JPH11142754A - Laser orientation adjusting method of image forming device - Google Patents

Laser orientation adjusting method of image forming device

Info

Publication number
JPH11142754A
JPH11142754A JP31315297A JP31315297A JPH11142754A JP H11142754 A JPH11142754 A JP H11142754A JP 31315297 A JP31315297 A JP 31315297A JP 31315297 A JP31315297 A JP 31315297A JP H11142754 A JPH11142754 A JP H11142754A
Authority
JP
Japan
Prior art keywords
optical axis
collimator lens
laser
laser light
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31315297A
Other languages
Japanese (ja)
Inventor
Kazunobu Yamada
和信 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP31315297A priority Critical patent/JPH11142754A/en
Publication of JPH11142754A publication Critical patent/JPH11142754A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply and accurately enable the orientation adjustment by making the Y coordinate component of the optical axis of a collimator lens zero by rotating a rotary holder rotating about an axis being eccentric to the optical axis of the collimator lens and compensating the deviation between the X coordinate component of the optical axis of the collimator lens and the origin. SOLUTION: A semiconductor laser 14 and a collimator lens 16 are fixed to a through-hole 30 and a lens barrel 34, respectively, the lens barrel 34 is inserted into a through-hole 32 of a holder 28. Until the semiconductor laser 14 is activated and a laser beam is transmitted in Z direction (horizontal direction), the lens barrel is rotated about the rotary axis 36. Namely, when the laser beam passed through the collimator lens 16 is transmitted in the Z direction, the optical axis 40 of the collimator lens 16 is in coincident with the Y coordinate component of the optical axis 42 of the semiconductor laser 14 with each other. When the alignment of optical axis in the Y axial direction is completed, the lens barrel 34 is fixed to the holder 28. The deviation of optical axis in X direction is compensated by a photodetector in the period of image forming operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は画像形成装置のレーザ
指向調整方法に関し、特にたとえば画像データに応じた
レーザ光を感光体上で走査して画像を形成するレーザプ
リンタおよびディジタル複写機等に適用され、レーザ光
源(レーザ光出力手段)の光軸とコリメータレンズの光
軸とを一致させて、感光体上に所望のビームスポットを
形成する、画像形成装置のレーザ指向調整方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for adjusting laser directivity of an image forming apparatus, and more particularly to a laser printer and a digital copying machine which form an image by scanning a photosensitive member with a laser beam corresponding to image data. The present invention also relates to a laser pointing adjustment method for an image forming apparatus that forms a desired beam spot on a photoconductor by making the optical axis of a laser light source (laser light output means) coincide with the optical axis of a collimator lens.

【0002】[0002]

【従来の技術】この種の従来技術の一例が、平成5年9
月3日付で出願公開された特開平5−225575号公
報[G11B 7/08]によって開示されている。こ
の従来技術は、コリメータレンズの光軸に対して偏心し
た回転軸を有する回転体を、コリメータレンズの光軸に
直交する方向に移動可能に支持し、半導体レーザ素子の
光軸に直交する水平方向内にコリメータレンズの光軸が
位置するまで回転体(レンズ保持筒)を回転させ、そし
て、レンズ保持筒をコリメータレンズの光軸に直交する
方向に移動させて、コリメータレンズの光軸と半導体レ
ーザ素子の光軸とを一致させるようにしたものである。
2. Description of the Related Art An example of this kind of conventional technology is disclosed in
It is disclosed in Japanese Patent Application Laid-Open No. 5-225575 [G11B 7/08], which was published on March 3, 2003. This conventional technique supports a rotator having a rotation axis decentered with respect to the optical axis of a collimator lens so as to be movable in a direction orthogonal to the optical axis of the collimator lens, and a horizontal direction orthogonal to the optical axis of the semiconductor laser element. The rotating body (lens holding tube) is rotated until the optical axis of the collimator lens is positioned inside the lens, and the lens holding tube is moved in a direction perpendicular to the optical axis of the collimator lens so that the optical axis of the collimator lens and the semiconductor laser This is to match the optical axis of the element.

