JPH1114432A - Optical sensor - Google Patents

Optical sensor

Info

Publication number
JPH1114432A
JPH1114432A JP17900197A JP17900197A JPH1114432A JP H1114432 A JPH1114432 A JP H1114432A JP 17900197 A JP17900197 A JP 17900197A JP 17900197 A JP17900197 A JP 17900197A JP H1114432 A JPH1114432 A JP H1114432A
Authority
JP
Japan
Prior art keywords
light
prism
liquid
moved
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17900197A
Other languages
Japanese (ja)
Inventor
Atsushi Hayashi
淳 林
Naoki Ota
直樹 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Electric Co Ltd
Original Assignee
Nissei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Electric Co Ltd filed Critical Nissei Electric Co Ltd
Priority to JP17900197A priority Critical patent/JPH1114432A/en
Publication of JPH1114432A publication Critical patent/JPH1114432A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical sensor by which a liquid and a flowing body can be detected at high speed without using an optical fiber by a method wherein a detection pat situated in a position faced with a light source and a light- receiving part is moved, by a gas pressure or a liquid pressure, inside a cavity part which is formed in the long direction of a prism body. SOLUTION: Compressed air which is generated by a pressurization device 3 is sent into a cavity pat 1B which is formed as an optical transmission line in the long direction of a prism body 1, and the detection part 2 inside the cavity part 1B is moved at high speed. In the detection part 2, a light reflection part used to change an optical path is fixed. Light from a light source 4 transmitted inside the cavity part 1B is reflected by a light reflection means, it changes a course by the prism face of the prism body 1, and it is incident on a light-receiving part 5 so as to detect the level of a flowing body. In addition, when the detection part 2 is moved by a liquid pressure, the inside of the cavity part 1B is filled with a transparent liquid whose influence on the transmittivity of light is small, and it is moved by applying a liquid pressure by the pressurization device 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体などの流動性
物質のレベル検知などとして利用することのできる光学
式センサに関するものであり、特に土木建設関係に用い
るコンクリート注入の際の注入具合の検査に用いるのに
適した光学式センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical sensor which can be used for detecting the level of a flowable substance such as a liquid, and more particularly to an inspection of a concrete injection used for civil engineering construction. The present invention relates to an optical sensor suitable for use in the optical sensor.

【0002】[0002]

【従来技術】本出願人は先に、コンクリート又はモルタ
ルが、所定の空間に充填されているか否かを検知する方
法として、プリズムによる光の反射・屈折の利用と、プ
リズムに設けられた空洞部内で光ファイバと連結した検
出部を連続的に移動させる装置を発明した。(特願平8
−323425)
2. Description of the Related Art As a method of detecting whether concrete or mortar is filled in a predetermined space, the present applicant has previously described the use of reflection and refraction of light by a prism and the use of a cavity inside a prism. Invented an apparatus for continuously moving a detection unit connected to an optical fiber. (Japanese Patent Application No. 8
-323425)

【0003】しかし、このような方式のセンサでは、セ
ンサの全長が長くなると、使用している光ファイバの長
さも長い物が必要となり、光ファイバを巻き取るのに時
間がかかり、検出作業が能率的でないという問題が有っ
た。
However, in a sensor of this type, when the total length of the sensor is long, a long optical fiber is required, so that it takes a long time to wind up the optical fiber, and the detecting operation becomes efficient. There was a problem of not being a target.

【0004】[0004]

【発明が解決しようとする課題】従って、本発明は、か
かる従来の問題点を解決し、電磁誘導の影響による誤動
作がなく、しかも連続的に高速検出が可能な長尺の光学
式センサを提供することを課題とするものである。
SUMMARY OF THE INVENTION Accordingly, the present invention solves the above-mentioned conventional problems, and provides a long optical sensor which does not malfunction due to the influence of electromagnetic induction and can continuously perform high-speed detection. The task is to do so.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために鋭意検討を重ねた結果、光ファイバを使用
せず、空洞部を光伝送路として用いるとともに、検出部
を加圧装置による気体圧または液体圧により空洞部内で
高速に移動させることを考え、本発明を完成するに至っ
た。
According to the present invention, as a result of diligent studies to achieve the above object, the present invention uses a hollow portion as an optical transmission line without using an optical fiber, and uses a pressing device as a detecting portion. The present invention has been completed in consideration of high-speed movement in the cavity by the gas pressure or liquid pressure caused by the pressure.

【0006】前記課題を解決するために、請求項1に記
載の発明は、光源及び受光部から対向した位置にある検
出部を加圧装置による気体圧または液体圧により、プリ
ズム体の長手方向に設けた空洞部内で移動させることを
特徴としている。
In order to solve the above-mentioned problem, the invention according to claim 1 is to provide a detecting unit located at a position facing a light source and a light receiving unit in a longitudinal direction of a prism body by gas pressure or liquid pressure by a pressurizing device. It is characterized in that it is moved within the provided cavity.

【0007】請求項2に記載の発明は、請求項1に記載
の発明において、プリズム体の一部であって、光源から
受光部へ至る光路を遮断する位置にスリットを設けたこ
とを特徴とするものである。
According to a second aspect of the present invention, in the first aspect of the present invention, a slit is provided at a position that is a part of the prism body and blocks an optical path from the light source to the light receiving section. Is what you do.

【0008】請求項3に記載の発明は、白色の液体また
は流動体を検出するプリズムを使用しない装置であり、
検出部を加圧装置による気体圧または液体圧により、光
ロッドの長手方向に設けた空洞部内で移動させると共
に、該光ロッドの一部であって、光源から受光部へ至る
光路を遮断する位置にスリットを設けたことを特徴とす
るものである。
According to a third aspect of the present invention, there is provided an apparatus which does not use a prism for detecting a white liquid or a fluid,
The detecting unit is moved in the cavity provided in the longitudinal direction of the optical rod by gas pressure or liquid pressure by a pressurizing device, and is a part of the optical rod, which blocks an optical path from the light source to the light receiving unit. Characterized in that a slit is provided in the second member.

【0009】[0009]

【発明の実施の形態】以下、図面を参照して本発明を説
明する。図1は、本発明の光ファイバセンサの一例を示
す斜視図、図2はその縦断面図図3は図2のA−A線矢
視断面図、図4は検出部2の詳細図である。図1〜3に
おいて、1はプリズム体、1Bはプリズム体の長手方向
に設けた空洞部、1Cは液圧または空気圧の吸排気孔、
2は検出部、3は加圧装置、4は光源、5は受光部であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing an example of the optical fiber sensor of the present invention, FIG. 2 is a longitudinal sectional view thereof, FIG. 3 is a sectional view taken along the line AA of FIG. 2, and FIG. . In FIGS. 1 to 3, 1 is a prism body, 1B is a cavity provided in the longitudinal direction of the prism body, 1C is a hydraulic or pneumatic air intake / exhaust hole,
Reference numeral 2 denotes a detecting unit, 3 denotes a pressing device, 4 denotes a light source, and 5 denotes a light receiving unit.

【0010】検出部2には図4に示す様に、光路を変更
するための光反射手段2Aが傾斜角45度でケース2B
に固定されている。従って、プリズム体1の空洞部1B
内を到来してきた光源4からの光はこの光反射手段2A
に到達し、ここで90度進路を変え、プリズム体1のプ
リズム面1Aに入射角45度で入射する。なお、光反射
手段2Aとしては、平面鏡等を使用すれば良い。
As shown in FIG. 4, a light reflecting means 2A for changing the optical path is provided on the detecting section 2 at an inclination angle of 45 degrees and a case 2B.
It is fixed to. Therefore, the cavity 1B of the prism body 1
The light from the light source 4 arriving inside the light reflecting means 2A
. Here, the course is changed by 90 degrees, and the light enters the prism surface 1A of the prism body 1 at an incident angle of 45 degrees. Note that a plane mirror or the like may be used as the light reflecting means 2A.

