JP3808598B2 - Surface light source device, polarized light source device, and liquid crystal display device - Google Patents

Surface light source device, polarized light source device, and liquid crystal display device Download PDF

Info

Publication number
JP3808598B2
JP3808598B2 JP22105097A JP22105097A JP3808598B2 JP 3808598 B2 JP3808598 B2 JP 3808598B2 JP 22105097 A JP22105097 A JP 22105097A JP 22105097 A JP22105097 A JP 22105097A JP 3808598 B2 JP3808598 B2 JP 3808598B2
Authority
JP
Japan
Prior art keywords
light
light source
source device
guide plate
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22105097A
Other languages
Japanese (ja)
Other versions
JPH1152376A (en
Inventor
清司 梅本
誠司 近藤
周治 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP22105097A priority Critical patent/JP3808598B2/en
Publication of JPH1152376A publication Critical patent/JPH1152376A/en
Application granted granted Critical
Publication of JP3808598B2 publication Critical patent/JP3808598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Planar Illumination Modules (AREA)

Description

【0001】
【発明の技術分野】
本発明は、液晶表示装置等におけるモアレの防止や視認性の向上に有用な光路制御層を用いた発光の均一性や光の有効利用効率に優れる面光源装置や偏光光源装置に関する。
【0002】
【発明の背景】
カラー化や高精細化等に伴い液晶セル等の光透過率が低下する一方で、明るくて見やすい液晶表示装置等が求められており、それを可能とする低消費電力で薄型ないし小型軽量のバックライトの提供が重要な課題となる中、本発明者らが属するグループは先にその解決を目的に、上下面の少なくとも一方に微細プリズム状凹凸を周期的に有して、側面からの入射光を上下面の一方より指向性よく出射するサイドライト型バックライト形成用の導光板を提案した(特願平7−321036号)。
【0003】
しかしながら、図6に例示した如く前記の導光板3では光の利用効率を高めるための構造に基づいてその発光が必然的に輝部38と暗部39の縞模様となる難点があり、輝部が液晶セル等の画素と干渉してモアレが発生し、表示がギラギラして品位に劣り、また出射光の指向性が液晶表示装置の視認に有利な方向とはズレがある問題点があった。
【0004】
前記のモアレ問題は、導光板における微細プリズム状凹凸の周期を画素サイズよりも1/5以下等に充分に小さくすることで解決しうる。ちなみに100μm×300μmの画素サイズに対しては、20μm以下の微細プリズム状凹凸の周期とすることでモアレを解決しうる。
【0005】
しかし前記の場合、その微細プリズム状凹凸の周期は、干渉や回折を生じやすいものとなり、光出射率の低下や光の分散で表示品位が低下することとなる難点があり、またプリズム状凹凸の微細度が増してその高さを数μm以下、就中1μm以下とする必要が生じ、導光板の製造が困難になると共に、プリズムの丸み等で出射特性も低下しやすくなる難点があった。
【0006】
一方、モアレ問題を拡散板により発光を平準化して解決する公知方式の適用では前記導光板の利点を減殺する難点があった。すなわち拡散板を介した輝部と暗部の縞模様の平準化では、その拡散特性がガウス分布的であることよりモアレの解消に広範囲の拡散性が要求され、そのために出射光の指向性が低下し液晶表示装置の視認に有利な方向の出射光量が低減して有効利用できる光量が低下し、その光出射の位置や方向の修正制御も困難な難点があり、また後方散乱により光利用効率も低下する難点があった。
【0007】
他方、上記した出射光の指向性問題は、出射光の最大強度方向が視認に最も有利な出射面の垂直方向ではなく、その垂直方向よりも光源から遠ざかる方向に若干の角度、通例5〜20度の角度をもち、その方向は液晶セルの光透過率が低く、表示の反転率も高いために光の有効利用効率や表示品位の点で改善が望まれることを意味する。
【0008】
プリズムシートを介した光路制御方式が提案されているが、従来のプリズムシートで前記した指向性問題を克服することは困難である。すなわち図9の如く従来のプリズムシート9は、傾斜角が約45度の二斜面91からなる溝よりなり、導光板を5〜20度の角度で出射した光αは、その二斜面91に略同確率で入射して二つの光路に分散され(α1)、大きい角度の出射光α3となるか、全反射による導光板への戻り光α4となる。
【0009】
従って、出射光αの殆どが目的とする垂直性に優れる光路方向β2の出射光とはならず、光の有効利用効率は大きく低下する。出射光がβ2の光路方向を採るのは、入射角が40度程度の大きい角度の入射光βであり、よって従来のプリズムシートでは、導光板よりの出射角が約20度以下の近垂直光をより垂直性に優れる方向に光路変換することは困難である。また特開平9−146092号公報に記載の、楔型導光体上に偏光分離手段と光路変換手段を順次備えた照明装置にては、その偏光分離手段の配置によってはその上に配置した光路変換手段が透過偏光を乱して光の利用効率が低下し、そのような配置状態は好ましくない。さらに導光板出射光も大きい角度方向が想定されており、近垂直光のより垂直性化は困難である。
【0010】
【発明の技術的課題】
本発明は、出射光が垂直方向に近い指向性を示して輝部と暗部の縞模様を形成する導光板を液晶セルに適用した場合に画素との間でモアレの生じることを防止できて表示品位に優れる液晶表示装置を形成でき、導光板からの前記出射光を液晶表示装置の視認に有利な垂直方向に近づけることを課題とする。
【0011】
【課題の解決手段】
本発明は、上面、それに対向する下面、及び上面と下面間の光源配置側面を有する板状物の上下面の少なくとも一方に、その光源配置側面に沿う方向の微細プリズム状凹凸を周期的に有して、側面に配置した光源からの入射光を上下面の一方より輝部と暗部の縞模様として出射する導光板の光出射側に、平面に対する傾斜角が5〜35度の緩斜面と60度以上の急斜面とからなる筋状の溝を周期的に、就中10〜80μmの周期で有する光路制御層を配置してなり、その光路制御層の溝が前記導光板の微細プリズム状凹凸に対し5〜40度の角度で交差し、かつ当該溝の緩斜面が前記光源から遠ざかる方向に肉薄となる状態にあることを特徴とする面光源装置を提供するものである。
【0012】
【発明の効果】
本発明によれば、光路制御層の溝が導光板に基づく輝線を細分して輝線の発光間隔を短縮し、微細プリズム状凹凸の周期を微細化した如き作用をなすと共に、溝を形成する特に緩斜面を介した輝線の屈折で暗部との輝度差が平準化されて液晶セルの画素との干渉によるモアレを低減でき、溝周期に基づく回折による球面波によってもモアレを抑制することができる。
【0013】
また導光板より出射した指向性の輝線の殆どが溝の緩斜面に入射し、そのウェッジ板機能に基づいて透過光の光路が緩斜面の肉厚方向に指向性よく変換される。従って、溝の緩斜面が光源から遠ざかる方向に肉薄となる状態に光路制御層を配置することにより、導光板より出射した指向性の輝線の光路を屈折を介して、より垂直方向に近い状態に指向性よく変換でき、拡散による輝度の低下を防止しつつ、しかも導光板より出射した輝線の指向性を拡散や分散で崩すことなく良好に維持して光路変換でき、導光板出射光を損失の少ない状態で、かつ垂直性に優れる状態で利用できて光の有効利用効率に優れている。
【0014】
前記の結果、光利用効率に優れて明るい光を提供するものの、モアレの発生原因となる縞状の輝線発光と出射光の指向性がズレていることの難点がある導光板の利点を活かした難点の克服が可能となり、液晶表示装置等の視認性の向上に有効な方向の出射光を光利用効率よく提供するバックライトシステムの形成が可能となり、明るくて見やすく低消費電力の液晶表示装置を形成することができる。
【0015】
【発明の実施形態】
本発明の面光源装置は、上面、それに対向する下面、及び上面と下面間の光源配置側面を有する板状物の上下面の少なくとも一方に、その光源配置側面に沿う方向の微細プリズム状凹凸を周期的に有して、側面に配置した光源からの入射光を上下面の一方より輝部と暗部の縞模様として出射する導光板の光出射側に、平面に対する傾斜角が5〜35度の緩斜面と60度以上の急斜面とからなる筋状の溝を周期的に有する光路制御層を配置してなり、その光路制御層の溝が前記導光板の微細プリズム状凹凸に対し5〜40度の角度で交差し、かつ当該溝の緩斜面が前記光源から遠ざかる方向に肉薄となる状態にあるものからなる。その光路制御層の例を図1、図2に示した。1が光路制御層であり、11が溝、12がその緩斜面、13がその急斜面である。また14は透明基材、2は拡散層である。本発明における光路制御層は、シート状物等からなる独立の光路制御板や、導光板等の光学部品に直接形成した部品付属層などの適宜な形態で形成することができる。
【0016】
光路制御層における緩斜面は、ウェッジ板機能による光路変更の主体をなす部分であり、この部分に可及的に多くの、理想的には100%の光が入射する構造が光の有効利用効率の向上の点より好ましい。かかる点より、緩斜面の傾斜角θ1は平面を基準に5〜35度とされる。その角度が5度未満では光路変更の効果に乏しく、35度を超えると同じ周期とした場合の平面に対する投影面積が減少し、急斜面のそれが相対的に大きくなって緩斜面への入射効率に乏しくなる。
【0017】
緩斜面の傾斜角は、前記範囲において導光板出射光等のそれに入射する光の角度に応じて適宜に決定しうる。図1に例示の如く光路制御層1への入射角αが約20度以下、就中5〜20度である場合に、垂直方向への光路の変更性(α1,α2)や光の指向性などの点より好ましい緩斜面の傾斜角は、7〜30度、就中10〜25度である。
【0018】
一方、急斜面は、それに入射した光が有効利用できないロス光となるため、それに入射する光を可及的に抑制する点などより平面を基準に60度以上の傾斜角θ2とされる。入射光の抑制などの点より急斜面の好ましい傾斜角は、75〜110度、就中85〜90度である。
【0019】
緩斜面及び急斜面は、平面である必要はなく、前記の傾斜角を維持する範囲で曲面などからなっていてもよいが、それらからなる溝は筋状に周期的に形成される。その周期は、光路の制御を目的とする入射光の特性などに応じて適宜に決定しうるが、一般には溝の形成性や輝線の細分化などの点より80μm以下、就中65μm以下、特に10〜50μmとされる。ちなみに10μm未満の周期では、溝の深さを5μm以下とする必要が生じて高精度の製造の困難性が大きくなる。緩斜面を急斜面を介して周期的に有する溝形状とすることにより、光路制御層を薄型化することができる。
【0020】
光路制御層は、入射光の波長領域などに応じてそれに透明性を示す適宜な材料を用いて適宜な方法により形成することができる。ちなみに可視光域では、例えばアクリル系樹脂やポリカーボネート系樹脂、エポキシ系樹脂等で代表される透明樹脂やガラスなどを用いうる。
【0021】
量産性等の点より光路制御層の好ましい製造方法は、所定の溝形状を形成しうる金型やロールを熱可塑性樹脂に加熱下に押付て形状を転写する方法、所定の溝形状を形成しうる型やロールに熱や紫外線ないし放射線等で重合処理しうる液状樹脂を、充填ないし流延して重合処理する方法や透明基材上に塗布しながら、あるいは塗布後に重合処理する方法、加熱溶融させた熱可塑性樹脂あるいは熱や溶媒を介して流動化させた樹脂を所定の溝形状に成形しうる金型に射出方式等で充填する方法などがあげられる。
【0022】
なお本発明において光路制御層は、図2に例示の如く例えば透明基材14の上に所定の溝を塗布形成したものの如く、同種又は異種の材料の積層体などとして形成されていてもよく、1種の材料による一体的単層物として形成されている必要はない。透明基材としては、例えば厚さが30〜500μmのプラスチックフィルムなどの適宜なものを用いうる。
【0023】
光路制御層の厚さは、使用目的などにより適宜に決定できるが、一般には薄型化などを目的に1mm以下、就中5〜500μm、特に10〜200μmとされる。光路制御層が光路制御板等として形成される場合、緩斜面と急斜面からなる溝形状は、表裏の両面に有していてもよい。また緩斜面と急斜面からなる溝形状を設ける面は、平面や局面等の適宜な面形態を有していてよく、特に限定はない。
【0024】
図2に例示した如く光路制御層1には、必要に応じてその片面又は両面に拡散層2を設けることもできる。拡散層は、上記した如く輝部と暗部の平準化による拡散効果でモアレのさらなる抑制を目的とするが、その場合に拡散角の小さいもの、すなわち拡散性の低いものを用いることにより拡散による指向性の低下などを抑制することができる。
【0025】
上記した光路制御層は、種々の入射光に対しその入射角に応じた光路変更を行い、本発明は、その光路制御層を用いて面光源装置を形成したものである。図3にその面光源装置の例を示した。これは、側面に配置した光源4からの入射光を上下面の一方より輝部と暗部の縞模様として出射する導光板3の光出射側に、光路制御層1を設けたものである。
【0026】
導光板としては、光の利用効率に優れて明るい面光源を得る点などより、板状物の上下面の少なくとも一方に、光源配置の側面に沿う方向の微細プリズム状凹凸を周期的に、好ましくは50〜500μmの周期で有する導光板が用いうる。
【0027】
前記導光板の例を図4(a)〜(c)に示した。また微細プリズム状凹凸の例を図5(a)〜(c)に示した。図4において、21が上面、22,26,27が下面、23が光源配置側面、24が横側面、25が光源配置側面23に対向する側端部である。また図5において、28,29は凸部、30は凹部であり、31,33(34),37が下り斜面、32,35,36が上り斜面である。
【0028】
導光板は、上面、それに対向する下面、及び上面と下面間の光源配置側面を有する板状物よりなる。板状物は、同厚板等でもよいが、好ましくは図例の如く、光源配置側面23に対向する側端部25の厚さが光源配置側面のそれよりも薄いもの、就中50%以下の厚さとしたものである。
【0029】
前記した対向側端部の薄厚化により、図5(a)に示した太矢印の如く、光源配置側面より入射した光が伝送端としての当該対向側端部に至るまでに、下面の上り斜面に効率よく入射し、その反射を介し上面より出射して入射光を目的面に効率よく供給でき、また導光板を軽量化することができる利点などがある。ちなみに、下面が図4(a)の如き直線面の場合、均一厚の導光板の約75%の重量とすることができる。
【0030】
前記板状物の上下面の少なくとも一方に設けられる微細プリズム状凹凸は、光源配置側面に沿う方向の斜面にて凸部又は凹部として周期的に形成される。なお凸部又は凹部は、その凸部又は凹部を形成する斜面の下面との交点を結ぶ直線20に基づき、斜面の交点(頂点)が当該直線よりも突出しているか(凸)、窪んでいるか(凹)による。
【0031】
また前記の凸部又は凹部を形成する斜面は、下面との交点と頂点を結ぶ直線に基づいて下り斜面と上り斜面からなるものとされる。これにより、上り斜面に直接入射する伝送光に加えて、下り斜面に入射してその反射を介し上り斜面に入射する伝送光もその上り斜面を介した反射にて出射面に供給することができ、その分の光利用効率の向上をはかりうる。なお前記の下り斜面又は上り斜面は、光源から遠ざかる方向に下り傾斜の斜面であるか、上り傾斜の斜面であるかによる。
【0032】
微細プリズム状凹凸を設ける導光板の面は通例、上記した如く傾斜面とされるが、その傾斜形状は任意であり、図4(a)に例示の如き直線面や、図4(b),(c)に例示の如き曲面などのように適宜な面形状とすることができる。直線面でない場合、出射光の出射方向を均一化する(指向性)点などよりは、微細プリズム状凹凸を設ける面の全位置で平均傾斜角度より5度以内の範囲にあることが好ましい。
【0033】
微細プリズム状凹凸を形成する凸部又は凹部の形状も、図5(a)〜(c)に例示した如く直線状の斜面で形成されている必要はなく、屈折面や湾曲面等を含む斜面にて形成されていてもよい。また凸部又は凹部は、面の全体で凸凹やその形状等が同じである必要はなく、出射光の垂直性の向上等の点よりは、光源配置側から徐々にその形状や角度が変化する構造が好ましく、特に上り斜面の導光板平面に対する傾斜角が光源側より順次増大する構造が好ましい。
【0034】
凸部又は凹部の周期は、出射光におけるストライプ状の輝線の間隔に関係し、面全体における明るさの平均化などの点よりその周期は、上記したように500μm以下、就中10〜400μm、特に50〜300μmが好ましい。
【0035】
また凸部又は凹部を形成する上記した下り斜面は、図5(a)に例示の如くその導光板平面に対する傾斜角θ3が10度以下、就中5度以下、特に2度以下であることが好ましい。なお図5(b)に例示の如く、下り斜面は当該傾斜角が0度であることも許容する。図例では傾斜角0度の部分34を部分的に設けてあるが、垂直面等からなる段差部分を介して上り斜面間の全体が傾斜角0度の水平面であってもよい。従って本発明における下り斜面には傾斜角0度の水平面も含まれる。かかる傾斜角の範囲とすることにより、図5(a)に折線矢印で例示した如く、当該傾斜角より大きい角度で伝送される光が下り斜面31に入射して反射され、その場合に当該下り斜面の傾斜角に基づいて出射面21により平行な角度で反射されて上り斜面32に入射し、反射されて出射面より出射する。
【0036】
前記の結果、上り斜面に入射する光の入射角を一定化でき、反射角のバラツキを抑制できて出射光の平行光化をはかることができる。従って、凸部又は凹部を形成する下り斜面と上り斜面の当該傾斜角を調節することにより、出射光に指向性をもたせることができ、それにより出射面に対して垂直方向に近い角度で光を出射させることが可能になる。
【0037】
一方、凸部又は凹部を形成する上記した上り斜面は、図5(a)に例示の如く導光板平面に対する傾斜角θ4が30〜50度、就中35〜45度であることが好ましい。かかる傾斜角の範囲とすることにより、図5(a)に折線矢印で例示した如く、直接又は下り斜面を介して入射する伝送光をその上り斜面32を介し出射面21に対して垂直に近い角度で反射して、光を効率よく出射させることができる。上り斜面の傾斜角が前記範囲外では垂直方向とのずれが大きくなり、出射光に垂直に近い指向性をもたせることが困難で、伝送光の出射効率(利用効率)が低下する場合がある。
【0038】
導光板における光源配置側面の形状については、特に限定はなく、適宜に決定してよい。一般には、出射面に対して垂直な面とされるが、例えば湾曲凹形などの光源の外周等に応じた形状として、入射光率の向上をはることもできる。また、光源との間に介在する導入部を有する面構造などとすることもできる。その導入部は、光源などに応じて適宜な形状とすることができる。
【0039】
導光板は、光源の波長領域に応じてそれに透明性を示す適宜な材料にて形成でき、その材料や製造方法については、上記した光路制御層で例示したものなどがあげられる。なお導光板は、例えば光の伝送を担う導光部に微細プリズム状凹凸を形成したシートを接着したものの如く、異種材料の積層体などとして形成されていてもよく、1種の材料による一体的単層物として形成されている必要はない。導光板の厚さは、使用目的による導光板のサイズや光源の大きさなどにより適宜に決定することができる。液晶表示装置等に用いる場合の一般的な厚さは、その光源配置側面に基づき20mm以下、就中0.1〜10mm、特に0.5〜8mmである。
【0040】
導光板の微細プリズム状凹凸を設けた面には、図3に例示の如く必要に応じて反射層5、好ましくは金属反射層を付設することもできる。かかる反射層は、微細プリズム状凹凸形成面からの漏れ光の発生を防止して出射効率の向上に有効である。また偏光分離手段と組合せた偏光光源装置の場合には、偏光変換手段としても機能する。
【0041】
前記の偏光変換手段として機能させる場合には、金属からなる反射層が特に好ましい。かかる金属反射層によれば、反射時に偏光特性を効率的に反転させることができ、その偏光変換効率が屈折率相違の界面を介した全反射や拡散反射による場合よりも優れている。ちなみに金属面に概ね垂直に円偏光が入射すると、円偏光の左右の変換効率は100%近い値となる。
【0042】
偏光変換効率の点より好ましい金属反射層は、アルミニウム、銀、金、銅又はクロムなどからなる高反射率の金属の少なくとも1種を含有する金属面を有するものである。導光板との密着性に優れる金属反射層は、バインダ樹脂による金属粉末の混入塗工層や、蒸着方式等による金属薄膜の付設層などとして形成することができる。金属反射層の片面又は両面には、必要に応じ反射率の向上や酸化防止等を目的とした適宜なコート層を設けることもできる。
【0043】
導光板3の光出射側21に設ける光路制御層1は、モアレの発生を防止する点より、その溝が導光板の微細プリズム状凹凸に対し5〜40度の角度で交差する状態に配置され、就中7〜30度、特に10〜25度の角度で交差した状態にあることが好ましく、また溝の周期が導光板の微細プリズム状凹凸の周期よりも小さい光路制御層を用いることが好ましい。前記の交差関係が垂直状態や平行状態ではモアレの解消効果に乏しく、また40度を超えると光路制御層の溝方向における光路変更が大きくなり、出射光の方向制御性が低下して指向性に乏しくなる場合がある。一方、溝の周期が微細プリズム状凹凸の周期よりも大きいと、輝線の細分化が不充分でモアレの防止効果に乏しくなる場合がある。
【0044】
さらに光路制御層は、図1に例示した如く導光板を出射した光をウェッジ板効果に基づいてより垂直方向に指向性よく光路変更する点などより、溝における緩斜面が光源から遠ざかる方向に肉薄となる状態に配置され。図1においては、図面左側が光源側である。
【0045】
なお上記したように光路制御層は、導光板に直接形成されていてもよいし、光路制御板等の独立物として導光板上に配置されていてもよい。独立物の場合、本発明における光路制御層にては表裏がなく、いずれの面も導光板側とすることができて従来のプリズムシートの如く表裏相違の配置ミスを生じることがない。ただし、急斜面に入射する光の抑制などの点よりは、溝のない側を導光板側とすることが好ましい。
【0046】
導光板の側面に配置する光源4としては、適宜なものを用いうるが例えば(冷,熱)陰極管等の線状光源や、発光ダイオード等の点光源、あるいはその線状又は面状等のアレイ体などが好ましく用いうる。低消費電力性や耐久性等の点よりは、冷陰極管が特に好ましい。面光源装置の形成に際しては、必要に応じて線状光源からの発散光を導光板の側面に導くために光源を包囲する光源ホルダ41、均等な面発光を得るための拡散層2、漏れ光防止用の反射層5などの適宜な補助手段を適宜な位置に配置した組合せ体とすることもできる。
【0047】
光源ホルダとしては、高反射率金属薄膜を付設した樹脂シートや金属箔などが一般に用いられる。拡散層の配置は、明暗ムラの発生を防止して明るさの均等性により優れる面光源装置の形成に有利であり、拡散板や微細凹凸面などによる適宜な拡散角の小さい拡散層として形成することができる。
【0048】
なお反射層については、上記した反射層5に代えて、あるいはその反射層と共に、導光板の微細プリズム状凹凸の形成面に沿って反射シートを設けることもできる。その反射シートについては、導光板で説明した反射層に準じることができ、従って偏光光源装置では金属反射面を有する反射シートが好ましく用いうる。
【0049】
上記のように本発明による面光源装置によれば、高精度に平行化された光を視認に有利な垂直性に優れる方向に出射し、光源からの光を効率よく利用して明るさに優れる偏光光源装置や、明るくて見やすく低消費電力性に優れる液晶表示装置などの種々の装置を形成でき、サイドライト型のバックライトなどとして好ましく用いうる。
【0050】
前記した偏光光源装置は、透過及び反射による偏光分離手段を併用して、偏光特性を示さない入射光を高効率に偏光に変換して取出すことを目的とし、その場合に本発明による面光源装置は、高精度に平行化された垂直性に優れる出射光を提供して、偏光分離手段を介した戻り光を角度変化の少ない状態で初期の出射光と方向の一致性よく再出射させることを可能とする。
【0051】
図7に本発明による偏光光源装置7を例示した。これは、上記した面光源装置における光路制御層1の上方に、透過及び反射による偏光分離手段6を配置したものからなる。実施例にては、その偏光分離手段として所定の円偏光は透過し所定外の円偏光は反射するものを用いており、拡散層を介することなく光路制御層1の直上に配置されている。なお図7において、偏光分離手段6の上面に設けた層61は、直線偏光変換手段である。
【0052】
前記の装置によれば、光路制御層1より出射した光が偏光分離手段6に入射し、左右の内の所定(仮に左)の円偏光は透過し、所定外(右)の円偏光は反射され、その反射光は、戻り光として光路制御層を介し導光板に再入射する。導光板に再入射した光は、下面の反射層等からなる反射機能部分で反射されて再び偏光分離手段に入射し、透過光と反射光(戻り光)に再度分離される。従って反射光としての戻り光は、偏光分離手段を透過しうる所定の円偏光となるまで偏光分離手段と導光板との間に閉じ込められて反射を繰り返す。
【0053】
前記において、本発明による面光源装置は高精度に平行化された垂直性に優れる出射光を提供し、光路制御層の可逆性に優れる緩斜面を経由して導光板に至ることから、偏光分離手段を介した戻り光の多くが導光板の下り斜面に入射し、その緩やかな傾斜角に基づいて角度を大きく変えることなく反射し、その角度変化の少ない反射で初期の出射光と近似した方向に、従って垂直性よく再出射させることができて、初期出射光と再出射光の方向の一致性に優れ、偏光特性に優れる光をロスの少ない利用効率に優れる状態で得ることができる。
【0054】
なお前記の如く偏光分離手段を介した戻り光は、導光板の下り斜面による反射を介して再出射させるため、偏光光源装置の形成に用いる導光板としては、その出射面に対する下り斜面の投影面積が上り斜面のそれの3倍以上、就中5倍以上、特に10〜100倍であるものが光の利用効率などの点より好ましい。
【0055】
また偏光光源装置の形成に用いる導光板は、偏光分離手段を介した戻り光を下り斜面を介して効率的に反射するために導光板の光出射面でない側に反射層又は/及び反射シートを有することが好ましい。その反射層等が金属反射面を有する場合には、戻り光がそれによる反射反転により高効率に所定の偏光状態に変換され、光を効率よく取出すことができる。
【0056】
偏光分離手段としては、上記した左右の円偏光に分離するものの如く、透過と反射を介して偏光特性が相違する状態の光に分離しうる適宜な手段を用いうる。本発明においては、完全な分離機能を有することは要しないが、透過又は反射により分離された偏光中に含まれる他の状態の偏光が少ないほど好ましい。
【0057】
ちなみに前記した偏光分離手段の例としては、直線偏光又は円偏光を選択的に分離するものなどがあげられる。その直線偏光を選択的に分離するものの具体例としては、複屈折により反射率の異方性を示す多層膜などがあげられ、円偏光を選択的に分離するものの具体例としては、コレステリック液晶相などがあげられる。
【0058】
偏光分離手段は、前記した多層膜やコレステリック液晶相の単独層からなっていてもよいし、それらをプラスチックフィルムやガラス板等の透明基材で支持又は挾持した積層体やセルなどの適宜な形態を有するものであってよい。コレステリック液晶相としては、取扱性などの点よりコレステリック液晶ポリマーからなるものが特に好ましい。
【0059】
偏光分離手段、特にコレステリック液晶相からなる偏光分離手段は、2層以上の重畳物からなっていてもよい。重畳化は、分離機能の広波長域化や斜め入射光の波長シフトに対処する点等より有利であり、その場合には所定外の円偏光として反射する光の中心波長が異なる組合せで重畳することが好ましい。
【0060】
ちなみに選択反射の中心波長が300〜900nmのコレステリック液晶層を同じ偏光方向の円偏光を反射する組合せで、かつ選択反射の中心波長が異なる、就中それぞれ50nm以上異なる組合せで用いて、その2〜6種類を重畳することで可視光域等の広い波長域をカバーできる偏光分離手段を効率的に形成することができる。
【0061】
前記の同じ偏光方向の円偏光を反射するもの同士の組合せで重畳物とする点は、各層で反射される円偏光の位相状態を揃えて各波長域で異なる偏光状態となることを防止し、利用できる状態の偏光の増量を目的とするものである。なおコレステリック液晶層の重畳には、製造効率や薄膜化などの点より液晶ポリマーの使用が特に有利である。
【0062】
本発明において図7に例示の如く、円偏光を選択的に分離する偏光分離手段6の上方に直線偏光変換手段61を設けた場合には、偏光分離手段より出射した円偏光の位相を変化させることができる。従ってその位相変化が1/4波長に相当する波長の光は直線偏光に変換され、他の波長光は楕円偏光に変換される。変換されたその楕円偏光は、前記の直線偏光に変換された光の波長に近いほど扁平な楕円偏光となる。かかる結果、偏光板を透過しうる直線偏光成分を多く含む状態の光が直線偏光変換手段より出射される。
【0063】
前記の如く、偏光分離手段上に必要に応じて配置する直線偏光変換手段は、偏光分離手段より出射した円偏光を直線偏光成分の多い状態に変換することを目的とするものである。直線偏光成分の多い状態に変換することにより、偏光板を透過しやすい光とすることができる。この偏光板は、例えば液晶表示装置の場合、液晶セルに対する視野角の変化で発生する偏光特性の低下を防止して表示品位を維持する光学素子や、より高度な偏光度を実現してよりよい表示品位を達成する光学素子などとして機能するものである。
【0064】
すなわち前記において、偏光板を用いずに、偏光分離手段よりの出射円偏光をそのまま液晶セルに入射させて表示を達成することは可能であるが、偏光板を介することで前記した表示品位の向上等をはかりうることから必要に応じて偏光板が用いられる場合がある。その場合に、偏光板に対する透過率の高いほど表示の明るさの点より有利であり、その透過率は偏光板の偏光軸(透過軸)と一致する偏光方向の直線偏光成分を多く含むほど高くなるので、それを目的に直線偏光変換手段を介して偏光分離手段よりの出射偏光を所定の直線偏光に変換するものである。
【0065】
ちなみに通例のヨウ素系偏光板に自然光や円偏光を入射させた場合、その透過率は約43%程度であるが、直線偏光を偏光軸を一致させて入射させた場合には80%を超える透過率を得ることができ、従って光の利用効率が大幅に向上して明るさに優れる液晶表示などが可能となる。
【0066】
直線偏光変換手段としては、その偏光特性に応じて適宜なものを用いうる。円偏光の場合には、その位相を変化させうる位相差層が好ましく用いうる。その位相差層としては、偏光分離手段より出射した円偏光を、1/4波長の位相差に相当して直線偏光を多く形成しうると共に、他の波長の光を前記直線偏光と可及的にパラレルな方向に長径方向を有し、かつ可及的に直線偏光に近い扁平な楕円偏光に変換しうるものが好ましい。
【0067】
前記の如き位相差層を用いることにより、その出射光の直線偏光方向や楕円偏光の長径方向が偏光板の透過軸と可及的に平行になるように配置して、偏光板を透過しうる直線偏光成分の多い状態の光を得ることができる。位相差層は、適宜な材質で形成でき透明で均一な位相差を与えるものが好ましく、一般には位相差板が用いられる。
【0068】
位相差層にて付与する位相差は、偏光分離手段より出射される円偏光の波長域などに応じて適宜に決定しうる。ちなみに可視光域では波長範囲や変換効率等の点より、殆どの位相差板がその材質特性より正の複屈折の波長分散を示すものであることも加味して、その位相差が小さいもの、就中100〜200nm、特に100〜160nmの位相差を与えるものが好ましく用いうる場合が多い。
【0069】
位相差板は、1層又は2以上の重畳層として形成することができる。1層からなる位相差板の場合には、複屈折の波長分散が小さいものほど波長毎の偏光状態の均一化をはかることができて好ましい。一方、位相差板の重畳化は、波長域における波長特性の改良に有効であり、その組合せは波長域などに応じて適宜に決定してよい。
【0070】
なお可視光域を対象に2層以上の位相差板とする場合、上記の如く100〜200nmの位相差を与える層を1層以上の奇数層として含ませることが直線偏光成分の多い光を得る点より好ましい。100〜200nmの位相差を与える層以外の層は、通例200〜400nmの位相差を与える層で形成することが波長特性の改良等の点より好ましいが、これに限定するものではない。
【0071】
位相差板は、例えばポリカーボネート、ポリスルホン、ポリエステル、ポリメチルメタクリレート、ポリアミド、ポリビニールアルコール等からなるフィルムを延伸処理してなる複屈折性シートなどとして得ることができる。発光強度や発光色を広い視野角で均一に維持する点よりは、位相差層の面内における位相差の誤差が小さいほど好ましく、就中、その誤差が±10nm以下であることが好ましい。
【0072】
位相差層に設定する位相差や光学軸の方向は、目的とする直線偏光の振動方向などに応じて適宜に決定することができる。ちなみに135nmの位相差を与える位相差層の場合、円偏光の向きに応じて光学軸に対し振動方向が+45度又は−45度の直線偏光(波長540nm)が得られる。なお位相差層が2層以上からなる場合、特にその外部側表面層を100〜200nmの位相差を与える層が占める場合にはその層に基づいて配置角度に設定することが好ましい。
【0073】
