JPH11147085A - Method for reusing incineration ash of fluidized bed incinerator and furnace bottom residue of fluidized bed type gasifying furnace as resources - Google Patents

Method for reusing incineration ash of fluidized bed incinerator and furnace bottom residue of fluidized bed type gasifying furnace as resources

Info

Publication number
JPH11147085A
JPH11147085A JP10257004A JP25700498A JPH11147085A JP H11147085 A JPH11147085 A JP H11147085A JP 10257004 A JP10257004 A JP 10257004A JP 25700498 A JP25700498 A JP 25700498A JP H11147085 A JPH11147085 A JP H11147085A
Authority
JP
Japan
Prior art keywords
coarse
ash
furnace
fluidized bed
sorting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10257004A
Other languages
Japanese (ja)
Inventor
Tasuke Okamura
太助 岡村
Yuichi Hirose
裕一 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP10257004A priority Critical patent/JPH11147085A/en
Publication of JPH11147085A publication Critical patent/JPH11147085A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently classify the incineration ash from a fluidized bed incinerator and the furnace bottom residue of a fluidized bed type gasifying furnace into an iron material, a nonferrous metal material and aggregate to enhance the utilization value of them as resources and to improve economical efficiency while enhancing safety with respect to the aggregate to reutilize the aggregate as resources. SOLUTION: A coarse matter removing process 1 for removing coarse matter from incineration ash and furnace bottom residue (a general term 'furnace ash'), a coarse iron sorting process 1 sorting an iron component from the coarse matter, a rough sorting process 2 sorting the minus sieve matter of the coarse matter removing process by particle size, a rough crushing process 2 roughly crushing the plus sieve component of the rough sorting process, a magnetic matter removing process 3 sorting an iron component by utilizing magnetic force, an aluminum component removing process 4 utilizing an induced current to remove an aluminum component, a classifying process 5 performing classification by particle size, a long metal piece removing process 7 removing long metal pieces from classified furnace ash of 5 mm or more and a washing process 6 removing heavy metals from classified furnace ash of below 2.5 mm are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流動床焼却炉から
排出される焼却灰及び流動床式ガス化炉の炉底残渣の効
率的な再資源化方法に関する。
The present invention relates to a method for efficiently recycling incinerated ash discharged from a fluidized-bed incinerator and bottom residues of a fluidized-bed gasifier.

【0002】[0002]

【従来の技術】一般廃棄物の流動床焼却灰は、鉄材や非
鉄金属以外に、多くの不燃材を含んでいる。例えばガラ
ス、陶器、石、砂などである。効率的に選別、破砕、分
級を行うことができれば、これらをコンクリート骨材、
道路舗装用路盤材やアスファルト骨材等の建設資材、土
木資材として再利用できる。近年、一般廃棄物を流動床
式焼却炉で高温で焼却し、以下のような手順で処理する
ことが考えられている。焼却灰中、空き缶などの鉄くず
は磁選し、随時排除する。また焼却後の焼却灰から、所
定の大きさ以上の粗大物を除去し、粗大物以外のものは
できるだけ小さく破砕する。次いで磁力線を当て、その
中から鉄材を選別する。ここで得られた鉄材は鉄資源と
して再利用する。鉄材を除去した粉砕物からは更に非鉄
金属材を除去し、金属材以外は粒径に従って分級する。
分級には振動篩や回転篩(トロンメル)を使用する。分
級した非金属素材は骨材に使用する。適当な用途のない
ものは埋め立てに回す。
2. Description of the Related Art Fluid bed incineration ash of general waste contains many noncombustible materials in addition to ferrous materials and nonferrous metals. For example, glass, pottery, stone, sand and the like. If they can be sorted, crushed and classified efficiently, they can be used as concrete aggregates,
It can be reused as construction material, such as roadbed material for road pavement and asphalt aggregate, and as civil engineering material. In recent years, it has been considered that general waste is incinerated at a high temperature in a fluidized-bed incinerator and then treated in the following procedure. During incineration ash, iron scraps such as empty cans are magnetically selected and removed at any time. Also, coarse substances having a predetermined size or more are removed from the incinerated ash after incineration, and those other than the coarse substances are crushed as small as possible. Next, a magnetic field line is applied, and an iron material is selected therefrom. The iron material obtained here is reused as iron resources. The non-ferrous metal material is further removed from the pulverized material from which the iron material has been removed, and other than the metal material is classified according to the particle size.
A vibrating sieve or a rotary sieve (Trommel) is used for classification. The classified non-metallic material is used for aggregate. Those that do not have an appropriate use are sent to landfill.

【0003】また、一般廃棄物の焼却処理技術の一つに
は、流動床式ガス化炉と旋回式溶融炉を組み合わせたも
のがあり、これを簡単に「ガス化溶融炉」という名称で
呼んでいるが、ここでは判り易く「流動床式ガス化炉」
ということにする。この流動床式ガス化炉から出る炉底
不燃物も前記した流動床式焼却炉から出る焼却灰とほぼ
同じ性状である。この炉底不燃物は絶乾状態であり、セ
トモノ、ガラス、石、砂等及び金属類が主たる構成成分
である。なかでも、金属類は還元雰囲気のために酸化さ
れない状態で排出されるため、前記焼却灰よりも利用価
値が高いものといえる。この流動床式ガス化炉から出る
炉底不燃物を、以下「流動床式ガス化炉の炉底残渣」と
いう。
[0003] One of the incineration techniques for general waste is a combination of a fluidized-bed gasification furnace and a swirling melting furnace, which is simply referred to as a "gasification melting furnace". However, it is easy to understand here, "fluidized bed gasifier"
I will say that. The bottom incombustibles from the fluidized bed gasifier also have almost the same properties as the incinerated ash from the fluidized bed incinerator. This furnace bottom incombustible material is in a completely dry state, and its main constituents are setmono, glass, stone, sand, and the like. Above all, metals are discharged in a non-oxidized state due to a reducing atmosphere, and thus can be said to have higher utility value than the incinerated ash. The bottom incombustibles discharged from the fluidized-bed gasifier are hereinafter referred to as "furnace residue of the fluidized-bed gasifier".

【0004】[0004]

【発明が解決しようとする課題】しかしながら、一般廃
棄物の流動床焼却炉焼却灰や流動床式ガス化炉の炉底残
渣が再利用される割合は現実には極めてわずかであり、
ほとんどは旧来通り埋め立て処分に付され、処分場の負
荷は増大してきている。鉄材であってもその全てが再利
用できるわけではない。重量ベースで考えると、磁性物
の大半は空き缶、スプレー缶、パイプ等の粗大物であ
る。焼却炉から取り出すと、上記磁性物の中には流動砂
等の砂状物が詰まっている。流動砂が詰まっている空き
缶などは再利用鉄資源として利用価値が低く、結局多く
は埋め立て処分にせざるを得ないというのが実状であ
る。
However, the rate of reuse of the incineration ash of fluidized-bed incinerators and bottom residues of fluidized-bed gasification furnaces is extremely small in practice.
Most have been landfilled as before, and the burden on the repository has been increasing. Not all iron materials can be reused. When considered on a weight basis, the majority of magnetic materials are bulky items such as empty cans, spray cans, pipes and the like. When taken out of the incinerator, the magnetic material is clogged with sand-like substances such as fluidized sand. Empty cans filled with liquid sand have a low utility value as recycled iron resources, and in most cases they must be landfilled.

【0005】また、流動床焼却炉焼却灰から得た土木建
築用の粒体骨材の中に長形状の非鉄金属材が含まれてい
ることはよくある。非鉄金属材には他の素材では代え難
い特有の利用価値があり、こうした非鉄金属材が、実際
には本来の用途に十分利用されていないという問題点も
あった。焼却灰中に含まれている長形状の非鉄金属材と
いうのは、具体的には銅やステンレスなどでできたバ
ネ、クギ、針金、フォークなどである。その多くは平均
長約30mm程度である。建設用土木用骨材としては粒
径5mm〜13mmの粒体が好ましいが、これらの骨材
中には重量ベース0.3%〜6%の割合で非鉄金属が含
まれている。これらはこのまま骨材の一部として使用し
ても、骨材の用途によってはそれ自体では支障がない場
合もあるとは考えられる。しかし、例えば道路用のアス
ファルト骨材として使用した場合、上記の長形状金属片
がアスファルト舗装表面に飛び出て工事の施工性、安全
性を損ねるという問題がある。これらを敢えて選別除去
するとするなら従来の場合、手作業という方法しかない
というのが実状だった。
[0005] In addition, it is often the case that a long non-ferrous metal material is contained in granular aggregate for civil engineering construction obtained from incineration ash of a fluidized bed incinerator. Non-ferrous metal materials have a unique use value that is difficult to replace with other materials, and there has been a problem that such non-ferrous metal materials are not actually sufficiently used for their intended purpose. The long non-ferrous metal material contained in the incineration ash is, for example, a spring, a nail, a wire, a fork, etc. made of copper or stainless steel. Most of them have an average length of about 30 mm. Aggregates having a particle size of 5 mm to 13 mm are preferable as the aggregate for civil engineering for construction, and these aggregates contain a non-ferrous metal at a ratio of 0.3% to 6% by weight. Even if these are used as a part of the aggregate as it is, it is considered that there is no problem in itself depending on the use of the aggregate. However, when used as an asphalt aggregate for roads, for example, there is a problem in that the above-mentioned elongated metal piece jumps out on the asphalt pavement surface, impairing the workability and safety of construction. In reality, the only way to remove these was to manually remove them.

