JPH11141554A - Rolling bearing - Google Patents

Rolling bearing

Info

Publication number
JPH11141554A
JPH11141554A JP30308897A JP30308897A JPH11141554A JP H11141554 A JPH11141554 A JP H11141554A JP 30308897 A JP30308897 A JP 30308897A JP 30308897 A JP30308897 A JP 30308897A JP H11141554 A JPH11141554 A JP H11141554A
Authority
JP
Japan
Prior art keywords
roller
equivalent stress
distribution
stress
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30308897A
Other languages
Japanese (ja)
Other versions
JP3683084B2 (en
Inventor
Shigeo Kamamoto
繁夫 鎌本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP30308897A priority Critical patent/JP3683084B2/en
Publication of JPH11141554A publication Critical patent/JPH11141554A/en
Application granted granted Critical
Publication of JP3683084B2 publication Critical patent/JP3683084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/088Ball or roller bearings self-adjusting by means of crowning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/50Crowning, e.g. crowning height or crowning radius
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/02General use or purpose, i.e. no use, purpose, special adaptation or modification indicated or a wide variety of uses mentioned

Abstract

PROBLEM TO BE SOLVED: To increase the maximum load capacity of a roller by inhibiting the concentration of the damage such as the equivalent stress, the maximum shearing stress or the like, received by a material. SOLUTION: A raceway surface 14 of an inner ring 12 and a raceway surface 15 of an outer ring 13 are usually formed into the shape of a circular cone. Accordingly by forming the sectional shape along a bus, of an outer peripheral face 18 of a conical roller 16, into the crowning shape determined by a specific expression, the distribution of the equivalent stress in a bus direction can be unified, and the concentration of the damage inside of a material can be prevented. A relative gap between an border line of the roller 16 and a border line of the inner ring, is determined to unify the distribution of the dimensionless equivalent stress in a bus direction of the conical roller 16. Accordingly the concentration of the dimensionless equivalent stress on the edge parts of both ends in an axial direction of the conical roller 16 can be prevented. That is, the static maximum load capacity and the dynamic maximum load capacity of the conical roller 16 can be increased by an amount corresponding to the prevention of the concentration of the dimensionless equivalent stress.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、転がり軸受にお
けるころのクラウニング形状の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in the crowning shape of a roller in a rolling bearing.

【0002】[0002]

【従来の技術】従来、円筒ころ軸受や円錐ころ軸受にお
いては、内輪と外輪との間に配置されるころの母線に、
接触圧力の集中を避けるためにクラウニングと呼ばれる
わずかな膨らみを形成するようにしている。ルンドベル
グ(Lundberg)は、接触圧力を上記ころの軸方向に均一
にするようなクラウニング形状を提案しており、現在で
はこのクラウニング形状が最適とされている。
2. Description of the Related Art Conventionally, in a cylindrical roller bearing or a tapered roller bearing, a bus of a roller disposed between an inner ring and an outer ring has
In order to avoid concentration of contact pressure, a slight bulge called crowning is formed. Lundberg has proposed a crowning shape that makes the contact pressure uniform in the axial direction of the rollers, and this crowning shape is currently considered optimal.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来のルンドベルグのクラウニング形状によれば、確かに
上記ころの軸方向へ均一な接触圧力分布を呈する。とこ
ろが、実際に上記ころが受けるダメージを評価すると、
破壊,金属疲労や塑性変形等の材料が受けるダメージの
軸方向への分布は一様でないという問題がある。図8
は、ルンドベルグのクラウニング形状を適用した上記こ
ろに発生する軸方向に均一な接触圧力下での相当応力σ
Eをヘルツ(Hertz)の最大接触応力Phで無次元化した無
次元化相当応力ΣE(=σE/Ph)の分布を示す。ここで、
相当応力σEとは、金属材料の降伏条件の一種のフォン・
ミーゼス(Von Mises)の降伏条件に用いられる応力成
分である。
However, according to the conventional Lundberg crowning shape, a uniform contact pressure distribution in the axial direction of the rollers is certainly exhibited. However, when evaluating the damage actually taken by the above rollers,
There is a problem that the distribution of damage to the material such as fracture, metal fatigue and plastic deformation in the axial direction is not uniform. FIG.
Is the equivalent stress σ under the uniform contact pressure in the axial direction generated in the above roller applying the Lundberg crowning shape.
E shows the distribution of Hertz (Hertz) maximum contact stress P h in dimensionless dimensionless equivalent stress sigma E of (= sigma E / P h) a. here,
Equivalent stress σ E is a kind of von ·
It is a stress component used for the yield condition of Mises (Von Mises).