上記のように本発明による偏光光源装置は、偏光分離手段による反射光(戻り光)を偏光変換による出射光として再利用することで反射ロス等を防止し、その出射光を必要に応じ位相差層等を介して直線偏光成分をリッチに含む光状態に変換することで偏光板を透過しやすくして吸収ロスを防止し、光利用効率の向上をはかりうるようにしたものである。
【0074】
従って本発明による面光源装置や偏光光源装置は上記の如く、光の利用効率に優れて明るくて垂直性に優れる光を提供し、大面積化等も容易であることより液晶表示装置等におけるバックライトシステムなどとして種々の装置に好ましく適用でき、明るくて見やすく低消費電力の液晶表示装置等を得ることができる。
【0075】
図8に本発明による偏光光源装置7をバックライトシステムに用いた液晶表示装置8を例示した。81が下側の偏光板、82が液晶セル、83が上側の偏光板、84が拡散板である。下側の偏光板81や拡散板84は、必要に応じて設けられる。
【0076】
液晶表示装置は一般に、液晶シャッタとして機能する液晶セルとそれに付随の駆動装置、偏光板、バックライト、及び必要に応じての補償用位相差板等の構成部品を適宜に組立てることなどにより形成される。本発明においては、上記した面光源装置又は偏光光源装置を用いる点を除いて特に限定はなく、従来に準じて形成することができる。特に、直視型の液晶表示装置を好ましく形成することができる。
【0077】
従って用いる液晶セルについては特に限定はなく、適宜なものを用いうる。偏光光源装置を用いる場合には、偏光状態の光を液晶セルに入射させて表示を行うものに有利に用いられ、例えばツイストネマチック液晶やスーパーツイストネマチック液晶を用いた液晶セル等に好ましく用いうるが、非ツイスト系の液晶や二色性染料を液晶中に分散させたゲストホスト系の液晶、あるいは強誘電性液晶を用いた液晶セルなどにも用いうる。液晶の駆動方式についても特に限定はない。
【0078】
なお高度な直線偏光の入射による良好なコントラスト比の表示を得る点よりは偏光板として、特にバックライト側の偏光板として、例えばヨウ素系や染料系の吸収型直線偏光子などの如く偏光度の高いものを用いたものが好ましい。また液晶表示装置の形成に際しては、例えば視認側の偏光板の上に設ける拡散板やアンチグレア層、反射防止膜、保護層や保護板、あるいは液晶セルと偏光板の間に設ける補償用の位相差板などの適宜な光学素子を適宜に配置することができる。
【0079】
前記の補償用位相差板は、複屈折の波長依存性などを補償して視認性の向上等をはかることを目的とするものである。本発明においては、視認側又は/及びバックライト側の偏光板と液晶セルの間等に必要に応じて配置される。なお補償用の位相差板としては、波長域などに応じて適宜なものを用いることができ、1層又は2層以上の重畳層として形成されていてよい。
【0080】
本発明において、上記した面光源装置や偏光光源装置や液晶表示装置を形成する光路制御板や導光板、偏光分離手段や液晶セル、偏光板等の光学素子ないし部品は、全体的又は部分的に積層一体化されて固着されていてもよいし、分離容易な状態に配置したものであってもよい。なお面光源装置の上面には種々の拡散板などを配置しうるが、偏光光源装置の場合には偏光特性を維持しうる拡散板などがその上面に配置しうる。
【0081】
【実施例】
参考例1
アクリル系の主鎖を有するガラス転移温度が57℃の側鎖型コレステリック液晶ポリマーを、トリアセチルセルロースフィルムのポリイミドラビング処理面にスピンコート方式で成膜後、140℃で30秒間加熱後さらに120℃で5分間加熱して急冷し、鏡面状の選択反射状態を呈する偏光分離板を得た。これは、420〜505nmの波長範囲で良好な選択反射性を示し、この領域で90%以上を正反射方向に選択反射するものであった。
【0082】
参考例2
ガラス転移温度が相違する側鎖型コレステリック液晶ポリマーを用いて参考例1に準じて、500〜590nm又は595〜705nmの波長範囲で良好な選択反射性を示し、この領域で90%以上を正反射方向に選択反射する2種の偏光分離板を得た。
【0083】
参考例3
参考例1及び参考例2で得た3種の偏光分離板を選択反射の波長順序で積層して重畳型の偏光分離板を得た。これは、420〜705nmの波長範囲で良好な選択反射性を示し、この領域で90%以上を正反射方向に選択反射するものであった。
【0084】
参考例4
ポリメチルメタクリレート(PMMA)を加熱熔融させて所定のプリズム構造を形成した100℃の金属金型に注入し、1分間放置後徐冷して導光板を得た。この導光板は、幅195mm、奥行150mm、光源配置側面の厚さ3mm、その対向端の厚さ1mmであり、出射面(上面)は平坦、下面は光源配置側面からその対向端に向かって平面に近い下側に突出した湾曲面(図4b)の全面に光源配置側面に平行な凸部(図5a)を225μmの周期で有し、その下り斜面の傾斜角が約5度で上り斜面の傾斜角約40度であり、下り斜面/上り斜面の出射面に対する投影面積比が8/1のものである。
【0085】
参考
所定の溝形状を形成した金型の表面に、反応開始剤約1重量%配合のPMMAを塗布し、その上にポリエステルフィルムを配置して高圧水銀ランプを照射しPMMAを硬化させ、金型より剥離してポリエステルフィルム上にPMMAの硬化層からなる光路制御層を有する光路制御板を得た。その光路制御層は、傾斜角が10度の緩斜面と80度の急斜面を30μmの周期で有するものである。
【0086】
参考
参考に準じ緩斜面の傾斜角が20度の光路制御板を得た。
【0087】
参考
参考に準じ緩斜面の傾斜角が35度の光路制御板を得た。
【0088】
参考
参考に準じ急斜面の傾斜角が60度の光路制御板を得た。
【0089】
参考
ポリエステルフィルムに代えて、トリアセチルセルロースフィルムを用いたほかは参考に準じて光路制御板を得た。
【0090】
参考例1
参考に準じ緩斜面の傾斜角が45度の光路制御板を得た。
【0091】
参考11
参考に準じ急斜面の傾斜角が45度の光路制御板を得た。
【0092】
参考12
参考に準じ緩斜面と急斜面の傾斜角が45度の光路制御板を得た。
【0093】
参考13
2枚のガラス板を20度の交差角で配置し、その間にPMMAを充填してウェッジ板を得た。
【0094】
実施例
参考例4で得た導光板の所定側面に直径3mmの冷陰極管を配置して銀蒸着を施したポリエステルフィルムからなる光源ホルダにて包囲し、導光板の下面に光源ホルダと同素材の反射シートを銀蒸着層側を介し配置し、導光板の出射面に参考で得た光路制御板をプリズム面を下にして、かつ緩斜面の肉厚側を光源側にして配置して面光源装置を得た。なお光路制御板は、その溝が導光板の光源配置側面(プリズム方向)に対して10度の交差角となるように設置した。
【0095】
実施例
光路制御板をその溝が導光板の光源配置側面に対して5度の交差角となるように設置したほかは実施例に準じて面光源装置を得た。
【0096】
実施例
光路制御板をその溝が導光板の光源配置側面に対して35度の交差角となるように設置したほかは実施例に準じて面光源装置を得た。
【0097】
実施例
光路制御板をその溝が導光板の光源配置側面と平行となるように設置したほかは実施例に準じて面光源装置を得た。
【0098】
実施例
参考で得た光路制御板を用いたほかは、実施例に準じて面光源装置を得た。
【0099】
実施例
参考で得た光路制御板を用いたほかは、実施例に準じて面光源装置を得た。
【0100】
実施例
参考で得た光路制御板を用いたほかは、実施例に準じて面光源装置を得た。
【0101】
実施例
参考で得た光路制御板を用いたほかは、実施例に準じて面光源装置を得た。
【0102】
比較例
参考例1で得た光路制御板をプリズム面を上にして用いたほかは、実施例に準じて面光源装置を得た。
【0103】
比較例
参考11で得た光路制御板を用いたほかは、実施例に準じて面光源装置を得た。
【0104】
比較例
参考12で得た光路制御板をプリズム面を上にして用いたほかは、実施例に準じて面光源装置を得た。
【0105】
比較例
光路制御板に代えて、参考13で得たウェッジ板を用いたほかは、実施例に準じて面光源装置を得た。
【0106】
比較例
光路制御板を配置しないほかは実施例に準じて面光源装置を得た。
【0107】
実施例
実施例で得た面光源装置の光路制御板の上に参考例3で得た偏光分離板を配置して偏光光源装置を得た。
【0108】
実施例1
実施例で得た面光源装置を用いたほかは実施例に準じて偏光光源装置を得た。
【0109】
比較例
比較例で得た面光源装置を用いたほかは実施例に準じて偏光光源装置を得た。
【0110】
比較例
比較例で得た面光源装置を用いたほかは実施例に準じて偏光光源装置を得た。
【0111】
評価試験1
最大輝度と方向
実施例、比較例で得た面光源装置の光源を点灯し、中央部における最大輝度とその方向を輝度計(トプコン社製、BM−7)を用いて調べた。
【0112】
モアレ
実施例、比較例で得た面光源装置の上に、白状態のTFT液晶セルを配置し、モアレの発生状態を調べて、強いものを5、弱いものを1として5段階評価した。また光路制御板と導光板の間にヘイズが60%の拡散板を配置した面光源装置を形成して、同様にモアレを調べた。
【0113】
前記の結果を表1に示した。
【表1】
┏━━━━━┳━━━━┳━━━━┳━━━━━━━━━┓
┃ ┃最大輝度┃最大輝度┃ モ ア レ ┃
┃ ┃(cd/m)┃方向(度)┣━━━━┳━━━━┫
┃ ┃ ┃ ┃拡散板無┃拡散板有┃
┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
┃実施例 ┃2240┃ 6 ┃ 2 ┃ 1 ┃
┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
┃実施例 ┃2250┃ 5 ┃ 2 ┃ 1 ┃
┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
┃実施例 ┃1990┃ 9 ┃ 1 ┃ 1 ┃
┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
┃実施例 ┃2270┃ 5 ┃ 4 ┃ 2 ┃
┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
┃実施例 ┃2190┃ 3 ┃ 2 ┃ 1 ┃
┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
┃実施例 ┃2040┃ −1 ┃ 2 ┃ 1 ┃
┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
┃実施例 ┃2090┃ 6 ┃ 2 ┃ 1 ┃
┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
┃実施例 ┃2290┃ 6 ┃ 2 ┃ 1 ┃
┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
┃比較例 ┃1870┃ 65 ┃ 2 ┃ 1 ┃
┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
┃比較例 ┃1730┃ 6 ┃ 2 ┃ 1 ┃
┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
┃比較例 ┃1520┃ 47 ┃ 2 ┃ 1 ┃
┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
┃比較例 ┃2310┃ 4 ┃ 5 ┃ 3 ┃
┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
┃比較例 ┃2390┃ 11 ┃ 5 ┃ 3 ┃
┗━━━━━┻━━━━┻━━━━┻━━━━┻━━━━┛
【0114】
(削除)
【0115】
評価試験2
輝度特性
実施例、比較例で得た面光源装置の上に、白状態のTFT液晶セルを配置し、正面(垂直)方向の輝度、及び最大輝度とその方向を輝度計を用いて調べた。
【0116】
輝度特性
実施例,1、比較例で得た偏光光源装置の上に、位相差が135nmの位相差板を配置し、その上に白状態のTFT液晶セルを配置して、正面方向の輝度を輝度計を用いて調べた。なお位相差板は、その光軸が偏光板の光軸に対し45度となるように配置し、透過率が最大となるように設置した。
【0117】
前記の結果を表2に示した。
【表
┏━━━━━┳━━━━┳━━━━┳━━━━┓
┃ ┃正面輝度┃最大輝度┃最大輝度┃
┃ ┃(cd/m)┃(cd/m)┃方向(度)┃
┣━━━━━╋━━━━╋━━━━╋━━━━┫
┃実施例 ┃ 101 ┃ 104 ┃ 3 ┃
┣━━━━━╋━━━━╋━━━━╋━━━━┫
┃実施例 ┃ 98 ┃ 108 ┃ 6 ┃
┣━━━━━╋━━━━╋━━━━╋━━━━┫
┃実施例 ┃ 138 ┃ − ┃ − ┃
┣━━━━━╋━━━━╋━━━━╋━━━━┫
┃実施例1┃ 147 ┃ − ┃ − ┃
┣━━━━━╋━━━━╋━━━━╋━━━━┫
┃比較例 ┃ 19 ┃ 61 ┃−40 ┃
┣━━━━━╋━━━━╋━━━━╋━━━━┫
┃比較例 ┃ 79 ┃ 105 ┃ 9 ┃
┣━━━━━╋━━━━╋━━━━╋━━━━┫
┃比較例 ┃ 42 ┃ − ┃ − ┃
┣━━━━━╋━━━━╋━━━━╋━━━━┫
┃比較例 ┃ 142 ┃ − ┃ − ┃
┗━━━━━┻━━━━┻━━━━┻━━━━┛
【0118】
(削除)
【0119】
1より、実施例の面光源装置では、光路制御層を有しない場合(比較例)に比べて、少ない最大輝度の低下、従って導光板出射光の殆どが光路制御層を介してより垂直性に優れる方向に光路が変換されていることがわかる。なお比較例でプリズム面を上側としたのは、下側としたのでは垂直方向への光路変換ができないためである。比較例1〜3での最大輝度の大きな低下は、急斜面に入射した光の影響が大きく、比較例では緩斜面入射光が反射により導光板側に戻るため、比較例では急斜面への入射光量が大きくなるためと考えられ、出射角を加味した場合、有効利用できる光量はさらに低くなる。
【0120】
また実施例より、溝方向とプリズム方向の交差角は35度が略限界で、これより大きくなると急斜面が向いた方向の偏りが大きくなり指向性が低下して垂直方向の最大輝度の低下を招くことがわかる。さらに表より、実施例の面光源装置及び偏光光源装置では、比較例に比べて正面輝度に優れて最大輝度との差も小さく、明るい表示が達成されていることがわかる。
【0121】
モアレについては、光路制御層を有しない場合に比べて、実施例1〜35〜8及び比較例1〜3とも光路制御層の介在で大きく改善されていることがわかる。なお実施例より、溝方向とプリズム方向が平行では輝線の細分化効果に乏しくてモアレの防止効果が低下するものの、拡散板の配置で実用レベルに達することがわかる。しかし比較例のウェッジ板では、モアレの抑制に何の有効性もないことがわかる。
【0122】
上記の結果より総合的に、本発明では光路制御層を介して輝度や指向性の低下を抑制しつつ導光板出射光を視認に有効な正面方向に効率よく光路変換でき、光の有効利用効率に優れる面光源装置やより光の有効利用効率に優れる偏光光源装置を得ることができ、モアレが少なく明るくて見やすい高表示品位の液晶表示装置を形成できることがわかる。
【図面の簡単な説明】
【図1】 光路制御層例の側面説明図
【図2】 他の光路制御層例の側面説明図
【図3】 面光源装置例の側面説明図
【図4】 導光板例の側面説明図
【図5】 微細プリズム状凹凸例の側面説明図
【図6】 発光状態の説明図
【図7】 偏光光源装置例の側面説明図
【図8】 液晶表示装置例の側面説明図
【図9】 従来例の側面説明図
【符号の説明】
1:光路制御層
11:溝
12:緩斜面
13:急斜面
14:透明基材
2:拡散
3:導光板
21:上面(出射面)
22,26,27:下面
28,29:凸部
30:凹部
31,33(34),37:下り斜面
32,35,36:上り斜面
23:光源配置側面
38:輝部
39:暗部
4:光源
5:反射層
7:偏光光源装置
6:偏光分離手段
61:直線偏光変換手段
8:液晶表示装置
81,83:偏光板
82:液晶セル
84:拡散板
[0001]
TECHNICAL FIELD OF THE INVENTION
  The present invention is an optical path control useful for preventing moire and improving visibility in liquid crystal display devices and the like.LayerThe present invention relates to a surface light source device and a polarized light source device that are excellent in uniformity of light emission and effective use efficiency of light.
[0002]
BACKGROUND OF THE INVENTION
While the light transmittance of liquid crystal cells and the like decreases with colorization and high definition, a bright and easy-to-see liquid crystal display device is required. With the provision of light becoming an important issue, the group to which the present inventors belonged previously has periodic fine prism-like irregularities on at least one of the upper and lower surfaces for the purpose of solving the problem. Has been proposed (Japanese Patent Application No. Hei 7-321036).
[0003]
However, as illustrated in FIG. 6, the light guide plate 3 has a drawback in that the light emission inevitably becomes a stripe pattern of the bright portion 38 and the dark portion 39 based on the structure for improving the light utilization efficiency. There is a problem that moire is generated due to interference with pixels such as a liquid crystal cell, the display is glaring and inferior in quality, and the directivity of the emitted light is deviated from the direction advantageous for visual recognition of the liquid crystal display device.
[0004]
The moire problem can be solved by making the period of fine prism-like irregularities on the light guide plate sufficiently smaller than 1/5 of the pixel size. Incidentally, for a pixel size of 100 μm × 300 μm, moire can be solved by setting a period of fine prism-like irregularities of 20 μm or less.
[0005]
However, in the above case, the period of the fine prism-like irregularities is likely to cause interference and diffraction, and there is a drawback that the display quality is lowered due to a decrease in the light output rate and the dispersion of light. As the degree of fineness increases, the height needs to be several μm or less, especially 1 μm or less, which makes it difficult to manufacture the light guide plate and makes it difficult to emit light due to roundness of the prism.
[0006]
On the other hand, in the application of a known method for solving the moire problem by leveling light emission with a diffusion plate, there is a difficulty in reducing the advantages of the light guide plate. In other words, the leveling of the bright and dark stripes through the diffuser plate requires a wide range of diffusibility to eliminate moire due to the Gaussian distribution of the diffusion characteristics, which reduces the directivity of the emitted light. However, the amount of emitted light in the direction advantageous for visual recognition of the liquid crystal display device is reduced, and the amount of light that can be used effectively is reduced, and it is difficult to control the correction of the position and direction of the light emission, and the light utilization efficiency is also improved by backscattering There was a downside.
[0007]
On the other hand, the directivity problem of the emitted light described above is that the maximum intensity direction of the emitted light is not the vertical direction of the emission surface that is most advantageous for visual recognition, but is slightly different in the direction away from the light source than the vertical direction, typically 5-20. It has an angle of degrees, and this direction means that the light transmittance of the liquid crystal cell is low and the display inversion rate is high, so that improvement in the effective utilization efficiency of light and display quality is desired.
[0008]
An optical path control system via a prism sheet has been proposed, but it is difficult to overcome the directivity problem described above with a conventional prism sheet. That is, as shown in FIG. 9, the conventional prism sheet 9 is composed of a groove composed of two inclined surfaces 91 having an inclination angle of about 45 degrees, and the light α emitted from the light guide plate at an angle of 5 to 20 degrees is substantially applied to the two inclined surfaces 91. Incident with the same probability and dispersed in two optical paths (α1), Large angle outgoing light αThreeOr return light α to the light guide plate by total reflectionFourIt becomes.
[0009]
Therefore, the optical path direction β in which most of the emitted light α is excellent in the desired verticality.2However, the effective utilization efficiency of the light is greatly reduced. The emitted light is β2Is the incident light β having a large incident angle of about 40 degrees, and therefore, in the conventional prism sheet, near vertical light having an emission angle of about 20 degrees or less from the light guide plate is more vertical. It is difficult to change the optical path in a direction that excels. Further, in an illuminating device described in Japanese Patent Application Laid-Open No. 9-146092, in which a polarization separating unit and an optical path conversion unit are sequentially provided on a wedge-shaped light guide, depending on the arrangement of the polarization separating unit, the optical path disposed thereon The conversion means disturbs the transmitted polarized light and the light use efficiency is lowered, and such an arrangement state is not preferable. Further, the light emitted from the light guide plate is assumed to have a large angular direction, and it is difficult to make the near vertical light more vertical.
[0010]
[Technical Problem of the Invention]
The present invention can prevent the occurrence of moire between pixels when a light guide plate in which emitted light exhibits directivity close to the vertical direction and forms a stripe pattern of bright and dark portions is applied to a liquid crystal cell. An object of the present invention is to form a liquid crystal display device with excellent quality, and to bring the emitted light from the light guide plate close to the vertical direction that is advantageous for visual recognition of the liquid crystal display device.
[0011]
[Means for solving problems]
  The present inventionAt least one of the upper surface, the lower surface facing it, and the upper and lower surfaces of the plate-like object having the light source arrangement side surface between the upper surface and the lower surface periodically has fine prism-like irregularities in the direction along the light source arrangement side surface. On the light exit side of the light guide plate that emits the incident light from the light source arranged in the stripe pattern of the bright part and the dark part from one of the upper and lower surfaces,A streak-like groove composed of a gentle slope with an inclination angle of 5 to 35 degrees and a steep slope of 60 degrees or more with respect to the plane has a period of 10 to 80 μm periodically.LightRoad control layerThe groove of the optical path control layer intersects with the fine prism-like irregularities of the light guide plate at an angle of 5 to 40 degrees, and the gentle slope of the groove is thin in the direction away from the light source. InIt is characterized bySurface light source deviceIs to provide.
[0012]
【The invention's effect】
  Main departureClearlyAccording toOptical path control layerThe groove of the light source subdivides the emission lines based on the light guide plate, shortens the emission interval of the emission lines, and refines the period of the fine prism-like irregularities, and also refracts the emission lines through the gentle slope that forms the grooves. The luminance difference from the dark part is leveled, so that moire due to interference with the pixels of the liquid crystal cell can be reduced, and moire can also be suppressed by spherical waves due to diffraction based on the groove period.
[0013]