【0011】ここで図3において、プリズム面1Aが液
体あるいは流動体と接していない場合には、プリズム部
の屈折率が外部の空気の屈折率より大きいので、発光側
のプリズム面1Aで全反射し、90度進路を変える。
In FIG. 3, when the prism surface 1A is not in contact with a liquid or a fluid, since the refractive index of the prism portion is larger than the refractive index of the outside air, total reflection occurs at the prism surface 1A on the light emitting side. Then change course by 90 degrees.

【0012】次に発光側のプリズム面1Aで全反射した
光は、今度は、受光側のプリズム面1Aで同様に全反射
し、また90度進路を変え、プリズム体から出て再び光
反射手段2Aに、入射角45度で入射する。
Next, the light totally reflected on the light-emitting side prism surface 1A is similarly totally reflected on the light-receiving side prism surface 1A, and the course of the light is changed by 90 degrees. 2A is incident at an incident angle of 45 degrees.

【0013】さらに、この光反射手段2Aで再び90度
進路を変え、空洞部1Bを経由した後受光部4に入射す
る。つまり発光部4から受光部5へ至る光路Lが形成さ
れる。ここでプリズム部とはプリズム体1のうち、光の
反射・屈折に直接関与する上側の三角柱の部分を指して
いる。
Further, the course of the light is changed by 90 degrees again by the light reflecting means 2A, and the light enters the light receiving section 4 after passing through the cavity 1B. That is, an optical path L from the light emitting section 4 to the light receiving section 5 is formed. Here, the prism portion refers to an upper triangular prism portion of the prism body 1 which is directly involved in the reflection and refraction of light.

【0014】次にプリズム面1Aが液体あるいは流動体
と接している場合には、プリズム面1Aの外部が空気か
ら液体(流動体)に変わった事による屈折率の変化によ
り、光源側のプリズム面1Aに入射した光は、プリズム
面1Aで全反射せず、図3に示す様にmの方向に向かっ
てプリズム体外部へ屈折してしまい、受光部5には入射
しなくなる。つまり、今度は前記した様な光源4から受
光部5に至る光路Lが形成されなくなる。
Next, when the prism surface 1A is in contact with a liquid or a fluid, the outside of the prism surface 1A changes from the air to the liquid (fluid) and the refractive index changes. The light incident on 1A is not totally reflected by the prism surface 1A, but is refracted to the outside of the prism body in the direction of m as shown in FIG. That is, the optical path L from the light source 4 to the light receiving section 5 as described above is not formed.

【0015】従って、受光部4での受光量の変化を調べ
ることによって検出部2近傍での液体または流動体の有
無が検出できる。しかも検出部2では、加圧装置3によ
り液圧または空気圧によりプリズム体1の長手方向に高
速かつ連続的に移動できるのでプリズム体1の全長に渡
って、連続的かつ高速な検出が可能である。
Therefore, the presence or absence of a liquid or a fluid near the detection unit 2 can be detected by checking a change in the amount of light received by the light reception unit 4. In addition, since the detection unit 2 can move at a high speed and continuously in the longitudinal direction of the prism body 1 by hydraulic or pneumatic pressure by the pressurizing device 3, continuous and high-speed detection can be performed over the entire length of the prism body 1. .

【0016】検出部2の移動方法は、加圧装置3で圧縮
空気を発生させ、空洞部1B内へ送り込む事によって高
速に移動する事が可能である。液圧で検出部2を移動さ
せるときは、空洞部1B内に光の透過性に影響の少ない
透明な液体を満たして、加圧装置3により液圧を加えて
行う。さらに加圧装置3に吸気(吸液)機能を付加すれ
ば加圧・吸気が自由にでき、検出部2をより精密にコン
トロールできるので好ましい。
The detecting unit 2 can be moved at a high speed by generating compressed air by the pressurizing device 3 and sending the compressed air into the cavity 1B. When the detection unit 2 is moved by the liquid pressure, the cavity 1B is filled with a transparent liquid having little influence on the light transmittance, and the liquid pressure is applied by the pressurizing device 3. Further, it is preferable to add a suction (liquid absorption) function to the pressurizing device 3 because pressurization and suction can be performed freely and the detection unit 2 can be controlled more precisely.

【0017】ここで、プリズム体1の形状は任意の形状
が選択可能であり、プリズム部が頂角90°の2等辺3
角柱であれば、設計上容易であり、特に好ましい。ま
た、プリズム体1の寸法についても任意であるが、プリ
ズム面1Aの1辺が10mm〜30mm位が特に好まし
い。
Here, the shape of the prism body 1 can be arbitrarily selected, and the prism portion is an isosceles 3 having an apex angle of 90 °.
A prism is easy in design and is particularly preferable. The dimensions of the prism body 1 are also arbitrary, but one side of the prism surface 1A is particularly preferably about 10 mm to 30 mm.

【0018】さらに、プリズム体1の長手方向には空洞
部1Bが設けられている。空洞部1Bの寸法及び形状に
ついても任意であるが、断面が4mm×4mm〜10m
m×20mmの長方形が特に好ましい。プリズム体1は
射出成形、あるいは押出成形加工等任意の加工方法によ
り作成する事ができる。
Further, a cavity 1B is provided in the longitudinal direction of the prism body 1. The dimensions and shape of the hollow portion 1B are also arbitrary, but the cross section is 4 mm × 4 mm to 10 m.
A rectangle of mx 20 mm is particularly preferred. The prism body 1 can be formed by any processing method such as injection molding or extrusion molding.

【0019】プリズム体1の材質としては、透明な、例
えばガラス,PMMA(ポリメチルメタクリレート),
ポリカーボネイト,塩化ビニル樹脂,フッ素樹脂等があ
げられる。耐熱性・耐薬品性が要求される用途において
は、用途に応じて材質を選択すればよい。
The material of the prism body 1 is transparent, for example, glass, PMMA (polymethyl methacrylate),
Polycarbonate, vinyl chloride resin, fluorine resin and the like can be mentioned. In applications requiring heat resistance and chemical resistance, the material may be selected according to the application.

【0020】光源4はハロゲンランプ,発光ダイオー
ド,半導体レーザー等を用いる。受光部5はシリコンフ
ォトダイオードまたはシリコンフォトトランジスタ等を
用いる。
As the light source 4, a halogen lamp, a light emitting diode, a semiconductor laser or the like is used. The light receiving unit 5 uses a silicon photodiode or a silicon phototransistor.

【0021】次に図5のプリズム部の一部にスリット1
Dを設けた場合について説明する。白色の液体または白
色の流動体の検出を行う場合、白色の液体または流動体
は通常の液体または流動体より光の反射率が大きいの
で、プリズム面1Aで乱反射が起きてしまい、液体が有
る時でも光源からの光のほとんどが受光部に入射し、液
体が無い場合と同じ状態となり、誤検知してしまう。
Next, a slit 1 is formed in a part of the prism portion shown in FIG.
The case where D is provided will be described. When detecting a white liquid or a white fluid, since the white liquid or the fluid has a higher light reflectance than a normal liquid or a fluid, irregular reflection occurs on the prism surface 1A, and when the liquid exists. However, most of the light from the light source is incident on the light receiving unit, and the state is the same as when there is no liquid, and the detection is erroneous.

【0022】そこで図5に示す様に、プリズム部の光路
Lの一部にスリット1Dを設け、このスリットにより光
の透過光の有無を検知する。
Therefore, as shown in FIG. 5, a slit 1D is provided in a part of the optical path L of the prism portion, and the presence or absence of transmitted light is detected by this slit.

【0023】こうすることにより、白色の液体または流
動体の場合においても、スリット1Dにより透過光の減
衰が起き、光源4から出た光は、受光部5へ到達しなく
なる。つまり、光源4から受光部5へ至る光路Lが形成
されなくなり、白色の液体または流動体の検出が可能と
なる。
In this way, even in the case of a white liquid or a fluid, the transmitted light is attenuated by the slit 1D, and the light emitted from the light source 4 does not reach the light receiving section 5. That is, the optical path L from the light source 4 to the light receiving section 5 is not formed, and the detection of the white liquid or the fluid becomes possible.

【0024】以上の様に、図5ではプリズム部での光の
反射・屈折を利用した光の検出に加えて、スリット部で
光の透過光を検出するという二重の検出によって、確実
に白色の液体または流動体の検出が可能となったのであ
る。
As described above, in FIG. 5, in addition to the detection of light using the reflection and refraction of light at the prism portion, the double detection of detecting the transmitted light of light at the slit portion ensures the white color. Liquid or fluid can be detected.

【0025】ここでスリット1Dの幅は、1mm〜5m
m程度が特に好ましい。なお、図5ではスリット1Dを
プリズム体の頂角部に設けたが、プリズム部の光路Lの
一部であれば、これ以外の任意の場所に設けても良い。
スリットの数についても、任意の数が選択可能である。
Here, the width of the slit 1D is 1 mm to 5 m.
m is particularly preferred. In FIG. 5, the slit 1D is provided at the vertex of the prism body. However, the slit 1D may be provided at any other location as long as it is a part of the optical path L of the prism portion.
Any number of slits can be selected.

【0026】次に、白色の液体または流動体を検出する
のに適した、プリズムを使用しない図6の別の実施例に
ついて説明する。
Next, another embodiment of FIG. 6 which does not use a prism and is suitable for detecting a white liquid or a fluid will be described.

【0027】この場合には、プリズム部を有していない
光ロッド6の光路Lの一部にスリット1Dを設け、ここ
で透過光の検出だけを行って、白色の液体または流動体
の検出を可能としている。
In this case, a slit 1D is provided in a part of the optical path L of the optical rod 6 having no prism, and only the transmitted light is detected here to detect a white liquid or a fluid. It is possible.

【0028】ただしこの場合、光ロッド6の内部に光の
進路を変えるための、例えばプリズム体、あるいは反射
手段等の光路変更手段が必要になる。この図においては
7が光路変更手段に相当する。
In this case, however, an optical path changing means such as a prism or a reflecting means for changing the light path inside the optical rod 6 is required. In this figure, 7 corresponds to an optical path changing unit.

【0029】[0029]

【発明の効果】本発明の光学式センサによれば、液体お
よび流動体を高速に検出できる。しかも、白色の液体ま
たは流動体の検出も可能である。
According to the optical sensor of the present invention, liquids and fluids can be detected at high speed. In addition, it is possible to detect a white liquid or fluid.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光学式センサの一例を示す斜視図であ
る。
FIG. 1 is a perspective view showing an example of an optical sensor according to the present invention.

【図2】本発明の光学式センサの縦断面図である。FIG. 2 is a longitudinal sectional view of the optical sensor of the present invention.

【図3】図2のA−A線矢視断面図である。FIG. 3 is a sectional view taken along line AA of FIG. 2;

【図4】検出部2の詳細図である。FIG. 4 is a detailed view of a detection unit 2.

【図5】プリズム部にスリットを設けた実施例を示す縦
断面図である。
FIG. 5 is a longitudinal sectional view showing an embodiment in which a slit is provided in a prism portion.

【図6】プリズムを使用しない、他の実施例を示す縦断
面図である。
FIG. 6 is a longitudinal sectional view showing another embodiment that does not use a prism.

【符号の説明】[Explanation of symbols]

1 プリズム体 1A プリズム面 1B 空洞部 1C 吸排気孔 1D スリット 2 検出部 2A 光反射手段 2B ケース 3 加圧装置 4 光源 5 受光部 6 光ロッド 7 光路変更手段 L 光路 REFERENCE SIGNS LIST 1 prism body 1A prism surface 1B cavity 1C intake / exhaust hole 1D slit 2 detector 2A light reflecting means 2B case 3 pressurizing device 4 light source 5 light receiving unit 6 light rod 7 light path changing means L light path

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光源及び受光部から対向した位置にある
検出部を加圧装置による気体圧または液体圧により、プ
リズム体の長手方向に設けた空洞部内で移動させること
を特徴とする光学式センサ。
1. An optical sensor, wherein a detecting unit located at a position facing a light source and a light receiving unit is moved in a cavity provided in a longitudinal direction of a prism body by gas pressure or liquid pressure by a pressurizing device. .
【請求項2】 プリズム体の一部であって、光源から受
光部へ至る光路を遮断する位置にスリットを設けた請求
項1記載の光学式センサ。
2. The optical sensor according to claim 1, wherein a slit is provided at a position that is a part of the prism body and blocks an optical path from the light source to the light receiving unit.
【請求項3】 光源及び受光部から対向した位置にある
検出部を、加圧装置による気体圧または液体圧により、
光ロッドの長手方向に設けた空洞部内で移動させるとと
もに、該光ロッドの一部であって光源から受光部へ至る
光路を遮断する位置にスリットを設けた光学式センサ。
3. A detecting unit located at a position facing the light source and the light receiving unit, by gas pressure or liquid pressure by a pressurizing device.
An optical sensor which is moved in a hollow portion provided in a longitudinal direction of an optical rod and has a slit at a position which is a part of the optical rod and interrupts an optical path from a light source to a light receiving portion.
JP17900197A 1997-06-18 1997-06-18 Optical sensor Pending JPH1114432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17900197A JPH1114432A (en) 1997-06-18 1997-06-18 Optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17900197A JPH1114432A (en) 1997-06-18 1997-06-18 Optical sensor

Publications (1)

Publication Number Publication Date
JPH1114432A true JPH1114432A (en) 1999-01-22

Family

ID=16058390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17900197A Pending JPH1114432A (en) 1997-06-18 1997-06-18 Optical sensor

Country Status (1)

Country Link
JP (1) JPH1114432A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163816A (en) * 2010-02-05 2011-08-25 Mimaki Engineering Co Ltd Liquid detection sensor and liquid detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163816A (en) * 2010-02-05 2011-08-25 Mimaki Engineering Co Ltd Liquid detection sensor and liquid detection method

Similar Documents

Publication Publication Date Title
RU2491606C2 (en) Coordinate sensor, electronic device, display device and light-receiving unit
CA1205543A (en) Bubble detecting infusion apparatus
KR20020033155A (en) Input and display device
DE3376759D1 (en) Optical sensor
KR890015012A (en) Fiber optic moisture detector
DE68900277D1 (en) BIOLOGICAL DETECTION DEVICE.
WO2006017141A3 (en) Refractive index sensor using internally reflective light beams
KR970028720A (en) Panel for surface light source
JPH11271217A (en) Optical sensor
JPH1114432A (en) Optical sensor
EP1293768A3 (en) Sensor utilizing attenuated total reflection
JP5904578B2 (en) Optical liquid leak detection apparatus and method
US8749792B2 (en) Device for optical measurement of materials, using multiplexing of light
CN101206540A (en) Optical structure, optical navigation system and method of estimating motion
JP2002340790A (en) Spr sensor
US6907182B2 (en) Optical conductor
ATE143488T1 (en) MEASUREMENT DEVICE
JPH10318819A (en) Level sensor
JPH02176543A (en) Method and apparatus for detecting interface between liquid and gas and bubble within liquid
JPH01248040A (en) Liquid concentration sensor
JP2022024976A (en) Fluid handling device, fluid handling system, and method for detecting liquid
JPH10267730A (en) Liquid level sensor
CN1293455C (en) Optical inputting device capable of determining reflector character
JP3985026B2 (en) Critical micelle concentration detector
DE59911236D1 (en) Optoelectronic sensor