【0004】図8より、上記ころ内部における破壊,金
属疲労や塑性変形等の材料が受けるダメージを評価する
無次元化相当応力ΣEは、回転軸から半径方向に有効長
さの0.8倍の箇所Aに帯状に強くあらわれる。そし
て、特に、帯状箇所Aのうちの側面近傍の領域Bで降伏
応力(=0.60)を越える強い値を示し、領域Bから降
伏が始まることが分かる。このように、例え、接触圧力
分布を軸方向に均一にしたとしても、必ずしも3次元の
相当応力分布は均一とはならず、相当応力が集中する箇
所が存在する。そのために、上記円筒ころに最大負荷能
力を与えることができないという問題がある。
[0004] From FIG. 8, the dimensionless equivalent stress す るE for evaluating damage to a material such as fracture, metal fatigue and plastic deformation inside the roller is 0.8 times the effective length in the radial direction from the rotation axis. At the point A in the form of a band. In particular, a strong value exceeding the yield stress (= 0.60) is shown in the region B near the side surface of the strip-shaped portion A, and it can be seen that the breakdown starts from the region B. Thus, even if the contact pressure distribution is made uniform in the axial direction, the three-dimensional equivalent stress distribution is not always uniform, and there are places where the equivalent stresses are concentrated. Therefore, there is a problem that the maximum load capacity cannot be given to the cylindrical roller.

【0005】そこで、この発明の目的は、相当応力また
は最大剪断応力等で表される材料が受けるダメージの集
中を無くして最大負荷能力を高めることができる転がり
軸受を提供することにある。
An object of the present invention is to provide a rolling bearing which can increase the maximum load capacity by eliminating the concentration of damage to a material represented by an equivalent stress or a maximum shear stress.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に係る発明は、軌道ところを有する転がり
軸受において、上記ころと軌道との接触面の間隔におけ
る上記ころの軸方向への変化が、接触圧力下の上記軸方
向への相当応力分布または最大剪断応力分布等の材料が
受けるダメージを評価する物理量が均一になるように設
定されていることを特徴としている。
Means for Solving the Problems To achieve the above object, the invention according to claim 1 is directed to a rolling bearing having a raceway, wherein the distance between the contact surface between the roller and the raceway in the axial direction of the roller is increased. The change is set so that the physical quantity for evaluating the damage to the material such as the equivalent stress distribution or the maximum shear stress distribution in the axial direction under the contact pressure becomes uniform.

【0007】上記構成によれば、上記ころと軌道との接
触面の間隔における上記軸方向への変化は、接触圧力下
の上記軸方向への相当応力分布又は最大剪断応力分布等
で表される材料が受けるダメージが均一になるように設
定されている。したがって、上記相当応力または最大剪
断応力等で表される材料にダメージが集中する箇所が存
在せず、その分だけ上記ころの最大負荷能力が高められ
る。
According to the above configuration, the change in the distance between the contact surfaces between the rollers and the raceway in the axial direction is represented by an equivalent stress distribution or a maximum shear stress distribution in the axial direction under a contact pressure. The material is set so that the damage it receives is uniform. Therefore, there is no place where damage is concentrated on the material represented by the equivalent stress or the maximum shear stress, and the maximum load capacity of the roller is increased by that amount.

【0008】また、請求項2に係る発明は、請求項1に
係る発明の転がり軸受において、上記ころと軌道との接
触面の間隔における上記軸方向への変化が、実質的に下
記の式で表されることを特徴としている。
According to a second aspect of the present invention, in the rolling bearing according to the first aspect of the present invention, the axial change in the distance between the contact surface between the roller and the track is substantially expressed by the following equation. It is characterized by being represented.