Also, most of the directional emission lines emitted from the light guide plate are incident on the gentle slope of the groove, and the optical path of the transmitted light is converted with good directivity in the thickness direction of the gentle slope based on the function of the wedge plate. Therefore, by arranging the optical path control layer so that the gentle slope of the groove is thin in the direction away from the light source, the optical path of the directional emission line emitted from the light guide plate is made closer to the vertical direction through refraction. It is possible to convert with good directivity, prevent deterioration of brightness due to diffusion, and maintain the directivity of the bright line emitted from the light guide plate well without damaging it by diffusion or dispersion, and can change the light path and reduce the light emitted from the light guide plate. It can be used in a low state and in a state of excellent verticality, and is excellent in the effective use efficiency of light.
[0014]
As a result of the above, although the light utilization efficiency is excellent and bright light is provided, the advantages of the light guide plate that has the disadvantage that the directivity of the emission of the striped bright line and the emitted light that cause the moire are shifted are utilized. It is possible to overcome the difficulties, and it is possible to form a backlight system that efficiently provides the light emitted in the direction effective for improving the visibility of liquid crystal display devices, etc., making a liquid crystal display device that is bright, easy to see and has low power consumption Can be formed.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
  Of the present inventionSurface light source deviceIsAt least one of the upper surface, the lower surface facing it, and the upper and lower surfaces of the plate-like object having the light source arrangement side surface between the upper surface and the lower surface periodically has fine prism-like irregularities in the direction along the light source arrangement side surface. On the light exit side of the light guide plate that emits the incident light from the light source arranged in the stripe pattern of the bright part and the dark part from one of the upper and lower surfaces,Periodically having a streak-like groove composed of a gentle slope with an inclination angle of 5 to 35 degrees and a steep slope with 60 degrees or more with respect to a plane.An optical path control layer is arranged, the groove of the optical path control layer intersects the fine prism-like irregularities of the light guide plate at an angle of 5 to 40 degrees, and the gentle slope of the groove is thin in the direction away from the light source. In a state to becomeIt consists of things. ThatOptical path control layerExamples are shown in FIGS. 1 is an optical path control layer, 11 is a groove, 12 is a gentle slope, and 13 is a steep slope. Reference numeral 14 is a transparent substrate, and 2 is a diffusion layer. In the present inventionOkeThe optical path control layer can be formed in an appropriate form such as an independent optical path control plate made of a sheet or the like, or a component attachment layer formed directly on an optical component such as a light guide plate.
[0016]
The gentle slope in the optical path control layer is the main part of the optical path change by the wedge plate function, and a structure in which as much as possible, ideally 100% of light is incident on this part, has an effective light utilization efficiency. It is preferable from the viewpoint of improvement. From this point, the inclination angle θ of the gentle slope1Is 5 to 35 degrees with respect to the plane. If the angle is less than 5 degrees, the effect of changing the optical path is poor, and if it exceeds 35 degrees, the projected area with respect to the plane is reduced when the same period is used, and that of the steep slope becomes relatively large, which increases the incidence efficiency on the gentle slope. Become scarce.
[0017]
The inclination angle of the gentle slope can be appropriately determined in accordance with the angle of light incident on it such as light emitted from the light guide plate in the above range. As shown in FIG. 1, when the incident angle α to the optical path control layer 1 is about 20 degrees or less, especially 5 to 20 degrees, the optical path changeability in the vertical direction (α1, Α2The angle of inclination of the gentle slope is preferably 7 to 30 degrees, more preferably 10 to 25 degrees.
[0018]
On the other hand, the steep slope has loss light that cannot effectively use the incident light. Therefore, an inclination angle θ of 60 degrees or more with respect to the plane is used because the incident light is suppressed as much as possible.2It is said. A preferable inclination angle of the steep slope is 75 to 110 degrees, especially 85 to 90 degrees from the viewpoint of suppression of incident light.
[0019]
The gentle slope and the steep slope do not need to be flat, and may be curved surfaces or the like as long as the inclination angle is maintained, but the grooves formed thereof are periodically formed in a streak shape. The period can be appropriately determined according to the characteristics of incident light for the purpose of controlling the optical path, but is generally 80 μm or less, especially 65 μm or less, especially from the viewpoint of groove formation and bright line segmentation. 10 to 50 μm. Incidentally, when the period is less than 10 μm, it is necessary to make the groove depth 5 μm or less, and the difficulty of high-precision manufacturing increases. The optical path control layer can be thinned by forming a groove shape having a gentle slope periodically through a steep slope.
[0020]
The optical path control layer can be formed by an appropriate method using an appropriate material exhibiting transparency according to the wavelength region of incident light. Incidentally, in the visible light region, for example, a transparent resin or glass represented by an acrylic resin, a polycarbonate resin, an epoxy resin, or the like can be used.
[0021]
A preferable method for manufacturing the optical path control layer from the viewpoint of mass productivity is a method of transferring a shape by pressing a mold or a roll capable of forming a predetermined groove shape against a thermoplastic resin under heating, and forming a predetermined groove shape. Filling or casting a liquid resin that can be polymerized with heat, ultraviolet rays, radiation, etc. into a mold or roll, a method of polymerizing by coating, a method of polymerizing while coating on a transparent substrate, or after coating, heating and melting For example, a method of filling a mold that can be molded into a predetermined groove shape with a thermoplastic resin or a resin fluidized through heat or a solvent by an injection method or the like.
[0022]
In the present invention, as shown in FIG. 2, the optical path control layer may be formed as a laminate of the same or different materials, for example, as shown in FIG. It need not be formed as an integral monolayer of one material. As the transparent substrate, for example, an appropriate material such as a plastic film having a thickness of 30 to 500 μm can be used.
[0023]
The thickness of the optical path control layer can be appropriately determined depending on the purpose of use and the like, but generally it is 1 mm or less, especially 5 to 500 μm, especially 10 to 200 μm for the purpose of thinning. When the optical path control layer is formed as an optical path control plate or the like, a groove shape including a gentle slope and a steep slope may be provided on both the front and back surfaces. Further, the surface on which the groove shape including the gentle slope and the steep slope is provided may have an appropriate surface form such as a flat surface or a surface, and is not particularly limited.
[0024]
  As illustrated in FIG. 2, the optical path control layer 1 has one or both sides as required.ExpandedA scattering layer 2 can also be provided. The diffusion layer is intended to further suppress moire by the diffusion effect obtained by leveling the bright and dark areas as described above. In this case, the diffusion layer has a small diffusion angle, that is, a low diffusivity is used. The fall of property etc. can be controlled.
[0025]
  AboveThe optical path control layer changes the optical path according to the incident angle for various incident light.The present invention uses the optical path control layer.Surface light source deviceFormedThe In FIG.ThatSurface light sourceSetAn example is shown. In this configuration, the optical path control layer 1 is provided on the light emitting side of the light guide plate 3 that emits incident light from the light source 4 arranged on the side surface as a stripe pattern of bright and dark portions from one of the upper and lower surfaces.
[0026]
  As a light guide plate,lightFrom the point of obtaining a bright surface light source with excellent use efficiencyOf plateAt least one of the upper and lower surfaces has fine prism-shaped irregularities in the direction along the side of the light source arrangement.Periodically, preferablyLight guide plate having a period of 50 to 500 μmForYes.
[0027]
The example of the said light-guide plate was shown to Fig.4 (a)-(c). Moreover, the example of the fine prism-shaped unevenness | corrugation was shown to Fig.5 (a)-(c). In FIG. 4, 21 is an upper surface, 22, 26 and 27 are lower surfaces, 23 is a light source arrangement side surface, 24 is a lateral side surface, and 25 is a side end portion facing the light source arrangement side surface 23. In FIG. 5, 28 and 29 are convex portions, 30 is a concave portion, 31, 33 (34) and 37 are downward slopes, and 32, 35 and 36 are upward slopes.
[0028]
  Light guide plate,UpIt consists of a plate-shaped object which has a surface, the lower surface which opposes it, and the light source arrangement side surface between an upper surface and a lower surface. The plate-like object may be the same thick plate or the like, but preferably, as shown in the figure, the thickness of the side end portion 25 facing the light source arrangement side surface 23 is thinner than that of the light source arrangement side surface, especially 50% or less. The thickness of
[0029]
As a result of the thinning of the opposing side end, as shown by the thick arrow shown in FIG. 5 (a), the upward slope of the lower surface until the light incident from the side surface of the light source reaches the opposing side end as the transmission end. And the like. The incident light can be efficiently supplied to the target surface by being reflected from the reflection, and the light guide plate can be reduced in weight. Incidentally, when the lower surface is a straight surface as shown in FIG. 4A, the weight of the light guide plate having a uniform thickness can be about 75%.
[0030]
The fine prism-like unevenness provided on at least one of the upper and lower surfaces of the plate-like object is periodically formed as a convex portion or a concave portion on an inclined surface along the light source arrangement side surface. In addition, a convex part or a recessed part is based on the straight line 20 which connects the intersection with the lower surface of the slope which forms the convex part or the recessed part, whether the intersection (vertex) of a slope protrudes from the said straight line (convex), or is depressed ( Concave).
[0031]
Further, the slope forming the convex portion or the concave portion is composed of a downward slope and an upward slope based on a straight line connecting the intersection and the apex with the lower surface. As a result, in addition to the transmission light that is directly incident on the ascending slope, the transmission light that is incident on the descending slope and incident on the ascending slope via the reflection can be supplied to the exit surface by reflection via the ascending slope. Therefore, the light utilization efficiency can be improved accordingly. The down slope or the up slope is dependent on whether it is a down slope or an up slope in a direction away from the light source.
[0032]
The surface of the light guide plate on which the fine prism-like irregularities are provided is usually an inclined surface as described above, but the inclined shape is arbitrary, such as a linear surface as illustrated in FIG. An appropriate surface shape such as a curved surface as illustrated in FIG. When the surface is not a straight surface, it is preferably within a range of 5 degrees or less from the average inclination angle at all positions on the surface where the fine prism-shaped irregularities are provided, rather than the point of directing the outgoing direction of outgoing light (directivity).
[0033]
The shape of the convex part or the concave part forming the fine prism-like irregularities does not need to be formed as a linear inclined surface as illustrated in FIGS. 5A to 5C, and includes an inclined surface including a refracting surface and a curved surface. It may be formed by. Further, the convex portion or the concave portion need not have the same concave and convex shape or the shape of the entire surface, and the shape and angle gradually change from the light source arrangement side in terms of improving the perpendicularity of the emitted light. The structure is preferable, and in particular, the structure in which the inclination angle of the ascending slope with respect to the light guide plate plane sequentially increases from the light source side is preferable.
[0034]
The period of the convex part or the concave part is related to the interval between the stripe-like bright lines in the emitted light, and the period is 500 μm or less, especially 10 to 400 μm, as described above, from the viewpoint of averaging the brightness of the entire surface, etc. 50-300 micrometers is especially preferable.
[0035]
Further, the above-described downward slope forming the convex portion or the concave portion is inclined by an inclination angle θ with respect to the plane of the light guide plate as illustrated in FIG.ThreeIs preferably 10 degrees or less, more preferably 5 degrees or less, and particularly preferably 2 degrees or less. Note that, as illustrated in FIG. 5B, the downward slope allows the inclination angle to be 0 degree. In the illustrated example, the portion 34 having an inclination angle of 0 degrees is partially provided, but the entire portion between the ascending slopes may be a horizontal plane having an inclination angle of 0 degree through a step portion formed of a vertical surface or the like. Therefore, the downward slope in the present invention includes a horizontal plane having an inclination angle of 0 degree. By setting the range of such an inclination angle, as illustrated by a broken line arrow in FIG. 5A, light transmitted at an angle larger than the inclination angle is incident on the down slope 31 and reflected. Based on the inclination angle of the slope, the light is reflected by the exit surface 21 at a parallel angle, enters the uphill slope 32, is reflected, and exits from the exit surface.
[0036]