【0003】[0003]

【発明が解決しようとする課題】従来技術では、半導体
レーザ素子およびコリメータレンズ(レンズ保持筒)
を、半導体レーザ素子の光軸を原点としたX−Y軸方向
に手動的に変位させる必要があるため、熟練した人でな
ければ、X−Y座標成分を同時に満足させて高精度の光
軸合わせ(指向調整)を行うことは困難である。
In the prior art, a semiconductor laser device and a collimator lens (lens holding cylinder) are used.
Is required to be manually displaced in the XY axis direction with the optical axis of the semiconductor laser element as the origin. Therefore, unless a skilled person, the XY coordinate components are satisfied at the same time, and a highly accurate optical axis is obtained. It is difficult to perform matching (directivity adjustment).

【0004】また、上述の従来技術によれば、レンズ保
持筒を回転させることによって、Y軸方向の光軸合わせ
は容易に行い得るが、レンズ保持筒および支持枠の加工
精度が極めて悪い場合には、X軸方向の光軸合わせを行
うため、レンズ保持筒を移動用溝に沿って変位させたと
き、調整したY座標にずれが生じるという問題もある。
Further, according to the above-mentioned prior art, the optical axis can be easily aligned in the Y-axis direction by rotating the lens holding tube. However, when the processing accuracy of the lens holding tube and the support frame is extremely poor, However, since the optical axis is aligned in the X-axis direction, there is also a problem that when the lens holding cylinder is displaced along the movement groove, the adjusted Y coordinate is shifted.

【0005】それゆえに、この発明の主たる目的は、コ
リメータレンズとレーザ光源の光軸合わせ(指向調整)
を簡単かつ精度よく行うことができる、画像形成装置の
レーザ指向調整方法を提供することである。
[0005] Therefore, a main object of the present invention is to align the optical axis (directivity adjustment) of the collimator lens and the laser light source.
To provide a laser pointing adjustment method for an image forming apparatus, which can easily and accurately perform the above.

【0006】[0006]

【課題を解決するための手段】この発明は、レーザ光を
出力するレーザ光出力手段、レーザ光を平行光に偏向す
るコリメータレンズ、コリメータレンズを保持しかつコ
リメータレンズの光軸とは偏心した回転軸回りに回転す
る回転保持体、レーザ光を走査して表面に静電潜像を形
成する感光体、および感光体に関連して設けられてレー
ザ光の走査開始位置を制御する走査開始位置制御手段を
備える画像形成装置のレーザ指向調整方法であって、レ
ーザ光出力手段の光軸を原点とするX−Y座標系におい
て、回転保持体に回転を付与してコリメータレンズの光
軸のY座標成分をゼロとし、そしてコリメータレンズの
光軸のX座標成分と原点とのずれを走査開始位置制御手
段で補正するようにした、画像形成装置のレーザ指向調
整方法である。
SUMMARY OF THE INVENTION The present invention provides a laser light output means for outputting a laser light, a collimator lens for deflecting the laser light into parallel light, a rotation holding the collimator lens and eccentric to the optical axis of the collimator lens. A rotation holding member that rotates around an axis, a photoconductor that scans a laser beam to form an electrostatic latent image on a surface, and a scanning start position control that is provided in association with the photoconductor and controls a scanning start position of the laser beam A laser direction adjusting method for an image forming apparatus, comprising: an XY coordinate system having an optical axis of a laser light output unit as an origin; A laser pointing adjustment method for an image forming apparatus, wherein a component is set to zero and a deviation between an X coordinate component of an optical axis of a collimator lens and an origin is corrected by a scanning start position control unit.

【0007】[0007]

【作用】コリメータレンズは、その光軸とは偏心した回
転軸回りに回転する回転保持体によって保持される。こ
の回転保持体に回転が付与されると、コリメータレンズ
の光軸は、回転保持体の回転軸方向からみて真円の軌跡
を描いて変位する。したがって、回転保持体に回転を付
与し、コリメータレンズを通過したレーザ光を水平方向
に指向させることによって、レーザ光出力手段の光軸と
コリメータレンズの光軸のY座標成分を互いに一致させ
ることができる。
The collimator lens is held by a rotation holder which rotates around a rotation axis decentered from the optical axis. When the rotation is applied to the rotation holder, the optical axis of the collimator lens is displaced along a locus of a perfect circle when viewed from the rotation axis direction of the rotation holder. Therefore, by applying rotation to the rotation holder and directing the laser light passing through the collimator lens in the horizontal direction, the Y coordinate components of the optical axis of the laser light output unit and the optical axis of the collimator lens can be made to coincide with each other. it can.

【0008】このとき、コリメータレンズの光軸とレー
ザ光出力手段の光軸のX座標成分にはずれが生じている
が、このずれは、走査開始位置制御手段によって、像形
成動作期間に補正できる。つまり、両光軸のX座標成分
のずれは、レーザ光の主走査方向のずれすなわちレーザ
光の走査開始位置(書き出し位置)のずれとなって生じ
るものであり、レーザ光の走査開始位置を制御する走査
開始位置制御手段で補正することができる。
At this time, there is a deviation between the X-axis component of the optical axis of the collimator lens and the optical axis of the laser light output means. This deviation can be corrected by the scanning start position control means during the image forming operation. That is, the deviation of the X coordinate components of both optical axes occurs as a deviation in the main scanning direction of the laser light, that is, a deviation of the scanning start position (writing position) of the laser light, and controls the scanning start position of the laser light. Can be corrected by the scanning start position control means.

【0009】[0009]

【発明の効果】この発明によれば、レーザ光出力手段の
光軸とコリメータレンズの光軸のX座標成分のずれを、
像形成動作期間の走査開始位置制御により補正するよう
にしたので、光軸合わせは両光軸のY座標成分のみを手
動的に一致させるだけでよく、したがって、簡単かつ高
精度に光軸合わせ(指向調整)を行うことができる。
According to the present invention, the deviation of the X coordinate component between the optical axis of the laser light output means and the optical axis of the collimator lens can be calculated.
Since the correction is performed by controlling the scanning start position during the image forming operation period, the optical axis alignment need only be made to manually match only the Y coordinate components of both optical axes. Therefore, the optical axis alignment can be performed easily and accurately ( Pointing adjustment).

【0010】この発明の上述の目的,その他の目的,特
徴および利点は、図面を参照して行う以下の実施例の詳
細な説明から一層明らかとなろう。
The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

【0011】[0011]

【実施例】図1に示すこの実施例の光源装置10は、画
像データに応じて出力されたレーザ光を後述する感光体
24上で走査して画像を形成するレーザプリンタおよび
ディジタル複写機等の画像形成装置12(図2参照)に
適用される。すなわち、図2に示す画像形成装置12
は、後述する光源装置10を含み、この光源装置10
は、レーザ光出力手段としての半導体レーザ14と、半
導体レーザ14からの放射光束をコリメート(collimat
e) するコリメータレンズ16とを含む。半導体レーザ
14には、図示しないイメージスキャナなどの画像読取
装置から送信された画像データが付与され、それに応
じ、半導体レーザ14からはレーザ光が出力される。そ
して、このレーザ光は、コリメータレンズ16によって
平行光に偏向された後、シリンドリカルレンズ18を介
して、ポリゴンミラーなどからなる偏向器20に案内さ
れる。偏向器20は、複数の反射面20aを有し、偏向
器20に矢印Aで示す方向の回転を付与し、各々の反射
面20aを変位させることによって、レーザ光に角度が
与えられて、レーザ光の主走査が行われる。そして、偏
向されたレーザ光は、fθレンズ22により集光された
後、感光体24に入射されて、感光体24上に静電潜像
が形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A light source device 10 of this embodiment shown in FIG. 1 is a laser printer, a digital copying machine, or the like that forms an image by scanning a laser beam output in accordance with image data on a photosensitive member 24 described later. This is applied to the image forming apparatus 12 (see FIG. 2). That is, the image forming apparatus 12 shown in FIG.
Includes a light source device 10 to be described later.
Are collimated (collimated) with a semiconductor laser 14 as a laser light output unit and a radiant light beam from the semiconductor laser 14.
and e) a collimator lens 16. Image data transmitted from an image reading device such as an image scanner (not shown) is provided to the semiconductor laser 14, and a laser beam is output from the semiconductor laser 14 accordingly. After being deflected by the collimator lens 16 into parallel light, the laser light is guided via the cylindrical lens 18 to the deflector 20 composed of a polygon mirror or the like. The deflector 20 has a plurality of reflecting surfaces 20a, and imparts rotation to the deflector 20 in a direction indicated by an arrow A to displace each of the reflecting surfaces 20a. Light main scanning is performed. Then, the deflected laser light is condensed by the fθ lens 22, and then is incident on the photoconductor 24 to form an electrostatic latent image on the photoconductor 24.

【0012】偏向器20によって、レーザ光は、感光体
24上を矢印B方向に繰り返し走査されるが、反射面2
0aの分割角度にばらつきが生じている場合には、1走
査毎に露光幅が相違するすなわち走査開始位置(書き出
し位置)にばらつきを生じてしまうため、レーザ光の走
査方向の上流にPIN型フォトダイオードなどの光検出
器26を設けて、レーザ光の走査開始位置を制御するよ
うにしている。つまり、感光体24に関連して設けられ
た光検出器26によって、偏向器20で反射した走査開
始位置信号用のレーザ光を検出し、得られた開始位置信
号と基準のクロック信号とを同期させることによって、
感光体24上の走査開始位置(書き出し位置)を制御す
るようにしている。すなわち、光検出器26が走査開始
位置制御手段を構成する。
The laser beam is repeatedly scanned by the deflector 20 on the photosensitive member 24 in the direction of arrow B.
If there is a variation in the division angle of 0a, the exposure width differs for each scan, that is, a variation occurs in the scanning start position (write start position). A photodetector 26 such as a diode is provided to control the scanning start position of the laser beam. That is, the laser light for the scanning start position signal reflected by the deflector 20 is detected by the photodetector 26 provided in association with the photoconductor 24, and the obtained start position signal and the reference clock signal are synchronized. By letting
The scanning start position (write start position) on the photoconductor 24 is controlled. That is, the photodetector 26 constitutes a scanning start position control unit.

【0013】図1にもどって、光源装置10は保持体2
8を含み、この保持体28に、図1の右側(Z軸方向)
からみて、略円形の貫通孔30および32が形成され
る。そして、貫通孔30に半導体レーザ(レーザ光出力
手段)14が、貫通孔32に円筒状の鏡筒(回転保持
体)34が、それぞれ係合される。より詳しく述べる
と、貫通孔30の孔径は、半導体レーザ14の外径と略
等しくされ、この貫通孔32に半導体レーザ14を圧入
および接着等により固着して、半導体レーザ14を位置
決めする。一方、貫通孔32は、その孔径が鏡筒34の
外径よりも僅かに大きく設定され、鏡筒34を貫通孔3
2に挿入(係合)した状態で、鏡筒34が回転軸36回
りに回転可能に保持される。
Returning to FIG. 1, the light source device 10 includes a holder 2
1 and the right side of FIG. 1 (Z-axis direction)
From the viewpoint, substantially circular through holes 30 and 32 are formed. The semiconductor laser (laser light output means) 14 is engaged with the through-hole 30, and the cylindrical lens barrel (rotation holder) 34 is engaged with the through-hole 32. More specifically, the diameter of the through-hole 30 is made substantially equal to the outer diameter of the semiconductor laser 14, and the semiconductor laser 14 is fixed to the through-hole 32 by press-fitting and bonding, and the semiconductor laser 14 is positioned. On the other hand, the diameter of the through hole 32 is set slightly larger than the outer diameter of the lens barrel 34.
The lens barrel 34 is rotatably held around the rotation shaft 36 in a state of being inserted (engaged) into the lens barrel 2.

【0014】そして、この鏡筒34の貫通孔38に、コ
リメータレンズ16が固定的に設けられる。図1からも
よくわかるように、コリメータレンズ16の光軸40と
鏡筒34の回転軸36とを偏心させて、コリメータレン
ズ16は、鏡筒34の内方に取り付けられる。上述した
ように、鏡筒(回転保持体)34は、保持体28に対
し、回転軸36回りに回転可能に保持されているので、
鏡筒34に回転を付与することにより、コリメータレン
ズ16の光軸40は、図1のZ軸方向からみて、回転軸
36を中心とした真円の軌跡を描いて変位する。したが
って、半導体レーザ14の光軸(発光点)を原点とした
X−Y座標系において、鏡筒34を回転軸36回りに回
転させることによって、コリメータレンズ16の光軸4
0のX座標成分およびY座標成分を、それぞれ変位させ
ることができる。
The collimator lens 16 is fixedly provided in the through hole 38 of the lens barrel 34. 1, the optical axis 40 of the collimator lens 16 and the rotation axis 36 of the lens barrel 34 are decentered, and the collimator lens 16 is mounted inside the lens barrel 34. As described above, since the lens barrel (rotation holding member) 34 is held rotatably about the rotation axis 36 with respect to the holding member 28,
By applying rotation to the lens barrel 34, the optical axis 40 of the collimator lens 16 is displaced along a locus of a true circle centered on the rotation axis 36 when viewed from the Z-axis direction in FIG. Therefore, by rotating the lens barrel 34 around the rotation axis 36 in the XY coordinate system whose origin is the optical axis (light emitting point) of the semiconductor laser 14, the optical axis 4 of the collimator lens 16 is
The X coordinate component and the Y coordinate component of 0 can be respectively displaced.

【0015】次に、半導体レーザ14とコリメータレン
ズ16の光軸合わせ方法すなわちレーザ光の指向調整方
法について説明する。まず、半導体レーザ14を貫通孔
30に、コリメータレンズ16を鏡筒34に、それぞれ
圧入および接着等により固定し、続いて、鏡筒34を保
持体28の貫通孔32に挿入する。そして、半導体レー
ザ14を能動化し、レーザ光がZ軸方向(水平方向)に
出射されるまで、鏡筒34を回転軸36回りに回転させ
る。すなわち、コリメータレンズ16を通過したレーザ
光が、Z軸方向(水平方向)に出射されているとき、コ
リメータレンズ16の光軸40と半導体レーザ14の光
軸42のY座標成分は互いに一致する。こうして、Y軸
方向の光軸合わせが完了したら、鏡筒34を接着剤など
により保持体28に固定する。この状態では、X軸方向
の光軸合わせがなされていないが、このX軸方向の光軸
のずれは、像形成動作期間に補正することができる。
Next, a method of aligning the optical axis of the semiconductor laser 14 and the collimator lens 16, that is, a method of adjusting the directivity of the laser light will be described. First, the semiconductor laser 14 is fixed to the through hole 30, and the collimator lens 16 is fixed to the lens barrel 34 by press-fitting and bonding, and then the lens barrel 34 is inserted into the through hole 32 of the holder 28. Then, the semiconductor laser 14 is activated, and the lens barrel 34 is rotated around the rotation axis 36 until the laser light is emitted in the Z-axis direction (horizontal direction). That is, when the laser light that has passed through the collimator lens 16 is emitted in the Z-axis direction (horizontal direction), the Y-axis components of the optical axis 40 of the collimator lens 16 and the optical axis 42 of the semiconductor laser 14 match each other. When the optical axis alignment in the Y-axis direction is completed in this way, the lens barrel 34 is fixed to the holder 28 with an adhesive or the like. In this state, although the optical axis alignment in the X-axis direction has not been performed, the deviation of the optical axis in the X-axis direction can be corrected during the image forming operation period.

【0016】すなわち、X軸方向の光軸のずれは、光学
性能に悪影響を及ぼすことがなく、画像データの走査開
始位置(書き出し位置)のずれとなって生じる。したが
って、コリメータレンズ16の光軸40と半導体レーザ
14の光軸42のX座標成分のずれは、光検出器26に
より、偏向器20で反射したレーザ光を検出し、得られ
た開始位置信号に基づいて感光体24上の走査開始位置
を制御する過程において補正される。したがって、半導
体レーザ14の光軸42(発光点)を原点とするX−Y
座標系において、手動的に行うコリメータレンズ16と
半導体レーザ14との光軸合わせ(指向調整)は、鏡筒
34に回転を付与してするY軸方向の光軸合わせのみで
よい。
That is, the shift of the optical axis in the X-axis direction does not adversely affect the optical performance, and occurs as a shift of the scan start position (write start position) of the image data. Therefore, the difference between the X-axis component of the optical axis 40 of the collimator lens 16 and the X-coordinate component of the optical axis 42 of the semiconductor laser 14 is determined by detecting the laser beam reflected by the deflector 20 by the photodetector 26 and detecting the start position signal. The correction is made in the process of controlling the scanning start position on the photosensitive member 24 based on the above. Therefore, XY with the optical axis 42 (light emitting point) of the semiconductor laser 14 as the origin.
In the coordinate system, the optical axis alignment (directivity adjustment) between the collimator lens 16 and the semiconductor laser 14 that is manually performed may be performed only by adjusting the optical axis in the Y-axis direction by rotating the lens barrel 34.

【0017】この実施例では、コリメータレンズ16を
その光軸40とは偏心した回転軸36回りに回転可能に
保持し、コリメータレンズ16(鏡筒34)に回転を付
与して、半導体レーザ14の光軸42とコリメータレン
ズ16の光軸40のY座標成分を互いに一致させ、ずれ
が生じているX座標成分については、像形成動作期間に
する走査開始位置制御によって補正するようにしたの
で、簡単かつ精度よく光軸合わせ(レーザ指向調整)を
行うことができる。
In this embodiment, the collimator lens 16 is held rotatably about a rotation axis 36 eccentric to the optical axis 40, and rotation is given to the collimator lens 16 (barrel 34). The Y-coordinate component of the optical axis 42 and the Y-coordinate component of the optical axis 40 of the collimator lens 16 are made coincident with each other, and the shifted X-coordinate component is corrected by scanning start position control during the image forming operation period. In addition, the optical axis alignment (laser pointing adjustment) can be performed with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例を図解図である。FIG. 1 is an illustrative view showing one embodiment of the present invention;

【図2】図1実施例の光源装置が装着される画像形成装
置を示す構成図である。
FIG. 2 is a configuration diagram illustrating an image forming apparatus to which the light source device of FIG. 1 is mounted.

【符号の説明】[Explanation of symbols]

10 …光源装置 12 …画像形成装置 14 …半導体レーザ 16 …コリメータレンズ 24 …感光体 26 …光検出器 28 …保持体 34 …鏡筒 36,40,42 …光軸 DESCRIPTION OF SYMBOLS 10 ... Light source device 12 ... Image forming apparatus 14 ... Semiconductor laser 16 ... Collimator lens 24 ... Photoconductor 26 ... Photodetector 28 ... Holder 34 ... Barrel 36, 40, 42 ... Optical axis

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】レーザ光を出力するレーザ光出力手段、前
記レーザ光を平行光に偏向するコリメータレンズ、前記
コリメータレンズを保持しかつ前記コリメータレンズの
光軸とは偏心した回転軸回りに回転する回転保持体、前
記レーザ光を走査して表面に静電潜像を形成する感光
体、および前記感光体に関連して設けられて前記レーザ
光の走査開始位置を制御する走査開始位置制御手段を備
える画像形成装置のレーザ指向調整方法であって、 前記レーザ光出力手段の光軸を原点とするX−Y座標系
において、 前記回転保持体に回転を付与して前記コリメータレンズ
の光軸のY座標成分をゼロとし、そして前記コリメータ
レンズの光軸のX座標成分と前記原点とのずれを前記走
査開始位置制御手段で補正するようにした、画像形成装
置のレーザ指向調整方法。
1. A laser light output means for outputting laser light, a collimator lens for deflecting the laser light into parallel light, and holding the collimator lens and rotating about a rotation axis decentered from the optical axis of the collimator lens. A rotation holding member, a photosensitive member that scans the laser light to form an electrostatic latent image on a surface, and a scanning start position control unit that is provided in association with the photosensitive member and controls a scanning start position of the laser light. A laser pointing adjustment method for an image forming apparatus, comprising: an XY coordinate system having an optical axis of the laser light output unit as an origin; A laser of the image forming apparatus, wherein the coordinate component is set to zero, and a deviation between the X coordinate component of the optical axis of the collimator lens and the origin is corrected by the scanning start position control means. Direction adjustment method.
JP31315297A 1997-11-14 1997-11-14 Laser orientation adjusting method of image forming device Withdrawn JPH11142754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31315297A JPH11142754A (en) 1997-11-14 1997-11-14 Laser orientation adjusting method of image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31315297A JPH11142754A (en) 1997-11-14 1997-11-14 Laser orientation adjusting method of image forming device

Publications (1)

Publication Number Publication Date
JPH11142754A true JPH11142754A (en) 1999-05-28

Family

ID=18037745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31315297A Withdrawn JPH11142754A (en) 1997-11-14 1997-11-14 Laser orientation adjusting method of image forming device

Country Status (1)

Country Link
JP (1) JPH11142754A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3167329B1 (en) * 2014-07-08 2019-07-10 Fisba AG Apparatus for generating light having a plurality of wavelengths, method for manufacturing an apparatus, use of a positioning module and method for combining light beams

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3167329B1 (en) * 2014-07-08 2019-07-10 Fisba AG Apparatus for generating light having a plurality of wavelengths, method for manufacturing an apparatus, use of a positioning module and method for combining light beams

Similar Documents

Publication Publication Date Title
JPS63136017A (en) Light beam scanning device
JPS63183415A (en) Laser beam scanner
WO2007129771A1 (en) Optical scanning device
JP2696364B2 (en) Monitor mechanism of scanning optical device
JPH11142754A (en) Laser orientation adjusting method of image forming device
JP2973550B2 (en) Laser beam scanning optical device
JP2002062499A (en) Scanning optical device
JP2000180748A (en) Division scanner and beam state adjusting method therefor
JPH08110488A (en) Optical scanning device
JPH09211357A (en) Angle adjustment mechanism and adjustment method for spot light source array of scanning optical device
JPH0222928B2 (en)
JP2971005B2 (en) Optical scanning device
US5555122A (en) Light scanning device
JPH08136841A (en) Laser unit and image forming device
JP2001142021A (en) Light source device
JPH03131817A (en) Light beam scanning optical device
JPH10319336A (en) Multibeam light source device and optical deflection scanner using the same
JPH11194286A (en) Multibeam scanning device
JP2001281588A (en) Emission position adjustment structure for plane- parallel plane
JPH0915521A (en) Laser light source device
JP2001021823A (en) Optical adjustment method for optical scanner
JP3141597B2 (en) Optical scanning device
JPH05289008A (en) Synchronous detector
JP2000089147A (en) Multi-beam scanner
JPH01239520A (en) Beam deflecting device and beam scanning device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050201