【数2】 (Equation 2)

【0009】上記構成によれば、回転方向への等価半径
R、等価ヤング率E'、上記ころの有効長Lwe、材料の圧
縮に関する強度σEmax、および、材料の最大剪断応力に
関する強度τmaxが分かれば、接触圧力下での上記軸方
向への相当応力分布または最大剪断応力分布が均一にな
るような上記ころと軌道との接触面の間隔が容易に得ら
れる。
According to the above configuration, the equivalent radius R in the rotational direction, the equivalent Young's modulus E ', the effective length Lwe of the rollers, the strength σ Emax of the material compression, and the strength τ max of the maximum shear stress of the material. , The distance between the contact surface of the roller and the raceway can be easily obtained such that the equivalent stress distribution or the maximum shear stress distribution in the axial direction under the contact pressure becomes uniform.

【0010】[0010]

【発明の実施の形態】以下、この発明を図示の実施の形
態により詳細に説明する。図1は、本実施の形態の転が
り軸受の一例としての円錐ころ軸受の側面図である。ま
た、図2は、図1におけるI−I矢視断面図である。円錐
ころ軸受11は、内輪12と外輪13と円錐ころ16と
保持器17(図2のみに示し、図1では省略している)を
有している。円錐ころ16の大径側端部は、内輪12の
大鍔19に押し付けられて、円錐ころ16の軸方向の位
置が定まるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. FIG. 1 is a side view of a tapered roller bearing as an example of the rolling bearing of the present embodiment. FIG. 2 is a sectional view taken along the line II in FIG. The tapered roller bearing 11 includes an inner ring 12, an outer ring 13, a tapered roller 16, and a retainer 17 (shown only in FIG. 2 and omitted in FIG. 1). The large-diameter end of the tapered roller 16 is pressed against the large collar 19 of the inner ring 12 so that the axial position of the tapered roller 16 is determined.

【0011】上記円錐ころ16の軸20および外輪13
の軸21を通る平面と円錐ころ16の外周面18との交
線であるころ輪郭線と、外輪13の軌道面15と上記平
面との交線である外輪輪郭線との相対隙間の問題は、図
3に示すような有限幅円筒25と半無限体(以下、単に
平面と言う)26との隙間の問題に置き換えることがで
きる。図3において、X,Y,Zは無次元座標であり、X
軸はx/b,Y軸はy/b,Z軸はz/bである。但し、x,
y,zは座標であり、bは回転方向へのヘルツの接触幅
の1/2である。同様に、上記ころ輪郭線と、内輪12
の軌道面14と上記平面との交線である内輪輪郭線との
相対隙間の問題も、図3に示す力学モデルに置き換える
ことができる。そこで、以下、上記ころ輪郭線と外輪輪
郭線との相対隙間、および、上記ころ輪郭線と内輪輪郭
線との相対隙間を、図3の力学モデルを用いて説明す
る。尚、上記ころ輪郭線と外輪輪郭線との相対隙間と、
上記ころ輪郭線と内輪輪郭線との相対隙間とは、円錐こ
ろ16の軸20に対して対象であるから、一方のみにつ
いて説明すれば、他方も同様である。
The shaft 20 and the outer ring 13 of the tapered roller 16
The problem of the relative gap between the roller contour, which is the intersection of the plane passing through the shaft 21 of the tapered roller and the outer peripheral surface 18 of the tapered roller 16, and the outer ring contour, which is the intersection of the raceway 15 of the outer ring 13 and the above plane, is as follows. 3 can be replaced by the problem of the gap between the finite width cylinder 25 and the semi-infinite body (hereinafter, simply referred to as a plane) 26 as shown in FIG. In FIG. 3, X, Y, and Z are dimensionless coordinates.
The axis is x / b, the Y axis is y / b, and the Z axis is z / b. Where x,
y and z are coordinates, and b is 接触 of the contact width of Hertz in the rotation direction. Similarly, the roller outline and the inner ring 12
The problem of the relative gap between the raceway surface 14 and the inner ring contour which is the line of intersection of the above-mentioned plane can also be replaced with the dynamic model shown in FIG. Therefore, the relative gap between the roller contour and the outer ring contour and the relative gap between the roller contour and the inner ring contour will be described below with reference to the dynamic model of FIG. In addition, the relative gap between the roller contour and the outer ring contour,
Since the relative gap between the roller contour and the inner ring contour is symmetric with respect to the shaft 20 of the tapered roller 16, if only one is described, the other is the same.

【0012】上述したように、図3に示す有限幅円筒2
5と平面26との相対隙間においては、有限幅円筒25
に対する接触圧力分布を有限幅円筒25の軸方向に均一
にしたとしても、3次元の相当圧力分布は均一にはなら
ない。そこで、本実施の形態においては、上述の点に着
目して、有限幅円筒25の軸方向への相当応力分布また
は最大剪断応力分布が均一になるように、有限幅円筒2
5のクラウニング形状(つまり、円錐ころ16のクラウ
ニング形状)を決定するのである。
As described above, the finite width cylinder 2 shown in FIG.
5 and the plane 26, a finite width cylinder 25
Even if the contact pressure distribution is uniform in the axial direction of the finite width cylinder 25, the three-dimensional equivalent pressure distribution will not be uniform. Therefore, in the present embodiment, focusing on the above points, the finite width cylinder 2 is set so that the equivalent stress distribution or the maximum shear stress distribution in the axial direction of the finite width cylinder 25 becomes uniform.
The crowning shape of No. 5 (that is, the crowning shape of the tapered roller 16) is determined.

【0013】先ず、上記有限幅円筒25に任意のクラウ
ニング形状与えて、乾燥接触問題における基礎式を用い
て接触2物体間(つまり、有限幅円筒25と平面26と
の間)の相対距離Hを求め、接触圧力を求める。そし
て、得られた接触圧力の分布を用いて3次元の内部応力
分布を得、この3次元内部応力分布から次式によって相
当応力を求める。 σE=[1/2{(σX−σY)2+(σY−σZ)2+(σZ−σX)2
+6τXY 2+6τYZ 2+6τZX 2}0.5] ここで、 σE:相当応力 σX:YZ面に作用する垂直応力成分 σY:XZ面に作用する垂直応力成分 σZ:XY面に作用する垂直応力成分 τXY:XY面に作用する剪断応力成分 τYZ:YZ面に作用する剪断応力成分 τZX:ZX面に作用する剪断応力成分
First, an arbitrary crowning shape is given to the finite width cylinder 25, and the relative distance H between two contacting objects (that is, between the finite width cylinder 25 and the plane 26) is determined by using a basic formula in the dry contact problem. And contact pressure. Then, a three-dimensional internal stress distribution is obtained using the obtained contact pressure distribution, and an equivalent stress is obtained from the three-dimensional internal stress distribution by the following equation. σ E = [1/2 {(σ X −σ Y ) 2 + (σ Y −σ Z ) 2 + (σ Z −σ X ) 2
+ 6τ XY 2 + 6τ YZ 2 + 6τ ZX 2 } 0.5 ] where σ E : equivalent stress σ X : vertical stress component acting on the YZ plane σ Y : vertical stress component acting on the XZ plane σ Z : acting on the XY plane Vertical stress component τ XY : Shear stress component acting on XY plane τ YZ : Shear stress component acting on YZ plane τ ZX : Shear stress component acting on ZX plane

【0014】そして、こうして得られた相当応力σE
分布が有限幅円筒25の軸方向に均一になるようにクラ
ウニング形状を変更し、上述の解析を繰り返す。こうし
て、材料内部のダメージが軸方向に均一に分布するよう
にクラウニング形状を決定するのである。
Then, the crowning shape is changed so that the distribution of the equivalent stress σ E thus obtained is uniform in the axial direction of the finite width cylinder 25, and the above analysis is repeated. Thus, the crowning shape is determined so that the damage inside the material is uniformly distributed in the axial direction.

【0015】上述のようにして導出されたクラウニング
形状の式は、次のような式である。
The equation of the crowning shape derived as described above is as follows.

【数3】 (Equation 3)

【0016】図4は、上記クラウニング形状の式によっ
て算出された有限幅円筒25のクラウニング量の一例を
示す図である。また、図5は、上記クラウニング形状の
式が適用された有限幅円筒25における接触圧力pをヘ
ルツの最大接触応力Phで無次元化した無次元化接触圧
力P(=p/Ph)の分布である。図5(a)はY=0におけ
るZX面の接触圧力分布であり、図5(b)はX=0にお
けるYZ面の接触圧力分布である。また、図6は、図8
の場合と同じ荷重条件下での軸方向への無次元化相当応
力ΣEの分布を示す。
FIG. 4 is a diagram showing an example of the crowning amount of the finite width cylinder 25 calculated by the above-mentioned equation of the crowning shape. Further, FIG. 5, the crowning profile of the formula has been applied maximum contact Hertz contact pressure p in a finite width cylinder 25 stresses P h in dimensionless dimensionless contact pressure P of the (= p / P h) Distribution. FIG. 5A shows the contact pressure distribution on the ZX plane when Y = 0, and FIG. 5B shows the contact pressure distribution on the YZ plane when X = 0. FIG. 6 is similar to FIG.
Shows the distribution of dimensionless equivalent stress sigma E in the axial direction at the same loading conditions as for.