【0006】粒径5mm〜13mmの粒体をふるい分け
るには、目の大きさが13mmの程度の篩を使用する。
目の大きさが13mmの篩を平均長30mm以上ものが
通過するということは通常は考えにくい。しかし破砕し
た焼却灰を分級する際、ふるいは回転させたり振動させ
たりすると、長さ30mmぐらいの長細い形状物でも周
囲の物と篩面上でぶつかり合い、ときには篩の中で垂直
あるいは斜めに立ち上がる。長細い形状物の長手方向が
垂直あるいは斜めに立ち上がり、それが篩目の通過方向
に一致すると30mm程度の長さのものでも容易にふる
い目をすり抜けるのである。また、骨材中には鉛や六価
クロムと言った重金属成分が混入していることがある。
流動床焼却灰から得た骨材の場合、毒性のあるこうした
重金属成分が溶出してくるおそれがあることは好ましく
ない。しかしながら、大量の流動床焼却灰全量について
その毒性を調査し、さらにはその全量を無毒化すること
は、基本的には廃棄物である流動床焼却灰の再資源化コ
ストを飛躍的に高めてその経済性を損ねかねなず、妥当
ではない。また、流動床式ガス化炉の炉底残渣も流動床
焼却灰と同様な性状を有するものである。
[0006] In order to sieve particles having a particle size of 5 mm to 13 mm, a sieve having a mesh size of about 13 mm is used.
It is usually difficult to imagine that an average length of 30 mm or more passes through a sieve having a mesh size of 13 mm. However, when classifying the crushed incinerated ash, if the sieve is rotated or vibrated, even a thin object with a length of about 30 mm may collide with surrounding objects on the sieve surface, sometimes vertically or diagonally in the sieve. stand up. When the longitudinal direction of the long and thin shaped object rises vertically or obliquely, and it coincides with the passing direction of the sieve, even the one having a length of about 30 mm easily passes through the sieve. In addition, heavy metals such as lead and hexavalent chromium may be mixed in the aggregate.
In the case of aggregate obtained from fluidized bed incineration ash, it is not preferable that such toxic heavy metal components may be eluted. However, investigating the toxicity of a large amount of fluidized bed incineration ash and detoxifying the entire amount would fundamentally dramatically increase the cost of recycling fluidized bed incineration ash, which is waste. It is not appropriate, as it could hurt its economics. Furnace bottom residues of a fluidized bed gasifier also have the same properties as fluidized bed incineration ash.

【0007】そこで本発明は、流動床焼却炉の焼却灰及
び流動床式ガス化炉の炉底残渣を、鉄材と非鉄金属材と
骨材とに効率よく分類することによって再資源としての
利用価値を高め、骨材についてはその経済性を損ねるこ
となく安全性を高めることができる、流動床焼却炉の焼
却灰及び流動床式ガス化炉の炉底残渣の再資源化方法を
提供することを目的とする。
[0007] Accordingly, the present invention provides a utility value as a resource by efficiently classifying the incineration ash of a fluidized bed incinerator and the bottom residue of a fluidized bed gasifier into iron, non-ferrous metal and aggregate. To provide a method for recycling incinerated ash of fluidized bed incinerators and bottom residues of fluidized bed gasifiers, which can increase the safety of aggregate without impairing its economic efficiency. Aim.

【0008】[0008]

【課題を解決するための手段】上記の課題は以下の手段
によって解決できる。 (1)流動床焼却炉の焼却灰及び/又は流動床式ガス化
炉の炉底残渣よりなる炉灰から粗大物を除去する粗大物
除去プロセスと、除去した粗大物から鉄分を選別する粗
大鉄選別プロセスと、粗大物除去プロセスの篩下を粒径
選別を行う粗選別プロセスと、粗選別プロセスの篩上を
粗破砕する粗破砕プロセスと、粗選別プロセスの篩下お
よび前記粗破砕物からなる該炉灰から磁力を利用して鉄
分の選別を行う磁性物除去プロセスと、磁性物除去プロ
セス後の該炉灰から誘導電流を利用してアルミニウム分
を除去するアルミニウム分除去プロセスと、アルミニウ
ム分除去プロセス後の該炉灰を粒径別に分級する分級プ
ロセスと、分級した該炉灰のうち5mm以上のものから混
入する長形状金属片を除去する長形状金属片除去プロセ
スと、分級した該炉灰のうち2.5mm未満のものから重
金属を除去する洗浄プロセスとからなることを特徴とす
る流動床焼却炉の焼却灰及び流動床式ガス化炉の炉底残
渣の再資源化方法。
The above objects can be attained by the following means. (1) A process for removing coarse substances from incineration ash of a fluidized bed incinerator and / or furnace ash consisting of a bottom residue of a fluidized bed gasifier, and coarse iron for separating iron from the removed coarse substances The sorting process, the coarse sorting process of performing particle size sorting under the screen of the coarse substance removal process, the coarse crushing process of coarsely crushing the screen of the coarse sorting process, and the coarse screening process of sieving and the coarsely crushed material. A magnetic substance removing process for separating iron from the furnace ash using magnetic force, an aluminum removing process for removing aluminum from the furnace ash using an induced current after the magnetic substance removing process, and an aluminum removing A classification process of classifying the furnace ash after the process according to particle size, a long metal fragment removal process of removing a long metal fragment mixed from 5 mm or more of the classified furnace ash, Ash and method for recycling furnace bottom residue of the fluidized bed gasification furnace of the fluidized bed incinerator, characterized in that it consists of a cleaning process for removing heavy metals from those of less than 2.5mm of the ash.

【0009】(2)前記長形状金属片除去プロセスが、
スリット状篩目の振動篩で行われることを特徴とする前
記(1)の流動床焼却炉の焼却灰及び流動床式ガス化炉
の炉底残渣の再資源化方法。 (3)前記長形状金属片除去プロセスが、前記分級した
該炉灰を、中央部に複数の円形の開口を有する30〜4
5度に傾斜させた傾斜板の斜面上部から下方に滑走さ
せ、長形状金属片以外の該炉灰は該開口から落下させ、
長形状金属片は該開口から落下せずにその上を通過し該
傾斜板の下端まで滑走させて分離することにより行われ
ることを特徴とする前記(1)の流動床焼却炉の焼却灰
及びび流動床式ガス化炉の炉底残渣の再資源化方法。
(2) The long metal piece removing process is as follows:
The method of (1), wherein the incineration ash of the fluidized-bed incinerator and the bottom residue of the fluidized-bed gasification furnace are recycled by a vibrating sieve having slit-shaped sieves. (3) The elongate metal strip removing process includes the step of removing the classified furnace ash from a central part having a plurality of circular openings at 30-4.
Sliding downward from the upper part of the slope of the inclined plate inclined at 5 degrees, the furnace ash other than the long metal pieces is dropped from the opening,
The incinerated ash of the fluidized bed incinerator according to the above (1), wherein the elongated metal piece is passed through the opening without falling from the opening and slid to the lower end of the inclined plate to be separated. Of bottom residue from fluidized bed and fluidized bed gasifiers.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明するが、本発明はこの形態に限定されな
い。ここでは、流動床焼却炉の焼却灰の場合についての
み説明するが、流動床式ガス化炉の炉底残渣の場合も同
様である。流動床焼却炉の焼却灰をアスファルト骨材と
して再資源化するプロセスの中で、粗大物除去は一番最
初に行われる。この方法は、再資源化骨材として適さな
いものを当初に除去するから効率がよい。例えば回転篩
1つで磁性物の大部分と粗大物を除去するならば、後続
のプロセスでのトラブル例えばブリッジ、摩耗等を軽減
できる。
Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited to these embodiments. Here, only the case of incineration ash of a fluidized bed incinerator will be described, but the same applies to the case of a bottom residue of a fluidized bed gasifier. In the process of recycling the incineration ash of a fluidized bed incinerator as asphalt aggregate, the removal of coarse substances is performed first. This method is efficient because it initially removes those that are not suitable as recycled aggregate. For example, if most of the magnetic substances and coarse substances are removed by one rotating sieve, troubles in subsequent processes, such as bridges and abrasion, can be reduced.

【0011】本発明では、しかも、粗大物除去プロセス
において除去された粗大物に対し、粗大鉄選別プロセス
を有している。前段の粗大物除去プロセスにおいて、回
転効果によって、空き缶、スプレー缶の中の砂などが吐
き出されるので、この粗大鉄選別プロセスにより鉄再生
資源としての価値を高めることができる。流動床焼却炉
の焼却灰の再資源化にあたり、本発明は、粗大メッシ
ュ、大メッシュ、大スリットメッシュ、中メッシュ、中
スリットメッシュ、小メッシュ、微細メッシュという目
開きの違う篩を順次使用する。粗大メッシュというのは
例えば60mm径程度、大メッシュは13mm径程度、
中メッシュは5mm径程度、小メッシュは2.5mm径
程度、微細メッシュは0.3mm径程度である。
The present invention also has a coarse iron sorting process for the coarse substances removed in the coarse substance removing process. In the former-stage bulky matter removal process, sand and the like in the empty cans and spray cans are discharged by the rotation effect, so that the value as iron recycling resources can be increased by the coarse iron sorting process. In the recycling of the incineration ash of a fluidized bed incinerator, the present invention uses sieves having different openings of coarse mesh, large mesh, large slit mesh, medium mesh, medium slit mesh, small mesh, and fine mesh in order. A coarse mesh is, for example, about 60 mm in diameter, a large mesh is about 13 mm in diameter,
The medium mesh has a diameter of about 5 mm, the small mesh has a diameter of about 2.5 mm, and the fine mesh has a diameter of about 0.3 mm.

【0012】図1は、流動床焼却灰の再資源化フロー図
である。流動床焼却炉の焼却灰の再資源化は、例えばこ
のようなフローに沿って行うとよい。流れは概ね以下の
通りである。すなわち、 流動床焼却炉の焼却灰から粗大物を除去する粗大物除
去プロセスと、除去した粗大物から鉄分を選別する粗大
鉄選別プロセスと、 粗大物除去プロセス後の篩下の焼却灰を粒径選別する
粗選別プロセス及び粗選別プロセスの篩上を粗破砕する
粗破砕プロセスと、 前記のプロセス後の当該焼却灰から磁力を利用して
鉄分の選別を行う磁性物除去プロセスと、
FIG. 1 is a flow chart of recycling fluidized bed incineration ash. The incineration ash of the fluidized bed incinerator may be recycled, for example, according to such a flow. The flow is generally as follows. That is, a coarse substance removal process for removing coarse substances from the incineration ash of a fluidized bed incinerator, a coarse iron separation process for separating iron from the removed coarse substances, and an incineration ash below the sieve after the coarse substance removal process. Coarse crushing process to coarsely crush the sieve of the coarse separation process and the coarse separation process to sort, and a magnetic substance removal process to separate iron using magnetic force from the incinerated ash after the above process,

【0013】前記のプロセス後の当該焼却灰を誘導
電流を利用してアルミニウム分を除去するアルミニウム
分除去プロセスと、 前記のプロセスの後の当該焼却灰を粒径別に分級す
る分級プロセスと、 分級した当該再資源化骨材のうち、小メッシュを通過
する程度の粒径の再資源化骨材から、重金属の除去を目
的として行う洗浄プロセスと、 分級した当該再資源化骨材のうち、中メッシュを通過
しない程度の粒径以上の骨材から、そこに混入する長形
状金属片を除去する長形状金属片除去プロセスから構成
される。
[0013] An aluminum component removal process for removing aluminum from the incinerated ash after the above-mentioned process using an induced current, a classification process for classifying the incinerated ash after the above process according to particle size, A cleaning process for removing heavy metals from the recycled aggregate having a particle size sufficient to pass through the small mesh among the recycled aggregates, and a medium mesh among the classified recycled aggregates The process comprises a long metal strip removal process for removing the long metal strip mixed into the aggregate having a particle size not exceeding the size of the aggregate.

【0014】以下において、各プロセス毎に詳しく説明
する。 粗大物除去プロセス及び粗大鉄選別プロセス 粗大物除去プロセスでは、流動床焼却炉の焼却灰から粗
大物を除去する作業を行う。流動床焼却炉の焼却灰は、
主として鉄類と非鉄金属及びガラス、陶器、石、砂で構
成されている。粗大メッシュの回転篩を使用し、大きさ
がその粗大メッシュを越える粗大焼却灰は篩上に残し、
それ以下の焼却灰は篩下に集める。これによって骨材と
してそのままでは再資源化が不可能な空き缶、スプレー
缶等の鉄類、コンクリート片等の粗大焼却灰を、焼却灰
の中からふるい分ける。ふるい分けた粗大焼却灰は、次
いで粗大鉄除去プロセスに導く。粗大鉄除去プロセスで
は、吊り下げ式磁選機で粗大焼却灰を磁性体と非磁性体
とに選別する。空き缶などは、前段の粗大物除去プロセ
スにおける回転篩の使用に伴う回転効果により、内部に
詰まって再資源化を妨げていた流動床焼却炉の焼却灰が
吐き出されており、高純度の粗大鉄材資源として再利用
が可能となる。吐き出された焼却灰は、骨材として再資
源化されるので流動床焼却灰の再資源化率が高まる。
Hereinafter, each process will be described in detail. Coarse-matter removal process and coarse-iron sorting process In the coarse-matter removal process, work is performed to remove coarse matter from incineration ash of a fluidized-bed incinerator. The incineration ash of the fluidized bed incinerator
It is mainly composed of ferrous and non-ferrous metals and glass, pottery, stone and sand. Using a coarse mesh rotating sieve, leave the large incinerated ash whose size exceeds the coarse mesh on the sieve,
Less incineration ash is collected under the sieve. As a result, coarse incineration ash such as iron cans and concrete pieces, such as empty cans and spray cans, which cannot be recycled as aggregates as they are, is sieved from the incineration ash. The sieved coarse incineration ash then leads to a coarse iron removal process. In the coarse iron removal process, the coarse incineration ash is separated into a magnetic substance and a non-magnetic substance by a suspended magnetic separator. For empty cans, etc., the incineration ash of the fluidized bed incinerator, which had clogged inside and prevented recycling, was discharged due to the rotating effect of the use of the rotary sieve in the bulky matter removal process at the previous stage, and high-purity coarse iron material It can be reused as a resource. Since the discharged incinerated ash is recycled as aggregate, the recycling rate of fluidized bed incinerated ash is increased.

【0015】粗選別プロセス及び粗破砕プロセス 粗大メッシュを通過した焼却灰は粗選別プロセスに導
く。粗選別プロセスは、大メッシュの目開きの篩で焼却
灰を選別する。大メッシュを通過した粒径が小さい焼却
灰は磁性物除去プロセスへ導く。通過しなかった粒径の
大きい焼却灰はいったん粗破砕プロセスに導き、次いで
磁性物除去プロセスへ導く。粗破砕プロセスは、大メッ
シュを通過しなかった粒径の大きい焼却灰を粗破砕する
プロセスである。粗破砕は、例えばせん断方式により行
うとよい。具体的には、回転テーブル上に粗破砕を行う
当該焼却灰を導き、この回転テーブルと予めクリアラン
ス設定したローラとのせん断効果により破砕を行う。こ
の破砕方法は、セメント工場でクリンカの粉砕に一般的
に用いられているものと同様である。
Coarse Sorting Process and Coarse Crushing Process The incinerated ash that has passed through the coarse mesh is led to the coarse sorting process. The coarse sorting process sorts incinerated ash with a large-mesh mesh sieve. The small incineration ash that has passed through the large mesh leads to a magnetic substance removal process. The large-sized incineration ash that has not passed is led to a coarse crushing process and then to a magnetic substance removal process. The coarse crushing process is a process for coarsely crushing incinerated ash having a large particle size that has not passed through the large mesh. The coarse crushing may be performed by, for example, a shearing method. More specifically, the incinerated ash to be roughly crushed is guided on a rotary table, and crushed by a shearing effect between the rotary table and a roller whose clearance is set in advance. This crushing method is the same as that generally used for crushing clinker in a cement plant.

【0016】磁性物除去プロセス 大メッシュを通過した焼却灰及び粗破砕プロセスを経た
焼却灰は、磁性物除去プロセスでその中から磁性物すな
わち鉄分を除去する。ここで鉄分というのは、具体的に
は例えば、ビンのフタ、クギ、バネ、砂鉄などであり、
粗大物除去プロセスで除去できなかった比較的粒径の小
さい鉄材を指す。磁性物除去プロセスでは、こうした鉄
分をドラム式磁選機によって磁選する。磁選機は、例え
ば回転ドラム内の半分に永久磁石が内蔵されており、当
該焼却灰はこのドラムの回転により磁性物と非磁性物に
分けられる。磁選して採取した鉄分は、粗大鉄除去プロ
セスを経た粗大鉄材資源などと一緒にして再利用すると
よい。鉄分を除去した焼却灰は、次いでアルミニウム分
除去プロセスに導く。
Magnetic substance removal process The incineration ash that has passed through the large mesh and the incineration ash that has passed through the coarse crushing process removes magnetic substances, that is, iron, from the incineration ash in the magnetic substance removal process. Here, iron is specifically, for example, a bottle lid, a nail, a spring, iron sand, etc.
Refers to iron materials of relatively small particle size that could not be removed by the coarse substance removal process. In the magnetic substance removal process, such iron is magnetically separated by a drum type magnetic separator. The magnetic separator has, for example, a permanent magnet built in half of a rotating drum, and the incinerated ash is separated into a magnetic substance and a non-magnetic substance by rotation of the drum. The iron collected by magnetic separation may be reused together with the coarse iron resources that have undergone the coarse iron removal process. The incinerated ash from which the iron has been removed is then directed to an aluminum removal process.

【0017】アルミニウム分除去プロセス このアルミニウム分除去プロセスでは、アルミニウム分
だけを選択的に区分けして集積し、これをアルミニウム
資源とする。すなわち、焼却灰を投入する回転ドラムを
設け、回転ドラムの中には回転ドラムより更に高速度で
回転するロータを設け、これにより生じる渦電流により
アルミニウム分を反発させ、選択的に区分する。これは
スチール缶とアルミ缶との選別などに広く用いられてい
る方法である。アルミニウム分除去プロセスでアルミニ
ウム分だけを選択的に除去した焼却灰は、さらに分級プ
ロセスに導き、粒径に従って分類する。
Aluminum Removal Process In this aluminum removal process, only aluminum is selectively separated and integrated, and this is used as aluminum resources. That is, a rotating drum for incineration ash is provided, and a rotor rotating at a higher speed than the rotating drum is provided in the rotating drum. The eddy current generated thereby repels aluminum to selectively separate the aluminum. This is a method widely used for sorting steel cans and aluminum cans. The incinerated ash from which only aluminum has been selectively removed by the aluminum removal process is further guided to a classification process, and is classified according to the particle size.

【0018】分級プロセス(長形状金属片除去プロセ
スも含む) 分級プロセスでは、大スリットメッシュと、中メッシュ
と、中スリットメッシュと、小メッシュと、微細メッシ
ュの篩目を有する多段式振動篩を使用する。 1)大スリットメッシュによる分級 ここで使用する大スリットメッシュの篩目は、例えば幅
11〜12mm、長さ20〜25mmのスリット状であ
り、バネ、クギ、針金、フォークのような長細い形状の
ものであって、アルミニウム分除去プロセスでは除去で
きなかった長形状金属片を篩上に残し、他の焼却灰は篩
下に落下する。この大スリットメッシュの篩目を、例え
ば幅11〜13mm、好ましくは11〜12mmとする
のは、本発明により得られた骨材形状が球状ではなく、
例えば幅が6〜7mmで長さ13mmのような形状のも
のが多く、これらを下に集めるためである。また、例え
ば長さ20〜25mmとするのは、ここで除去される長
形状非鉄金属片が平均長さ30mm以上であり、これを
ふるい上に集めるためである。もっとも、分級プロセス
に入ってくる焼却灰の性状が変われば、それに応じた選
択をする。なお、大スリットメッシュの間隔は30mm
以上設ける。
Classification process (including long metal strip removal process) In the classification process, a multi-stage vibrating sieve having a large mesh, a medium mesh, a medium slit mesh, a small mesh, and a fine mesh is used. I do. 1) Classification by Large Slit Mesh The sieve of the large slit mesh used here is, for example, a slit having a width of 11 to 12 mm and a length of 20 to 25 mm, and has a long thin shape such as a spring, a nail, a wire, or a fork. Long metal pieces that could not be removed by the aluminum removal process remain on the screen and other incinerated ash falls below the screen. The sieve mesh of this large slit mesh is, for example, 11 to 13 mm in width, preferably 11 to 12 mm, because the aggregate shape obtained by the present invention is not spherical,
For example, there are many shapes having a width of 6 to 7 mm and a length of 13 mm, and these are collected below. The reason why the length is set to 20 to 25 mm, for example, is that the long non-ferrous metal piece to be removed is an average length of 30 mm or more and is collected on a sieve. However, if the properties of the incineration ash that enters the classification process change, the appropriate choice will be made. In addition, the interval of the large slit mesh is 30 mm.
The above is provided.

【0019】2)中メッシュ篩による分級 大スリットメッシュを通過して篩下に落下した焼却灰は
次いで5mm程度の中メッシュ篩に導く。中メッシュ篩
は直径5mmの円形の篩開口部を複数設けてある。ここ
では、大スリットメッシュ幅(11〜12mm)、長さ
(20〜25mm)の篩を通過した焼却灰の中で、5m
m以上の粒径の焼却灰を再資源化骨材として分級する。
篩上にふるい残された粒径5mm〜13mm(実際には
この範囲より小さい粒径、大きい粒径のものも僅かに含
まれることがある)の焼却灰は、基本的には再資源化骨
材として直接利用できるが、通常はしばしば長形状金属
片がなお混入している。このような長形状金属片は除去
すべきであり、粒径5mmの焼却灰はさらなる長形状金
属片除去プロセスに導く。
2) Classification by medium mesh sieve The incinerated ash that has passed through the large slit mesh and dropped below the sieve is then led to a medium mesh sieve of about 5 mm. The medium mesh sieve is provided with a plurality of circular sieve openings having a diameter of 5 mm. Here, in the incineration ash passed through a large slit mesh width (11 to 12 mm) and length (20 to 25 mm) sieve, 5 m
The incinerated ash having a particle size of m or more is classified as recycled aggregate.
The incinerated ash having a particle size of 5 mm to 13 mm (actually, a particle size smaller than this range or a large particle size may be slightly included) on the sieve is basically made of recycled bone. Although it can be used directly as a material, it is usually often mixed with long metal pieces. Such elongated metal pieces should be removed, and the incineration ash having a particle size of 5 mm leads to a further elongated metal piece removal process.

【0020】3)中スリットメッシュによる分級 中メッシュ篩を通過して篩下に落下した5mm未満の粒
径の焼却灰は、中スリットメッシュに導く。中スリット
メッシュは幅5mm(好ましくは4mm)、長さ10〜
12mmのスリット状で形成されている。上記の大スリ
ットメッシュの篩と基本的には同様の構造である。中メ
ッシュ篩の篩目を通り抜けていた長形状の金属片の一部
はここでふるい分ける。この中スリットメッシュの篩目
を、例えば幅4mmとするのは、骨材形状が球状ではな
く、骨材を篩下に集めるためであり、また例えば長さ1
0〜12mmとするのは、長形状非鉄金属片が平均長さ
15〜20mm程度であるからである。スリットの間隔
は20mm以上設ける。それでも2〜5mmの骨材に僅
かに非鉄金属が混入することがあるが問題はない。重量
ベースで0.01%程度である。もっとも、前記のスリ
ットの幅、長さについては分級プロセスに入ってくる焼
却灰の性状が変われば、それに応じた選択をする。中ス
リットメッシュの篩でも長形状金属片が除去されること
は、粒径が5mm以上の再資源化骨材にも一部長形状金
属片が混入していることを裏付ける。先に述べた5mm
以上の再資源化骨材に含まれる長形状金属片を除去する
ためのさらなる長形状金属片除去プロセスが必要である
ことを、このことは改めて証明するものである。
3) Classification by Medium Slit Mesh Incineration ash having a particle size of less than 5 mm that has passed through the medium mesh sieve and dropped below the sieve is led to the medium slit mesh. The medium slit mesh has a width of 5 mm (preferably 4 mm) and a length of 10 to 10 mm.
It is formed in a 12 mm slit shape. It has basically the same structure as the large slit mesh sieve described above. A part of the long metal piece that has passed through the mesh of the medium mesh sieve is sieved here. The reason why the mesh size of the medium slit mesh is set to, for example, 4 mm in width is to collect the aggregate under the sieve, instead of the shape of the aggregate being spherical.
The reason why the length is set to 0 to 12 mm is that the long non-ferrous metal piece has an average length of about 15 to 20 mm. The interval between the slits is set to 20 mm or more. Nevertheless, non-ferrous metals may be slightly mixed in the aggregate of 2 to 5 mm, but this is not a problem. It is about 0.01% on a weight basis. However, if the properties of the incinerated ash entering the classification process change, the width and length of the slit are selected according to the properties. The removal of the long metal pieces even with the medium slit mesh sieve confirms that some of the long metal pieces are mixed in the recycled aggregate having a particle size of 5 mm or more. 5mm mentioned earlier
This proves once again that a further long metal strip removal process is required to remove the long metal strips contained in the above-mentioned recycled aggregate.

【0021】4)微細メッシュ篩による分級 長形状金属片の一部を更に取り除いた5mm未満の粒径
の焼却灰は、例えば2.5mm径の小メッシュの篩に導
き、次いで0.3mm径の微細メッシュ篩に導く。これ
により、4mm未満〜2.5mm、2.5mm未満〜
0.3mm、0.3mm未満に分級した焼却灰を得る。
なお、これらの範囲は当該範囲より小さい粒径、あるい
は大きい粒径のものも僅かに含まれることがある。粒径
が4mm未満〜2.5mmの焼却灰は再資源骨材として
回収する。粒径が0.3mm未満の焼却灰は各機器のダ
ストと共に系外に排出し、2.5mm未満〜0.3mm
の焼却灰はその中に含まれる溶解性の重金属類を洗浄プ
ロセスで洗い流してこれを除去し、再資源骨材とする。
4) Classification by fine mesh sieve The incinerated ash having a particle size of less than 5 mm from which a part of the long metal piece is further removed is led to a small mesh sieve having a diameter of, for example, 2.5 mm, and then to a sieve having a diameter of 0.3 mm. Guide to fine mesh sieve. Thereby, less than 4 mm to 2.5 mm, less than 2.5 mm
Obtain incineration ash classified to 0.3 mm and less than 0.3 mm.
Note that these ranges may slightly include those having a smaller particle size or a larger particle size. The incinerated ash having a particle size of less than 4 mm to 2.5 mm is collected as recycled aggregate. The incinerated ash with a particle size of less than 0.3 mm is discharged out of the system together with the dust of each device, and it is less than 2.5 mm to 0.3 mm
The incinerated ash is washed away in a washing process to remove soluble heavy metals contained in the incinerated ash, thereby forming recycled aggregate.

【0022】洗浄プロセス 洗浄プロセスは例えば次のように行う。第1洗浄槽と第
2洗浄槽とを設け、粒径が2.5mm未満〜0.3mm
の焼却灰を、pH12〜13程度のアルカリ性の洗浄液
に導入した第1洗浄槽に導入し、焼却灰中の鉛成分や六
価クロム成分などを溶解させる。洗浄液はpH10〜1
1で溢流させる。アルカリ洗浄した焼却灰は、第2洗浄
槽に導き、第1洗浄槽で付着したアルカリ成分を中和す
る。第2洗浄槽にはpH3程度の酸性の洗浄液を導入す
る。洗浄液はpH6〜7程度で溢流させる。なお、第1
および第2洗浄槽から溢流した洗浄液は、洗浄排液を貯
留する排液貯留槽に導く。
Cleaning Process The cleaning process is performed, for example, as follows. A first cleaning tank and a second cleaning tank are provided, and the particle size is less than 2.5 mm to 0.3 mm
Is introduced into a first cleaning tank in which an alkaline cleaning solution having a pH of about 12 to 13 is introduced to dissolve a lead component, a hexavalent chromium component, and the like in the incinerated ash. Washing solution is pH 10-1
Overflow with 1. The incinerated ash washed with alkali is guided to the second washing tank, and neutralizes the alkali component attached in the first washing tank. An acidic cleaning solution having a pH of about 3 is introduced into the second cleaning tank. The washing solution is allowed to overflow at a pH of about 6 to 7. The first
The cleaning liquid overflowing from the second cleaning tank is guided to a drain storage tank that stores the cleaning drain.

【0023】粒径が0.3mm〜2.5mm未満の再資
源化骨材は、粒径が5mm〜13mm未満、あるいは
2.5mm〜5mm未満の再資源化骨材と比べると比表
面積が大きく、そのままでは鉛、六価クロムといった金
属が溶出する可能性がある。鉛はその性質上およそpH
8から10程度以下で溶出濃度が最低となり、pH8以
下及びpH10以上ではpH(横軸)に対して溶出濃度
(縦軸)が片対数グラフで直線的に上昇してゆくことが
一般的に報告されている。再資源化骨材中の六価クロム
は、一般的に酸化物の形で存在する。金属の多くの水酸
化物は水に不溶であるが、六価クロムの酸化物は水溶性
で水酸化物を作らない。そのため、六価クロムはアルカ
リ性の水溶液で洗浄すると容易に溶解させることができ
る。流動床焼却炉の焼却灰は元々一般的にはpH10〜
11程度のアルカリ性である。洗浄液をアルカリ性にす
るには添加するアルカリ薬剤に多くの薬剤は要しない。
Recycled aggregate having a particle size of 0.3 mm to less than 2.5 mm has a larger specific surface area than recycled aggregate having a particle size of 5 mm to less than 13 mm, or 2.5 mm to less than 5 mm. As such, metals such as lead and hexavalent chromium may elute. Lead has a pH of about
It is generally reported that the elution concentration is the lowest at about 8 to 10 or less, and the elution concentration (vertical axis) increases linearly in a semilogarithmic graph with respect to pH (horizontal axis) at pH 8 or lower and pH 10 or higher. Have been. Hexavalent chromium in recycled aggregate generally exists in the form of oxide. While many hydroxides of metals are insoluble in water, hexavalent chromium oxides are water soluble and do not form hydroxides. Therefore, hexavalent chromium can be easily dissolved by washing with an alkaline aqueous solution. The incineration ash of fluidized bed incinerators is generally pH 10
It is about 11 alkaline. To make the cleaning solution alkaline, many chemicals are not required for the alkaline chemical to be added.

【0024】なお、六価クロムを含む排水は、一般的な
処理方法として、pH2程度で硫酸第一鉄、重亜硫酸ソ
ーダのような還元剤で3価のクロムに還元し、pH8程
度にすると難溶性の3価のクロムの沈殿物をつくり、分
離する方法が一般的に知られていた。そこで2.5mm
〜0.3mmの焼却灰をpH2程度以下の洗浄槽へ導
き、重亜硫酸ソーダを加え、含有する六価クロムを3価
のクロムに還元するテストも試み、その還元効果を確認
した。しかし、元々pH10〜11の焼却灰を酸により
pH2程度まで下げることは、経済性の面(多量の酸を
使う点、還元剤が必要な点)を考慮し、不適当と判断し
た。
It should be noted that wastewater containing hexavalent chromium is generally treated with a reducing agent such as ferrous sulfate or sodium bisulfite at a pH of about 2 to reduce it to trivalent chromium at a pH of about 2 and then to a pH of about 8. Methods for forming and separating soluble trivalent chromium precipitates are generally known. So 2.5mm
The incineration ash of about 0.3 mm was led to a washing tank having a pH of about 2 or less, and a test was performed in which sodium bisulfite was added to reduce the contained hexavalent chromium to trivalent chromium. However, it was judged that it was inappropriate to reduce the incineration ash having a pH of 10 to 11 to about 2 with an acid in consideration of economical aspects (a point of using a large amount of acid and a point of requiring a reducing agent).

【0025】本発明者の調査によると、2.5mm未満
の再資源化骨材の全量を洗浄槽に導くと、細かい粒子
(具体的には0.3mm未満)は洗浄槽から浮遊したま
ま溢流する。溢流先となる排液貯留槽で洗浄済排液を静
置すると、粒径の小さい焼却灰は沈降、堆積し、洗浄プ
ロセスの連続運転を困難にする。粒径の小さい焼却灰が
沈降、堆積すれば、排液貯留槽底部からそれらを掻き出
す作業が必要になる。これは運転の効率化、省力化を妨
げる。
According to the investigation of the present inventor, when the entire amount of the recycled aggregate less than 2.5 mm is introduced into the washing tank, fine particles (specifically, less than 0.3 mm) overflow while floating from the washing tank. Shed. When the washed effluent is allowed to stand still in the effluent storage tank, the incinerated ash having a small particle size settles and accumulates, making continuous operation of the washing process difficult. If the incinerated ash having a small particle size settles and accumulates, it is necessary to scrape them from the bottom of the wastewater storage tank. This hinders efficient operation and labor saving.

【0026】このため、本実施の態様では、粒径0.3
mm未満の粒子は選択的に骨材資材の対象から排除して
いる。これにより粒径の小さい焼却灰の溢流が防止さ
れ、再資源化作業の軽減化が図られる。0.3mm未満
の粒子は比表面積が大きいだけに、重金属を溶出する可
能性はそれ以上の粒径の粒子に比べて極めて大きい。し
かも、焼却灰全体中に占める0.3mm未満の粒子の量
は決して多くない。これらだけを選択的に従来通り埋め
立て処分対象としても、埋め立処分場の負荷を増大させ
ることはない。なお図2に示すように、本発明の分級プ
ロセスにより、2.5mm径細メッシュを通過した焼却
灰のうち、粒径0.3mm未満のものの割合は約10%
程度であった。
For this reason, in this embodiment, the particle size is 0.3
Particles smaller than mm are selectively excluded from the aggregate material. As a result, overflow of incinerated ash having a small particle size is prevented, and the recycling operation is reduced. Since particles having a diameter of less than 0.3 mm have a large specific surface area, the possibility of eluting heavy metals is extremely large as compared with particles having a larger particle diameter. Moreover, the amount of particles less than 0.3 mm in the entire incineration ash is not large. Even if only these are selectively targeted for landfill disposal as before, the load on the landfill disposal site will not be increased. As shown in FIG. 2, by the classification process of the present invention, the ratio of incineration ash having a particle diameter of less than 0.3 mm among the incineration ash that has passed through the 2.5 mm diameter fine mesh is about 10%.
It was about.

【0027】(さらなる)長形状金属片除去プロセス 長形状金属片の除去については前記の分級プロセスの中
でも行われているが、より確実にするために以下の操作
を行うことが好ましい。すなわち、粒径5mm〜13m
m未満の焼却灰は例えば次のような長形状金属片除去プ
ロセスで、長形状金属片を更に確実に除去する。図3
は、長形状金属辺除去プロセスを行う滑走傾斜板11の
側面図である。図4は、滑走傾斜板11に設けた篩目の
開口部13の配置関係を示す図である。図3に示すよう
に、焼却灰10を落下させて滑走させる傾斜板11を設
ける。傾斜板11の傾斜角度θは30度〜45度がよ
い。傾斜板11上には焼却灰10の落下地点Aを特定
し、その落下地点Aから一定の範囲を助走区間12と
し、その助走区間12の通過地点から下の方に例えば直
径aが13mm程度の大メッシュの篩目13を複数開口
する。
(Further) Removal of long metal pieces Although the removal of long metal pieces is performed in the above classification process, it is preferable to perform the following operation for more certainty. That is, a particle size of 5 mm to 13 m
If the incineration ash is less than m, the long metal pieces are more reliably removed by, for example, the following long metal piece removal process. FIG.
FIG. 4 is a side view of the sliding inclined plate 11 that performs a long metal side removing process. FIG. 4 is a diagram showing the arrangement relationship of the openings 13 of the sieves provided on the sliding inclined plate 11. As shown in FIG. 3, an inclined plate 11 for dropping and sliding the incineration ash 10 is provided. The inclination angle θ of the inclined plate 11 is preferably 30 degrees to 45 degrees. The falling point A of the incineration ash 10 is specified on the inclined plate 11, and a certain range from the falling point A is defined as the approaching section 12. For example, the diameter a is about 13 mm downward from the passing point of the approaching section 12. A plurality of large mesh screens 13 are opened.

【0028】傾斜板11上の特定の落下地点Aに焼却灰
排出口14から焼却灰10を落下させ、落下させた焼却
灰10を下方に滑走させる。長形状金属片を含む焼却灰
10は傾斜板11を滑走するが、長形状金属片とその他
の焼却灰10とでは見かけ比重が大きく異なる。長形状
金属片はほぼ長尺方向に滑走する。篩目の開口部13付
近に到っても慣性によって開口部13を通過し傾斜板1
1の下端にある長形状金属片堆積部15に堆積する。篩
目の開口部13の目の間を通り抜けて傾斜板11の裏側
に落下することはない。仮に、横方向で滑走したとして
も、開口部13の口径以上に長形状金属片の平均長さが
大きい(約30mm程度である)ため、開口部13の目
の間を通り抜ける可能性は少ない。見かけ比重の小さい
その他の焼却灰10は斜面を滑走する慣性力が小さい。
篩目の開口部13の目の間を通り抜け、傾斜板11の裏
側にある焼却灰堆積部16に堆積する。
The incineration ash 10 is dropped from the incineration ash discharge port 14 to a specific falling point A on the inclined plate 11, and the dropped incineration ash 10 is slid downward. The incinerated ash 10 containing the long metal pieces slides on the inclined plate 11, but the apparent specific gravity differs greatly between the long metal pieces and the other incinerated ash 10. The long metal piece slides almost in the longitudinal direction. Even when it reaches the vicinity of the opening 13 of the sieve, it passes through the opening 13 by inertia and
1 is deposited on the elongated metal piece depositing portion 15 at the lower end. It does not pass through the space between the openings 13 of the sieve and drop to the back side of the inclined plate 11. Even if the vehicle slides in the lateral direction, the average length of the elongated metal piece is larger than the diameter of the opening 13 (about 30 mm), so that there is little possibility that the metal piece passes through the opening 13. Other incineration ash 10 having a small apparent specific gravity has a small inertial force for sliding on a slope.
It passes through the openings 13 of the sieve mesh and accumulates in the incineration ash accumulation section 16 on the back side of the inclined plate 11.

【0029】助走区間12は、傾斜板11の上方から落
下して傾斜板11の落下地点Aに到るまでの落下距離以
上確保するとよい。すなわち、落下距離hを0.3m〜
1mとすると、助走区間12もそれ以上とする。このよ
うな助走区間12を設けると、傾斜板11の上方から傾
斜板11の落下地点Aまで長形状金属片がその長尺方向
を上下方向に向けて垂直に落下しても、直下の篩目の開
口部13をすり抜けて傾斜板11の裏側にある焼却灰堆
積部16に落下するという偶発的事態を防止できる。す
なわち、傾斜板11上を慣性力をもって安定的に滑走さ
せることができる。
It is preferable that the approaching section 12 secures a distance equal to or greater than the falling distance from the upper part of the inclined plate 11 to the falling point A of the inclined plate 11. That is, the fall distance h is 0.3 m or more.
If it is 1 m, the approach section 12 is also longer. When such a run-up section 12 is provided, even if the elongated metal piece falls vertically from the upper side of the inclined plate 11 to the drop point A of the inclined plate 11 with its longitudinal direction directed vertically, even if the metal piece is located immediately below, Of the incineration ash depositing portion 16 on the back side of the inclined plate 11 after passing through the opening 13 of FIG. That is, it is possible to slide stably on the inclined plate 11 with an inertial force.

【0030】図4に示すように、隣接し合う篩目の開口
部13の相互間の間隔bは、例えば30mm以上空ける
とよい。この程度の距離を保つと、長形状金属片が篩目
の開口部13をすり抜けて傾斜板11の裏側に落下する
という偶発的事態を防ぐことができる。距離を30mm
以上としたのは、混入している長形状金属片の平均長さ
が約30mmであるため、その流れを安定化、整流化さ
せ、篩目の開口部13上を確実に通過させてしまうため
である。一般に、5mm以上13mm未満の再資源化骨
材は、流動床焼却炉の焼却灰を磁力選別し、誘導電流に
よるアルミ選別、篩による分級というプロセスを経て製
造される。本発明者の調査によればその中に0.3〜6
%程度の非鉄金属分(アルミニウム分と長形状金属片か
らなる)が含まれていることが分かった。
As shown in FIG. 4, the distance b between the openings 13 of adjacent sieves is preferably, for example, 30 mm or more. By keeping this distance, it is possible to prevent an accidental situation in which the elongated metal piece passes through the opening 13 of the sieve and falls to the back side of the inclined plate 11. Distance 30mm
The reason for the above is that the average length of the mixed long metal pieces is about 30 mm, so that the flow is stabilized and rectified, and the metal pieces pass through the opening 13 of the sieve without fail. It is. Generally, recycled aggregate having a size of 5 mm or more and less than 13 mm is manufactured through a process of magnetically sorting incinerated ash from a fluidized bed incinerator, sorting aluminum by an induced current, and classifying by a sieve. According to the research of the present inventor, 0.3 to 6
It was found that about% of non-ferrous metal (aluminum and long metal pieces) was contained.

【0031】また、以上は流動床焼却炉の焼却灰につい
て詳しく説明したが、流動床式ガス化炉の炉底残渣につ
いても全く同様な処理をすることができ、それにより磁
力選別し、誘導電流によるアルミ選別、篩による分級と
いうプロセスを経て、5mm以上13mm未満の再資源
化骨材を得ることができ、再資源化しない0.3mm未
満の炉底残渣も10%前後に止めることができる。
Although the incineration ash of the fluidized-bed incinerator has been described in detail above, the same treatment can be performed on the bottom residue of the fluidized-bed gasification furnace. Through a process of aluminum sorting by a sieve and classification by a sieve, a recycled aggregate of 5 mm or more and less than 13 mm can be obtained, and a furnace bottom residue of less than 0.3 mm that is not recycled can be reduced to about 10%.

【0032】[0032]

【実施例】以下、本発明の実施例を説明するが、本発明
はこの内容に制限されない。〔実施例1〕流動床焼却灰
について、図5に示す流れに沿って再資源化処理し、そ
の物質収支を調べた。結果を図5に示す。なお、図5中
の非鉄金属はアルミニウム分と長形状金属片からなるも
のである。図5から、粒径0.3mm未満の焼却灰の発
生量は9.5%と、全体中の1割以下であることが分か
った。結局、これだけを埋め立て処分対象にしても、最
終廃棄物の量は激減させることができることが分かっ
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments. Example 1 The fluidized bed incineration ash was recycled according to the flow shown in FIG. 5, and the material balance was examined. FIG. 5 shows the results. The non-ferrous metal in FIG. 5 is composed of aluminum and a long metal piece. From FIG. 5, it was found that the amount of incinerated ash having a particle size of less than 0.3 mm was 9.5%, which was 10% or less of the whole. In the end, it was found that the amount of final waste could be drastically reduced even if only these were landfilled.

【0033】〔参考実験1〕第1洗浄槽と第2洗浄槽と
を設け、粒径2.5mm以下の焼却灰を各洗浄槽に順に
導入した。第1洗浄槽にはpH12〜13程度のアルカ
リ性の洗浄液を導入し、洗浄後はそれをpH10〜11
で溢流させた。第2洗浄槽にはpH3程度の酸性の洗浄
液を導入し、pH6〜7程度でそれを溢流させた。洗浄
後の焼却灰を環境庁告示第46号に従って溶出試験を行
い、溶出する鉛、六価クロム量を、洗浄前後それぞれの
ものについて測定した。結果を第1表に示す。
[Reference Experiment 1] A first washing tank and a second washing tank were provided, and incineration ash having a particle size of 2.5 mm or less was introduced into each washing tank in order. An alkaline cleaning solution having a pH of about 12 to 13 is introduced into the first cleaning tank.
Spilled over. An acidic cleaning solution having a pH of about 3 was introduced into the second cleaning tank, and was overflowed at a pH of about 6 to 7. The incineration ash after washing was subjected to an elution test according to the notification of the Environment Agency No. 46, and the amounts of lead and hexavalent chromium eluted were measured before and after washing. The results are shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】洗浄後の0.3mm以上2.5mm未満の
再資源化骨材が水に接触して鉛や六価クロムを溶出する
割合は、土壌汚染に関わる環境基準値すなわち鉛0.0
1ppm、六価クロム0.05ppm以下であり、十分
な安全性が確保されていることが分かった。
The rate at which the recycled aggregate of 0.3 mm or more and less than 2.5 mm after washing comes in contact with water and elutes lead and hexavalent chromium is determined by the environmental standard value relating to soil contamination, ie, 0.0% lead.
It was 1 ppm and 0.05 ppm or less of hexavalent chromium, indicating that sufficient safety was ensured.

【0036】〔実施例2〕5mm〜13mm未満に集め
られた再資源化骨材を約10kgの3セット分を準備
し、うち長形状非鉄金属を5%(0.5kg)混入し、
下記の条件で焼却灰の分離ができるかを試験した。 (1)落下距離 300mm (2)助走区間 300mm (3)円形開口直径 13mm (4)円形開口ピッチ(円周−円周) 300mm (5)傾斜角度 30° (6)ふるい部長さ 1200mm 上記の条件でテストを3回行い、ふるい上とふるい下の
分について、それぞれ非鉄金属の混入状態を調べた。試
験結果を第2表に示す。この試験では、骨材中の5%の
長形状非鉄金属が、混入率を0.75%まで低減するこ
とができた。また、このことは骨材中の非鉄金属を約8
0%程度の割合で回収できたことになる。
Example 2 Three sets of approximately 10 kg of recycled aggregate collected to 5 mm to less than 13 mm were prepared, of which 5% (0.5 kg) of a long non-ferrous metal was mixed.
It was tested whether incineration ash could be separated under the following conditions. (1) Fall distance 300mm (2) Approach section 300mm (3) Circular opening diameter 13mm (4) Circular opening pitch (circumferential-circumferential) 300mm (5) Inclination angle 30 ° (6) Sieve length 1200mm The test was conducted three times, and the mixed state of the non-ferrous metal was examined for the upper and lower portions of the sieve. The test results are shown in Table 2. In this test, 5% of the long non-ferrous metal in the aggregate was able to reduce the contamination rate to 0.75%. This also means that non-ferrous metals in the aggregate
This means that it could be recovered at a rate of about 0%.

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【発明の効果】本発明は、流動床焼却炉の焼却灰及び/
又は流動床式ガス化炉の炉底残渣について、粗大物除去
プロセスと粗大鉄選別プロセスと粗選別プロセスと粗破
砕プロセスと磁性物除去プロセスとアルミニウム分除去
プロセスと分級プロセスと長形状金属片除去プロセスと
洗浄プロセスとからなることにより、鉄材と非鉄金属材
と骨材とに効率よく分類する。したがって、再資源とし
てそれぞれの利用価値を高めることができる。粒径2.
5mm未満の焼却灰からは重金属を洗浄除去することに
より、骨材全体の安全性を高くする。洗浄は全種類の骨
材を対象とするものではないから、流動床焼却灰のコス
トを高めず、経済性を損ねることもない。現在ほとんど
が埋め立て処分されている流動床焼却炉から排出される
焼却灰及び流動床式ガス化炉の炉底残渣を効率的に再資
源化し、最終処分場の負荷軽減、延命化を図ることがで
きる。
According to the present invention, the incineration ash of a fluidized bed incinerator and / or
Or, for the bottom residue of fluidized-bed gasification furnace, coarse material removal process, coarse iron sorting process, coarse sorting process, coarse crushing process, magnetic material removal process, aluminum content removal process, classification process, and long metal strip removal process And a cleaning process, so that they are efficiently classified into ferrous materials, non-ferrous metal materials, and aggregates. Therefore, the utility value of each can be enhanced as a resource. Particle size 2.
The safety of the aggregate as a whole is increased by washing and removing heavy metals from incineration ash less than 5 mm. Since cleaning is not intended for all types of aggregates, it does not increase the cost of fluidized bed incineration ash and does not impair economic efficiency. It is possible to efficiently recycle incineration ash discharged from fluidized bed incinerators, which are currently mostly landfilled, and the bottom residues of fluidized bed gasifiers to reduce the load on the final disposal site and extend the life of the plant. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】流動床焼却灰の再資源化フロー図である。FIG. 1 is a flowchart showing the recycling of fluidized bed incinerated ash.

【図2】本発明の分級プロセスにより、2.5mm径細
メッシュを通過した焼却灰の粒径分布を示すグラフであ
る。
FIG. 2 is a graph showing the particle size distribution of incinerated ash that has passed through a 2.5 mm diameter fine mesh by the classification process of the present invention.

【図3】長形状金属辺除去プロセスを行う傾斜板の側面
図である。
FIG. 3 is a side view of an inclined plate for performing a long metal side removing process.

【図4】傾斜板に設けた篩目の開口部の配置関係を示す
図である。
FIG. 4 is a diagram showing an arrangement relationship of openings of sieves provided on an inclined plate.

【図5】流動床焼却灰について再資源化処理した際の物
質収支の一例を示す図である。
FIG. 5 is a diagram showing an example of a material balance when a fluidized bed incinerated ash is subjected to a recycling process.

【符号の説明】[Explanation of symbols]

10 焼却灰 11 傾斜板 12 助走区間 13 篩目の開口部 14 焼却灰排出口 15 長形状金属片堆積部 16 焼却灰堆積部 Reference Signs List 10 Incinerated ash 11 Inclined plate 12 Approach section 13 Opening of sieve 14 Incinerated ash discharge port 15 Deposit of long metal pieces 16 Incinerated ash deposited section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 流動床焼却炉の焼却灰及び/又は流動床
式ガス化炉の炉底残渣よりなる炉灰から粗大物を除去す
る粗大物除去プロセスと、除去した粗大物から鉄分を選
別する粗大鉄選別プロセスと、粗大物除去プロセスの篩
下を粒径選別を行う粗選別プロセスと、粗選別プロセス
の篩上を粗破砕する粗破砕プロセスと、粗選別プロセス
の篩下および前記粗破砕物からなる該炉灰から磁力を利
用して鉄分の選別を行う磁性物除去プロセスと、磁性物
除去プロセス後の該炉灰から誘導電流を利用してアルミ
ニウム分を除去するアルミニウム分除去プロセスと、ア
ルミニウム分除去プロセス後の該炉灰を粒径別に分級す
る分級プロセスと、分級した該炉灰のうち5mm以上のも
のから混入する長形状金属片を除去する長形状金属片除
去プロセスと、分級した該炉灰のうち2.5mm未満のも
のから重金属を除去する洗浄プロセスとからなることを
特徴とする流動床焼却炉の焼却灰及び流動床式ガス化炉
の炉底残渣の再資源化方法。
1. A process for removing coarse substances from incineration ash of a fluidized-bed incinerator and / or furnace ash comprising a bottom residue of a fluidized-bed gasifier, and separating iron from the removed coarse substances. Coarse iron sorting process, coarse sorting process of performing particle size sorting under the sieve of the coarse material removal process, coarse crushing process of coarse crushing on the sieve of the coarse sorting process, sieving of the coarse sorting process and the coarse crushed material A magnetic material removal process for separating iron from the furnace ash using a magnetic force, an aluminum content removal process for removing aluminum from the furnace ash after the magnetic material removal process using an induced current, A classification process of classifying the furnace ash after the fraction removal process according to particle size, a long metal fragment removal process of removing a long metal fragment mixed from 5 mm or more of the classified furnace ash, and classification. And a cleaning process for removing heavy metals from less than 2.5 mm of the incinerator ash, wherein the incineration ash of a fluidized bed incinerator and the bottom residue of a fluidized bed gasifier are recycled. .
【請求項2】 前記長形状金属片除去プロセスが、スリ
ット状篩目の振動篩で行われることを特徴とする請求項
1記載の流動床焼却炉の焼却灰及び流動床式ガス化炉の
炉底残渣の再資源化方法。
2. The incinerated ash of a fluidized bed incinerator and the furnace of a fluidized bed gasifier according to claim 1, wherein the long metal strip removing process is performed by a vibrating sieve having slit-shaped sieves. How to recycle bottom residue.
【請求項3】 前記長形状金属片除去プロセスが、前記
分級した該炉灰を、中央部に複数の円形の開口を有する
30〜45度に傾斜させた傾斜板の斜面上部から下方に
滑走させ、長形状金属片以外の該炉灰は該開口から落下
させ、長形状金属片は該開口から落下せずにその上を通
過し該傾斜板の下端まで滑走させて分離することにより
行われることを特徴とする請求項1記載の流動床焼却炉
の焼却灰及び流動床式ガス化炉の炉底残渣の再資源化方
法。
3. The long metal strip removing process slides the classified furnace ash downward from an upper part of a slope of a sloped plate having a plurality of circular openings in the center and inclined at 30 to 45 degrees. The furnace ash other than the long metal pieces is dropped from the opening, and the long metal pieces are passed through the opening without falling from the opening, slid to the lower end of the inclined plate, and separated. The method for recycling incinerated ash of a fluidized-bed incinerator and bottom residue of a fluidized-bed gasifier according to claim 1.
JP10257004A 1997-09-11 1998-09-10 Method for reusing incineration ash of fluidized bed incinerator and furnace bottom residue of fluidized bed type gasifying furnace as resources Pending JPH11147085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10257004A JPH11147085A (en) 1997-09-11 1998-09-10 Method for reusing incineration ash of fluidized bed incinerator and furnace bottom residue of fluidized bed type gasifying furnace as resources

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-247023 1997-09-11
JP24702397 1997-09-11
JP10257004A JPH11147085A (en) 1997-09-11 1998-09-10 Method for reusing incineration ash of fluidized bed incinerator and furnace bottom residue of fluidized bed type gasifying furnace as resources

Publications (1)

Publication Number Publication Date
JPH11147085A true JPH11147085A (en) 1999-06-02

Family

ID=26538024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10257004A Pending JPH11147085A (en) 1997-09-11 1998-09-10 Method for reusing incineration ash of fluidized bed incinerator and furnace bottom residue of fluidized bed type gasifying furnace as resources

Country Status (1)

Country Link
JP (1) JPH11147085A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100393650B1 (en) * 2000-10-11 2003-08-09 광일토건환경 주식회사 Apparatus for separatar waste materials
JP2007260590A (en) * 2006-03-29 2007-10-11 Sumitomo Osaka Cement Co Ltd Desalination method for waste
JPWO2006098202A1 (en) * 2005-03-16 2008-08-21 太平洋セメント株式会社 Fired product
WO2012062131A1 (en) * 2010-11-12 2012-05-18 山东乾舜矿冶科技股份有限公司 Method of recovering and exploiting blast furnace dust from iron-smelting
JP2014226576A (en) * 2013-05-20 2014-12-08 高俊興業株式会社 Recovery system of regenerative crushed stone from waste
JPWO2016152363A1 (en) * 2015-03-26 2017-07-06 日立化成株式会社 CO2 concentration reduction device
CN108941152A (en) * 2018-06-12 2018-12-07 上海秦望环保材料有限公司 A kind of domestic waste incineration residue circulating water wash pretreating process
KR102105615B1 (en) * 2018-11-12 2020-04-29 주식회사 에스제이환경산업 Manufacturing method of civil engineering and building block using ashes

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100393650B1 (en) * 2000-10-11 2003-08-09 광일토건환경 주식회사 Apparatus for separatar waste materials
JPWO2006098202A1 (en) * 2005-03-16 2008-08-21 太平洋セメント株式会社 Fired product
US20080308012A1 (en) * 2005-03-16 2008-12-18 Taiheiyo Cement Corporation Burnt Product
JP2007260590A (en) * 2006-03-29 2007-10-11 Sumitomo Osaka Cement Co Ltd Desalination method for waste
WO2012062131A1 (en) * 2010-11-12 2012-05-18 山东乾舜矿冶科技股份有限公司 Method of recovering and exploiting blast furnace dust from iron-smelting
JP2014226576A (en) * 2013-05-20 2014-12-08 高俊興業株式会社 Recovery system of regenerative crushed stone from waste
JPWO2016152363A1 (en) * 2015-03-26 2017-07-06 日立化成株式会社 CO2 concentration reduction device
CN108941152A (en) * 2018-06-12 2018-12-07 上海秦望环保材料有限公司 A kind of domestic waste incineration residue circulating water wash pretreating process
KR102105615B1 (en) * 2018-11-12 2020-04-29 주식회사 에스제이환경산업 Manufacturing method of civil engineering and building block using ashes

Similar Documents

Publication Publication Date Title
Šyc et al. Metal recovery from incineration bottom ash: State-of-the-art and recent developments
US8517177B2 (en) Systems and methods for recovering materials from soil
Chimenos et al. Characterization of the bottom ash in municipal solid waste incinerator
CN103002998B (en) The purification method of soil
JP5481034B2 (en) Incineration ash treatment method and incineration ash treatment equipment
ES2904602T3 (en) Waste incineration ash processing
US5143304A (en) Process and device for processing residues from refuse incinerators
CA1284977C (en) Recovery of useful materials from refuse fuel ash
JP2009202089A (en) Reclamation treatment method and reclamation treatment system of earth and sand-waste mixture
JPH11147085A (en) Method for reusing incineration ash of fluidized bed incinerator and furnace bottom residue of fluidized bed type gasifying furnace as resources
AU744012B2 (en) Process for separating radioactive and hazardous metal contaminants from soils
KR100277280B1 (en) Method and system of recycling rubbish of construction
US5671688A (en) Process for treating slag from refuse incineration plants
JP2000301128A (en) Method and apparatus for recycling incineration ash of fluidized bed incinerator and incombustible material residue at bottom of gasification furnace of gasifying/ melting furnace
de Vries et al. ADR: a classifier for fine moist materials
JP2004130199A (en) Method and system for repairing heavy metal-polluted soil
JP6259349B2 (en) Waste recycling system and waste recycling method
US5183499A (en) Method of recovering elemental mercury from soils
JP2003073153A (en) Method of disposing incinerated ash
KR20120010459A (en) Method for purifying soil contaminated with heavy metal by fly ash around smelter facilities using wet classification and magnetic separation
JP3922676B2 (en) Incineration residue treatment method and method for producing aggregate and solidified material using incineration residue
KR20040029235A (en) A Recycling Aggregate Of A Construction Waste Manufacturing Method
EP3670472B1 (en) Method for treating a bottom ash coming from a waste incineration plant
KR100592901B1 (en) Furnace residue cleaning method
JPH0739857B2 (en) Incinerator ash melting treatment furnace slag method and device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051124