As a result, the incident angle of the light incident on the upward slope can be made constant, the variation in the reflection angle can be suppressed, and the emitted light can be made parallel. Therefore, by adjusting the inclination angle of the downward slope and the upward slope forming the convex part or the concave part, it is possible to give the outgoing light directivity, thereby allowing the light to be emitted at an angle close to the vertical direction with respect to the outgoing face. The light can be emitted.
[0037]
On the other hand, the above-described upward slope forming the convex portion or the concave portion has an inclination angle θ with respect to the light guide plate plane as illustrated in FIG.FourIs preferably 30 to 50 degrees, and more preferably 35 to 45 degrees. By setting the range of such an inclination angle, the transmission light incident directly or via the downward slope is nearly perpendicular to the emission surface 21 via the upward slope 32 as illustrated by the broken line arrow in FIG. Light can be efficiently emitted by reflecting at an angle. When the angle of inclination of the ascending slope is out of the above range, the deviation from the vertical direction becomes large, and it is difficult to provide the directivity close to the perpendicular to the outgoing light, and the outgoing efficiency (utilization efficiency) of the transmitted light may be lowered.
[0038]
There is no limitation in particular about the shape of the light source arrangement | positioning side surface in a light-guide plate, You may determine suitably. In general, the surface is perpendicular to the exit surface, but the incident light rate can be improved by a shape corresponding to the outer periphery of the light source such as a curved concave shape. Moreover, it can also be set as the surface structure which has the introducing | transducing part interposed between light sources. The introduction portion can have an appropriate shape depending on the light source and the like.
[0039]
The light guide plate can be formed of an appropriate material exhibiting transparency according to the wavelength region of the light source, and examples of the material and manufacturing method thereof include those exemplified for the optical path control layer described above. Note that the light guide plate may be formed as a laminate of different materials, such as a sheet in which fine prism-like irregularities are bonded to a light guide portion that carries light transmission, and may be integrated with a single material. It does not have to be formed as a single layer. The thickness of the light guide plate can be appropriately determined depending on the size of the light guide plate and the size of the light source depending on the purpose of use. When used for a liquid crystal display device or the like, the general thickness is 20 mm or less, especially 0.1 to 10 mm, particularly 0.5 to 8 mm, based on the side surface of the light source.
[0040]
As shown in FIG. 3, a reflective layer 5, preferably a metal reflective layer, may be provided on the surface of the light guide plate provided with fine prism-like irregularities, as illustrated in FIG. Such a reflective layer is effective in improving the emission efficiency by preventing the generation of leakage light from the surface having the fine prism-like unevenness. In the case of the polarized light source device combined with the polarization separation means, it also functions as a polarization conversion means.
[0041]
When functioning as the polarization conversion means, a reflective layer made of metal is particularly preferable. According to such a metal reflection layer, the polarization characteristics can be efficiently reversed at the time of reflection, and the polarization conversion efficiency is superior to the case of total reflection or diffuse reflection through an interface having a different refractive index. Incidentally, when circularly polarized light is incident on the metal surface substantially perpendicularly, the left and right conversion efficiencies of the circularly polarized light are close to 100%.
[0042]
A metal reflective layer preferable from the viewpoint of polarization conversion efficiency has a metal surface containing at least one of highly reflective metals such as aluminum, silver, gold, copper, or chromium. The metal reflective layer having excellent adhesion to the light guide plate can be formed as a mixed coating layer of metal powder with a binder resin, or an attached layer of a metal thin film by a vapor deposition method or the like. An appropriate coat layer for the purpose of improving reflectivity, preventing oxidation, or the like can be provided on one or both surfaces of the metal reflective layer, if necessary.
[0043]
  The optical path control layer 1 provided on the light emitting side 21 of the light guide plate 3 has a groove of 5 to 40 degrees with respect to the fine prism-like irregularities of the light guide plate in order to prevent the occurrence of moire.Placed in an intersecting state at an angle ofIn particular, it is preferable to be in a state of crossing at an angle of 7 to 30 degrees, particularly 10 to 25 degrees, and it is preferable to use an optical path control layer in which the period of the grooves is smaller than the period of the fine prism-like irregularities of the light guide plate. . When the crossing relationship is vertical or parallel, the effect of eliminating moire is poor, and when it exceeds 40 degrees, the optical path change in the groove direction of the optical path control layer becomes large, and the direction controllability of the emitted light is reduced and directivity is reduced. It may become scarce. On the other hand, if the period of the grooves is larger than the period of the fine prism-like irregularities, the bright lines may not be sufficiently subdivided and the moire prevention effect may be poor.
[0044]
  Further, the optical path control layer is configured to convert the light emitted from the light guide plate based on the wedge plate effect as illustrated in FIG.,Due to the fact that the optical path is changed in the vertical direction with good directivity, the gentle slope in the groove is arranged so as to be thin in the direction away from the light source.Ru. In FIG. 1, the left side of the drawing is the light source side.
[0045]
  As described above, the optical path control layer may be formed directly on the light guide plate, or may be disposed on the light guide plate as an independent object such as an optical path control plate. In the case of an independent object, the present inventionInThere is no front and back in the optical path control layer, and either surface can be on the light guide plate side, so that there is no misplacement between the front and back unlike the conventional prism sheet. However, from the viewpoint of suppressing light incident on the steep slope, it is preferable that the side without the groove is the light guide plate side.
[0046]
As the light source 4 arranged on the side surface of the light guide plate, an appropriate one can be used. For example, a linear light source such as a (cold, hot) cathode tube, a point light source such as a light emitting diode, or a linear or planar shape thereof. An array body or the like can be preferably used. A cold cathode tube is particularly preferable from the viewpoints of low power consumption and durability. When forming the surface light source device, the light source holder 41 that surrounds the light source in order to guide the divergent light from the linear light source to the side surface of the light guide plate, the diffusion layer 2 for obtaining uniform surface light emission, and the leaked light as necessary. A combination in which appropriate auxiliary means such as the reflective layer 5 for prevention are arranged at appropriate positions may be used.
[0047]
As the light source holder, a resin sheet or a metal foil provided with a highly reflective metal thin film is generally used. The arrangement of the diffusion layer is advantageous for forming a surface light source device that is superior in brightness uniformity by preventing the occurrence of unevenness of light and darkness, and is formed as a diffusion layer having a small diffusion angle by a diffusion plate or fine uneven surface. be able to.
[0048]
In addition, about a reflective layer, it can replace with the above-mentioned reflective layer 5, or a reflective sheet can also be provided along the formation surface of the fine prism-shaped unevenness | corrugation of a light-guide plate with the reflective layer. The reflection sheet can conform to the reflection layer described for the light guide plate, and thus a reflection sheet having a metal reflection surface can be preferably used in the polarized light source device.
[0049]
As described above, according to the surface light source device according to the present invention, the light collimated with high accuracy is emitted in a direction excellent in verticality advantageous for visual recognition, and the light from the light source is efficiently used to be excellent in brightness. Various devices such as a polarized light source device and a liquid crystal display device which is bright, easy to see and excellent in low power consumption can be formed, and can be preferably used as a sidelight type backlight.
[0050]
The above-described polarized light source device aims to convert incident light that does not exhibit polarization characteristics into polarized light with high efficiency by using both polarization and separation means by transmission and reflection, and in that case, the surface light source device according to the present invention. Provides high-accuracy collimated outgoing light with excellent verticality, and allows the return light through the polarization separation means to be re-exited with a good degree of direction matching with the initial outgoing light with little change in angle. Make it possible.
[0051]
FIG. 7 illustrates a polarized light source device 7 according to the present invention. This is composed of a polarization separation means 6 by transmission and reflection disposed above the optical path control layer 1 in the surface light source device described above. In the embodiment, as the polarization separating means, a device that transmits predetermined circularly polarized light and reflects non-predetermined circularly polarized light is used, and is disposed immediately above the optical path control layer 1 without a diffusion layer. In FIG. 7, a layer 61 provided on the upper surface of the polarization separating means 6 is a linearly polarized light converting means.
[0052]
According to the above-described apparatus, the light emitted from the optical path control layer 1 enters the polarization separating means 6, and predetermined (tentatively left) circularly polarized light in the left and right is transmitted, and non-predetermined (right) circularly polarized light is reflected. Then, the reflected light reenters the light guide plate through the optical path control layer as return light. The light that re-enters the light guide plate is reflected by the reflective function portion including the reflective layer on the lower surface, is incident again on the polarization separating means, and is separated again into transmitted light and reflected light (returned light). Therefore, the return light as the reflected light is confined between the polarization separation means and the light guide plate until it becomes a predetermined circularly polarized light that can be transmitted through the polarization separation means, and is repeatedly reflected.
[0053]
In the above, the surface light source device according to the present invention provides output light that is parallelized with high accuracy and excellent in perpendicularity, and reaches the light guide plate via a gentle slope that is excellent in reversibility of the optical path control layer. Most of the return light through the means is incident on the descending slope of the light guide plate, reflected without changing the angle greatly based on the gentle inclination angle, and the direction approximated to the initial outgoing light with a small angle change reflection Therefore, the light can be re-emitted with good verticality, and the light having excellent coincidence between the directions of the initial emitted light and the re-emitted light and excellent in polarization characteristics can be obtained in a state of excellent utilization efficiency with little loss.
[0054]
As described above, since the return light that has passed through the polarization separation means is re-emitted through reflection by the down slope of the light guide plate, the light guide plate used for forming the polarized light source device has a projected area of the down slope with respect to the exit surface. Is more than 3 times, especially 5 times or more, especially 10 to 100 times that of the upslope, from the viewpoint of light utilization efficiency.
[0055]
The light guide plate used for forming the polarized light source device is provided with a reflective layer or / and a reflective sheet on the side of the light guide plate that is not the light exit surface in order to efficiently reflect the return light through the polarization separating means through the downward slope. It is preferable to have. When the reflective layer or the like has a metal reflecting surface, the return light is converted into a predetermined polarization state with high efficiency by reflection inversion thereby, and light can be extracted efficiently.
[0056]
As the polarized light separating means, suitable means capable of separating light having different polarization characteristics through transmission and reflection, such as those separated into the left and right circularly polarized light described above, can be used. In the present invention, it is not necessary to have a complete separation function, but it is preferable that the polarization of other states contained in the polarized light separated by transmission or reflection is smaller.
[0057]
Incidentally, examples of the polarization separation means described above include one that selectively separates linearly polarized light or circularly polarized light. A specific example of the material that selectively separates the linearly polarized light is a multilayer film that exhibits anisotropy of reflectance due to birefringence. A specific example of the material that selectively separates the circularly polarized light includes a cholesteric liquid crystal phase. Etc.
[0058]
The polarized light separating means may consist of the above-mentioned multilayer film or a single layer of cholesteric liquid crystal phase, or an appropriate form such as a laminate or a cell in which these are supported or held by a transparent substrate such as a plastic film or a glass plate. It may have. As the cholesteric liquid crystal phase, those composed of a cholesteric liquid crystal polymer are particularly preferable from the viewpoint of handleability.
[0059]
The polarized light separating means, particularly the polarized light separating means comprising a cholesteric liquid crystal phase, may be composed of two or more layers. Superposition is advantageous from the viewpoint of dealing with a wider wavelength range of the separation function and a wavelength shift of obliquely incident light. In that case, superposition is performed with a combination of different center wavelengths of light reflected as non-predetermined circularly polarized light. It is preferable.
[0060]
Incidentally, a cholesteric liquid crystal layer having a central wavelength of selective reflection of 300 to 900 nm is used in a combination of reflecting circularly polarized light in the same polarization direction, and in a combination of different central wavelengths of selective reflection, especially 50 nm or more. By superimposing the six types, it is possible to efficiently form a polarization separation means that can cover a wide wavelength range such as the visible light range.
[0061]
The point of superimposing a combination of those that reflect circularly polarized light of the same polarization direction prevents the polarization state of circularly polarized light reflected by each layer from changing to a different polarization state in each wavelength range, The purpose is to increase the amount of polarized light in a usable state. For superimposing the cholesteric liquid crystal layer, it is particularly advantageous to use a liquid crystal polymer from the viewpoints of production efficiency and thinning.
[0062]
In the present invention, as shown in FIG. 7, when the linearly polarized light converting means 61 is provided above the polarized light separating means 6 for selectively separating the circularly polarized light, the phase of the circularly polarized light emitted from the polarized light separating means is changed. be able to. Accordingly, light having a wavelength corresponding to a quarter wavelength of the phase change is converted into linearly polarized light, and other wavelength light is converted into elliptically polarized light. The converted elliptically polarized light becomes flattened elliptically polarized light as it is closer to the wavelength of the light converted into the linearly polarized light. As a result, light in a state containing a large amount of linearly polarized light components that can pass through the polarizing plate is emitted from the linearly polarized light converting means.
[0063]
As described above, the linearly polarized light converting means arranged as necessary on the polarized light separating means aims to convert the circularly polarized light emitted from the polarized light separating means into a state having a large amount of linearly polarized light components. By converting to a state with a large amount of linearly polarized light components, it is possible to make the light easily transmitted through the polarizing plate. For example, in the case of a liquid crystal display device, the polarizing plate may be an optical element that maintains a display quality by preventing a decrease in polarization characteristics caused by a change in viewing angle with respect to a liquid crystal cell, and may realize a higher degree of polarization. It functions as an optical element that achieves display quality.
[0064]
In other words, in the above, it is possible to achieve display by allowing the outgoing circularly polarized light from the polarization separating means to enter the liquid crystal cell as it is without using the polarizing plate, but the display quality is improved by using the polarizing plate. In some cases, a polarizing plate may be used as necessary. In that case, the higher the transmittance with respect to the polarizing plate, the more advantageous from the point of display brightness, and the higher the transmittance, the higher the linearly polarized component in the polarization direction that coincides with the polarizing axis (transmission axis) of the polarizing plate. Therefore, for this purpose, the output polarized light from the polarization separation means is converted into predetermined linear polarization through the linear polarization conversion means.
[0065]
By the way, when natural light or circularly polarized light is incident on a regular iodine-based polarizing plate, the transmittance is about 43%, but when linearly polarized light is incident with the polarization axis coincident, the transmittance exceeds 80%. Therefore, it is possible to obtain a liquid crystal display having excellent brightness by greatly improving the light use efficiency.
[0066]
As the linearly polarized light converting means, an appropriate one can be used according to the polarization characteristics. In the case of circularly polarized light, a retardation layer capable of changing the phase can be preferably used. As the phase difference layer, the circularly polarized light emitted from the polarization separating means can form a large amount of linearly polarized light corresponding to the phase difference of ¼ wavelength, and light of other wavelengths can be made as much as possible with the linearly polarized light. In other words, those having a major axis direction in a parallel direction and capable of being converted into flat elliptical polarization as close to linear polarization as possible are preferable.
[0067]
By using the retardation layer as described above, it is possible to transmit the polarizing plate by arranging the linearly polarized light direction of the emitted light and the major axis direction of the elliptically polarized light as parallel as possible to the transmission axis of the polarizing plate. Light with a large amount of linearly polarized light components can be obtained. The retardation layer is preferably made of an appropriate material and can give a transparent and uniform retardation, and a retardation plate is generally used.
[0068]
The phase difference imparted by the phase difference layer can be appropriately determined according to the wavelength region of circularly polarized light emitted from the polarization separation means. By the way, in the visible light region, from the point of wavelength range, conversion efficiency, etc., considering that most phase difference plates show wavelength dispersion of positive birefringence than the material properties, those having a small phase difference, In particular, those giving a phase difference of 100 to 200 nm, particularly 100 to 160 nm can be preferably used.
[0069]
The retardation plate can be formed as one layer or two or more overlapping layers. In the case of a retardation film composed of one layer, the smaller the birefringence wavelength dispersion, the more preferable it is that the polarization state can be made uniform for each wavelength. On the other hand, the superposition of the phase difference plate is effective in improving the wavelength characteristics in the wavelength region, and the combination may be appropriately determined according to the wavelength region.
[0070]
When a retardation plate having two or more layers for the visible light region is used, it is possible to obtain light with a large amount of linearly polarized light by including a layer that gives a phase difference of 100 to 200 nm as an odd number of one or more layers as described above. It is more preferable than the point. The layers other than the layer giving a phase difference of 100 to 200 nm are generally preferably formed of a layer giving a phase difference of 200 to 400 nm from the viewpoint of improving the wavelength characteristics, but is not limited thereto.
[0071]
The retardation plate can be obtained as a birefringent sheet obtained by stretching a film made of polycarbonate, polysulfone, polyester, polymethyl methacrylate, polyamide, polyvinyl alcohol, or the like. From the point of maintaining the emission intensity and emission color uniformly over a wide viewing angle, the smaller the phase difference error in the plane of the retardation layer, the better. In particular, the error is preferably ± 10 nm or less.
[0072]
The phase difference and the direction of the optical axis set in the phase difference layer can be appropriately determined according to the vibration direction of the target linearly polarized light. Incidentally, in the case of a retardation layer that gives a retardation of 135 nm, linearly polarized light (wavelength 540 nm) having a vibration direction of +45 degrees or −45 degrees with respect to the optical axis is obtained depending on the direction of circularly polarized light. When the retardation layer is composed of two or more layers, particularly when the outer surface layer is occupied by a layer giving a retardation of 100 to 200 nm, it is preferable to set the arrangement angle based on the layer.
[0073]
As described above, the polarized light source device according to the present invention prevents reflection loss or the like by reusing the reflected light (returned light) by the polarization separating means as the outgoing light by polarization conversion, and uses the outgoing light as a phase difference as necessary. By converting into a light state containing a linearly polarized light component richly through a layer or the like, the light can be easily transmitted through the polarizing plate to prevent absorption loss and to improve the light utilization efficiency.
[0074]
Accordingly, as described above, the surface light source device and the polarized light source device according to the present invention provide light that is excellent in light use efficiency, bright, and excellent in verticality, and can easily be increased in area and the like. It can be preferably applied to various devices as a light system or the like, and a liquid crystal display device or the like that is bright, easy to see, and has low power consumption can be obtained.
[0075]
FIG. 8 illustrates a liquid crystal display device 8 using the polarized light source device 7 according to the present invention in a backlight system. 81 is a lower polarizing plate, 82 is a liquid crystal cell, 83 is an upper polarizing plate, and 84 is a diffusion plate. The lower polarizing plate 81 and the diffusing plate 84 are provided as necessary.
[0076]
In general, a liquid crystal display device is formed by appropriately assembling components such as a liquid crystal cell functioning as a liquid crystal shutter and an accompanying driving device, a polarizing plate, a backlight, and a retardation plate if necessary. The In this invention, there is no limitation in particular except the point which uses the above-mentioned surface light source device or polarized light source device, It can form according to the former. In particular, a direct-view liquid crystal display device can be preferably formed.
[0077]
Accordingly, the liquid crystal cell to be used is not particularly limited, and an appropriate one can be used. In the case of using a polarized light source device, it is advantageously used for display by making light in a polarized state incident on a liquid crystal cell. For example, it can be preferably used for a liquid crystal cell using twisted nematic liquid crystal or super twisted nematic liquid crystal. It can also be used for non-twisted liquid crystals, guest-host liquid crystals in which dichroic dyes are dispersed in liquid crystals, or liquid crystal cells using ferroelectric liquid crystals. There is no particular limitation on the driving method of the liquid crystal.
[0078]
From the point of obtaining a good contrast ratio display due to the incidence of highly linearly polarized light, the polarization degree of the polarizing plate, particularly the polarizing plate on the backlight side, such as an iodine-based or dye-based absorbing linear polarizer, etc. The thing using a high thing is preferable. Further, when forming a liquid crystal display device, for example, a diffusion plate or anti-glare layer provided on the polarizing plate on the viewing side, an antireflection film, a protective layer or protective plate, or a compensation retardation plate provided between the liquid crystal cell and the polarizing plate. These appropriate optical elements can be appropriately arranged.
[0079]
The compensation retardation plate is intended to improve visibility by compensating for the wavelength dependence of birefringence. In this invention, it arrange | positions as needed between the polarizing plate and liquid crystal cell of a visual recognition side or / and a backlight side. As the compensation retardation plate, an appropriate one can be used according to the wavelength region and the like, and it may be formed as one layer or two or more overlapping layers.
[0080]
In the present invention, optical elements or components such as an optical path control plate, a light guide plate, a polarization separation means, a liquid crystal cell, and a polarizing plate forming the surface light source device, the polarized light source device, and the liquid crystal display device described above are wholly or partially. The layers may be integrated and fixed, or may be arranged so as to be easily separated. Various diffusion plates and the like can be arranged on the upper surface of the surface light source device. In the case of a polarized light source device, a diffusion plate and the like that can maintain the polarization characteristics can be arranged on the upper surface.
[0081]
【Example】
Reference example 1
A side-chain cholesteric liquid crystal polymer having an acrylic main chain and a glass transition temperature of 57 ° C. is formed on the polyimide rubbing treated surface of the triacetyl cellulose film by spin coating, heated at 140 ° C. for 30 seconds, and further 120 ° C. The plate was rapidly cooled by heating for 5 minutes to obtain a polarization separation plate exhibiting a specular selective reflection state. This showed good selective reflectivity in the wavelength range of 420 to 505 nm, and 90% or more was selectively reflected in the regular reflection direction in this region.
[0082]
Reference example 2
Using side-chain cholesteric liquid crystal polymers with different glass transition temperatures, good selective reflectivity is exhibited in the wavelength range of 500 to 590 nm or 595 to 705 nm in accordance with Reference Example 1, and 90% or more is regularly reflected in this region. Two kinds of polarization separators selectively reflecting in the direction were obtained.
[0083]
Reference example 3
The three types of polarization separation plates obtained in Reference Example 1 and Reference Example 2 were stacked in the selective reflection wavelength order to obtain a superimposed polarization separation plate. This showed good selective reflectivity in the wavelength range of 420 to 705 nm, and 90% or more was selectively reflected in the regular reflection direction in this region.
[0084]
Reference example 4
