態】本発明は、前記のように、被検二
次電池に互いに異なる複数の電流をそれぞれ所定時間印
加し、このとき測定された前記二次電池の電圧値を所定
の計算式に入力演算処理して数値パラメータを算出し、
この数値パラメータにより前記二次電池の劣化の度合い
を定量的に判別するものである。特に、前記の演算方法
として、印加した電流値inを独立変数、これに対応す
る測定電圧値Vnを従属変数とし、この値を式V=ai2
+bi+cで表される二次関数で近似したときの二次の
係数aの大きさで被検二次電池の劣化の度合いを判別す
る方法をとる。また、二次電池の容量推測方法は、前記
の係数aを式Ccap=k1−ak2に入力計算することによ
り、被検二次電池の放電容量を推測するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, according to the present invention, a plurality of different currents are applied to a test secondary battery for a predetermined time, and the voltage value of the secondary battery measured at this time is calculated by a predetermined calculation. Calculate numerical parameters by performing input arithmetic processing on the formula,
The degree of deterioration of the secondary battery is quantitatively determined based on the numerical parameters. In particular, as the method of calculating, the applied current value i n independent variables, the measured voltage value V n corresponding thereto as the dependent variable, the formula V = ai 2 this value
A method of determining the degree of deterioration of the test secondary battery based on the magnitude of the secondary coefficient a when approximated by a quadratic function represented by + bi + c. Further, the method of estimating the capacity of the secondary battery is to estimate the discharge capacity of the test secondary battery by inputting and calculating the coefficient a in the formula C cap = k 1 -ak 2 .

【0007】本発明の二次電池の劣化検出方法を実施す
るためには、構成機器の中に電流印加回路、電圧測定回
路及び測定データ演算回路を設ける。測定プロセスは、
被検二次電池に例えば、0.1A,0.5A,1A,2
A,3Aの電流を連続して1秒ずつ印加し、それぞれ印
加1秒後の電圧を測定し、電池の初期電圧からの降下
(または上昇)分を計算し、その値をV=ai2+bi
+c(V:電圧降下分、i:印加電流)で表される二次
関数でフィッティングし、これにより得られたaをあら
かじめ記録した式Ccap=k1−ak2に入力計算するこ
とにより、被検電池の放電容量を数値的に表現する。本
プロセスにおけるaの算出のためのフィッティングアル
ゴリズムは、特に限定する必要はなく、最小自乗法等の
公知の手法を用いることができる。
In order to carry out the method for detecting deterioration of a secondary battery according to the present invention, a current application circuit, a voltage measurement circuit and a measurement data calculation circuit are provided in the components. The measurement process is
For example, 0.1A, 0.5A, 1A, 2
A and 3A currents were applied continuously for 1 second, the voltage after 1 second after each application was measured, the amount of drop (or rise) from the initial voltage of the battery was calculated, and the value was calculated as V = ai 2 + bi.
By fitting with a quadratic function represented by + c (V: voltage drop, i: applied current), a obtained by inputting and calculating it into the previously recorded equation C cap = k 1 −ak 2 is obtained by The discharge capacity of the test battery is expressed numerically. The fitting algorithm for calculating a in the present process does not need to be particularly limited, and a known method such as a least square method can be used.

【0008】[0008]

【実施例】以下、実施例により本発明の方法を具体的に
説明する。 《実施例1》表1に記載した異なる放電条件の充放電サ
イクルを実施し、充放電サイクル前、300サイクル経
過時、および500サイクル完了時の電池に対し、本発
明による二次電池の劣化検出方法を実施し、本発明の検
出方法の妥当性を検証した。測定は以下に記載した手順
に従い実施した。
EXAMPLES The method of the present invention will be specifically described below with reference to examples. << Embodiment 1 >> A charge / discharge cycle under different discharge conditions described in Table 1 was performed, and deterioration of a secondary battery according to the present invention was detected before and after the charge / discharge cycle, when 300 cycles had elapsed, and when 500 cycles were completed. The method was performed to verify the validity of the detection method of the present invention. The measurement was performed according to the procedure described below.

【0009】1−1.電池充放電サイクル試験:試験電
池は松下電器産業(株)製リチウムイオン電池(型番CG
R17500:推奨上限電圧4.1V、下限電圧3.0V、公
称放電容量720mAh)を用いた。充電条件は、本電
池の推奨充電方法である定電流−定電圧充電法に従い、
定電流の500mAを通電し、電圧4.1Vに達したと
ころで、定電圧4.1Vに維持するという合計2時間で
充電終了とした。放電条件は、表1に記載した異なる3
種類の電流モードで行い、放電停止電圧はすべて共通の
3.0Vとした。試験はすべて20℃の恒温室で行っ
た。その結果を図1に示した。
1-1. Battery charge / discharge cycle test: Test battery is a lithium-ion battery (model number CG) manufactured by Matsushita Electric Industrial Co., Ltd.
R17500: Recommended upper limit voltage 4.1 V, lower limit voltage 3.0 V, nominal discharge capacity 720 mAh). Charging conditions are according to the constant current-constant voltage charging method, which is the recommended charging method for this battery.
When a constant current of 500 mA was applied and the voltage reached 4.1 V, the charging was completed in a total of 2 hours of maintaining the constant voltage at 4.1 V. The discharge conditions were different for each of the three conditions described in Table 1.
The operation was performed in various types of current modes, and the discharge stop voltage was set to a common value of 3.0 V. All tests were performed in a constant temperature room at 20 ° C. The result is shown in FIG.

【0010】[0010]

【表1】 [Table 1]

【0011】図1において、縦軸は放電容量、横軸は充
放電サイクル数を示した。これを見るとわかるように、
放電電流が異なると放電容量のサイクル劣化の様子が異
なることが示された。
In FIG. 1, the vertical axis shows the discharge capacity and the horizontal axis shows the number of charge / discharge cycles. As you can see from this,
It was shown that the state of cycle deterioration of the discharge capacity was different when the discharge current was different.

【0012】1−2.劣化パラメータの測定:上記1−
1に記載した充放電プロセスCにおいて、充放電サイク
ル前、300サイクル経過時、および500サイクル完
了時に、本発明による二次電池の劣化検出方法を実施し
た。測定は、上記充電方法に従い充電プロセスを完了し
た後、0.1A,0.5A,1A,1.5A,2A,
2.5A,3A,4A,5Aの電流をそれぞれ連続して
1秒間通電(放電)したときの電池電圧の充電完了時か
らの降下分を計測することで行った。この結果を通電電
流と併せて図2に示した。図2において、充放電サイク
ルを重ねると、同じ電流を印加しても、電圧降下がより
大きくなることがわかる。図2に示したデータをV=a
2+bi+c(V:降下電圧、i:印加電流)で表さ
れる二次関数フィッティングしたとき得られたパラメー
タa,b,cを表2に示した。
1-2. Measurement of deterioration parameter: 1-
In the charge / discharge process C described in No. 1, the method for detecting deterioration of a secondary battery according to the present invention was performed before the charge / discharge cycle, when 300 cycles had elapsed, and when 500 cycles were completed. The measurement is performed after the charging process is completed according to the charging method described above, and then 0.1A, 0.5A, 1A, 1.5A, 2A,
The measurement was performed by measuring the drop of the battery voltage from the completion of charging when the current of 2.5 A, 3 A, 4 A, and 5 A was continuously supplied (discharged) for 1 second. The result is shown in FIG. 2 together with the energizing current. In FIG. 2, it can be seen that when the charge and discharge cycles are repeated, the voltage drop becomes larger even when the same current is applied. The data shown in FIG.
Table 2 shows parameters a, b, and c obtained by quadratic function fitting represented by i 2 + bi + c (V: drop voltage, i: applied current).

【0013】[0013]

【表2】 [Table 2]

【0014】次に、各サイクル毎に得られた前記パラメ
ータaとそのときの放電容量とを図3にプロットした。
図4において、プロットした4点は、ほぼ直線関係にあ
り、これを最小自乗法でフィッティングすると放電容量
(mAh)=680−490・aで、示される関係が成
立していた。
Next, the parameter a obtained for each cycle and the discharge capacity at that time are plotted in FIG.
In FIG. 4, the plotted four points have a substantially linear relationship, and fitting them by the least squares method has established the relationship shown by discharge capacity (mAh) = 680-490 · a.

【0015】次に、上記1−1に記載した充放電プロセ
スA及びBについて、以上に記載した方法と全く同じ測
定を行い、パラメータaを算出し、その結果をそれぞれ
図4及び図5に示した。通常、放電容量は放電電流によ
り大きく異なり、また充放電のサイクルを繰り返すと、
充放電の条件によっても、当然劣化の程度は異なるもの
である。しかしながら、図3,図4及び図5を合わせて
みるとわかるように、本実施例によると、放電電流の異
なる充放電サイクルを実施した電池であっても、放電容
量は初期の放電電流の実測値及び本発明の方法で得られ
るパラメータaにより、放電容量(mAh)=初期容量
−500・aなる式で、そのときの電池の実力が数値的
に表現できることが判明した。以上の実施例では、電池
への印加電流を放電電流として電圧降下を測定したが、
印加電流を充電電流とし、電圧上昇を測定しても同様に
して放電容量を推測する事ができる。
Next, with respect to the charging / discharging processes A and B described in the above 1-1, exactly the same measurement as in the method described above was performed, the parameter a was calculated, and the results are shown in FIGS. 4 and 5, respectively. Was. Usually, the discharge capacity varies greatly depending on the discharge current, and when the charge / discharge cycle is repeated,
The degree of deterioration naturally depends on the conditions of charge and discharge. However, as can be seen from a combination of FIGS. 3, 4 and 5, according to the present embodiment, even in a battery which has been subjected to a charge / discharge cycle having a different discharge current, the discharge capacity is measured by measuring the initial discharge current. From the value and the parameter a obtained by the method of the present invention, it was found that the actual capacity of the battery at that time can be expressed numerically by the equation of discharge capacity (mAh) = initial capacity−500 · a. In the above example, the voltage drop was measured using the current applied to the battery as the discharge current.
The discharge capacity can be similarly estimated by measuring the voltage rise with the applied current as the charging current.

【0016】[0016]

【発明の効果】本発明によれば、被検二次電池に互いに
異なる複数の電流をそれぞれ所定時間印加し、この時の
二次電池の電圧値を測定し、これを所定の計算式に入力
することにより得られるパラメータにより、二次電池の
劣化の度合いを定性的に評価することができる。さら
に、様々なモードで充放電を行っても、このパラメータ
を用いると、過去の充放電履歴に関わらずそのときの電
池の放電容量を推定することが可能である。
According to the present invention, a plurality of currents different from each other are applied to a test secondary battery for a predetermined period of time, and the voltage value of the secondary battery at this time is measured and input to a predetermined calculation formula. By doing so, the degree of deterioration of the secondary battery can be qualitatively evaluated using the parameters obtained. Further, even when charging and discharging are performed in various modes, it is possible to estimate the discharge capacity of the battery at that time regardless of the past charging and discharging history by using this parameter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】異なる条件で実施した充放電サイクルにおける
サイクル数と放電容量との関係を示した図である。
FIG. 1 is a diagram showing the relationship between the number of cycles and the discharge capacity in charge / discharge cycles performed under different conditions.

【図2】放電プロセスCにおける電池に対する、印加電
流−降下電圧特性を示した図である。
FIG. 2 is a diagram showing an applied current-drop voltage characteristic for a battery in a discharge process C.

【図3】図2を基に印加電流−降下電圧特性を二次関数
でフィティングすることにより得たパラメータaと放電
容量との関係を示した図である。
FIG. 3 is a diagram showing a relationship between a parameter a obtained by fitting an applied current-drop voltage characteristic with a quadratic function based on FIG. 2 and a discharge capacity.

【図4】放電プロセスAにおける電池に対するパラメー
タaと放電容量との関係を示した図である。
FIG. 4 is a diagram showing a relationship between a parameter a and a discharge capacity for a battery in a discharge process A.

【図5】放電プロセスAにおける電池に対するパラメー
タaと放電容量との関係を示した図である。
FIG. 5 is a diagram showing a relationship between a parameter a and a discharge capacity for a battery in a discharge process A.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹山 健一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenichi Takeyama 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被検二次電池に互いに異なる複数の電流
をそれぞれ所定時間印加し、このとき測定された前記二
次電池の電圧値を所定の計算式に入力演算処理して数値
パラメータを算出し、この数値パラメータにより前記二
次電池の劣化の度合いを定量的に判別することを特徴と
する二次電池の劣化検出方法。
1. A plurality of currents different from each other are respectively applied to a test secondary battery for a predetermined time, and a voltage value of the secondary battery measured at this time is input and processed into a predetermined calculation formula to calculate a numerical parameter. A deterioration detection method for a secondary battery, wherein the degree of deterioration of the secondary battery is quantitatively determined based on the numerical parameters.
【請求項2】 前記演算方法が、印加した電流値in
独立変数、これに対応する測定電圧値Vnを従属変数と
し、この値を式V=ai2+bi+cで表される二次関
数で近似したときの二次の係数aの大きさで被検二次電
池の劣化の度合いを判別することからなる請求項1記載
の二次電池の劣化検出方法。
Wherein said calculation method, the applied current value i n independent variables, the measured voltage value V n corresponding thereto as the dependent variable, quadratic function expressed this value in equation V = ai 2 + bi + c 2. The deterioration detection method for a secondary battery according to claim 1, wherein the degree of deterioration of the test secondary battery is determined based on the magnitude of the secondary coefficient a when approximation is performed.
【請求項3】 前記係数aを放電容量=k1−ak
2(k1、k2はあらかじめ定めた固有の値)で表される
式に入力計算することにより、被検二次電池の放電容量
を推測する二次電池の容量推測方法。
3. The coefficient a is calculated as follows: discharge capacity = k 1 −ak
2 A method for estimating the discharge capacity of a secondary battery by estimating the discharge capacity of the secondary battery by inputting and calculating in an expression represented by 2 (k 1 and k 2 are predetermined specific values).
JP16749997A 1997-06-24 1997-06-24 Method for estimating secondary battery capacity Expired - Fee Related JP3263336B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP16749997A JP3263336B2 (en) 1997-06-24 1997-06-24 Method for estimating secondary battery capacity
DE69826929T DE69826929T2 (en) 1997-06-24 1998-06-23 Method for detecting the operating state of rechargeable batteries with non-aqueous electrolyte
EP98111525A EP0887654B1 (en) 1997-06-24 1998-06-23 Method for detecting working condition of non-aqueous electrolyte secondary batteries
CN98115162A CN1091881C (en) 1997-06-24 1998-06-24 Method for detecting working condition of non-aqueous electrolyte secondary batterles
US09/103,982 US5994877A (en) 1997-06-24 1998-06-24 Method for detecting working condition of non-aqueous electrolyte secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16749997A JP3263336B2 (en) 1997-06-24 1997-06-24 Method for estimating secondary battery capacity

Publications (2)

Publication Number Publication Date
JPH1114717A true JPH1114717A (en) 1999-01-22
JP3263336B2 JP3263336B2 (en) 2002-03-04

Family

ID=15850824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16749997A Expired - Fee Related JP3263336B2 (en) 1997-06-24 1997-06-24 Method for estimating secondary battery capacity

Country Status (1)

Country Link
JP (1) JP3263336B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079634A1 (en) * 1999-06-18 2000-12-28 Matsushita Electric Industrial Co., Ltd. Method for detecting deterioration of electrochemical device, method for measuring remaining capacity, charger comprising them, and discharge controller
JP2012252837A (en) * 2011-06-01 2012-12-20 Fujitsu Ltd Information processing unit, remaining battery capacity prediction method, and remaining battery capacity prediction program
WO2014083853A1 (en) * 2012-11-30 2014-06-05 株式会社Gsユアサ Device for estimating post-deterioration functionality of storage element, method for estimating post-deterioration functionality, and storage system
WO2017116088A1 (en) * 2015-12-30 2017-07-06 주식회사 효성 Method and device for estimating battery life

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079634A1 (en) * 1999-06-18 2000-12-28 Matsushita Electric Industrial Co., Ltd. Method for detecting deterioration of electrochemical device, method for measuring remaining capacity, charger comprising them, and discharge controller
US6480003B1 (en) 1999-06-18 2002-11-12 Matsushita Electric Industrial Co., Ltd. Method for detecting deterioration of electrochemical device, method for measuring remaining capacity, charger comprising them, and discharge controller
JP2012252837A (en) * 2011-06-01 2012-12-20 Fujitsu Ltd Information processing unit, remaining battery capacity prediction method, and remaining battery capacity prediction program
WO2014083853A1 (en) * 2012-11-30 2014-06-05 株式会社Gsユアサ Device for estimating post-deterioration functionality of storage element, method for estimating post-deterioration functionality, and storage system
US9581653B2 (en) 2012-11-30 2017-02-28 Gs Yuasa International Ltd. Post-deterioration performance estimating apparatus and post-deterioration performance estimating method for energy storage device, and energy storage system
US10371757B2 (en) 2012-11-30 2019-08-06 Gs Yuasa International Ltd. Post-deterioration performance estimating apparatus and post-deterioration performance estimating method for energy storage device, and energy storage system
WO2017116088A1 (en) * 2015-12-30 2017-07-06 주식회사 효성 Method and device for estimating battery life
US10908222B2 (en) 2015-12-30 2021-02-02 Hyosung Heavy Industries Corporation Method and device for estimating battery life

Also Published As

Publication number Publication date
JP3263336B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
CN111448468B (en) Method, device and system for detecting consistency of battery pack
US5994877A (en) Method for detecting working condition of non-aqueous electrolyte secondary batteries
CN106461732B (en) Method for estimating state of health of battery
JP3162030B2 (en) Battery capacity measuring method and battery capacity measuring device using voltage response signal of pulse current
CN104577242B (en) A kind of batteries management system and method
US7098666B2 (en) Method and system for battery state of charge estimation by using measured changes in voltage
KR101615139B1 (en) Apparatus and method for real-time estimation of battery state-of-health
CN107015163B (en) Battery capacity obtaining method and device
JP2008522152A (en) Battery state and parameter estimation system and method
CN112578298B (en) Battery temperature estimation method, device, electronic equipment and storage medium
CN112924884B (en) Quantitative diagnosis method for short circuit in battery based on incremental capacity curve peak area
CN110596610A (en) Method and device for detecting charging and discharging electric quantity states of battery module and battery
CN104833917B (en) Determination of nominal cell resistance for real-time estimation of state of charge in lithium batteries
CN110988695A (en) Power battery health state evaluation method and device, storage medium and electronic equipment
US9759782B2 (en) Impedance-based battery state estimation method
CN114609523A (en) Online battery capacity detection method, electronic equipment and storage medium
JP2003153454A (en) Method of detecting deterioration of secondary battery and battery charger provided with function of detecting deterioration
JP3460567B2 (en) Secondary battery deterioration detection method and charger equipped with deterioration detection function
CN113820615A (en) Battery health degree detection method and device
JP3263336B2 (en) Method for estimating secondary battery capacity
CN116930794A (en) Battery capacity updating method and device, electronic equipment and storage medium
CN110907843A (en) Battery impedance calculation method and device
JP3694391B2 (en) Secondary battery capacity detection method
JP2000028689A (en) Estimation method for discharge capacity of
KR20030013215A (en) Capacity Prediction and Screening Method of Battery Using Transient Response Function

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees