JPH11145071A - Semiconductor manufacturing equipment - Google Patents

Semiconductor manufacturing equipment

Info

Publication number
JPH11145071A
JPH11145071A JP30520197A JP30520197A JPH11145071A JP H11145071 A JPH11145071 A JP H11145071A JP 30520197 A JP30520197 A JP 30520197A JP 30520197 A JP30520197 A JP 30520197A JP H11145071 A JPH11145071 A JP H11145071A
Authority
JP
Japan
Prior art keywords
heater
temperature
chamber
thermocouple
compensating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30520197A
Other languages
Japanese (ja)
Inventor
Takahiro Maeda
孝浩 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP30520197A priority Critical patent/JPH11145071A/en
Publication of JPH11145071A publication Critical patent/JPH11145071A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve a temperature detection precision of thermocouples and control precision based on the thermocouples, by preventing the compensation contact points of the thermocouples and compensation conductors from being affected by heat disturbance. SOLUTION: A temperature of a reaction pipe 11 is controlled by a temperature control circuit 15 controlling the supply power of a heater 12 in accordance with the detection output of the thermocouples 13. Compensation conductors 16 connected to the temperature control circuit 15 are provided in a radiator room 22. Thermocouple wires 14 similar to the thermocouples 13 are connected to the thermocouples 13 inserted into the heater 12, and they are taken around in a heater room 21 so as to extend them to the radiator room 22. The compensation conductors 16 and the thermocouple wires 14 are connected in the radiator room 22. Compensation contact points 17 being the connection parts are screwed to the up stream side of a cooling water supply pipe 19 through an electric insulating object so as to brought them in contact each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は温度制御システムを
備えた半導体製造装置に係り、特に高精度で温度検出及
び温度制御ができるものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing apparatus provided with a temperature control system, and more particularly to a semiconductor device capable of detecting and controlling temperature with high accuracy.

【0002】[0002]

【従来の技術】図3は半導体製造装置の1つである縦型
拡散・CVD装置の全体を示し、斜め後方から見た斜視
図である。2はウェーハを処理する本体であり、3は本
体2を制御するコントロール部である。図には示してい
ないが、本体2の後部の下部にロードロック室を、その
上部に縦型反応室を設ける。縦型反応室のヒータ室4か
らヒータ室排気ダクト5を導出して、ヒータ室4の熱気
を排出するようになっている。また、ラジエータ室6か
ら冷却水供給配管7および冷却水排出配管8を導出し
て、ラジエータ室6内の非加熱部を冷却するようになっ
ている。
2. Description of the Related Art FIG. 3 is a perspective view showing an entire vertical diffusion / CVD apparatus, which is one of semiconductor manufacturing apparatuses, viewed obliquely from behind. 2 is a main body for processing the wafer, and 3 is a control unit for controlling the main body 2. Although not shown in the figure, a load lock chamber is provided in a lower portion of a rear portion of the main body 2, and a vertical reaction chamber is provided in an upper portion thereof. A heater chamber exhaust duct 5 is led out of the heater chamber 4 of the vertical reaction chamber to discharge hot air from the heater chamber 4. In addition, a cooling water supply pipe 7 and a cooling water discharge pipe 8 are led out from the radiator chamber 6 to cool a non-heated portion in the radiator chamber 6.

【0003】図4に上記した縦型反応室の温度制御シス
テムの概略構成図を示す。ウェーハを処理する反応管1
1の外周にヒータ12を設置し、反応管11内を加熱で
きるようになっている。ヒータ温度は熱電対13で検出
できるようになっている。熱電対13と温度制御回路1
5との間は、熱電対13の測温部からヒータ12近傍ま
では熱電対13自体から出ている熱電対素線を用い、ヒ
ータ12近傍から温度制御回路15までは、より安価で
使用熱電対とほぼ同じ特性をもつ補償導線16で導いて
いる。熱電対13の測温部で生じた起電力は熱電対13
の異種金属と補償導線16との接点である補償接点17
を介し、補償導線16を経由して温度制御回路15に導
入される。温度制御回路15は、導入された起電力から
ヒータ12の温度を検知し、そのヒータ温度に応じてヒ
ータ12に加える電力をフィードバック制御して、反応
管11内の温度分布を均一化している。
FIG. 4 is a schematic configuration diagram of the temperature control system for the vertical reaction chamber described above. Reaction tube 1 for processing wafers
A heater 12 is provided on the outer periphery of the tube 1 so that the inside of the reaction tube 11 can be heated. The heater temperature can be detected by the thermocouple 13. Thermocouple 13 and temperature control circuit 1
5, a thermocouple element wire extending from the thermocouple 13 itself is used from the temperature measuring section of the thermocouple 13 to the vicinity of the heater 12, and a less expensive thermocouple is used from the vicinity of the heater 12 to the temperature control circuit 15. It is guided by a compensating lead 16 having substantially the same characteristics as the pair. The electromotive force generated in the temperature measuring part of the thermocouple 13 is the thermocouple 13
Contact 17 which is a contact between the dissimilar metal and the compensating conductor 16
Through the compensating lead 16 to the temperature control circuit 15. The temperature control circuit 15 detects the temperature of the heater 12 from the introduced electromotive force, and performs feedback control of the power applied to the heater 12 in accordance with the detected heater temperature to make the temperature distribution in the reaction tube 11 uniform.

【0004】また、反応管11の上部を含むヒータ12
の上部とヒータ12の下部とにそれぞれ冷却板18を設
け、冷却水供給配管19から冷却板18に冷却水を供給
し冷却水排出配管20から排出して冷却板18を冷却す
ることによって、ヒータ12によって過熱されないよう
にヒータ12の上下部を冷却できるようになっている。
Further, a heater 12 including an upper part of a reaction tube 11 is provided.
A cooling plate 18 is provided at an upper portion of the heater 12 and a lower portion of the heater 12, and cooling water is supplied to the cooling plate 18 from a cooling water supply pipe 19 and discharged from a cooling water discharge pipe 20 to cool the cooling plate 18. The upper and lower portions of the heater 12 can be cooled so that the heater 12 does not overheat.

【0005】反応管11、ヒータ12、冷却板18及び
冷却水供給配管19、冷却水排出配管20の占める空間
のうち、ヒータ12の収納された上部空間がヒータ室2
1であり、冷却水供給配管19、冷却水排出配管20が
配置されている空間がラジエータ室22である。
[0005] Of the space occupied by the reaction tube 11, the heater 12, the cooling plate 18, the cooling water supply pipe 19, and the cooling water discharge pipe 20, the upper space in which the heater 12 is housed is the heater chamber 2.
The space in which the cooling water supply pipe 19 and the cooling water discharge pipe 20 are arranged is a radiator chamber 22.

【0006】[0006]

【発明が解決しようとする課題】ところで、熱電対13
の補償接点17のあるヒータ室21は、温度が高いうえ
に、熱外乱による温度変化の影響を生じやすい。ここで
熱外乱には主につぎの2つがある。
The thermocouple 13
The heater chamber 21 having the compensation contact 17 has a high temperature and is easily affected by a temperature change due to thermal disturbance. Here, there are mainly two types of thermal disturbance.

【0007】(1) ウェーハ処理温度の変化によるもの 反応管11の中でウェーハを処理する温度は、同じ半導
体製造装置でも1000℃であったり1150℃であっ
たりする。それに合わせてヒータ12の温度が変ること
で、ヒータ表面からの放熱量も変り、ヒータ室21内の
温度が変化する。
(1) Due to Change in Wafer Processing Temperature The temperature at which a wafer is processed in the reaction tube 11 may be 1000 ° C. or 1150 ° C. even in the same semiconductor manufacturing apparatus. When the temperature of the heater 12 changes accordingly, the amount of heat radiation from the heater surface also changes, and the temperature inside the heater chamber 21 changes.

【0008】(2) ヒータ室排気ダクトの排気量の変化に
よるもの ヒータ表面からの放熱による温度上昇を防ぐために、ヒ
ータ室21はヒータ室排気ダクト(図3の符号5参照)
により排気している。そのヒータ室排気ダクト5は工場
の設備につながれているが、最終的に他の半導体製造装
置と一緒になっているため、設備側の排気量が変化する
ことがある。ダクト5からの排気量が変化すると、ヒー
タ室21内の温度が変化する。
(2) Due to a change in the exhaust amount of the heater chamber exhaust duct In order to prevent a temperature rise due to heat radiation from the heater surface, the heater chamber 21 is provided with a heater chamber exhaust duct (see reference numeral 5 in FIG. 3).
It is exhausted by. Although the heater chamber exhaust duct 5 is connected to the equipment in the factory, the exhaust air volume on the equipment side may change because it is finally combined with other semiconductor manufacturing equipment. When the amount of exhaust air from the duct 5 changes, the temperature in the heater chamber 21 changes.

【0009】このようにヒータ室21は外乱により温度
変化する。特に熱電対13の補償接点17は温度変化の
大きなヒータ12の近傍にあり、補償接点17自体がヒ
ータ12の影響を直接受けるため温度変化が大きい。ま
た、補償導線16はヒータ室21に設けられているた
め、外乱による温度変化を受ける。その結果、熱電対1
3の温度検出精度が悪化し、それによる温度制御精度が
低下するという問題があった。
As described above, the temperature of the heater chamber 21 changes due to disturbance. In particular, the compensating contact 17 of the thermocouple 13 is located near the heater 12 having a large temperature change, and the compensating contact 17 itself is directly affected by the heater 12, so that the temperature change is large. Further, since the compensating conductor 16 is provided in the heater chamber 21, it receives a temperature change due to disturbance. As a result, thermocouple 1
3 has a problem that the temperature detection accuracy is deteriorated and the temperature control accuracy is thereby lowered.

【0010】本発明の課題は、補償接点及び補償導線が
熱外乱の影響を受けないようにすることによって、上述
した従来技術の問題点を解消して、温度検出精度及び制
御精度を向上できる半導体製造装置を提供することにあ
る。
An object of the present invention is to solve the above-mentioned problems of the prior art by preventing the compensation contact and the compensation conductor from being affected by thermal disturbance, thereby improving the temperature detection accuracy and control accuracy. It is to provide a manufacturing apparatus.

【0011】[0011]

【課題を解決するための手段】上記課題を達成するため
には、熱電対から温度制御回路に導かれる導線が、熱外
乱の影響を受けず、導線に沿って温度勾配がないように
すればよい。熱外乱の影響を受けず、温度勾配がないよ
うにするには、(1) 加熱室内での熱電対との接続を、従
来の補償導線から、熱電対と同じ熱電対素線に変更し、
(2) 放熱室付近までその熱電対素線を引き回して補償導
線と接続し、温度変化が少ない冷却系に接触させる、よ
うにすればよい。
In order to achieve the above object, it is necessary that a conductor led from a thermocouple to a temperature control circuit is not affected by thermal disturbance and has no temperature gradient along the conductor. Good. To avoid the influence of thermal disturbance and eliminate the temperature gradient, (1) Change the connection with the thermocouple in the heating chamber from the conventional compensating conductor to the same thermocouple wire as the thermocouple,
(2) The thermocouple wire may be routed to the vicinity of the heat radiating chamber, connected to the compensating conductor, and brought into contact with a cooling system having a small temperature change.

【0012】そこで、本発明は、被加熱部を加熱する加
熱系を有する加熱室と、上記加熱系により加熱される非
加熱部を冷却する冷却系を有する放熱室と、熱電対で検
出した上記被加熱部に関する温度に応じて上記加熱系へ
の供給電力を制御する温度制御回路とを備えた半導体製
造装置において、上記温度制御回路に接続される補償導
線を上記放熱室に配設し、上記熱電対に熱電対と同じ熱
電対素線を接続して、これを上記加熱室から放熱室まで
延長し、延長した熱電対素線と上記放熱室に配設した補
償導線とを接続し、上記熱電対素線と補償導線との接続
点である補償接点を温度変化が少ない上記冷却系に接触
したものである。
Therefore, the present invention provides a heating chamber having a heating system for heating a portion to be heated, a radiating chamber having a cooling system for cooling a non-heating portion heated by the heating system, A temperature control circuit for controlling power supplied to the heating system in accordance with the temperature of the heated portion, wherein a compensating lead connected to the temperature control circuit is disposed in the heat radiating chamber; The same thermocouple element as the thermocouple is connected to the thermocouple, and this is extended from the heating chamber to the radiating chamber.The extended thermocouple element and the compensating lead wire arranged in the radiating chamber are connected, and The compensating contact, which is the connection point between the thermocouple element wire and the compensating conductor, is brought into contact with the cooling system, which has a small temperature change.

【0013】加熱室内に熱電対素線を用いると熱外乱の
影響を受けない。特に測定誤差が生じやすい熱電対の補
償接点を冷却系に接触すると、補償接点は冷却系により
低温に抑えられるので、熱外乱の影響を受けず、温度変
動が生じない。また、補償導線を放熱室に配置すると、
補償導線に沿って温度勾配が生じがたい。したがって、
熱電対から温度制御回路へ誤差の少ない熱起電力が送ら
れる。
When a thermocouple element is used in the heating chamber, it is not affected by thermal disturbance. In particular, when the compensating contact of the thermocouple, which easily causes a measurement error, is brought into contact with the cooling system, the temperature of the compensating contact is suppressed by the cooling system. When the compensating conductor is placed in the heat dissipation chamber,
Temperature gradients are unlikely to occur along the compensating lead. Therefore,
A thermoelectromotive force with a small error is sent from the thermocouple to the temperature control circuit.

【0014】[0014]

【発明の実施の形態】以下に本発明を縦型拡散・CVD
装置に適用した実施の形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described below with reference to vertical diffusion / CVD.
An embodiment applied to an apparatus will be described.

【0015】図1に縦型反応室の温度制御システムの概
略構成図を示す。過熱されてはいけない非加熱部となる
反応管11の上部11aを含むヒータ12の上部12a
とヒータ12の下部12bとにそれぞれ冷却板18を設
ける。冷却水供給配管19から冷却板18に冷却水を供
給し冷却水排出配管20から排出して冷却板18を冷却
することによって、ヒータ12の上下部を冷却できるよ
うになっている。上記冷却板18、冷却水供給配管1
9、冷却水排出配管20で冷却系を構成する。反応管上
部11a、ヒータ上部12a、ヒータ下部12bで非加
熱部を構成する。
FIG. 1 shows a schematic configuration diagram of a temperature control system for a vertical reaction chamber. The upper part 12a of the heater 12 including the upper part 11a of the reaction tube 11 which becomes the non-heating part which should not be overheated
The cooling plate 18 is provided on each of the heater 12 and the lower portion 12 b of the heater 12. The upper and lower portions of the heater 12 can be cooled by supplying cooling water from the cooling water supply pipe 19 to the cooling plate 18 and discharging the cooling water from the cooling water discharge pipe 20 to cool the cooling plate 18. The cooling plate 18 and the cooling water supply pipe 1
9. A cooling system is constituted by the cooling water discharge pipe 20. The non-heating portion is constituted by the upper portion 11a of the reaction tube, the upper portion 12a of the heater, and the lower portion 12b of the heater.

【0016】また、被加熱部となる反応管11の外周に
管軸方向に複数のゾーンに分割した加熱系としてのヒー
タ12を設置し、反応管11内をゾーン毎に加熱できる
ようになっている。各ヒータ12に熱電対13を差込む
ことにより、ヒータ温度を検出できるようになってい
る。各熱電対13から引き出した熱電対と同じ熱電対素
線14を延長し、加熱室としてのヒータ室21を経由し
て放熱室としてのラジエータ室22内に導き、ラジエー
タ室22内の冷却水供給配管19まで引き回す。ここで
熱電対素線14を、より安価で使用熱電対とほぼ同じ特
性をもつ補償導線16と接続し、その接続点である補償
接点17を冷却水供給配管19と接触させる。ここから
温度制御回路15までは補償導線16で導き、補償導線
16は温度の低いラジエータ室22に配設する。
A heater 12 as a heating system divided into a plurality of zones in the axial direction of the tube is installed on the outer periphery of the reaction tube 11 to be heated, so that the inside of the reaction tube 11 can be heated for each zone. I have. By inserting a thermocouple 13 into each heater 12, the heater temperature can be detected. The same thermocouple wires 14 as the thermocouples drawn from the thermocouples 13 are extended and guided into a radiator chamber 22 as a heat radiating chamber via a heater chamber 21 as a heating chamber to supply cooling water in the radiator chamber 22. Route to pipe 19. Here, the thermocouple wire 14 is connected to a compensating lead wire 16 which is less expensive and has substantially the same characteristics as the thermocouple used, and the connection point, which is the connection point, is brought into contact with the cooling water supply pipe 19. From here, the temperature control circuit 15 is guided by a compensating conductor 16, and the compensating conductor 16 is disposed in the radiator chamber 22 having a low temperature.

【0017】各熱電対13の測温部で生じた起電力は熱
電対素線14を通り補償接点17を経て、補償導線16
より温度制御回路15に導入される。温度制御回路15
は、導入された起電力からヒータ温度を検知し、そのヒ
ータ温度に応じて各ヒータ12に加える電力をフィード
バック制御して、反応管11内の温度分布を均一化す
る。
The electromotive force generated in the temperature measuring section of each thermocouple 13 passes through the thermocouple wire 14, passes through the compensation contact 17, and passes through the compensation conductor 16.
It is introduced into the temperature control circuit 15. Temperature control circuit 15
Detects the heater temperature from the introduced electromotive force, controls the power applied to each heater 12 according to the heater temperature in a feedback manner, and makes the temperature distribution in the reaction tube 11 uniform.

【0018】上記補償接点17の接続の詳細を図2に示
す。冷却水供給配管19の上流側の管外壁に電気的絶縁
物23を貼付け、この電気的絶縁物23にネジ孔をあけ
る。冷却水供給配管19に導いた熱電対素線14と補償
導線16の端部にループを形成して重ね合せ、このルー
プにネジ24を差し込み、ネジ24の先端をネジ孔にね
じ込んで、熱電対素線14と補償導線16を冷却水供給
配管19に締め付けて固定する。
FIG. 2 shows the details of the connection of the compensation contact 17. An electrical insulator 23 is attached to an outer wall of the cooling water supply pipe 19 on the upstream side, and a screw hole is formed in the electrical insulator 23. A loop is formed at the end of the thermocouple wire 14 leading to the cooling water supply pipe 19 and the end of the compensating wire 16 and overlapped with each other. A screw 24 is inserted into this loop, and the tip of the screw 24 is screwed into a screw hole. The strand 14 and the compensating lead 16 are fastened and fixed to the cooling water supply pipe 19.

【0019】上述したようにヒータ室21内での熱電対
13との接続を、従来の補償導線から、熱電対13と同
じ熱電対素線14に変更したので、ヒータ室21内の熱
の外乱の影響を受け難く、また熱電対素線14に沿って
温度勾配が生じ難い。
As described above, the connection with the thermocouple 13 in the heater chamber 21 is changed from the conventional compensating conductor to the same thermocouple wire 14 as the thermocouple 13, so that the heat disturbance in the heater chamber 21 is prevented. , And a temperature gradient along the thermocouple wire 14 is unlikely to occur.

【0020】また、冷却水供給配管19のあるラジエー
タ室22付近までその熱電対素線14を引き回して補償
導線16と接続し、通常、冷却水温度が20℃前後と温
度変化が少ない冷却水供給配管19の上流側に電気的絶
縁物23を介して補償接点17を接触させたので、補償
接点17の温度は低温で安定に保たれることになり、補
償接点自体が温度変動することがない。
Further, the thermocouple wire 14 is routed to the vicinity of the radiator chamber 22 where the cooling water supply pipe 19 is provided and connected to the compensating conductor 16, so that the cooling water temperature is usually about 20 ° C. and the temperature change is small. Since the compensating contact 17 is brought into contact with the upstream side of the pipe 19 via the electrical insulator 23, the temperature of the compensating contact 17 is stably maintained at a low temperature, and the compensating contact itself does not fluctuate in temperature. .

【0021】さらに熱電対素線14に接続されている補
償導線16をラジエータ室22内に配設するようにした
ので、補償導線16に沿って温度勾配が生じ難く、仮に
生じたとしても、もともと温度及び温度勾配の低いラジ
エータ室22にあるため、誤差が生じ難い。
Further, since the compensating conductor 16 connected to the thermocouple element wire 14 is arranged in the radiator chamber 22, a temperature gradient is hardly generated along the compensating conductor 16, and even if it does occur, it is originally generated. Since the radiator chamber 22 has a low temperature and a low temperature gradient, an error hardly occurs.

【0022】したがって、熱電対と補償導線とをヒータ
室内で接続していた従来のものと比べて、補償接点の温
度変化が少なくなり、寄生起電力に起因する誤差がなく
なるため、熱電対13による温度検出精度及び、熱電対
13の検出出力により制御されるヒータ12の制御精度
が向上し、もって成膜の再現性が向上する。
Accordingly, the temperature change of the compensating contact is reduced and the error caused by the parasitic electromotive force is reduced as compared with the conventional one in which the thermocouple and the compensating conductor are connected in the heater chamber. The temperature detection accuracy and the control accuracy of the heater 12 controlled by the detection output of the thermocouple 13 are improved, and thus the reproducibility of the film formation is improved.

【0023】なお、被加熱部は反応管に限定されず、ヒ
ータにより加熱される空間ないしチャンバであればいず
れにも適用できる。加熱系を構成するヒータは、抵抗加
熱、ランプ加熱、高周波加熱のいずれでも良い。熱電対
は公知のものである。温度制御回路は、例えば熱電対の
検出結果に応じてサイリスタのゲートを位相制御してヒ
ータに加える電力を制御するものである。補償接点を接
触させる冷却系は、冷却水排出配管でもいいが、温度が
低く安定している点から冷却水供給配管が好ましく、特
にその上流側とするのがより好ましい。なお、実施の形
態では冷却水供給配管に取り付けるようにしたが、冷却
水供給配管に熱的に接続された支持部などでもよい。ま
た冷却水配管はヒータ用に限定されない。装置内の非加
熱部を冷却するための他の冷却水配管、またはこれに等
価なものを利用してもよい。また、半導体製造装置は縦
型拡散・CVDに限定されない。例えばプラズマCVD
など冷却系を装置内に導入しているものであれば、本発
明を適用できる。
The portion to be heated is not limited to a reaction tube, but may be applied to any space or chamber heated by a heater. The heater constituting the heating system may be any of resistance heating, lamp heating, and high-frequency heating. Thermocouples are known. The temperature control circuit controls the power applied to the heater by controlling the phase of the gate of the thyristor, for example, according to the detection result of the thermocouple. The cooling system for bringing the compensating contact into contact may be a cooling water discharge pipe, but is preferably a cooling water supply pipe because of its low and stable temperature, and more preferably on the upstream side. In the embodiment, the cooling water supply pipe is attached. However, a support section thermally connected to the cooling water supply pipe may be used. Further, the cooling water pipe is not limited to the heater. Other cooling water piping for cooling the non-heating part in the apparatus, or an equivalent thereof may be used. Further, the semiconductor manufacturing apparatus is not limited to vertical diffusion / CVD. For example, plasma CVD
The present invention can be applied to any device in which a cooling system is introduced into the apparatus.

【0024】[0024]

【発明の効果】本発明によれば、高温で熱外乱の大きな
加熱室内に熱電対素線を配設し、比較的低温で安定した
放熱室内に補償導線を配設し、しかも熱電対の補償接点
を冷却系に接触して補償接点の温度を低温で安定化させ
るようにしたので、熱電対から温度制御回路に導く線に
加わる熱外乱の影響を低減でき、熱電対による温度検出
精度及び制御精度を向上することができる。
According to the present invention, a thermocouple element is disposed in a heating chamber having a high thermal disturbance at a high temperature, and a compensating conductor is disposed in a heat radiation chamber which is stable at a relatively low temperature. The temperature of the compensation contact is stabilized at a low temperature by contacting the contact with the cooling system, so the effect of thermal disturbance applied to the wire leading from the thermocouple to the temperature control circuit can be reduced, and the temperature detection accuracy and control by the thermocouple Accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態による縦型反応室の温度制御システ
ムの概略構成図である。
FIG. 1 is a schematic configuration diagram of a temperature control system of a vertical reaction chamber according to an embodiment.

【図2】冷却水供給配管にねじ止めする補償接点の要部
拡大説明図である。
FIG. 2 is an enlarged explanatory view of a main part of a compensation contact screwed to a cooling water supply pipe.

【図3】縦型拡散・CVD装置の概略構成図である。FIG. 3 is a schematic configuration diagram of a vertical diffusion / CVD apparatus.

【図4】従来例の縦型反応室の温度制御システムの概略
構成図である。
FIG. 4 is a schematic configuration diagram of a conventional temperature control system for a vertical reaction chamber.

【符号の説明】[Explanation of symbols]

11 反応管(被加熱部) 12 ヒータ(加熱系) 13 熱電対 14 熱電対素線 15 温度制御回路 16 補償導線 17 補償接点 18 冷却板 19 冷却水供給配管 21 ヒータ室(加熱室) 22 ラジエータ室(放熱室) 23 電気的絶縁物 DESCRIPTION OF SYMBOLS 11 Reaction tube (heated part) 12 Heater (heating system) 13 Thermocouple 14 Thermocouple wire 15 Temperature control circuit 16 Compensation lead wire 17 Compensation contact 18 Cooling plate 19 Cooling water supply pipe 21 Heater room (heating room) 22 Radiator room (Heat dissipation chamber) 23 Electrical insulator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被加熱部を加熱する加熱系を有する加熱室
と、上記加熱系により加熱される非加熱部を冷却する冷
却系を有する放熱室と、熱電対で検出した上記被加熱部
に関する温度に応じて上記加熱系への供給電力を制御す
る温度制御回路とを備えた半導体製造装置において、 上記温度制御回路に接続される補償導線を上記放熱室に
配設し、 上記熱電対に熱電対と同じ熱電対素線を接続して、これ
を上記加熱室から放熱室まで延長し、 延長した熱電対素線と上記放熱室に配設した補償導線と
を接続し、 上記熱電対素線と補償導線との接続点である補償接点を
温度変化が少ない上記冷却系に接触したことを特徴とす
る半導体製造装置。
1. A heating chamber having a heating system for heating a heated portion, a radiating room having a cooling system for cooling a non-heated portion heated by the heating system, and the heated portion detected by a thermocouple. A semiconductor manufacturing apparatus comprising: a temperature control circuit that controls power supplied to the heating system according to a temperature; a compensating lead wire connected to the temperature control circuit is disposed in the heat radiation chamber; Connect the same thermocouple wire as the pair, extend it from the heating chamber to the heat radiating chamber, connect the extended thermocouple wire and the compensating wire arranged in the heat radiating chamber, and connect the thermocouple wire. And a compensating contact, which is a connection point between the compensating conductor and the compensating conductor, is brought into contact with the cooling system having a small temperature change.
JP30520197A 1997-11-07 1997-11-07 Semiconductor manufacturing equipment Pending JPH11145071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30520197A JPH11145071A (en) 1997-11-07 1997-11-07 Semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30520197A JPH11145071A (en) 1997-11-07 1997-11-07 Semiconductor manufacturing equipment

Publications (1)

Publication Number Publication Date
JPH11145071A true JPH11145071A (en) 1999-05-28

Family

ID=17942274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30520197A Pending JPH11145071A (en) 1997-11-07 1997-11-07 Semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH11145071A (en)

Similar Documents

Publication Publication Date Title
US6949722B2 (en) Method and apparatus for active temperature control of susceptors
KR100748372B1 (en) A method and apparatus for thermal control of a semiconductor substrate
US6550961B1 (en) Thermal conductivity detector
US20060291132A1 (en) Electrostatic chuck, wafer processing apparatus and plasma processing method
EP1595428B1 (en) Electric heat tracing
JPH10206246A (en) Non-contact measuring device and method for object temperature
JPH11145071A (en) Semiconductor manufacturing equipment
CN106935470A (en) A kind of plasma processor with temperature measuring equipment
JP2912616B1 (en) Plate heating device
JPH0620832A (en) Conductor-bonded aggregate for super- conducting magnet
JPH0718446A (en) Heat treating device
US20220108909A1 (en) Member for semicondutor manufacturing apparatus
JP3866685B2 (en) Temperature control device and temperature control method for electron impact heater
JPH01236615A (en) Heat-treatment device
JP2006040989A (en) Thermoelectric characteristic measuring apparatus for semiconductor element
KR20210106205A (en) Gas heating apparatus and gas delivery system using the same
JP2579809Y2 (en) Single wafer CVD system
JP5686467B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2005257528A (en) Flow through type nmr probe for measuring high temperature
JPH04150022A (en) Plasma treatment apparatus
JP2003142243A (en) Induction heating device
JP2002313529A (en) Divided plate heater
CN117894658A (en) Plasma etching equipment, dielectric window heating device and system
JP2001050943A (en) Thermal conductivity detector
KR0166821B1 (en) Bonding temperature control apparatus of wire bonding equipment