JPH11145256A - Thin type board detection device - Google Patents

Thin type board detection device

Info

Publication number
JPH11145256A
JPH11145256A JP21323298A JP21323298A JPH11145256A JP H11145256 A JPH11145256 A JP H11145256A JP 21323298 A JP21323298 A JP 21323298A JP 21323298 A JP21323298 A JP 21323298A JP H11145256 A JPH11145256 A JP H11145256A
Authority
JP
Japan
Prior art keywords
light
thin substrate
light receiving
lens
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21323298A
Other languages
Japanese (ja)
Inventor
Kazuo Kimata
一夫 木全
Teruyuki Matsui
照幸 松井
Katsuhiko Kato
克彦 加藤
Masanosuke Mizuno
征之助 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asyst Japan Inc
Original Assignee
Asyst Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asyst Japan Inc filed Critical Asyst Japan Inc
Priority to JP21323298A priority Critical patent/JPH11145256A/en
Publication of JPH11145256A publication Critical patent/JPH11145256A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To simplify a constitution of an irradiation means by generating fan-shaped beam flux which converges in the thickness direction of a thin type board and disperses in the width direction and irradiating an outer edge end face of a thin type board. SOLUTION: An irradiation means 11 projects light L1 of a light emitting source 11a and generates a fan-shaped beam flux L2 which converges in a thickness direction of a thin type board and disperses in a width direction (w) of a thin type board 2. Then, the beam flux L2 is cast on a thin type board outer edge end face 21 by a lens 11b (a columnar rod lens whose axis is arranged on a horizontal surface at right angles to an optical axis of a light emitting source 11a). A photosensitive means 12 consists of a plurality of photosensitive parts 12A, 12A arranged to hold the irradiation means 11 between. Each photosensitive part 12A converges reflection light L3 by a converging lens 12a and the converged light L4 is converted to an electric signal by a photosensitive lens 12b. Since the fan-shaped beam flux 12 is generated by one lens 11b and irradiates an outer edge face of a thin type board, a constitution of an irradiation means can be simplified.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体ウエハ又は
ガラス基板等薄型基板の有無を検出する薄型基板検出装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin substrate detecting apparatus for detecting the presence of a thin substrate such as a semiconductor wafer or a glass substrate.

【0002】[0002]

【従来の技術】搬送ロボットを用いて薄型基板を搬送す
るシステムの一例として、薄型基板の外縁端面を照射す
る照射手段と、薄型基板外縁端面の反射光を受光可能な
受光手段とを備え、受光手段における反射光の受光の有
無に基づいて薄型基板の有無を検出する薄型基板検出装
置を用い、この薄型基板検出装置によって搬送すべき薄
型基板の存在を確認した上で、搬送ロボットによる当該
薄型基板の搬送を実行するシステムが知られている。
2. Description of the Related Art As an example of a system for transporting a thin substrate by using a transport robot, there is provided irradiation means for irradiating the outer edge of the thin substrate, and light receiving means capable of receiving reflected light from the outer edge of the thin substrate. Using a thin substrate detection device that detects the presence or absence of a thin substrate based on whether or not reflected light is received by the means, and confirming the presence of the thin substrate to be conveyed by the thin substrate detection device, There is known a system for executing the transfer of a sheet.

【0003】ここで、従来の薄型基板検出装置は、照射
手段及び受光手段が二組からなり、一方の照射手段によ
って薄型基板外縁端面の所定位置を照射しこのときの薄
型基板外縁端面の反射光を一方の受光手段によって受光
するとともに、他方の照射手段によって薄型基板外縁端
面の上記所定位置とは異なる所定位置を照射しこのとき
の薄型基板外縁端面の反射光を他方の受光手段によって
受光するよう構成されている。
Here, the conventional thin substrate detecting device comprises two sets of irradiating means and light receiving means, and one of the irradiating means irradiates a predetermined position on the outer edge of the thin substrate and reflects the light reflected from the outer edge of the thin substrate at this time. Is received by one of the light receiving means, and the other irradiation means irradiates a predetermined position on the outer edge of the thin substrate different from the predetermined position, and the reflected light of the outer edge of the thin substrate at this time is received by the other light receiving means. It is configured.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
薄型基板検出装置によると、照射手段に、薄型基板外縁
端面の互いに異なる二つの位置を照射する機能を与えて
いることから、照射手段の構成が煩雑になり易いという
問題がある。
However, according to the conventional thin substrate detecting apparatus, the irradiating means is provided with a function of irradiating two different positions on the outer edge of the thin substrate. There is a problem that it is complicated.

【0005】本発明は、上記問題点にかんがみ、照射手
段の構成の簡素化を図ることができる薄型基板検出装置
を提供することを主な目的とする。
SUMMARY OF THE INVENTION In view of the above problems, it is a main object of the present invention to provide a thin substrate detecting device capable of simplifying the structure of an irradiation means.

【0006】[0006]

【課題を解決するための手段】本発明の薄型基板検出装
置は、薄型基板の外縁端面を照射する照射手段と、前記
薄型基板外縁端面の反射光を受光可能な受光手段とを備
え、前記受光手段における前記反射光の受光の有無に基
づいて薄型基板の有無を検出する薄型基板検出装置にお
いて、前記照射手段は、発光源と、前記発光源の光が入
射され、前記薄型基板の厚さ方向に集束しかつ前記薄型
基板の幅方向に発散する扇形状の光線束を生成し、この
光線束によって前記薄型基板外縁端面を照射するレンズ
とを備え、前記受光手段は、前記照射手段を挟んで配置
される複数の受光部からなることを特徴とする。
A thin substrate detecting apparatus according to the present invention comprises: irradiating means for irradiating an outer edge of a thin substrate; and light receiving means capable of receiving reflected light from the outer edge of the thin substrate. In a thin substrate detecting apparatus for detecting the presence or absence of a thin substrate based on whether or not the reflected light is received by the means, the irradiating means includes a light emitting source, and light from the light emitting source is incident, and a thickness direction of the thin substrate. And a lens for irradiating the outer edge of the thin substrate with the light beam, and generating a fan-shaped light beam that diverges in the width direction of the thin substrate, and the light receiving unit sandwiches the irradiation unit. It is characterized by comprising a plurality of light receiving units arranged.

【0007】ここで、前記薄型基板が、オリフラ又はノ
ッチを有する円板状の半導体ウエハである場合、前記照
射手段は、前記半導体ウエハに対し、その光軸が該半導
体ウエハの中心位置を通らないよう配置され、前記受光
手段の複数の受光部のうち両端の受光部は、前記半導体
ウエハのオリフラの一端が前記照射手段の光軸上に位置
する場合であっても、反射光の受光が可能な範囲に配置
されることが好ましい。
Here, when the thin substrate is a disk-shaped semiconductor wafer having an orientation flat or a notch, the irradiating means does not pass the optical axis of the semiconductor wafer through the center position of the semiconductor wafer. The light receiving sections at both ends of the plurality of light receiving sections of the light receiving section can receive reflected light even when one end of the orientation flat of the semiconductor wafer is positioned on the optical axis of the irradiation section. It is preferable to be arranged in a proper range.

【0008】また、当該薄型基板検出装置は、搬送ロボ
ットに設けられることが望ましい。
Further, it is desirable that the thin substrate detecting device is provided in a transfer robot.

【0009】[0009]

【発明の作用効果】本発明の薄型基板検出装置による
と、一つのレンズによって扇形状の光線束が生成されこ
の光線束が薄型基板外縁端面を照射するようになるた
め、照射手段の構成の簡素化を図ることができる。ま
た、薄型基板外縁端面を照射する光線束が薄型基板の幅
方向に広がりを有しているものであるため、薄型基板外
縁端面の反射光の広がり角度が大きく、このため、薄型
基板が基準位置から比較的大きくズレた位置にセットさ
れている場合であっても、受光手段が反射光を十分に受
光し得るようになり、検出率が増大する。さらに、薄型
基板外縁端面を照射する光線束が薄型基板の厚さ方向に
集束しているため、厚さ方向に隣接する他の薄型基板の
外縁端面を誤って照射し薄型基板を誤検出する不具合を
防止することができる。
According to the thin substrate detecting apparatus of the present invention, a fan-shaped light beam is generated by one lens, and this light beam irradiates the outer edge of the thin substrate. Can be achieved. In addition, since the light beam that irradiates the outer edge of the thin substrate has a width in the width direction of the thin substrate, the angle of spread of the reflected light at the outer edge of the thin substrate is large. Therefore, even when the light receiving means is set at a position which is relatively large, the light receiving means can sufficiently receive the reflected light, and the detection rate increases. Furthermore, since the light beam irradiating the outer edge of the thin substrate is converged in the thickness direction of the thin substrate, the thin substrate is erroneously detected by irradiating the outer edge of another thin substrate adjacent in the thickness direction by mistake. Can be prevented.

【0010】また、薄型基板が、オリフラ又はノッチを
有する円板状の半導体ウエハである場合、照射手段を、
半導体ウエハに対し、その光軸が該半導体ウエハの中心
位置を通らないよう配置させる。これにより、照射手段
の光軸が半導体ウエハの中心位置を通るよう構成した場
合には、照射手段から発せられた光の多くが半導体ウエ
ハの外縁端面で反射されて照射手段に戻り受光手段の受
光量が減少するため検出率が低下する不具合が生じる
が、上記のように照射手段の光軸が半導体ウエハの中心
位置を通らないよう構成することにより、受光手段の受
光量が増大し、検出率の向上を図ることができる。特
に、半導体ウエハの外縁端面がAl膜又はSiO2 膜等
でコーティングされ鏡面に近い状態にある場合に有効で
ある。
In the case where the thin substrate is a disc-shaped semiconductor wafer having an orientation flat or a notch, the irradiation means may be
The semiconductor wafer is arranged so that its optical axis does not pass through the center position of the semiconductor wafer. Thus, when the optical axis of the irradiation unit passes through the center position of the semiconductor wafer, much of the light emitted from the irradiation unit is reflected by the outer edge of the semiconductor wafer, returns to the irradiation unit, and is received by the light receiving unit. Although the detection rate decreases due to the decrease in the amount, the light receiving amount of the light receiving means increases due to the configuration in which the optical axis of the irradiation means does not pass through the center position of the semiconductor wafer as described above. Can be improved. This is particularly effective when the outer edge of the semiconductor wafer is coated with an Al film or a SiO 2 film or the like and is close to a mirror surface.

【0011】また、受光手段の複数の受光部のうち両端
の受光部を、半導体ウエハのオリフラの一端が照射手段
の光軸上に位置する場合、換言すると、オリフラによっ
て受光手段の受光量が最小となり得る場合であっても、
反射光の受光が可能な範囲に配置させることにより、薄
型基板検出装置に対する半導体ウエハの位置関係がいか
なる場合、例えば、半導体ウエハと薄型基板検出装置と
の間の距離(ワーキングディスタンスW・D)やオリフ
ラの位置が一定でなくても、反射光を受光可能なため半
導体ウエハの有無の検出率を向上させることができる。
When the light receiving portions at both ends of the plurality of light receiving portions of the light receiving portion are positioned at one end of the orientation flat of the semiconductor wafer on the optical axis of the irradiation portion, in other words, the light receiving amount of the light receiving portion is minimized by the orientation flat. Even if it can be
By arranging the semiconductor wafer in a range where the reflected light can be received, the positional relationship of the semiconductor wafer with respect to the thin substrate detection device, for example, the distance (working distance W · D) between the semiconductor wafer and the thin substrate detection device, Even if the position of the orientation flat is not constant, reflected light can be received, so that the detection rate of the presence or absence of the semiconductor wafer can be improved.

【0012】また、当該薄型基板検出装置を搬送ロボッ
トに設けることにより、当該薄型基板検出装置を例えば
半導体ウエハを格納するカセット毎に設ける場合と比べ
次のような効果が生じる。すなわち、薄型基板検出装置
を半導体ウエハを格納するカセット毎に設ける場合に
は、カセットの個数に応じた数の薄型基板検出装置が必
要となり、設置スペースが拡大し、また、搬送すべき半
導体ウエハの位置に応じて薄型基板検出装置を移動させ
るための専用の駆動機構が必要となるが、当該薄型基板
検出装置を搬送ロボットに設けた場合には、当該薄型基
板検出装置を各カセットに対し共通に使用できることか
ら一つの薄型基板検出装置で足り、設置スペースが縮小
し、また、薄型基板検出装置を移動させるために搬送ロ
ボットの駆動機構を利用することができる。
Further, by providing the thin substrate detecting device in the transfer robot, the following effects are produced as compared with the case where the thin substrate detecting device is provided for each cassette for storing semiconductor wafers, for example. In other words, when a thin substrate detecting device is provided for each cassette for storing semiconductor wafers, the number of thin substrate detecting devices corresponding to the number of cassettes is required, and the installation space is increased, and the semiconductor wafer to be transported is also required. Although a dedicated drive mechanism for moving the thin substrate detection device according to the position is required, when the thin substrate detection device is provided in a transport robot, the thin substrate detection device is commonly used for each cassette. Since it can be used, one thin substrate detection device is sufficient, the installation space is reduced, and the drive mechanism of the transfer robot can be used to move the thin substrate detection device.

【0013】[0013]

【発明の実施の形態】以下、本発明の一実施形態を図面
に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings.

【0014】図1は、一実施形態に係る薄型基板検出装
置の基本的な構成を示す平面図、図2は、照射手段を示
す側面図である。
FIG. 1 is a plan view showing a basic configuration of a thin substrate detecting apparatus according to one embodiment, and FIG. 2 is a side view showing an irradiation unit.

【0015】図1及び図2において、薄型基板検出装置
1は、薄型基板2(本実施例では半導体ウエハである
が、ガラス基板であってもよい)の外縁端面21を照射
する照射手段11と、薄型基板外縁端面21の反射光を
受光可能な受光手段12とを備え、受光手段12におけ
る反射光の受光の有無に基づいて薄型基板2の有無を検
出するものである。
In FIG. 1 and FIG. 2, a thin substrate detecting device 1 includes an irradiating means 11 for irradiating an outer edge 21 of a thin substrate 2 (in this embodiment, a semiconductor wafer, but may be a glass substrate). And a light receiving means 12 capable of receiving the reflected light from the thin substrate outer edge 21. The presence or absence of the thin substrate 2 is detected based on whether or not the light receiving means 12 receives the reflected light.

【0016】照射手段11は、発光源11a(本実施例
では半導体レーザー)と、発光源11aの光L1が入射
され、薄型基板2の厚さ方向(図面に対し垂直な方向)
に集束しかつ薄型基板2の幅方向wに発散する扇形状の
光線束L2を生成し、この光線束L2によって薄型基板
外縁端面21を照射するレンズ11b(本実施例では軸
線が水平面上かつ発光源11aの光L1の光軸に対し直
交するよう配された円柱形状のロッドレンズ)とを備え
る。また、照射手段11は、不要な光をカットしノイズ
光を除去するための四角形状の絞り11cを備える。
The irradiating means 11 receives a light source 11a (semiconductor laser in this embodiment) and light L1 from the light source 11a, and receives light L1 from the light source 11a in the thickness direction of the thin substrate 2 (perpendicular to the drawing).
And a lens 11b that irradiates the thin substrate outer edge 21 with the light beam L2 (in this embodiment, the axis is horizontal and the light is emitted). (A cylindrical rod lens arranged perpendicular to the optical axis of the light L1 of the light source 11a). The irradiating means 11 includes a rectangular stop 11c for cutting unnecessary light and removing noise light.

【0017】受光手段12は、照射手段11を挟んで配
置される複数の受光部12A、12Aからなり、各受光
部12Aは、反射光L3を集光する集光レンズ12aと
集光レンズ12aによって集光された光L4を受光し電
気信号に変換する受光素子12bとにより構成される。
また、各受光部12Aは、半導体レーザー11aのレー
ザー波長と同一波長域の光のみを透過し外光を除去する
ためのフィルター12cを備える。
The light receiving means 12 comprises a plurality of light receiving sections 12A, 12A arranged with the irradiation means 11 interposed therebetween. Each light receiving section 12A is formed by a condenser lens 12a for condensing the reflected light L3 and a condenser lens 12a. A light receiving element 12b that receives the collected light L4 and converts it into an electric signal.
Each light receiving unit 12A includes a filter 12c for transmitting only light in the same wavelength region as the laser wavelength of the semiconductor laser 11a and removing external light.

【0018】本実施形態に係る薄型基板検出装置1によ
ると、一つのレンズ11bによって扇形状の光線束L2
が生成されこの光線束L2が薄型基板外縁端面21を照
射するようになるため、照射手段11の構成の簡素化を
図ることができる。また、薄型基板外縁端面21を照射
する光線束L2が薄型基板2の幅方向wに広がりを有し
ているものであるため、薄型基板外縁端面21の反射光
L3の広がり角度が大きく、このため、薄型基板2が基
準位置(図1において実線で示す位置)から比較的大き
くズレた位置(例えば図1において二点鎖線で示す位
置)にセットされている場合であっても、受光手段12
が反射光L3を十分に受光し得るようになり、検出率が
増大する。さらに、薄型基板外縁端面21を照射する光
線束L2が薄型基板2の厚さ方向tに集束しているた
め、厚さ方向tに隣接する他の薄型基板の外縁端面を誤
って照射し薄型基板を誤検出する不具合を防止すること
ができる。
According to the thin substrate detecting apparatus 1 according to the present embodiment, a fan-shaped light beam L2 is formed by one lens 11b.
Is generated, and this light beam L2 irradiates the thin substrate outer edge 21, so that the configuration of the irradiating means 11 can be simplified. Further, since the light beam L2 irradiating the thin substrate outer edge 21 has a spread in the width direction w of the thin substrate 2, the spread angle of the reflected light L3 on the thin substrate outer edge 21 is large, and therefore, Even if the thin substrate 2 is set at a position (for example, a position shown by a two-dot chain line in FIG. 1) which is relatively largely deviated from a reference position (a position shown by a solid line in FIG. 1),
Can sufficiently receive the reflected light L3, and the detection rate increases. Further, since the light beam L2 irradiating the outer edge 21 of the thin substrate is converged in the thickness direction t of the thin substrate 2, the outer edge of another thin substrate adjacent in the thickness direction t is erroneously illuminated. Can be prevented from being erroneously detected.

【0019】また、当該薄型基板検出装置1を搬送ロボ
ット(図示せず)に設けるようにすると、当該薄型基板
検出装置1を例えば半導体ウエハを格納するカセット毎
に設ける場合と比べ次のような効果が生じる。すなわ
ち、半導体ウエハを格納するカセット毎に薄型基板検出
装置1を設ける場合には、カセットの個数に応じた数の
薄型基板検出装置1が必要となり、設置スペースが拡大
し、また、搬送すべき半導体ウエハの位置に応じて薄型
基板検出装置1を移動させるための専用の駆動機構が必
要となるが、当該薄型基板検出装置1を搬送ロボットに
設けた場合には、当該薄型基板検出装置1を各カセット
に対し共通に使用できることから一つの薄型基板検出装
置1で足り、設置スペースが縮小され、また、薄型基板
検出装置1を移動させるために搬送ロボットの駆動機構
を利用することができる。
Further, when the thin substrate detecting device 1 is provided on a transfer robot (not shown), the following effects are obtained as compared with the case where the thin substrate detecting device 1 is provided for each cassette for storing semiconductor wafers, for example. Occurs. That is, in the case where the thin substrate detecting devices 1 are provided for each cassette for storing semiconductor wafers, the number of thin substrate detecting devices 1 corresponding to the number of cassettes is required, the installation space is enlarged, and the semiconductor to be transported is increased. Although a dedicated drive mechanism for moving the thin substrate detecting device 1 according to the position of the wafer is required, when the thin substrate detecting device 1 is provided in a transfer robot, Since a single thin substrate detection device 1 is sufficient because it can be used in common for a cassette, the installation space is reduced, and a drive mechanism of a transfer robot can be used to move the thin substrate detection device 1.

【0020】なお、上述した実施形態では、レンズ11
bとして円柱形状をしたロッドレンズを用いたが、断面
半円形状の柱状レンズなど、上記扇形状の光線束L2を
生成可能なレンズであればその形状は円柱形状に限定さ
れるものではない。
In the above embodiment, the lens 11
Although a rod lens having a cylindrical shape is used as b, the shape is not limited to a cylindrical shape as long as the lens can generate the above-mentioned fan-shaped light beam L2, such as a columnar lens having a semicircular cross section.

【0021】図3は、本発明の他の実施形態に係る薄型
基板検出装置の平面図を示す。
FIG. 3 is a plan view of a thin substrate detecting apparatus according to another embodiment of the present invention.

【0022】図3において、薄型基板検出装置1は、ハ
ウジング100に照射手段11及び受光手段12を配設
して構成される。
In FIG. 3, the thin substrate detecting device 1 is configured by arranging an irradiating unit 11 and a light receiving unit 12 on a housing 100.

【0023】照射手段11は、図1に示した照射手段1
1と同様、発光源11a(半導体レーザー)と、発光源
11aの前方に配置され、発光源11aの光が入射さ
れ、半導体ウエハ2の厚さ方向(図面に対し垂直な方
向)に集束しかつ半導体ウエハ2の幅方向に発散する扇
形状の光線束を生成し、この光線束によって半導体ウエ
ハ外縁端面21を照射するロッドレンズ、シリンドリカ
ルレンズ又はトロイダルレンズなど特殊なレンズ11b
とを備える。また、照射手段11は、不要な光をカット
しノイズ光を除去するための四角形状の絞り11cを備
える。
The irradiating means 11 includes the irradiating means 1 shown in FIG.
Similarly to 1, the light source 11a (semiconductor laser) is disposed in front of the light source 11a, the light of the light source 11a is incident thereon, and the light is focused in the thickness direction of the semiconductor wafer 2 (the direction perpendicular to the drawing); A special lens 11b such as a rod lens, a cylindrical lens, or a toroidal lens that generates a fan-shaped light beam diverging in the width direction of the semiconductor wafer 2 and irradiates the semiconductor wafer outer edge 21 with the light beam.
And The irradiating means 11 includes a rectangular stop 11c for cutting unnecessary light and removing noise light.

【0024】照射手段11は、図3に示すように、扇形
状の光線束の光軸L2O が半導体ウエハ2の中心位置O
を通らないよう配置されている。これにより、照射手段
11の光軸L2O が半導体ウエハ2の中心位置Oを通る
よう構成した場合には、照射手段11から発せられた光
の多くが半導体ウエハ2の外縁端面21で反射されて照
射手段11に戻り受光手段12A、12B、12C、1
2D、12Eの受光量が減少するため検出率が低下する
不具合が生じるが、上記のように照射手段11の光軸L
O が半導体ウエハ2の中心位置Oを通らないよう構成
することにより、受光手段12A、12B、12C、1
2D、12Eの受光量が増大し、検出率の向上を図るこ
とができる。特に、半導体ウエハ2の外縁端面21がA
l膜又はSiO2 膜等でコーティングされ鏡面に近い状
態にある場合に有効となる。
As shown in FIG. 3, the irradiating means 11 adjusts the optical axis L 2 O of the fan-shaped light beam to the center position O of the semiconductor wafer 2.
It is arranged not to pass through. Accordingly, when the optical axis L2 O illumination means 11 is configured so as to pass through the center position O of the semiconductor wafer 2, much of the light emitted from the illumination means 11 is reflected by the outer end face 21 of the semiconductor wafer 2 Returning to the irradiation means 11, the light receiving means 12A, 12B, 12C, 1
Although the detection rate decreases due to the decrease in the amount of light received by the 2D and 12E, the optical axis L of the irradiation unit 11 is reduced as described above.
By configuring so that 2 O does not pass through the center position O of the semiconductor wafer 2, the light receiving means 12A, 12B, 12C, 1
The amount of received light of 2D and 12E increases, and the detection rate can be improved. In particular, the outer edge 21 of the semiconductor wafer 2
This is effective when the film is coated with an L film or a SiO 2 film or the like and is in a state close to a mirror surface.

【0025】受光手段12は、照射手段11を挟んで配
置される複数の受光部12A、12B、12C、12
D、12Eからなり、各受光部12A、12B、12
C、12D、12Eは、反射光L3を集光する集光レン
ズ12aと集光レンズ12aによって集光された光L4
を受光し電気信号に変換する受光素子12bとにより構
成される。また、各受光部12A、12B、12C、1
2D、12Eは、必要に応じて、半導体レーザー11a
のレーザー波長と同一波長域の光のみを透過し外光を除
去するためのフィルター12c(図1)を備える。
The light receiving means 12 includes a plurality of light receiving sections 12A, 12B, 12C, 12
D, 12E, and each light receiving section 12A, 12B, 12
C, 12D and 12E are a condenser lens 12a for condensing the reflected light L3 and light L4 condensed by the condenser lens 12a.
And a light receiving element 12b that receives the light and converts it into an electric signal. Further, each of the light receiving sections 12A, 12B, 12C, 1
2D and 12E are provided with the semiconductor laser 11a as required.
And a filter 12c (FIG. 1) for transmitting only light in the same wavelength region as the laser wavelength and removing external light.

【0026】ここで、受光手段12の複数の受光部12
A、12B、12C、12D、12Eのうち両端の受光
部12A、12Eは、半導体ウエハ2のオリフラ22の
一端22aが照射手段11の光軸L2O 上に位置する場
合であっても、反射光L3の受光が可能な範囲に配置さ
れる。
Here, the plurality of light receiving sections 12 of the light receiving means 12
A, 12B, 12C, 12D, both ends of the light receiving portion 12A of 12E, 12E, even if the one end 22a of the orientation flat 22 of the semiconductor wafer 2 is positioned on the optical axis L2 O illumination means 11, the reflected light It is arranged in a range where light reception of L3 is possible.

【0027】すなわち、図4に実線で示すように、一方
の受光部12Aは、半導体ウエハ2のオリフラ22の一
端22aが照射手段11の光軸L2O 上に位置すると
き、該オリフラ22の端部22aから垂直に伸ばした仮
想線VLと受光部12Aの光軸L3とのなす角度θ1
が、該仮想線VLと照射手段11の光軸L2O とのなす
角度θ2 と一致するよう配置され、また、他方の受光部
12Eは、図4に破線で示すように、半導体ウエハ2の
オリフラ22の一端22bが照射手段11の光軸L2O
上に位置するとき、該オリフラ22の端部22bから垂
直に伸ばした仮想線VLと受光部12Eの光軸L3との
なす角度θ1 ’が、該仮想線VLと照射手段11の光軸
L2O とのなす角度θ2 ’と一致するよう配置される。
[0027] That is, as shown by the solid line in FIG. 4, one of the light receiving unit 12A, when one end 22a of the orientation flat 22 of the semiconductor wafer 2 is positioned on the optical axis L2 O illumination means 11, the edge of the orientation flat 22 Angle θ 1 between the virtual line VL extending vertically from the portion 22a and the optical axis L3 of the light receiving portion 12A.
Are arranged so as to coincide with the angle θ 2 between the virtual line VL and the optical axis L 2 O of the irradiation unit 11, and the other light receiving unit 12 E is disposed on the semiconductor wafer 2 as shown by a broken line in FIG. One end 22b of the orientation flat 22 is connected to the optical axis L2 O of the irradiation unit 11.
When positioned above, the angle θ 1 ′ between the virtual line VL extending vertically from the end 22b of the orientation flat 22 and the optical axis L3 of the light receiving unit 12E is equal to the virtual line VL and the optical axis L2 of the irradiation unit 11. It is arranged so as to match the angle θ 2 ′ with O.

【0028】このように両端の受光部12A、12Eを
配置させることにより、半導体ウエハ2のオリフラ22
の一端22a、22bが照射手段11の光軸L2O 上に
位置する場合、換言すると、オリフラ22によって受光
手段12A、12B、12C、12D、12E全体とし
ての受光量が最小となり得る場合であっても、半導体ウ
エハ2の有無を検出可能となり、また、オリフラ22の
端部22a、22bが照射手段11の光軸L2O 上に位
置していない場合には、両端の受光部12A、12Eの
内側に位置する他の受光部12B、12C、12Dの受
光量が増大するため、これらの受光部12B、12C、
12Dによって半導体ウエハ2の有無を検出できる。
By arranging the light receiving portions 12A and 12E at both ends in this manner, the orientation flat 22 of the semiconductor wafer 2 is formed.
If the end 22a, 22b is positioned on the optical axis L2 O illumination means 11, in other words, in a case where the light receiving unit 12A by orientation flat 22, 12B, 12C, 12D, the received light amount of the entire 12E can be minimized also, it is possible to detect the presence or absence of the semiconductor wafer 2, and when the end portion 22a of the orientation flat 22, 22b is not located on the optical axis L2 O of the illumination means 11, the light receiving portion 12A at both ends, inner 12E Since the amount of light received by the other light receiving units 12B, 12C, and 12D located at
The presence or absence of the semiconductor wafer 2 can be detected by 12D.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る薄型基板検出装置の
基本的な構成を示す平面図である。
FIG. 1 is a plan view showing a basic configuration of a thin substrate detection device according to an embodiment of the present invention.

【図2】照射手段の構成を示す側面図である。FIG. 2 is a side view illustrating a configuration of an irradiation unit.

【図3】本発明の他の実施形態に係る薄型基板検出装置
の平面図である。
FIG. 3 is a plan view of a thin substrate detection device according to another embodiment of the present invention.

【図4】同装置において、半導体ウエハと両端の受光部
との位置関係を説明するための説明図である。
FIG. 4 is an explanatory diagram for explaining a positional relationship between a semiconductor wafer and light receiving units at both ends in the same apparatus.

【符号の説明】[Explanation of symbols]

1 薄型基板検出装置 11 照射手段 11a 発光源(半導体レーザー) 11b レンズ 11c 絞り 12 受光手段 12A、12B、12C、12D、12E 受光部 12a 集光レンズ 12b 受光素子 12c フィルタ 2 薄型基板(半導体ウエハ又はガラス基板) 21 外縁端面 22 オリフラ 22a、22b 端部 L1 発光源の光 L2 扇形状の光線束 L2O 光軸 L3 反射光 L4 集光レンズにより集光された光 O 半導体ウエハの中心位置 VL 仮想線 θ1 、θ1 ’ オリフラの端部から垂直に伸ばした仮
想線と受光部の光軸とのなす角度 θ2 、θ2 ’ 仮想線と照射手段の光軸とのなす角度 w 薄型基板の幅方向 t 薄型基板の厚さ方向
DESCRIPTION OF SYMBOLS 1 Thin substrate detection device 11 Irradiation means 11a Light emitting source (semiconductor laser) 11b Lens 11c Aperture 12 Light receiving means 12A, 12B, 12C, 12D, 12E Light receiving part 12a Condensing lens 12b Light receiving element 12c Filter 2 Thin substrate (semiconductor wafer or glass) Substrate) 21 Outer edge end face 22 Orientation flat 22a, 22b End L1 Light from light source L2 Fan-shaped light beam L2 O Optical axis L3 Reflected light L4 Light condensed by condensing lens O Center position of semiconductor wafer VL Virtual line θ 1 , θ 1 'The angle between the virtual line extending vertically from the end of the orientation flat and the optical axis of the light-receiving unit θ 2 , θ 2 ' The angle between the virtual line and the optical axis of the irradiation means w Width direction of the thin substrate t Thickness direction of thin substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水野 征之助 愛知県尾西市北今字定納28番地 株式会社 メックス内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Seinosuke Mizuno 28, Kitaimaji Setona, Onishi-shi, Aichi Pref.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 薄型基板の外縁端面を照射する照射手段
と、前記薄型基板外縁端面の反射光を受光可能な受光手
段とを備え、前記受光手段における前記反射光の受光の
有無に基づいて薄型基板の有無を検出する薄型基板検出
装置において、 前記照射手段は、発光源と、前記発光源の光が入射さ
れ、前記薄型基板の厚さ方向に集束しかつ前記薄型基板
の幅方向に発散する扇形状の光線束を生成し、この光線
束によって前記薄型基板外縁端面を照射するレンズとを
備え、 前記受光手段は、前記照射手段を挟んで配置される複数
の受光部からなることを特徴とする薄型基板検出装置。
1. An irradiating means for irradiating an outer edge of a thin substrate, and a light receiving means capable of receiving reflected light from the outer edge of the thin substrate, wherein the light is thinned based on whether or not the reflected light is received by the light receiving means. In the thin substrate detecting device for detecting the presence or absence of a substrate, the irradiating means includes a light emitting source, and light from the light emitting source is incident, converges in a thickness direction of the thin substrate, and diverges in a width direction of the thin substrate. A lens that generates a fan-shaped light beam and irradiates the thin substrate outer edge with the light beam; wherein the light receiving unit includes a plurality of light receiving units arranged with the irradiation unit interposed therebetween. Thin substrate detection device.
【請求項2】 請求項1において、 前記薄型基板は、オリフラ又はノッチを有する円板状の
半導体ウエハであり、 前記照射手段は、前記半導体ウエハに対し、その光軸が
該半導体ウエハの中心位置を通らないよう配置され、 前記受光手段の複数の受光部のうち両端の受光部は、前
記半導体ウエハのオリフラの一端が前記照射手段の光軸
上に位置する場合であっても、反射光の受光が可能な範
囲に配置されることを特徴とする薄型基板検出装置。
2. The semiconductor wafer according to claim 1, wherein the thin substrate is a disc-shaped semiconductor wafer having an orientation flat or a notch, and the irradiating means is arranged such that an optical axis of the thin wafer is positioned at a center of the semiconductor wafer. The light receiving sections at both ends of the plurality of light receiving sections of the light receiving section, even when one end of the orientation flat of the semiconductor wafer is positioned on the optical axis of the irradiation section, A thin substrate detection device which is arranged in a range where light can be received.
【請求項3】 請求項2において、 前記受光手段の複数の受光部のうち両端の受光部は、前
記半導体ウエハのオリフラの一端が前記照射手段の光軸
上に位置するとき、該オリフラの端部から垂直に伸ばし
た仮想線と受光部の光軸とのなす角度が、該仮想線と前
記照射手段の光軸とのなす角度と一致するよう配置され
ることを特徴とする薄型基板検出装置。
3. The light receiving unit at both ends of the plurality of light receiving units of the light receiving unit, wherein one end of the orientation flat of the semiconductor wafer is located on the optical axis of the irradiation unit. A thin substrate detection device, wherein an angle formed between an imaginary line extending perpendicularly from the portion and an optical axis of the light receiving section matches the angle formed between the imaginary line and the optical axis of the irradiation means. .
【請求項4】 請求項1、請求項2、請求項3のいずれ
かにおいて、当該薄型基板検出装置は搬送ロボットに設
けられることを特徴とする薄型基板検出装置。
4. The thin substrate detecting device according to claim 1, wherein the thin substrate detecting device is provided in a transfer robot.
【請求項5】 請求項1、請求項2、請求項3、請求項
4のいずれかにおいて、前記発光源は半導体レーザーに
より構成され、前記レンズはロッドレンズにより構成さ
れ、前記各受光部は、前記反射光を集光する集光レンズ
と前記集光レンズによって集光された光を受光し電気信
号に変換する受光素子とにより構成されることを特徴と
する薄型基板検出装置。
5. The light-emitting device according to claim 1, wherein the light-emitting source is configured by a semiconductor laser, the lens is configured by a rod lens, and each of the light-receiving units is A thin substrate detection device comprising: a condenser lens for condensing the reflected light; and a light receiving element for receiving the light condensed by the condenser lens and converting the light into an electric signal.
【請求項6】 請求項5において、前記受光部は、前記
半導体レーザーのレーザー波長と同一波長域の光のみを
透過可能なフィルターを備えることを特徴とする薄型基
板検出装置。
6. The thin substrate detecting device according to claim 5, wherein the light receiving unit includes a filter that can transmit only light in the same wavelength region as the laser wavelength of the semiconductor laser.
【請求項7】 請求項5又は請求項6において、前記照
射手段は、四角形状の絞りを備えることを特徴とする薄
型基板検出装置。
7. The thin substrate detecting device according to claim 5, wherein the irradiating means includes a rectangular stop.
JP21323298A 1997-09-08 1998-07-28 Thin type board detection device Pending JPH11145256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21323298A JPH11145256A (en) 1997-09-08 1998-07-28 Thin type board detection device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24299897 1997-09-08
JP9-242998 1997-09-08
JP21323298A JPH11145256A (en) 1997-09-08 1998-07-28 Thin type board detection device

Publications (1)

Publication Number Publication Date
JPH11145256A true JPH11145256A (en) 1999-05-28

Family

ID=26519674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21323298A Pending JPH11145256A (en) 1997-09-08 1998-07-28 Thin type board detection device

Country Status (1)

Country Link
JP (1) JPH11145256A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130437A (en) * 1998-04-24 2000-10-10 Hama Sensors, Inc. Sensor and detection system having wide diverging beam optics
US6346988B1 (en) 1997-08-01 2002-02-12 Hama Sensors, Inc. Laser position array optical measuring system and method
JP2002098586A (en) * 2000-09-27 2002-04-05 Sunx Ltd Reflective sensor
US6423978B1 (en) 1999-07-16 2002-07-23 Sunx Limited System for detecting disk-shaped object such as semiconductor wafer or magnetic disk

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346988B1 (en) 1997-08-01 2002-02-12 Hama Sensors, Inc. Laser position array optical measuring system and method
US6130437A (en) * 1998-04-24 2000-10-10 Hama Sensors, Inc. Sensor and detection system having wide diverging beam optics
US6392247B1 (en) 1998-04-24 2002-05-21 Hama Sensors, Inc. Sensor and detection system having wide diverging beam optics
US6423978B1 (en) 1999-07-16 2002-07-23 Sunx Limited System for detecting disk-shaped object such as semiconductor wafer or magnetic disk
JP2002098586A (en) * 2000-09-27 2002-04-05 Sunx Ltd Reflective sensor

Similar Documents

Publication Publication Date Title
JP2012154806A (en) Laser radar and photoreceiver
US6384944B1 (en) Integral transmitter-receiver optical communication apparatus
US6392247B1 (en) Sensor and detection system having wide diverging beam optics
JP4476599B2 (en) Condensing optical system
JPH11145256A (en) Thin type board detection device
US5523844A (en) Displacement detection apparatus
JP4127579B2 (en) Light wave distance meter
JPH08194061A (en) Optical radar equipment and adjusting method of optical radar equipment
JP2003065711A (en) Semiconductor manufacturing apparatus and method for detecting substrate
JP4421252B2 (en) Laser beam transmitter / receiver
JP4426130B2 (en) Transmission type photoelectric sensor
JP4473497B2 (en) Optical spacing switch and mounting head, automatic mounting machine and method for mounting components to a substrate using the optical spacing switch
TWI261661B (en) Angled sensors for detecting substrates
JPH06164056A (en) Light-source device for optical scanning
JPH11145254A (en) Wafer angular position detector
JPS60149985A (en) Optical distance measuring apparatus
JPH10135306A (en) Substrate detecting apparatus and arm for carrying substrate using the same
JP2004125554A (en) Mirror angle detection device
JP2002350543A (en) Laser range finder
JP2006040913A (en) Photoelectric sensor
JPH1149405A (en) Reflecting optical coupler
JPH06331732A (en) Optical distance sensor
JP4277458B2 (en) Wafer detection sensor
JP2000284210A (en) Optical scanner
JPH07208918A (en) Light receiver, and optical device provided with the receiver

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040916

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041117