Polymethylmethacrylate (PMMA) was melted by heating and poured into a metal mold at 100 ° C. having a predetermined prism structure, allowed to stand for 1 minute, and then slowly cooled to obtain a light guide plate. This light guide plate has a width of 195 mm, a depth of 150 mm, a thickness of 3 mm at the side of the light source arrangement, and a thickness of 1 mm at the opposite end, the emission surface (upper surface) is flat, and the lower surface is flat from the side of the light source arrangement toward the opposite end. The convex surface (FIG. 5a) parallel to the light source arrangement side surface has a 225 μm period on the entire curved surface protruding downward (FIG. 4b) close to, and the inclination angle of the downward slope is about 5 degrees. The inclination angle is about 40 degrees, and the projected area ratio of the down slope / up slope to the exit surface is 8/1.
[0085]
referenceExample5
  Apply PMMA containing about 1% by weight of a reaction initiator to the surface of the mold that has a predetermined groove shape, place a polyester film on it and irradiate a high-pressure mercury lamp to cure the PMMA. It peeled and the optical path control board which has an optical path control layer which consists of a hardened layer of PMMA on the polyester film was obtained. The optical path control layer has a gentle slope with an inclination angle of 10 degrees and a steep slope with 80 degrees at a period of 30 μm.
[0086]
referenceExample6
  referenceExample5In accordance with the above, an optical path control plate having a gentle slope of 20 degrees was obtained.
[0087]
referenceExample7
  referenceExample5According to the above, an optical path control plate having a gentle slope of 35 degrees was obtained.
[0088]
referenceExample8
  referenceExample5In accordance with the above, an optical path control plate having a steep slope of 60 degrees was obtained.
[0089]
referenceExample9
  Other than using a triacetyl cellulose film instead of a polyester filmreferenceExample5An optical path control plate was obtained according to the above.
[0090]
referenceExample 10
  referenceExample5According to the above, an optical path control plate having a gentle slope of 45 degrees was obtained.
[0091]
referenceExample11
  referenceExample5According to the above, an optical path control plate having a steep slope of 45 degrees was obtained.
[0092]
referenceExample12
  referenceExample5In accordance with the above, an optical path control plate having an inclination angle of 45 degrees on a gentle slope and a steep slope was obtained.
[0093]
referenceExample13
  Two glass plates were arranged at a crossing angle of 20 degrees, and PMMA was filled between them to obtain a wedge plate.
[0094]
Example1
  A cold cathode tube having a diameter of 3 mm is arranged on a predetermined side of the light guide plate obtained in Reference Example 4 and surrounded by a light source holder made of a polyester film subjected to silver deposition, and the same material as the light source holder is reflected on the lower surface of the light guide plate. Place the sheet through the silver vapor deposition layer side and place it on the exit surface of the light guide platereferenceExample5The surface light source device was obtained by arranging the optical path control plate obtained in the above with the prism surface facing down and the thick sloped side facing the light source. The optical path control plate was installed so that the groove had an intersection angle of 10 degrees with respect to the light source arrangement side surface (prism direction) of the light guide plate.
[0095]
Example2
  Example except that the optical path control plate is installed so that the groove has an intersection angle of 5 degrees with respect to the light source arrangement side surface of the light guide plate1A surface light source device was obtained according to the above.
[0096]
Example3
  Example except that the optical path control plate is installed so that the groove has an intersection angle of 35 degrees with respect to the light source arrangement side surface of the light guide plate1A surface light source device was obtained according to the above.
[0097]
Example4
  Example except that the optical path control plate is installed so that the groove is parallel to the light source side surface of the light guide plate1A surface light source device was obtained according to the above.
[0098]
Example5
  referenceExample6Other than using the optical path control plate obtained in Example1A surface light source device was obtained according to the above.
[0099]
Example6
  referenceExample7Other than using the optical path control plate obtained in Example1A surface light source device was obtained according to the above.
[0100]
Example7
  referenceExample8Other than using the optical path control plate obtained in Example1A surface light source device was obtained according to the above.
[0101]
Example8
  referenceExample9Other than using the optical path control plate obtained in Example1A surface light source device was obtained according to the above.
[0102]
Comparative example1
  referenceExample 10The optical path control plate obtained in step 1 was used with the prism surface facing up.1A surface light source device was obtained according to the above.
[0103]
Comparative example2
  referenceExample11Other than using the optical path control plate obtained in Example1A surface light source device was obtained according to the above.
[0104]
Comparative example3
  referenceExample12The optical path control plate obtained in step 1 was used with the prism surface facing up.1A surface light source device was obtained according to the above.
[0105]
Comparative example4
  Instead of the optical path control plate,referenceExample13Example using the wedge plate obtained in1A surface light source device was obtained according to the above.
[0106]
Comparative example5
  Example except that no optical path control plate is arranged1A surface light source device was obtained according to the above.
[0107]
Example9
  Example5The polarization separation plate obtained in Reference Example 3 was placed on the optical path control plate of the surface light source device obtained in the above to obtain a polarization light source device.
[0108]
Example 10
  Example8Example using the surface light source device obtained in 1 above9A polarized light source device was obtained according to the above.
[0109]
Comparative example6
  Comparative example3Example using the surface light source device obtained in 1 above9A polarized light source device was obtained according to the above.
[0110]
Comparative example7
  Comparative example5Example using the surface light source device obtained in 1 above9A polarized light source device was obtained according to the above.
[0111]
                               Evaluation test 1
Maximum brightness and direction
  Example1~8Comparative example1~5The light source of the surface light source device obtained in (1) was turned on, and the maximum luminance and its direction in the central part were examined using a luminance meter (Topcon Co., Ltd., BM-7).
[0112]
Moire
  Example1~8Comparative example1~5A white TFT liquid crystal cell was placed on the surface light source device obtained in the above, and the state of occurrence of moire was examined. Evaluation was made on a five-point scale, with 5 being strong and 1 being weak. Further, a surface light source device in which a diffuser plate having a haze of 60% was disposed between the optical path control plate and the light guide plate, and moiré was similarly examined.
[0113]
  Table above results1Indicated.
[Table 1]
         ┏━━━━━┳━━━━┳━━━━┳━━━━━━━━━┓
         ┃ ┃ Maximum brightness ┃ Maximum brightness ┃ Moare ┃
         Cd ┃ (cd / m2) ┃ direction (degree) ┣━━━━┳━━━━┫
         ┃ ┃ ┃ ┃ Diffusion plate No diffusion plate
         ┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
         ┃ Examples1  ┃ 2240 6 6 ┃ 2 ┃ 1 ┃
         ┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
         ┃ Examples2  ┃ 2250┃ 5 ┃ 2 ┃ 1 ┃
         ┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
         ┃ Examples3  ┃ 1990 ┃ 9 ┃ 1 ┃ 1 ┃
         ┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
         ┃ Examples4  ┃ 2270 ┃ 5 ┃ 4 ┃ 2 ┃
         ┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
         ┃ Examples5  ┃ 2190 ┃ 3 ┃ 2 ┃ 1 ┃
         ┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
         ┃ Examples6  ┃2040┃-1−12┃1┃
         ┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
         ┃ Examples7  ┃2090┃ 6 ┃ 2 ┃ 1 ┃
         ┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
         ┃ Examples8  ┃ 2290 ┃ 6 ┃ 2 ┃ 1 ┃
         ┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
         ┃ Comparative example1  ┃ 1870 65 65 ┃ 2 ┃ 1 ┃
         ┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
         ┃ Comparative example2  ┃ 1730 6 6 ┃ 2 ┃ 1 ┃
         ┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
         ┃ Comparative example3  ┃ 1520 47 47 ┃ 2 1 1 ┃
         ┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
         ┃ Comparative example4  ┃ 2310 4 4 ┃ 5 ┃ 3 ┃
         ┣━━━━━╋━━━━╋━━━━╋━━━━╋━━━━┫
         ┃ Comparative example5  ┃ 2390 11 11 ┃ 5 ┃ 3 ┃
         ┗━━━━━┻━━━━┻━━━━┻━━━━┻━━━━┛
[0114]
(Delete)
[0115]
                             Evaluation test 2
Luminance characteristics
  Example5,8Comparative example3,5A white-state TFT liquid crystal cell was placed on the surface light source device obtained in (1), and the luminance in the front (vertical) direction, the maximum luminance and the direction thereof were examined using a luminance meter.
[0116]
Luminance characteristics
  Example9, 10Comparative example6,7A retardation plate having a retardation of 135 nm was disposed on the polarization light source device obtained in the above, a white-state TFT liquid crystal cell was disposed thereon, and the luminance in the front direction was examined using a luminance meter. The retardation plate was disposed so that the optical axis thereof was 45 degrees with respect to the optical axis of the polarizing plate, and was disposed so that the transmittance was maximized.
[0117]
  The results are shown in Table 2.
【table2]
              ┏━━━━━┳━━━━┳━━━━┳━━━━┓
              ┃ ┃ Front brightness ┃ Maximum brightness ┃ Maximum brightness ┃
              Cd ┃ (cd / m2) ┃ (cd / m2) ┃ direction (degrees) ┃
              ┣━━━━━╋━━━━╋━━━━╋━━━━┫
              ┃ Examples5  101 101 104 104 ┃ 3 ┃
              ┣━━━━━╋━━━━╋━━━━╋━━━━┫
              ┃ Examples8  ┃ 98 108 108 ┃ 6 ┃
              ┣━━━━━╋━━━━╋━━━━╋━━━━┫
              ┃ Examples9  1 138 ┃ − ┃ − ┃
              ┣━━━━━╋━━━━╋━━━━╋━━━━┫
              Example 1014 147 ┃ − ┃ − ┃
              ┣━━━━━╋━━━━╋━━━━╋━━━━┫
              ┃ Comparative example3  19 19 61 61 ┃-40 ┃
              ┣━━━━━╋━━━━╋━━━━╋━━━━┫
              ┃ Comparative example5  ┃ 79 105 105 ┃ 9 ┃
              ┣━━━━━╋━━━━╋━━━━╋━━━━┫
              ┃ Comparative example6  42 42 ┃ − ┃ − ┃
              ┣━━━━━╋━━━━╋━━━━╋━━━━┫
              ┃ Comparative example7  ┃ 142 ┃ − ┃ − ┃
              ┗━━━━━┻━━━━┻━━━━┻━━━━┛
[0118]
(Delete)
[0119]
  table1In the surface light source device of the example, when the optical path control layer is not provided (comparative example)5It can be seen that the optical path is converted in a direction in which most of the light emitted from the light guide plate is more excellent in perpendicularity via the optical path control layer. Comparative example1,3The reason why the prism surface is on the upper side is that if it is on the lower side, the optical path cannot be changed in the vertical direction. Comparative example1-3The large decrease in the maximum brightness at is greatly affected by the light incident on the steep slope.1,3In the comparative example, light incident on a gentle slope returns to the light guide plate side by reflection.2In this case, it is considered that the amount of light incident on the steep slope increases, and the amount of light that can be effectively used is further reduced when the emission angle is taken into account.
[0120]
  Examples3Further, it is understood that the crossing angle between the groove direction and the prism direction is approximately 35 degrees, and if the angle is larger than this, the deviation in the direction toward the steep slope increases, and the directivity decreases, leading to a decrease in the maximum luminance in the vertical direction. . Further table2Thus, it can be seen that the surface light source device and the polarized light source device of the example are superior in front luminance and small in difference from the maximum luminance as compared with the comparative example, and bright display is achieved.
[0121]
  For moiré, compared to the case without an optical path control layer, the embodiment1-3,5-8And comparative examples1-3It can be seen that both are greatly improved by the intervention of the optical path control layer. Examples4It can be seen that when the groove direction and the prism direction are parallel, the effect of subdividing bright lines is poor and the effect of preventing moiré is reduced, but it reaches the practical level with the arrangement of the diffusion plate. But comparative example4It can be seen that this wedge plate has no effectiveness in suppressing moire.
[0122]
  Comprehensive from the above results, the present inventionThenA surface light source device that can efficiently change the light path of the light emitted from the light guide plate in the front direction effective for visual recognition while suppressing deterioration in luminance and directivity through the optical path control layer, and more effective use of light. It can be seen that a polarized light source device with excellent efficiency can be obtained, and a liquid crystal display device with high display quality can be formed which is easy to see with little moire.
[Brief description of the drawings]
FIG. 1 is an explanatory side view of an example of an optical path control layer.
FIG. 2 is an explanatory side view of another optical path control layer example.
FIG. 3 is an explanatory side view of an example of a surface light source device.
FIG. 4 is an explanatory side view of a light guide plate example.
FIG. 5 is an explanatory side view of an example of fine prism-like irregularities.
FIG. 6 is an explanatory diagram of the light emission state.
FIG. 7 is an explanatory side view of an example of a polarized light source device.
FIG. 8 is an explanatory side view of an example of a liquid crystal display device.
FIG. 9 is an explanatory side view of a conventional example.
[Explanation of symbols]
    1: Optical path control layer
        11: Groove
            12: Slope
            13: Steep slope
        14: Transparent substrate
    2: Diffusionlayer
    3: Light guide plate
                    21: Upper surface (outgoing surface)
        22, 26, 27: bottom surface
                    28, 29: Convex part
                          30: recess
                31, 33 (34), 37: Down slope
                        32, 35, 36: Uphill slope
        23: Light source arrangement side
        38: Bright part
        39: Dark area
    4: Light source
    5: Reflective layer
    7: Polarized light source device
        6: Polarization separation means
      61: Linear polarization conversion means
    8: Liquid crystal display device
        81, 83: Polarizing plate
        82: Liquid crystal cell
        84: Diffuser

Claims (11)

上面、それに対向する下面、及び上面と下面間の光源配置側面を有する板状物の上下面の少なくとも一方に、その光源配置側面に沿う方向の微細プリズム状凹凸を周期的に有して、側面に配置した光源からの入射光を上下面の一方より輝部と暗部の縞模様として出射する導光板の光出射側に、平面に対する傾斜角が5〜35度の緩斜面と60度以上の急斜面とからなる筋状の溝を周期的に有する光路制御層を配置してなり、その光路制御層の溝が前記導光板の微細プリズム状凹凸に対し5〜40度の角度で交差し、かつ当該溝の緩斜面が前記光源から遠ざかる方向に肉薄となる状態にあることを特徴とする面光源装置。 At least one of the upper surface, the lower surface facing it, and the upper and lower surfaces of the plate-like object having the light source arrangement side surface between the upper surface and the lower surface periodically has fine prism-like irregularities in the direction along the light source arrangement side surface. On the light exit side of the light guide plate that emits the incident light from the light source arranged in the upper and lower surfaces as a stripe pattern of the bright part and the dark part, a gentle slope with an inclination angle of 5 to 35 degrees and a steep slope with 60 degrees or more with respect to the plane An optical path control layer having periodic streak-like grooves is arranged, the grooves of the optical path control layer intersect with the fine prism-like irregularities of the light guide plate at an angle of 5 to 40 degrees, and the surface light source device according to claim state near Rukoto the gentle slope of the groove is thin in a direction away from the light source. 請求項1において、光路制御層が厚さ30〜500μmの透明基材の少なくとも片面に溝を10〜80μmの周期で有する面光源装置2. The surface light source device according to claim 1, wherein the optical path control layer has grooves at a period of 10 to 80 [mu] m on at least one surface of a transparent substrate having a thickness of 30 to 500 [mu] m. 請求項1又は2において、光路制御層が少なくとも片面に拡散層を有する面光源装置According to claim 1 or 2, the surface light source device in which the optical path control layer has a diffusion layer on at least one surface. 請求項1〜3の一において、導光板における微細プリズム状凹凸の周期が50〜500μmある光源装置。In one of claims 1 to 3, the surface light source device cycle of fine prismatic asperities in the light guide plate is 50 to 500 [mu] m. 請求項1〜4の一において、導光板の微細プリズム状凹凸における光源から遠ざかる方向に上り傾斜の斜面の導光板平面に対する傾斜角が35〜45度である面光源装置。5. The surface light source device according to claim 1, wherein an inclination angle of an inclined surface that is inclined upward in a direction away from the light source in the fine prism-shaped unevenness of the light guide plate is 35 to 45 degrees. 請求項1〜5の一おいて、導光板の微細プリズム状凹凸における光源から遠ざかる方向に上り傾斜の斜面の導光板平面に対する傾斜角が光源側より順次増大する面光源装置。 6. The surface light source device according to claim 1, wherein an inclination angle of a slope inclined upward in the direction away from the light source in the fine prism-like irregularities of the light guide plate is sequentially increased from the light source side. 請求項6の一において、導光板の微細プリズム状凹凸における光源から遠ざかる方向に下り傾斜の斜面の導光板平面に対する傾斜角が0〜10度であり、導光板の出射面に対する前記下り傾斜の斜面の投影面積がそれに対向する上り傾斜の斜面のそれの5倍以上である面光源装置。In one of claims 1 to 6, the inclination angle with respect to the light guide plate plane slopes downwardly inclined in the direction away from the light source in the fine prismatic asperities of the light guide plate is 0-10 degrees, the downlink inclined with respect to emitting surface of the light guide plate A surface light source device in which the projected area of the slope is at least five times that of the upward slope facing it. 請求項7の一に記載の面光源装置の光出射側に偏光分離手段を有することを特徴とする偏光光源装置。Polarized light source device characterized by having the polarization separating means on the light emitting side of the surface light source device according to one of claims 1 to 7. 請求項において、偏光分離手段が円偏光又は直線偏光を選択的に分離するものである偏光光源装置。9. The polarized light source device according to claim 8, wherein the polarized light separating means selectively separates circularly polarized light or linearly polarized light. 請求項又はにおいて、導光板の光出射面でない側に反射層を有する偏光光源装置。According to claim 8 or 9, the polarization light source having a reflective layer on the side not the light emitting surface of the light guide plate. 請求項7の一に記載の面光源装置又は請求項〜10の一に記載の偏光光源装置における光出射側に液晶セルを有することを特徴とする液晶表示装置。A liquid crystal display device comprising the liquid crystal cell on the light emitting side of the polarization light source device according to one of the surface light source device or claim 8-1 0 according to one of claims 1 to 7.
JP22105097A 1997-07-31 1997-07-31 Surface light source device, polarized light source device, and liquid crystal display device Expired - Fee Related JP3808598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22105097A JP3808598B2 (en) 1997-07-31 1997-07-31 Surface light source device, polarized light source device, and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22105097A JP3808598B2 (en) 1997-07-31 1997-07-31 Surface light source device, polarized light source device, and liquid crystal display device

Publications (2)

Publication Number Publication Date
JPH1152376A JPH1152376A (en) 1999-02-26
JP3808598B2 true JP3808598B2 (en) 2006-08-16

Family

ID=16760717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22105097A Expired - Fee Related JP3808598B2 (en) 1997-07-31 1997-07-31 Surface light source device, polarized light source device, and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3808598B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021887A (en) * 1999-07-12 2001-01-26 Sharp Corp Backlight for liquid crystal display device
KR100956049B1 (en) * 2003-03-07 2010-05-06 가부시키가이샤 엔프라스 Focusing plate, surface light source device, and image display device
JP4741866B2 (en) * 2005-03-28 2011-08-10 Nec液晶テクノロジー株式会社 Light source device, display device using the same, and terminal device
JP2018055104A (en) * 2017-10-27 2018-04-05 スリーエム イノベイティブ プロパティズ カンパニー Optical laminate, luminaire, and surface light emitting device
JP2021162687A (en) * 2020-03-31 2021-10-11 デクセリアルズ株式会社 Antireflection film laminate and product including the same

Also Published As

Publication number Publication date
JPH1152376A (en) 1999-02-26

Similar Documents

Publication Publication Date Title
JP3286138B2 (en) Light guide plate, surface light source device, polarized light source device, and liquid crystal display device
JP3260688B2 (en) Surface light source device, polarizing surface light source device, and liquid crystal display device
US6504589B1 (en) Backlight device and liquid crystal display device
KR100711011B1 (en) Light guide plate, planar light source unit and reflection-type liquid-crystal display device
JP4609962B2 (en) Optical film
JP2000330107A (en) Liquid crystal display device
JP2002148615A (en) Optical film and reflection type liquid crystal display device
WO2006026743A1 (en) Enhanced light diffusing sheet
JP2001166299A (en) Light transmission plate, surface light source device and liquid crystal display device
KR100657089B1 (en) Reflection-transmission double type liquid-crystal display device
JP2001133773A (en) Liquid crystal display device and light guide plate
JP2001051268A (en) Liquid crystal display device
JP3361012B2 (en) Polarized light source device and liquid crystal display device
JP4011805B2 (en) Light guide plate, surface light source device, and liquid crystal display device
KR100714518B1 (en) Liquid-crystal display device
JP2002071965A (en) Light guide plate, surface light source device, and reflection type liquid crystal display device
JP2000147429A (en) Polarization surface light source device and liquid crystal display device
JP3808598B2 (en) Surface light source device, polarized light source device, and liquid crystal display device
JPH10282342A (en) Light conductive plate, surface light source device, polarization light source device, and liquid crystal display device
JPH1152377A (en) Optical path control platte, surface light source device, polarizing light source device and liquid crystal display device
JP3187714B2 (en) Light guide plate, polarized light source device and liquid crystal display device
JPH11142627A (en) Prism type translucent reflecting plate and lighting device
JP3286239B2 (en) Light guide plate, surface light source device and liquid crystal display device
JP2002006143A (en) Light guide plate, surface light source device and reflective liquid crystal display device
JPH10142407A (en) Reflection plate, surface light source apparatus and liquid crystal display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150526

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees