JPH11142627A - Prism type translucent reflecting plate and lighting device - Google Patents

Prism type translucent reflecting plate and lighting device

Info

Publication number
JPH11142627A
JPH11142627A JP9322359A JP32235997A JPH11142627A JP H11142627 A JPH11142627 A JP H11142627A JP 9322359 A JP9322359 A JP 9322359A JP 32235997 A JP32235997 A JP 32235997A JP H11142627 A JPH11142627 A JP H11142627A
Authority
JP
Japan
Prior art keywords
light
prismatic
layer
reflection
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9322359A
Other languages
Japanese (ja)
Inventor
Kazutaka Hara
和孝 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP9322359A priority Critical patent/JPH11142627A/en
Publication of JPH11142627A publication Critical patent/JPH11142627A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a lighting device capable of forming a reflection and transmission both use type liquid crystal display device which shows brightness being equal to that of a conventional reflection type exclusive reflecting plate in a reflection mode and shows sufficient brightness and is superior in visibility even in a transmission mode by obtaining a translucent reflecting plate with a large degree of freedom for balancing reflectivity and transmissivity. SOLUTION: A metal vapor-deposited layer 12 is installed on the prismatic uneven surface of a transparent base material 11 having a structure where the prismatic unevenness is repeated, a prism type translucent reflecting plate which has a reflecting surface 13 and a transmission surface 14 for light is arranged based on the projection parts of the prismatic unevenness and a surface light source which shows directivity to the light transmission surface of the prismatic uneven surface is arranged on the opposite surface to the prismatic unevenness formation surface of the reflecting plate. Consequently, the areas of the light reflecting surface and light transmitting surface can individually be set with a large variation width by sharing reflection and transmission through the formation surface of the prismatic uneven structure and the reflectivity and transmissivity can be balanced individually with a large degree of freedom.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の技術分野】本発明は、反射型や反射・透過両用
型の液晶表示装置等の形成に好適なプリズム式半透過反
射板及び照明装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prism type semi-transmissive reflector and an illuminating device suitable for forming a reflection type or a reflection / transmission type liquid crystal display device.

【0002】[0002]

【発明の背景】従来、反射・透過両用型の液晶表示装置
の形成に用いうる半透過反射板としては、マイカ等の鱗
片状反射粒子を配合した樹脂シートや、樹脂シート上に
金属蒸着層を反射性と透過性を示すように厚さ制御して
付設したものが知られていた。しかしながら、反射性と
透過性のバランスが鱗片状反射粒子の配合量や金属蒸着
層の厚さで一義的に決定されて反射性と透過性が背反す
る関係にあるため、反射性と透過性をバランスさせる自
由度が小さい問題点があった。
BACKGROUND OF THE INVENTION Conventionally, as a transflective plate which can be used for forming a reflective / transmissive liquid crystal display device, a resin sheet containing scale-like reflective particles such as mica, or a metal vapor-deposited layer on a resin sheet is used. It has been known that the thickness is controlled so as to exhibit reflectivity and transmissivity. However, since the balance between reflectivity and transmissivity is determined uniquely by the blending amount of the flaky reflective particles and the thickness of the metal deposition layer, the relationship between reflectivity and transmissivity is opposite, so that reflectivity and transmissivity are There is a problem that the degree of freedom for balancing is small.

【0003】[0003]

【発明の技術的課題】本発明は、反射性と透過性をバラ
ンスさせる自由度の大きい半透過反射板を得て、反射モ
ードでは従来の反射型専用の反射板に匹敵する明るさを
示し、透過モードにても充分な明るさを示して視認性に
優れる反射・透過両用型の液晶表示装置を形成できる照
明装置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention provides a semi-transmissive reflector having a high degree of freedom to balance the reflectivity and the transmissivity, and in a reflection mode, exhibits a brightness comparable to that of a conventional reflector dedicated to a reflection type. It is an object of the present invention to provide an illumination device which can form a reflection-transmission type liquid crystal display device exhibiting sufficient brightness even in a transmission mode and having excellent visibility.

【0004】[0004]

【課題の解決手段】本発明は、プリズム状凹凸の繰返し
構造を有する透明基材の前記プリズム状凹凸面に金属蒸
着層を付設してなり、かつそのプリズム状凹凸の凸部に
基づいて光の反射面と透過面を有することを特徴とする
プリズム式半透過反射板、及びその反射板のプリズム状
凹凸形成面とは反対面の側に、プリズム状凹凸面の光透
過面に対して指向性を示す面光源を配置したことを特徴
とする照明装置を提供するものである。
According to the present invention, there is provided a transparent base material having a repeating structure of prismatic irregularities, wherein a metal deposition layer is provided on the prismatic irregularities, and light is transmitted based on the convexities of the prismatic irregularities. A prism type semi-transmissive reflector characterized by having a reflective surface and a transmissive surface, and a directivity to the light transmitting surface of the prismatic irregular surface on a side of the reflector opposite to the prism-shaped irregular surface. The present invention provides a lighting device characterized by arranging a surface light source indicating the following.

【0005】[0005]

【発明の効果】本発明によれば、プリズム状凹凸構造の
形成面を介し反射/透過を分担させてその光反射面と光
透過面の面積を大きい変動幅で独自に設定でき、反射性
と透過性を大きい自由度で独自的にバランスさせ得て、
光量に優れる反射光と透過光を得ることができる。
According to the present invention, the reflection / transmission can be shared through the formation surface of the prismatic uneven structure, and the areas of the light reflection surface and the light transmission surface can be independently set with a large variation width, and the reflection and transmission characteristics can be improved. The transparency can be uniquely balanced with great freedom,
It is possible to obtain reflected light and transmitted light that are excellent in light quantity.

【0006】前記の結果、従来の反射型専用反射板に匹
敵する反射面積も容易に確保できて反射モードでは従来
の反射型専用反射板に匹敵する明るさを示し、かつ光透
過面も大きい面積を確保できて透過モードにても充分な
明るさを示し、光透過面に対して指向性を示す面光源と
組合せた照明装置により明るくて視認性に優れる反射・
透過両用型の液晶表示装置を形成することができる。
[0006] As a result, a reflection area comparable to that of the conventional reflection-type dedicated reflection plate can be easily secured, and in the reflection mode, the brightness is comparable to that of the conventional reflection-type dedicated reflection plate, and the light transmission surface is also large. The lighting system combined with a surface light source that shows sufficient brightness even in the transmission mode and shows directivity with respect to the light-transmitting surface is bright and has excellent visibility.
A transmissive liquid crystal display device can be formed.

【0007】[0007]

【発明の実施形態】本発明のプリズム式半透過反射板
は、プリズム状凹凸の繰返し構造を有する透明基材の前
記プリズム状凹凸面に金属蒸着層を付設してなり、かつ
そのプリズム状凹凸の凸部に基づいて光の反射面と透過
面を有するものからなる。その例を図1〜図3に示し
た。1がプリズム式半透過反射板で、11が透明基材、
12が金属蒸着層、13が光反射面、14が光透過面で
ある。また2,21は埋設層、22は光散乱性粒子であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The prism type semi-transmissive reflection plate of the present invention comprises a transparent base material having a repeating structure of prismatic irregularities, wherein a metal deposition layer is provided on the prismatic irregularities, and the prismatic irregularities are provided. It has a light reflection surface and a light transmission surface based on the convex portion. Examples are shown in FIGS. 1 is a prism type transflective plate, 11 is a transparent substrate,
12 is a metal deposition layer, 13 is a light reflection surface, and 14 is a light transmission surface. Further, 2 and 21 are buried layers, and 22 is light scattering particles.

【0008】また本発明の照明装置は、前記のプリズム
式半透過反射板のプリズム状凹凸形成面とは反対面の側
に、プリズム状凹凸面の光透過面に対して指向性を示す
面光源を配置したものからなる。その例を図3に示し
た。3が面光源であり、31は導光板、32は光源、3
3は反射層である。なお図3は、反射・透過両用の液晶
表示装置としたものを示しており、4は液晶セルであ
る。
The illumination device according to the present invention is further characterized in that the surface of the prism type semi-transmissive reflection plate has directivity with respect to the light transmitting surface of the prismatic irregular surface on the side opposite to the prismatic irregularity forming surface. Are arranged. An example is shown in FIG. 3 is a surface light source, 31 is a light guide plate, 32 is a light source, 3
3 is a reflective layer. FIG. 3 shows a liquid crystal display device for both reflection and transmission, and 4 is a liquid crystal cell.

【0009】透明基材は、ガラスやポリマー等の適宜な
透明性物質で形成でき、その形成材については特に限定
はない。一般には、入射の波長光、特に可視光に対して
良好な透明性を示すポリマーにて形成される。そのポリ
マーの例としては、ポリオレフィンや各種の合成ゴム、
ポリカーボネートやポリスチレン、ポリイミドやポリア
ミド、セルロース系ポリマーやポリビニルアルコール、
ポリアクリル酸エステルやポリメタクリル酸エステル、
ポリウレタンやポリウレタンアクリレート、ポリ塩化ビ
ニルやポリエステル、エポキシ樹脂やエポキシアクリレ
ートなどがあげられる。
The transparent substrate can be formed of an appropriate transparent substance such as glass or polymer, and the material for forming the transparent substrate is not particularly limited. Generally, it is formed of a polymer exhibiting good transparency to incident wavelength light, particularly visible light. Examples of such polymers include polyolefins and various synthetic rubbers,
Polycarbonate and polystyrene, polyimide and polyamide, cellulosic polymer and polyvinyl alcohol,
Polyacrylates and polymethacrylates,
Examples include polyurethane, polyurethane acrylate, polyvinyl chloride and polyester, epoxy resin and epoxy acrylate.

【0010】透明基材におけるプリズム状凹凸は、多数
の凹凸の繰返し構造として設けられるが、そのプリズム
状凹凸の形態については特に限定はなく、例えば三角形
や台形等の断面形態、あるいはレコード盤の如き曲面な
いし円形面からなる形態、その他、三角柱や三角錐やド
ーム形からなる形態、階段状ないしステップ部を有する
多段形態などの適宜な形態とすることができる。またプ
リズム状凹凸は、連続面として形成されていてもよい
し、不連続面として形成されていてもよい。
The prismatic irregularities on the transparent base material are provided as a repetitive structure of a large number of irregularities. The form of the prismatic irregularities is not particularly limited. Appropriate forms such as a form consisting of a curved surface or a circular surface, a form consisting of a triangular prism, a triangular pyramid or a dome, a step form or a multi-step form having a step portion can be adopted. Further, the prism-shaped irregularities may be formed as a continuous surface or as a discontinuous surface.

【0011】さらにプリズム状凹凸の繰返し構造は、同
じ形態の凹凸で形成されていてもよいし、異なる形態の
凹凸で形成されていてもよい。また繰返し構造は、プリ
ズム状凹凸が規則的に配列したものであってもよいし、
不規則に配列したものであってもよい。出射方向を面全
体で統一する点よりは、ほぼ同じ形態のプリズム状凹凸
を規則的に配列した繰返し構造が好ましい。
Further, the repeating structure of the prism-shaped unevenness may be formed by the same shape of the unevenness, or may be formed by the different shape of the unevenness. Further, the repeating structure may be one in which prismatic irregularities are regularly arranged,
They may be arranged irregularly. A repetitive structure in which prism-shaped irregularities having substantially the same form are regularly arranged is preferable to unifying the emission direction over the entire surface.

【0012】前記の規則的な配列状態としては、例えば
縦列や横列、斜列や同心円列、縦横列や縦斜列、横斜列
や縦横斜列等の縦列と横列と斜列又は/及び同心円列と
の組合せからなる配列などがあげられる。従ってストラ
イプ状の配列、三角状や格子状等の多角状の配列なども
含まれる。よってプリズム状凹凸は、一方向に一次元的
に配列したものであってもよいし、縦横等の多方向に凹
部が形成されていて不連続な凸部が所定の配列状態で二
次元的に配列したものであってもよい。
The above-mentioned regular arrangement state may be, for example, a column, a row, a diagonal row, a diagonal row, a diagonal row, a diagonal row, a diagonal row, a diagonal row, a diagonal row, or a diagonal row. An array composed of a combination with a column is exemplified. Therefore, a stripe-like arrangement, a polygonal arrangement such as a triangular or lattice-like arrangement and the like are also included. Therefore, the prismatic irregularities may be one-dimensionally arranged in one direction, or two-dimensionally arranged in a predetermined arrangement state in which concave portions are formed in multiple directions such as vertical and horizontal, and discontinuous convex portions are formed. They may be arranged.

【0013】上記したプリズム状凹凸の傾斜角等の形態
やその繰返し構造等を制御することにより、光反射面を
介した反射光の出射角度や光透過面を介した透過光の出
射角度などを調節することができる。従って光反射面の
傾斜角は、目的とする反射光の出射方向や光の利用効
率、斜め入射光のカット角などに応じて適宜に決定され
る。一般には、透明基材における水平面を基準に45度
以下、就中1〜30度、特に5〜20度の傾斜面とされ
る。
By controlling the form such as the inclination angle of the above-mentioned prismatic irregularities and its repetitive structure, the angle of emission of reflected light through the light reflecting surface and the angle of emission of transmitted light through the light transmitting surface are controlled. Can be adjusted. Therefore, the inclination angle of the light reflecting surface is appropriately determined according to the emission direction of the target reflected light, the light use efficiency, the cut angle of the obliquely incident light, and the like. Generally, the inclined surface is 45 degrees or less, preferably 1 to 30 degrees, particularly 5 to 20 degrees with respect to the horizontal plane of the transparent substrate.

【0014】ちなみに図1において光反射面13の傾斜
角θ1,θ2,θ3を30度、20度、10度とし、それ
らの傾斜角θ1,θ2,θ3が複合した状態の繰返し構造
とすることにより、図4の如き異なる出射角の3ヵ所に
反射光のピークを示す反射板を得ることができる。また
その反射光を光散乱層等を介して拡散させることにより
図5の如き台形状の出射特性を得ることができ、台形状
の出射特性は視角を変化させた場合の明暗差が少なく、
広い視野角で良好な視認を達成できる利点などを有して
いる。なお反射光の出射方向が一定な出射特性は、光反
射面の傾斜角を一定とすることにより達成することがで
きる。
Incidentally, in FIG. 1, the inclination angles θ 1 , θ 2 , and θ 3 of the light reflecting surface 13 are set to 30 degrees, 20 degrees, and 10 degrees, and the inclination angles θ 1 , θ 2 , and θ 3 are combined. By using a repetitive structure, it is possible to obtain a reflector plate having reflected light peaks at three different emission angles as shown in FIG. By diffusing the reflected light through a light scattering layer or the like, a trapezoidal emission characteristic as shown in FIG. 5 can be obtained, and the trapezoidal emission characteristic has a small difference in brightness when the viewing angle is changed,
It has the advantage that good visibility can be achieved with a wide viewing angle. The emission characteristic in which the emission direction of the reflected light is constant can be achieved by making the inclination angle of the light reflection surface constant.

【0015】一方、図1に例示の如く光透過面14の傾
斜角θ4も、目的とする透過光の出射方向や光の利用効
率、斜め入射光のカット角などに応じて適宜に決定され
る。なおプリズム状の凹凸であることより光の反射面と
透過面の傾斜角を全く独立して設定できるものではな
く、凹凸の高さ調節等による広い設定自由度を有すると
しても反射面と透過面の傾斜角は相互に影響しあう。
On the other hand, as shown in FIG. 1, the inclination angle θ 4 of the light transmitting surface 14 is also appropriately determined according to the emission direction of the transmitted light, the light use efficiency, the cut angle of the obliquely incident light, and the like. You. In addition, the inclination angle of the light reflection surface and the light transmission surface cannot be set completely independently because of the prism-shaped unevenness. Even if the reflection surface and the light transmission surface have a wide degree of freedom in adjusting the height of the unevenness, etc. Tilt angles affect each other.

【0016】本発明においては、透過光の強度は面光源
の輝度等にても制御しうることなどを踏まえて、反射モ
ードでの反射光特性と透過モードでの透過光特性をバラ
ンスさせる点などより、光透過面の傾斜角は、透明基材
における水平面を基準に45度以上、就中70度以上、
特に80度以上とすることが好ましい。なお光透過面の
傾斜角が90度以上のプリズム状凹凸であることも許容
される。
In the present invention, taking into consideration that the intensity of transmitted light can be controlled by the luminance of a surface light source, etc., the balance between the reflected light characteristics in the reflection mode and the transmitted light characteristics in the transmission mode is considered. Thus, the inclination angle of the light transmitting surface is 45 degrees or more, particularly 70 degrees or more, based on the horizontal plane of the transparent substrate,
In particular, it is preferable that the angle be 80 degrees or more. In addition, it is also acceptable that the light transmission surface has a prismatic unevenness with an inclination angle of 90 degrees or more.

【0017】プリズム状凹凸の幅(ピッチ)は、使用目
的などに応じて適宜に決定でき、一般には5mm以下、就
中1μm〜1mm以下、特に5〜500μmとされる。液晶
表示装置に用いる場合には、液晶セルの画素ピッチより
も小さいピッチ、就中1/2以下、特に1/3以下のピ
ッチでプリズム状凹凸の繰返し構造を形成したものが、
モアレの防止や視野角の拡大などの点より特に好まし
い。また液晶表示装置等における反射モードでの上下や
左右方向の視野角特性の改善には、三角状や台形状の凹
凸のストライプ状又は格子状等の一定ピッチによる規則
的な配列が有利である。
The width (pitch) of the prismatic irregularities can be appropriately determined according to the purpose of use and the like, and is generally 5 mm or less, preferably 1 μm to 1 mm or less, particularly 5 to 500 μm. When used in a liquid crystal display device, a structure in which a repetitive structure of prismatic irregularities is formed at a pitch smaller than the pixel pitch of the liquid crystal cell, particularly 以下 or less, particularly 1 / or less,
It is particularly preferable in terms of prevention of moiré and expansion of a viewing angle. In order to improve the vertical and horizontal viewing angle characteristics in a reflection mode in a liquid crystal display device or the like, it is advantageous to form a triangular or trapezoidal uneven pattern in a regular pattern with a constant pitch such as a stripe or grid.

【0018】プリズム状凹凸の繰返し構造を有する透明
基材の製造は、例えば所定の形状(プリズム状凹凸の繰
返し構造)が転写形成される型の上に熱や放射線等で重
合処理できる液状の基材形成材を流延して重合処理する
方法、所定の形状が形成される金型等に熱可塑性樹脂を
押付けてその金型等の面形状を転写する方法、又はその
所定の金型等に熱可塑性樹脂を充填して成形する方法、
溶剤溶液や溶融液等としたポリマーを所定形状の成形開
口を有するノズルから台上に押出して固化させる方法、
基材上に別途形成のプリズム状凹凸の繰返し構造を付設
する方法、ポリマー層にマスクを介し紫外線等を照射す
るマスク露光方法などの適宜な方法で形成することがで
きる。
The production of a transparent substrate having a repeating structure of prismatic irregularities is carried out, for example, by preparing a liquid substrate which can be polymerized by heat, radiation or the like onto a mold on which a predetermined shape (repeating structure of prismatic irregularities) is transferred and formed. A method of casting a material forming material and performing a polymerization treatment, a method of pressing a thermoplastic resin onto a mold or the like in which a predetermined shape is formed, and transferring a surface shape of the mold or the like, or a method in which the predetermined mold or the like is used. A method of filling and molding a thermoplastic resin,
A method in which a polymer, such as a solvent solution or a melt, is extruded from a nozzle having a molding opening of a predetermined shape onto a table and solidified,
It can be formed by an appropriate method such as a method of attaching a repeating structure of prism-shaped irregularities separately formed on a base material, or a mask exposure method of irradiating a polymer layer with ultraviolet rays or the like through a mask.

【0019】プリズム状凹凸の繰返し構造は、透明基材
にそれと同種又は異種の材料からなるプリズム状凹凸を
付設する方法にても形成しうるものであるが、本発明に
おいては、付設界面での反射損等の防止による光利用効
率の向上化などの点より、プリズム状凹凸の繰返し構造
を含む透明基材の全体が同じ材料にて一体に形成されて
いることが好ましい。
The repeating structure of prismatic irregularities can also be formed by a method of attaching prismatic irregularities made of the same or different material to a transparent base material. From the viewpoint of improving the light use efficiency by preventing reflection loss and the like, it is preferable that the entire transparent substrate including the repeating structure of prismatic irregularities is integrally formed of the same material.

【0020】プリズム状凹凸を設けた透明基材の厚さ
は、使用目的等に応じて適宜に決定できるが、一般には
薄いほど好ましく、通例3mm以下、就中10μm〜1m
m、特に30〜500μmとされる。またプリズム状凹凸
の高さないし深さも使用目的や反射光と透過光の光量バ
ランスなどに応じて適宜に決定でき、一般には3mm以
下、就中0.1μm〜1mm、特に1〜500μmとされ
る。
The thickness of the transparent substrate provided with the prismatic irregularities can be appropriately determined according to the purpose of use, etc., but is generally preferably as thin as possible, usually 3 mm or less, especially 10 μm to 1 m.
m, especially 30 to 500 μm. The height or depth of the prismatic irregularities can also be appropriately determined according to the purpose of use and the balance of the amount of reflected light and transmitted light, and is generally 3 mm or less, particularly 0.1 μm to 1 mm, particularly 1 to 500 μm. .

【0021】半透過反射板は、透明基材のプリズム状凹
凸面における光反射面とする面に金属蒸着層を付設する
ことにより形成することができる。すなわち通例、蒸着
源に平行な面に対して厚さdの蒸着層が形成される条件
で蒸着処理を行うと、傾斜角θの面に対しては厚さがd
cosθの蒸着層が形成される。
The transflective plate can be formed by providing a metal vapor deposition layer on the light reflecting surface of the prismatic irregular surface of the transparent substrate. That is, usually, when the vapor deposition process is performed under the condition that the vapor deposition layer having the thickness d is formed on the surface parallel to the vapor deposition source, the thickness becomes d on the surface having the inclination angle θ.
A cos θ deposited layer is formed.

【0022】従って、蒸着源とプリズム状凹凸の光反射
面とする面が可及的に平行となるように配置して蒸着処
理することにより、プリズム状凹凸の光透過面となる面
への蒸着を抑制することができ、光の反射性と透過性を
示す蒸着処理を行うことができる。蒸着源に対しプリズ
ム状凹凸の光反射面とする面が平行となるように透明基
材を配置して、プリズム状凹凸の光透過面となる面の蒸
着源に対する角度が90度以上となる場合には、前記d
cosθの関係より理論上は光透過面となる面に蒸着層が
形成されることを防止することができ、実際上も光透過
性に優れる面が形成される。
Therefore, the vapor deposition source and the surface serving as the light reflecting surface of the prismatic irregularities are disposed so as to be as parallel as possible, and the vapor deposition treatment is performed so that the vapor deposition on the surface serving as the light transmitting surface of the prismatic irregularities is achieved. Can be suppressed, and an evaporation treatment showing light reflectivity and light transmittance can be performed. When the transparent base material is arranged so that the surface serving as the light reflecting surface of the prismatic irregularities is parallel to the vapor deposition source, and the angle of the surface serving as the light transmitting surface of the prismatic irregularities with respect to the vapor deposition source is 90 degrees or more. The above d
From the relationship of cos θ, it is theoretically possible to prevent the deposition layer from being formed on the surface that becomes the light transmitting surface, and a surface excellent in light transmittance is formed in practice.

【0023】蒸着処理は、真空蒸着方式やスパッタリン
グ方式などの適宜な方式で行ってよく、蒸着用の金属に
は例えばアルミニウムや銀などの適宜なものを用いう
る。また光反射面の金属蒸着層は、単層又は2層以上の
重畳層として形成することができ、必要に応じ金属蒸着
層の多層積層構造からなる直線偏光等の偏光特性を示す
反射光を提供するものとすることもできる。
The vapor deposition may be performed by a suitable method such as a vacuum vapor deposition method or a sputtering method, and an appropriate metal such as aluminum or silver may be used as a metal for vapor deposition. In addition, the metal deposition layer on the light reflecting surface can be formed as a single layer or as a superimposed layer of two or more layers, and if necessary, provides reflected light having polarization characteristics such as linearly polarized light having a multilayered structure of the metal deposition layers. It can also be done.

【0024】光反射面における金属蒸着層の厚さは、光
反射性などの点より、80nm以上、就中100nm以上、
特に200nm以上であることが好ましい。一方、光透過
面における金属蒸着層の厚さは、光透過性などの点よ
り、800nm以下、就中400nm以下、特に200nm以
下であることが好ましい。
The thickness of the metal deposited layer on the light reflecting surface is preferably 80 nm or more, more preferably 100 nm or more, from the viewpoint of light reflectivity and the like.
In particular, the thickness is preferably 200 nm or more. On the other hand, the thickness of the metal vapor-deposited layer on the light transmitting surface is preferably 800 nm or less, more preferably 400 nm or less, and particularly preferably 200 nm or less from the viewpoint of light transmittance and the like.

【0025】金属蒸着層を設けたプリズム状凹凸面の上
には、必要に応じて図2や図3に例示の如く少なくとも
プリズム状凹凸の凹部を埋める埋設層を設けることがで
きる。埋設層は、屈折等を介して出射方向を制御するこ
とを目的とした樹脂層や、液晶セル等への接着を目的と
した粘着層などの適宜な目的を有する層として形成する
ことができる。
On the prism-shaped uneven surface provided with the metal deposition layer, a burying layer for filling at least the concave portion of the prism-shaped unevenness can be provided as required, as shown in FIGS. The buried layer can be formed as a layer having an appropriate purpose, such as a resin layer for controlling the emission direction through refraction or the like, or an adhesive layer for bonding to a liquid crystal cell or the like.

【0026】前記樹脂層の形成には、上記透明基材で例
示したポリマーなどの適宜な光透過性物質を用いること
ができ、その種類について特に限定はない。また粘着層
の形成にも、例えばアクリル系重合体やシリコーン系ポ
リマー、ポリエステルやポリウレタン、ポリエーテルや
合成ゴムなどの適宜なポリマーを用いてなる透明な粘着
剤を用いることができ、その種類について特に限定はな
い。透明樹脂のプリズム状凹凸と埋設層の屈折率の相違
に基づく全反射による出射光量の低減を防止する点など
よりは、プリズム状凹凸を形成する材料の屈折率よりも
大きい屈折率の材料で埋設層を形成することが好まし
い。
For the formation of the resin layer, an appropriate light-transmitting substance such as the polymer exemplified for the transparent substrate can be used, and the type thereof is not particularly limited. Also in the formation of the adhesive layer, for example, a transparent adhesive made of an appropriate polymer such as an acrylic polymer or a silicone polymer, polyester or polyurethane, polyether or synthetic rubber can be used. There is no limitation. Buried with a material with a refractive index larger than the refractive index of the material that forms the prismatic irregularities, such as to prevent a reduction in the amount of emitted light due to total reflection based on the difference between the refractive index of the prismatic irregularities of the transparent resin and the embedded layer Preferably, a layer is formed.

【0027】埋設層は、透明基材のプリズム状凹凸に対
応した凹凸形状を有する埋設基材の嵌合配置や、埋設層
形成材溶液等の流動体を塗布して固化させる方式などの
適宜な方式で形成することができる。埋設層の厚さは、
屈折による出射方向の制御や接着力などにより適宜に決
定でき、図例の如く透明基材のプリズム状凹凸の凸部を
超える厚さとすることもできる。
The buried layer may be formed by an appropriate method such as a fitting arrangement of a buried base material having an uneven shape corresponding to the prismatic unevenness of the transparent base material, or a method of applying and solidifying a fluid such as a burying layer forming material solution. It can be formed in a manner. The thickness of the buried layer is
The thickness can be appropriately determined by controlling the emission direction by refraction, the adhesive force, and the like, and can be made to have a thickness exceeding the convex portion of the prismatic irregularities of the transparent substrate as shown in the figure.

【0028】上記のようにプリズム状凹凸の光反射面を
介した反射光が強いピークを示す場合、そのままでは視
角変化による明暗差の大きい表示となることから、その
明暗差を抑制する点などよりは反射光を光散乱させるこ
とが好ましい。その光散乱は、例えばプリズム状凹凸面
をマット処理等の適宜な方式で粗面化して金属蒸着層に
微細凹凸構造を持たせる方式、又は/及びプリズム状凹
凸面上に光散乱層を設ける方式などの適宜な方式にて行
うことができる。
When the reflected light via the light reflecting surface of the prismatic irregularities shows a strong peak as described above, a display having a large difference in brightness due to a change in the viewing angle is displayed as it is. Preferably scatters the reflected light. The light scattering is performed by, for example, roughening the prism-shaped uneven surface by an appropriate method such as matting to give a fine uneven structure to the metal deposition layer, and / or providing a light scattering layer on the prism-shaped uneven surface. It can be performed by an appropriate method such as.

【0029】前記の光散乱層は、上記した埋設層に兼ね
させることもできるし、埋設層とは別個の層として設け
ることもできる。ちなみに埋設層兼用の光散乱層は、例
えば埋設層の相分離方式や、埋設層中に屈折率の異なる
シリカ粒子や酸化カルシウム粒子の如き適宜な無機物か
らなる透明微粒子又は/及びポリメチルメタクリレート
やポリウレタの如き適宜なポリマーからなる架橋又は未
架橋の透明微粒子を含有させる方式、エンボスロールや
サンドブラストやエッチング等の適宜な方式で埋設層の
表面に微細凹凸構造を付与する方式などの適宜な方式で
形成することができる。
The light scattering layer can be used as the above-mentioned buried layer, or can be provided as a separate layer from the buried layer. Incidentally, the light scattering layer which is also used as the buried layer is made of, for example, a phase separation method of the buried layer, transparent fine particles made of an appropriate inorganic substance such as silica particles or calcium oxide particles having different refractive indexes in the buried layer, and / or polymethyl methacrylate or polyureta. Formed by an appropriate method such as a method of including crosslinked or uncrosslinked transparent fine particles made of an appropriate polymer such as a method of imparting a fine uneven structure to the surface of the burying layer by an appropriate method such as embossing roll, sandblasting or etching. can do.

【0030】一方、埋設層とは別個の光散乱層は、埋設
層上に前記の埋設層兼用の光散乱層に準じた層を設ける
方式や、透明微粒子含有の粘着層を設ける方式などの適
宜な方式にて形成することができる。また光散乱層は、
前記の埋設層や別個の配置層などとして2層以上が設け
られていてもよい。
On the other hand, the light-scattering layer separate from the buried layer may be formed by a method of providing a layer according to the light-scattering layer also serving as the buried layer on the buried layer or a method of providing an adhesive layer containing transparent fine particles. It can be formed by any method. The light scattering layer is
Two or more layers may be provided as the buried layer or the separate arrangement layer.

【0031】上記の光散乱層に含有させる透明微粒子と
しては、光の透過性や散乱性などの点より、また液晶表
示装置に用いる場合にはモアレの防止等も考慮して平均
粒径が50μm以下、就中20μm以下、特に10μm以
下のものが好ましく用いうる。なお光散乱性の対策は、
液晶セル等の表示装置にアンチグレア層等の光散乱層を
設ける方式などにても施すことができる。
The transparent fine particles contained in the light scattering layer have an average particle diameter of 50 μm in view of light transmittance and scattering properties, and when used in a liquid crystal display device, in consideration of prevention of moire and the like. Hereinafter, those having a particle size of 20 μm or less, particularly 10 μm or less can be preferably used. Measures for light scattering
The present invention can also be applied to a method in which a light scattering layer such as an antiglare layer is provided on a display device such as a liquid crystal cell.

【0032】なお上記した反射光が偏光特性を示す場合
には、その偏光状態を解消しにくいもの、就中その偏光
状態を95%以上、特に99%以上、さらには99.5
%以上維持する特性を示すものが好ましい。かかる偏光
維持性を示す反射板は、例えば鏡面反射性に優れる反射
層や複屈折による位相差が小さい層、就中その位相差が
100nm以下、特に50nm以下の埋設層を有するものな
どとして得ることができる。
In the case where the above-mentioned reflected light shows a polarization characteristic, it is difficult to cancel the polarization state, especially, the polarization state is 95% or more, particularly 99% or more, and further 99.5.
% Is preferable. A reflector exhibiting such a polarization maintaining property can be obtained, for example, as a reflective layer having excellent specular reflectivity or a layer having a small phase difference due to birefringence, particularly having a buried layer having a phase difference of 100 nm or less, particularly 50 nm or less. Can be.

【0033】本発明の半透過反射板は、光反射面を介し
た反射光と光透過面を介した透過光を提供しうるもので
あり、反射型や反射・透過両用型の液晶表示装置の形成
などに好ましく用いうる。反射型や反射・透過両用型の
液晶表示装置は、図3に例示の如く半透過反射板1の上
に液晶セル4を配置することにより得られるが、反射・
透過両用型の液晶表示装の場合には、半透過反射板1の
プリズム状凹凸形成面とは反対面の側に、さらに面光源
3を設けた照明装置として配置される。
The transflective plate of the present invention can provide the reflected light via the light reflecting surface and the transmitted light via the light transmitting surface, and is used for a reflection type or a reflection / transmission type liquid crystal display device. It can be preferably used for formation. A reflective or transflective liquid crystal display device can be obtained by arranging a liquid crystal cell 4 on a transflective reflector 1 as illustrated in FIG.
In the case of a transmissive type liquid crystal display device, it is arranged as a lighting device provided with a surface light source 3 on the side of the semi-transmissive reflection plate 1 opposite to the surface on which the prismatic irregularities are formed.

【0034】前記の面光源としては、サイドライト型導
光板やELランプなどの透過型液晶表示装置で公知の適
宜なものを用いうる。ちなみに導光板は、裏面に必要に
応じ反射層を有して光を表面側に出射するようにしたも
のであり、(冷,熱)陰極管等の線状光源や発光ダイオ
ード等の光源を導光板31の側面に配置し、その導光板
内を伝送される光を拡散や反射、回折や干渉等により板
の片面側に出射するようにした、液晶表示装置で公知の
サイドライト型バックライトなどはその例である。
As the above-mentioned surface light source, an appropriate one known in a transmissive liquid crystal display device such as a side light type light guide plate or an EL lamp can be used. By the way, the light guide plate has a reflective layer on the back surface as necessary and emits light to the front side, and guides a linear light source such as a (cold, hot) cathode tube or a light source such as a light emitting diode. A side light type backlight known in liquid crystal display devices, which is disposed on the side surface of the light plate 31 and emits light transmitted through the light guide plate to one side of the plate by diffusion, reflection, diffraction, interference, or the like. Is an example.

【0035】内部の伝送光を片面側に出射するようにし
た導光板は、例えば透明又は半透明の樹脂板の光出射面
又はその裏面にドット状やストライプ状に拡散体を設け
たものや、樹脂板の裏面に凹凸構造、就中、微細プリズ
ムアレイ状の凹凸構造を付与したものなどとして得るこ
とができる。
The light guide plate which emits the internal transmission light to one side includes, for example, a transparent or translucent resin plate having a light emitting surface or a diffuser provided in a dot or stripe shape on the back surface thereof, It can be obtained as a resin plate having a concave and convex structure, particularly, a fine prism array-shaped concave and convex structure on the back surface.

【0036】図3に例示の面光源3は、導光板31の側
面に光源32を配置し、裏面に反射層33を設けたもの
よりなり、光源32より出射した光が導光板31の側面
より入射し裏面等での反射を介して導光板の表面より出
射して半透過反射板1に入射する。なお導光板裏面の反
射層33は、その裏面よりの漏光の防止などを目的とす
る。
The surface light source 3 illustrated in FIG. 3 includes a light source 32 disposed on a side surface of a light guide plate 31 and a reflection layer 33 provided on a back surface. The light is incident, exits from the surface of the light guide plate via reflection on the back surface, etc., and enters the transflective plate 1. The reflection layer 33 on the back surface of the light guide plate is intended to prevent light leakage from the back surface.

【0037】本発明において光の効率的な出射による明
るい透過光を得る点などより好ましく用いうる面光源
は、半透過反射板1のプリズム状凹凸面における光透過
面14に対して指向性を示すものである。かかる指向性
を示す面光源は、例えば裏面に凹凸構造、就中、微細プ
リズムアレイ状の凹凸構造を有する導光板を用いたサイ
ドライト型バックライトなどとして得ることができる。
微細プリズムアレイ状の凹凸構造によれば、本発明によ
る半透過反射板のプリズム状凹凸面の如く、プリズム面
の傾斜角や配置状態などを制御して前記光透過面に対し
て良好な指向性を示すものも容易に得ることができる。
In the present invention, a surface light source which can be used more preferably, for example, to obtain bright transmitted light by efficient light emission, exhibits directivity to the light transmitting surface 14 of the prism-shaped uneven surface of the transflective reflector 1. Things. A surface light source exhibiting such directivity can be obtained, for example, as a sidelight-type backlight using a light guide plate having an uneven structure on the back surface, particularly, a fine prism array-shaped uneven structure.
According to the concave / convex structure in the form of a fine prism array, good directivity with respect to the light transmitting surface by controlling the inclination angle and arrangement state of the prism surface, such as the prismatic concave / convex surface of the transflective plate according to the present invention. Can be easily obtained.

【0038】照明装置の形成に際しては、光の出射方向
を制御するためのプリズムシート等からなるプリズムア
レイ層、均一な発光を得るための拡散板、漏れ光を戻す
ための反射手段、線状光源からの出射光を導光板の側面
に導くための光源ホルダなどの補助手段を導光板の上下
面や側面などの所定位置に必要に応じ1層又は2層以上
を配置して適宜な組合せ体とすることもできる。
When forming the illumination device, a prism array layer composed of a prism sheet or the like for controlling the light emission direction, a diffusion plate for obtaining uniform light emission, a reflection means for returning leaked light, a linear light source Auxiliary means such as a light source holder for guiding the light emitted from the light guide plate to the side surface of the light guide plate may be appropriately combined with one or more layers by arranging one or more layers at predetermined positions such as upper and lower surfaces and side surfaces of the light guide plate. You can also.

【0039】なお照明装置を形成する半透過反射板や面
光源、それらに付随する導光板等の各部品は、必要に応
じて接着層を介し積層一体化することができる。形成部
品の積層一体化は、各界面での反射ロスの抑制や各界面
への異物等の侵入防止による表示品位等の低下予防、光
学系のズレ防止などに有効である。その積層一体化には
粘着剤等の適宜な接着剤を用いうる。
Each component such as a semi-transmissive reflector, a surface light source, and a light guide plate associated therewith, which form the lighting device, can be laminated and integrated via an adhesive layer as necessary. The lamination and integration of the formed components is effective for suppressing reflection loss at each interface, preventing deterioration of display quality or the like by preventing foreign matter or the like from entering each interface, and preventing displacement of an optical system. An appropriate adhesive such as an adhesive can be used for the lamination and integration.

【0040】上記のように本発明の照明装置は、半透過
反射板とサイドライト型導光板等の適宜な面光源と組合
せて、面光源からの光を半透過反射板におけるプリズム
状凹凸の光透過面より出射するものである。その場合、
光透過面よりの出射光の方向は通例、半透過反射板に対
して垂直ではないから、透明基材と液晶セル等の表示装
置との間に1層又は2層以上の光散乱層を設けて図3の
矢印の如く光透過面よりの透過光を半透過反射板に対し
垂直化した方向に出射させることが、透過モードでの表
示装置の視認性の向上などの点より好ましい。
As described above, the illuminating device of the present invention combines the light from the surface light source with the light having the prismatic irregularities in the semi-transmissive reflection plate by combining the transflective plate with an appropriate surface light source such as a sidelight type light guide plate. The light is emitted from the transmission surface. In that case,
Since the direction of light emitted from the light transmission surface is not usually perpendicular to the semi-transmissive reflection plate, one or more light scattering layers are provided between the transparent substrate and a display device such as a liquid crystal cell. It is more preferable to emit the transmitted light from the light transmitting surface in a direction perpendicular to the transflective plate as shown by the arrow in FIG. 3 from the viewpoint of improving the visibility of the display device in the transmission mode.

【0041】なお本発明のプリズム式半透過反射板や照
明装置には、上記したように被着体への接着を目的とし
た粘着層を設けることもできる。粘着層の付設は、適宜
な塗工機を用いて粘着剤を塗工する方式や、セパレータ
上に設けた粘着層を移着する方式などの適宜な方式で行
うことができる。粘着層の厚さは、使用目的に応じて決
定できる。付設した粘着層は、実用に供するまでの間、
セパレータなどを仮着して保護しておくことが好まし
い。
It should be noted that the prism type semi-transmissive reflection plate and the illuminating device of the present invention may be provided with an adhesive layer for the purpose of bonding to the adherend as described above. The attachment of the adhesive layer can be performed by an appropriate method such as a method of applying an adhesive using an appropriate coating machine or a method of transferring an adhesive layer provided on a separator. The thickness of the adhesive layer can be determined according to the purpose of use. Until the attached adhesive layer is put to practical use,
It is preferable to temporarily attach and protect a separator or the like.

【0042】またプリズム式半透過反射板や照明装置の
表面には、必要に応じて反射光による視認妨害の防止等
を目的とした防眩処理や反射防止処理などを施すことも
できる。その防眩処理や反射防止処理は、従来に準じて
施すことができ、ちなみに反射防止層は、例えばフッ化
マグネシウムや屈折率が1.38以下のフッ素系樹脂等
を用いてなる50〜300nm厚の低屈折率透明膜や多層
薄膜などとして形成することができる。
Further, the surface of the prism type semi-transmissive reflection plate or the lighting device may be subjected to anti-glare treatment or anti-reflection treatment for preventing visual disturbance due to reflected light, if necessary. The anti-glare treatment and the anti-reflection treatment can be performed according to the conventional method. Incidentally, the anti-reflection layer is made of, for example, magnesium fluoride or a fluorine-based resin having a refractive index of 1.38 or less, and has a thickness of 50 to 300 nm. As a low refractive index transparent film or a multilayer thin film.

【0043】本発明のプリズム式半透過反射板や照明装
置は、プリズム状凹凸の形状や大きさ、配置形態やピッ
チ、埋設層との屈折率差などで反射光や透過光の出射方
向を制御でき、視認特性の改善目的に応じたプリズム式
半透過反射板を用いることで、反射モードや透過モード
での視野角の調節や拡大、輝度の向上などの視認特性の
向上をはかりうるものである。なおプリズム式半透過反
射板は、埋設層等を設けた外表面に基づいて、光拡散層
による微細凹凸を除き平面状態、就中、表裏で平行平面
状態にあることが反射光や透過光の出射方向を一定化す
る点などより好ましい。
The prism type semi-transmissive reflector and the lighting device of the present invention control the emission direction of reflected light or transmitted light by the shape and size of the prismatic irregularities, the arrangement and pitch, and the refractive index difference from the buried layer. By using a prism type semi-transmissive reflector that is suitable for the purpose of improving the visibility characteristics, it is possible to improve the visibility characteristics such as adjusting and enlarging the viewing angle in the reflection mode and the transmission mode, and improving the brightness. . It should be noted that the prism type semi-transmissive reflection plate, based on the outer surface on which the buried layer and the like are provided, is in a planar state except for fine irregularities due to the light diffusion layer, and in particular, it is in a parallel plane state on the front and back sides of reflected light and transmitted light It is more preferable to make the emission direction constant.

【0044】従って本発明のプリズム式半透過反射板や
照明装置は、例えば反射型や反射・透過両用型の液晶表
示装置等の表示装置における視認性の改善などの種々の
目的に用いることができ、その各種装置への適用に際し
ては液晶セル等の表示主体の適宜な位置に配置すること
ができる。
Therefore, the prism type semi-transmissive reflector and the lighting device of the present invention can be used for various purposes such as improvement of visibility in a display device such as a reflection type or a reflection / transmission type liquid crystal display device. When it is applied to various devices, it can be arranged at an appropriate position of a display main body such as a liquid crystal cell.

【0045】[0045]

【実施例】実施例1 屈折率1.40のトリフルオロエチルアクリレート90
部(重量部、以下同じ)と屈折率1.48の架橋剤10
部と光反応開始剤5部を配合してなる組成物を紫外線硬
化処理してなる屈折率1.41のシートの片面に傾斜角
(図1:θ1,θ4)が10度と87度の三角柱をストラ
イプ状に30μmピッチで隣接形成してなるプリズムア
レイシートのプリズム形成面に、アルミニウムを平面相
当厚で100nmの厚さに真空蒸着した。その際、蒸着源
に対しポリカーボネートシートを平行に配置した結果、
傾斜角が10度の面で略100nm厚の蒸着層が形成され
て良好な光反射性を示すと共に、傾斜角が87度の面に
は数nm厚の蒸着層が形成されたのみで良好な光透過性を
示すものが得られた。
EXAMPLE 1 Trifluoroethyl acrylate 90 having a refractive index of 1.40
Parts (parts by weight, hereinafter the same) and a crosslinking agent 10 having a refractive index of 1.48
Parts and a photoreaction initiator in 5 parts are cured by an ultraviolet ray, and the sheet having a refractive index of 1.41 has a tilt angle (θ 1 , θ 4 ) of 10 ° and 87 ° on one surface. Aluminum was vacuum-deposited to a thickness of 100 nm, which is equivalent to a plane, on the prism-forming surface of a prism array sheet in which triangular prisms are formed adjacently at a pitch of 30 μm in stripes. At that time, as a result of disposing the polycarbonate sheet parallel to the evaporation source,
A vapor deposition layer having a thickness of about 100 nm was formed on a surface having a tilt angle of 10 degrees, showing good light reflectivity, and a vapor deposition layer having a thickness of only a few nm was formed on a surface having a tilt angle of 87 degrees. One showing light transmissivity was obtained.

【0046】前記のプリズム式半透過反射板を市販のス
ーパーツイスト型液晶表示装置の背面に配置して垂直光
を液晶表示装置側より入射させたところ、20度傾斜し
た方向で最も明るい反射像を視認することができ、表面
反射による影響のない良好な視認状態であった。
When the prism type semi-transmissive reflection plate is arranged on the back of a commercially available super twist type liquid crystal display device and vertical light is incident from the liquid crystal display device side, the brightest reflected image in the direction inclined by 20 degrees is obtained. It was visually recognizable, and was in a good visual recognition state without being affected by surface reflection.

【0047】また前記のプリズム式半透過反射板の背面
に市販のEL型バックライトを配置して照明装置とし、
それを点灯したところ傾斜角87度の面より光が透過す
ることを確認でき、半透過反射板として良好に機能する
ことが確認できた。
Further, a commercially available EL type backlight is disposed on the back of the above-mentioned prism type semi-transmissive reflection plate to form an illumination device,
When it was turned on, it was confirmed that light was transmitted from the surface having an inclination angle of 87 degrees, and it was confirmed that the device functioned well as a transflective reflector.

【0048】実施例2 アルミニウムに代えて銀を蒸着したほかは実施例1に準
じてプリズム式半透過反射板を得、それを用いて照明装
置を得た。これは、銀による約10%の反射率の向上で
反射モードでの輝度に優れると共に、透過モードにても
傾斜角87度の面より光が透過して半透過反射板として
良好に機能することが確認できた。
Example 2 A prism type transflective plate was obtained in the same manner as in Example 1 except that silver was vapor-deposited instead of aluminum, and an illuminating device was obtained using the same. This means that the reflectance in the reflection mode is excellent due to the improvement of the reflectivity of about 10% by silver, and also in the transmission mode, light is transmitted from the surface having an inclination angle of 87 degrees and functions well as a transflective reflector. Was confirmed.

【0049】実施例3 EL型バックライトに代えて、出射光がプリズム状凹凸
の傾斜角87度の面の方向に指向性を示す市販の導光板
型バックライトを用いたほかは実施例1に準じて照明装
置を得た。これは、導光板型バックライトによる出射光
が前記傾斜角87度面に対し垂直に近い状態で入射して
透過モードでの輝度に優れるものであった。
Example 3 A commercially available light guide plate type backlight, in which emitted light shows directivity in the direction of a surface having an inclination angle of 87 degrees of prismatic irregularities, was used in place of the EL type backlight in Example 1 A lighting device was obtained according to the procedure. In this case, light emitted by the light guide plate type backlight was incident on the surface at an inclination angle of 87 degrees in a state almost perpendicular to the surface, and the brightness in the transmission mode was excellent.

【0050】実施例4 半透過反射板のプリズム面上に、平均粒径5μmのシリ
カ微粒子を配合したポリカーボネートからなる屈折率
1.60、ヘイズ30%、厚さ300μmの埋設層を設
けたほかは、実施例3に準じて照明装置を得た。これ
は、当該傾斜角87度面による透過光が埋設層で拡散さ
れて指向性が緩和され、透過モードでの反射板垂直方向
の輝度に優れるものであった。また反射モードにても反
射光の指向性が緩和され、反射板垂直方向の輝度に優れ
ていた。
Example 4 A buried layer having a refractive index of 1.60, a haze of 30%, and a thickness of 300 μm made of polycarbonate containing silica fine particles having an average particle size of 5 μm was provided on the prism surface of the semi-transmissive reflection plate. A lighting device was obtained according to Example 3. This is because the transmitted light due to the 87-degree plane was diffused in the buried layer, the directivity was reduced, and the luminance in the vertical direction of the reflector in the transmission mode was excellent. Further, even in the reflection mode, the directivity of the reflected light was reduced, and the luminance in the vertical direction of the reflector was excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の断面図FIG. 1 is a sectional view of an embodiment.

【図2】他の実施例の断面図FIG. 2 is a sectional view of another embodiment.

【図3】さらに他の実施例(液晶表示装置としたもの)
の断面図
FIG. 3 shows still another embodiment (a liquid crystal display device).
Cross section of

【図4】半透過反射板の反射特性を示したグラフFIG. 4 is a graph showing the reflection characteristics of the transflector.

【図5】前記半透過反射板に光散乱層を付加した場合の
反射特性を示したグラフ
FIG. 5 is a graph showing reflection characteristics when a light scattering layer is added to the transflective plate.

【符号の説明】[Explanation of symbols]

1:半透過反射板 11:透明基材 12:金属蒸着層 13:光反射面 14:光透過面 2,21:埋設層 22:光散乱性粒子 3:面光源 4:液晶セル 1: Transflective reflector 11: Transparent substrate 12: Metallized layer 13: Light reflecting surface 14: Light transmitting surface 2, 21: Buried layer 22: Light scattering particles 3: Surface light source 4: Liquid crystal cell

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 プリズム状凹凸の繰返し構造を有する透
明基材の前記プリズム状凹凸面に金属蒸着層を付設して
なり、かつそのプリズム状凹凸の凸部に基づいて光の反
射面と透過面を有することを特徴とするプリズム式半透
過反射板。
1. A transparent substrate having a repeating structure of prismatic irregularities, wherein a metal deposition layer is provided on the prismatic irregularities, and a light reflecting surface and a light transmitting surface are formed based on the projections of the prismatic irregularities. And a prism type semi-transmissive reflector.
【請求項2】 請求項1において、透明基材における水
平面を基準に光透過面の傾斜角が45度以上であるプリ
ズム式半透過反射板。
2. The prism type semi-transmissive reflection plate according to claim 1, wherein the light transmission surface has an inclination angle of 45 degrees or more with respect to a horizontal plane of the transparent substrate.
【請求項3】 請求項1又は2において、プリズム状凹
凸面上にその凹部を埋める埋設層を有し、かつその埋設
層の屈折率がプリズム状凹凸を形成する材料の屈折率よ
りも大きいプリズム式半透過反射板。
3. A prism according to claim 1, further comprising: a buried layer on the prism-shaped uneven surface to fill the concave portion, wherein the refractive index of the embedded layer is larger than the refractive index of the material forming the prism-shaped unevenness. Type transflective reflector.
【請求項4】 請求項3において、プリズム状凹凸面の
上に埋設層として又は埋設層上の配置層として光散乱層
を有するプリズム式半透過反射板。
4. The prism type semi-transmissive reflection plate according to claim 3, further comprising a light scattering layer as a buried layer on the prismatic uneven surface or as an arrangement layer on the buried layer.
【請求項5】 請求項4において、光散乱層が平均粒径
50μm以下の粒子を含有する樹脂層又は粘着層である
プリズム式半透過反射板。
5. The prism type transflective plate according to claim 4, wherein the light scattering layer is a resin layer or an adhesive layer containing particles having an average particle size of 50 μm or less.
【請求項6】 請求項1〜5に記載のプリズム式半透過
反射板のプリズム状凹凸形成面とは反対面の側に、プリ
ズム状凹凸面の光透過面に対して指向性を示す面光源を
配置したことを特徴とする照明装置。
6. A surface light source which exhibits directivity to the light transmitting surface of the prismatic irregular surface on the side of the prism type semi-transmissive reflecting plate according to claim 1 opposite to the prismatic irregularity forming surface. A lighting device, comprising:
JP9322359A 1997-11-07 1997-11-07 Prism type translucent reflecting plate and lighting device Pending JPH11142627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9322359A JPH11142627A (en) 1997-11-07 1997-11-07 Prism type translucent reflecting plate and lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9322359A JPH11142627A (en) 1997-11-07 1997-11-07 Prism type translucent reflecting plate and lighting device

Publications (1)

Publication Number Publication Date
JPH11142627A true JPH11142627A (en) 1999-05-28

Family

ID=18142768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9322359A Pending JPH11142627A (en) 1997-11-07 1997-11-07 Prism type translucent reflecting plate and lighting device

Country Status (1)

Country Link
JP (1) JPH11142627A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221608A (en) * 2001-01-26 2002-08-09 Daicel Chem Ind Ltd Light scattering sheet and liquid crystal display device
JP2002333621A (en) * 2001-05-11 2002-11-22 Dainippon Printing Co Ltd Semitransmission type liquid crystal display device and manufacturing method for semitransmissive reflection plate used for the same
WO2003009046A1 (en) * 2001-07-19 2003-01-30 Fuji Photo Film Co., Ltd. Optical modulating device, display, and exposure device
JP2006259672A (en) * 2005-03-16 2006-09-28 Toshiba Corp Optical multi-beam scanning device and image forming apparatus
JP2008009308A (en) * 2006-06-30 2008-01-17 Citizen Holdings Co Ltd Display device
WO2011024530A1 (en) * 2009-08-27 2011-03-03 シャープ株式会社 Backlight system and liquid crystal display device using the same
JP2011164472A (en) * 2010-02-12 2011-08-25 Hitachi Displays Ltd Liquid crystal display device
JP2013080142A (en) * 2011-10-05 2013-05-02 Goyo Paper Working Co Ltd Light shielding film and manufacturing method therefor
KR20170019047A (en) * 2015-08-11 2017-02-21 엘지이노텍 주식회사 Lens and light emitting unit including the same
JP2017083587A (en) * 2015-10-26 2017-05-18 大日本印刷株式会社 Optical member manufacturing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221608A (en) * 2001-01-26 2002-08-09 Daicel Chem Ind Ltd Light scattering sheet and liquid crystal display device
JP2002333621A (en) * 2001-05-11 2002-11-22 Dainippon Printing Co Ltd Semitransmission type liquid crystal display device and manufacturing method for semitransmissive reflection plate used for the same
WO2003009046A1 (en) * 2001-07-19 2003-01-30 Fuji Photo Film Co., Ltd. Optical modulating device, display, and exposure device
US7050219B2 (en) 2001-07-19 2006-05-23 Fuji Photo Film Co., Ltd. Light-modulating element, display element, and exposure element
CN100345025C (en) * 2001-07-19 2007-10-24 富士胶片株式会社 Optical modulating device, display element and exposure device
JP4578361B2 (en) * 2005-03-16 2010-11-10 株式会社東芝 Multi-beam optical scanning device
JP2006259672A (en) * 2005-03-16 2006-09-28 Toshiba Corp Optical multi-beam scanning device and image forming apparatus
JP2008009308A (en) * 2006-06-30 2008-01-17 Citizen Holdings Co Ltd Display device
WO2011024530A1 (en) * 2009-08-27 2011-03-03 シャープ株式会社 Backlight system and liquid crystal display device using the same
JPWO2011024530A1 (en) * 2009-08-27 2013-01-24 シャープ株式会社 Backlight system and liquid crystal display device using the same
US8922735B2 (en) 2009-08-27 2014-12-30 Sharp Kabushiki Kaisha Backlight system and liquid crystal display device using the same
JP2011164472A (en) * 2010-02-12 2011-08-25 Hitachi Displays Ltd Liquid crystal display device
JP2013080142A (en) * 2011-10-05 2013-05-02 Goyo Paper Working Co Ltd Light shielding film and manufacturing method therefor
KR20170019047A (en) * 2015-08-11 2017-02-21 엘지이노텍 주식회사 Lens and light emitting unit including the same
JP2017083587A (en) * 2015-10-26 2017-05-18 大日本印刷株式会社 Optical member manufacturing method

Similar Documents

Publication Publication Date Title
JP4609962B2 (en) Optical film
JP4442836B2 (en) Optical film
KR100681092B1 (en) Liquid crystal display device
US6603520B2 (en) Optical film and liquid-crystal display device
EP1209510B1 (en) Optical film and reflective liquid crystal display device
JP3642381B2 (en) Light guide plate, surface light source device, and reflective liquid crystal display device
EP1154306B1 (en) Reflection type liquid-crystal display device
KR100802743B1 (en) Optical film and liquid-crystal display device
KR100657091B1 (en) Liquid-crystal display device
JP4144829B2 (en) Reflective and transmissive liquid crystal display device
JP2002023155A (en) Reflective liquid crystal display device
JP4662402B2 (en) Light guide plate for front light for both external light and illumination modes, surface light source device for front light for both external light and illumination modes, and front light type reflective liquid crystal display device for both external light and illumination modes
KR20010082170A (en) Reflector and liquid-crystal display device
JP2002071965A (en) Light guide plate, surface light source device, and reflection type liquid crystal display device
JPH11142627A (en) Prism type translucent reflecting plate and lighting device
JPH11142631A (en) Prism type reflecting plate
KR20010042691A (en) Light guide plate, surface light source device, reflection liquid crystal display
JP4548628B2 (en) Optical film
JP3808598B2 (en) Surface light source device, polarized light source device, and liquid crystal display device
JP4845920B2 (en) Reflective and transmissive liquid crystal display device
JP4462514B2 (en) Optical film and liquid crystal display device
JPH11212091A (en) Optical path control plate, surface light source device, polarized light source device, and liquid crystal display device
JP2004259630A (en) Surface light source device and reflective liquid crystal display device
JP2001194529A (en) Optical path conversion polarizing plate
JP2004258358A (en) Reflective liquid crystal display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060328