【0017】図5(b)から分かる様に、本実施の形態に
おけるクラウニング形状によれば、有限幅円筒25の軸
方向の接触圧力分布は、中央部から軸方向両端のエッジ
部に向かって少しずつ減少し、上記エッジ部で曲線的に
低下するようになっている。
As can be seen from FIG. 5 (b), according to the crowning shape in the present embodiment, the contact pressure distribution in the axial direction of the finite width cylinder 25 is slightly from the center to the edges at both ends in the axial direction. And gradually decreases at the edge portion.

【0018】したがって、図6に示すY軸方向への無次
元化相当応力ΣEの分布から分かるように、上記ルンド
ベルグのクラウニング形状を適用した場合の上記エッジ
部での無次元化相当応力ΣEの上昇(図8参照)が無くな
り、そのまま曲線的に減少している。その結果、図8に
見られるような上記帯状領域Aの側面近傍に現れる降伏
応力を越える強い相当応力の集中が回避される。
[0018] Thus, as can be seen from the distribution of non-dimensional equivalent stress sigma E in the Y-axis direction shown in FIG. 6, the non-dimensional equivalent stress sigma E at the edge portion of the case of applying the crowning shape of the Rundoberugu (See FIG. 8) disappears, and decreases as it is in a curve. As a result, the concentration of a strong equivalent stress exceeding the yield stress appearing in the vicinity of the side surface of the band-shaped region A as shown in FIG. 8 is avoided.

【0019】通常、上記内輪12の軌道面14および外
輪13の軌道面15は円錐状に形成されている。したが
って、その場合における円錐ころ16の外周面18にお
ける母線に沿った断面形状を上記式で求められるクラウ
ニング形状にすれば、上記母線方向への上記相当応力分
布を均一にすることができ、材料内部のダメージが集中
する箇所を無くすことがきるのである。尚、内輪12の
軌道面14および外輪13の軌道面15が円錐状でない
場合には、上記ころ輪郭線と外輪輪郭線との相対隙間、
および、上記ころ輪郭線と内輪輪郭線との相対隙間が、
上記式で求められる形状になるようにすればよい。
Normally, the raceway surface 14 of the inner race 12 and the raceway surface 15 of the outer race 13 are formed in a conical shape. Therefore, in this case, if the cross-sectional shape of the outer peripheral surface 18 of the tapered roller 16 along the generatrix is a crowning shape determined by the above equation, the equivalent stress distribution in the generatrix direction can be made uniform, and It is possible to eliminate the point where the damage is concentrated. When the raceway surface 14 of the inner race 12 and the raceway surface 15 of the outer race 13 are not conical, the relative gap between the above-mentioned roller contour and the outer race contour,
And, the relative gap between the roller contour and the inner ring contour,
What is necessary is just to make it into the shape calculated | required by said Formula.

【0020】上述のように、本実施の形態においては、
相互に転がり接触して力を伝達する円錐ころ16と外輪
13との上記ころ輪郭線と外輪輪郭線との相対隙間、及
び、円錐ころ16と内輪12との上記ころ輪郭線と内輪
輪郭線との相対隙間を、円錐ころ16の母線方向への無
次元化相当応力ΣEの分布を均一にするように決定して
いる。したがって、円錐ころ16の軸方向両端エッジ部
における無次元化相当応力ΣEの集中を防止できる。す
なわち、本実施の形態によれば、無次元化相当応力ΣE
の集中が無くなる分だけ円錐ころ16の静的最大負荷容
量および動的最大負荷容量を高めることができるのであ
る。
As described above, in the present embodiment,
The relative gap between the above-mentioned roller contour and the outer ring contour between the tapered roller 16 and the outer ring 13 that mutually transmit rolling force, and the above-mentioned roller and inner ring contour between the tapered roller 16 and the inner ring 12. Are determined so as to make the distribution of the dimensionless equivalent stress のE in the generatrix direction of the tapered rollers 16 uniform. Therefore, it is possible to prevent the non-dimensional equivalent stress 両 端E from being concentrated at both axial end portions of the tapered roller 16. That is, according to the present embodiment, dimensionless equivalent stress Σ E
, The static maximum load capacity and the dynamic maximum load capacity of the tapered roller 16 can be increased.

【0021】図7は、円錐ころ軸受の円錐ころに、本実
施の形態によるクラウニング形状を適用した場合とルン
ドベルグのクラウニング形状を適用した場合とにおける
累積破損確率と寿命時間との関係を示す。図7より、本
実施の形態によるクラウニング形状を適用した方が約1
0倍の寿命向上が見られた。すなわち、上記円錐ころ1
6を、従来の円錐ころと同じ材料で巨視的な寸法諸元を
同じに形成しても、上述の式による本実施の形態のクラ
ウニング形状を適用することによって転がり疲労寿命が
3倍〜10倍と驚異的に伸びることが実証された。
FIG. 7 shows the relationship between the cumulative failure probability and the life time when the crowning shape according to the present embodiment and the Lundberg crowning shape are applied to the tapered rollers of the tapered roller bearing. From FIG. 7, it is approximately 1 when the crowning shape according to the present embodiment is applied.
A 0-fold improvement in life was observed. That is, the above tapered roller 1
6 is made of the same material as that of the conventional tapered roller and has the same macroscopic dimensions, the rolling fatigue life is 3 to 10 times by applying the crowning shape of the present embodiment according to the above equation. It has been proven to grow phenomenally.

【0022】尚、上記実施の形態においてはラジアル軸
受として使用される円錐ころ軸受を例に説明している
が、スラスト軸受として使用される円錐ころ軸受であっ
ても構わない。また、円筒ころ軸受の場合にも適用可能
であることは言うまでもない。さらには、軌道面が平面
であるリニアベアリングにも適用できる。
In the above embodiment, a tapered roller bearing used as a radial bearing is described as an example. However, a tapered roller bearing used as a thrust bearing may be used. Needless to say, the present invention is also applicable to the case of a cylindrical roller bearing. Further, the present invention can be applied to a linear bearing having a flat raceway surface.

【0023】[0023]

【発明の効果】以上より明らかなように、請求項1に係
る発明の転がり軸受は、ころと軌道との接触面の間隔に
おける上記ころの軸方向への変化を、接触圧力下の上記
軸方向への相当応力分布または最大剪断応力分布等の材
料が受けるダメージを評価する物理量が均一になるよう
に設定したので、上記相当応力または最大剪断応力等で
表される材料が受けるダメージが集中する箇所が存在せ
ず、その分だけ上記ころの静的最大負荷容量および動的
最大負荷容量を高めることができる。さらに、上記ころ
の耐圧痕性や寿命の向上を図ることができる。
As is apparent from the above description, the rolling bearing according to the first aspect of the present invention is capable of detecting the axial change in the distance between the contact surface of the roller and the track in the axial direction under a contact pressure. Since the physical quantity for evaluating the damage to the material such as the equivalent stress distribution or the maximum shear stress distribution to the material is set to be uniform, the point where the damage to the material represented by the equivalent stress or the maximum shear stress is concentrated Does not exist, and the static maximum load capacity and the dynamic maximum load capacity of the above rollers can be increased accordingly. Further, it is possible to improve the pressure resistance and life of the rollers.

【0024】また、請求項2に係る発明の転がり軸受
は、上記ころと軌道との接触面の間隔における上記軸方
向への変化を、実質的に下記の式で表したので、回転方
向への等価半径R、等価ヤング率E'、上記ころの有効
長Lwe、材料の圧縮に関する強度σEmax、および、材料
の最大剪断応力に関する強度τmaxが分かれば、接触圧
力下での上記軸方向への相当応力分布または最大剪断応
力分布が均一になるような上記ころと軌道との接触面の
間隔を容易に得ることができる。
In the rolling bearing according to the second aspect of the present invention, the change in the axial direction in the space between the contact surface of the roller and the track is substantially expressed by the following equation. If the equivalent radius R, the equivalent Young's modulus E ', the effective length Lwe of the roller, the strength σ Emax of the material for compression, and the strength τ max of the maximum shear stress of the material are known, the axial direction under the contact pressure can be obtained. Can be easily obtained such that the equivalent stress distribution or the maximum shear stress distribution becomes uniform.

【数4】 (Equation 4)

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の転がり軸受の一例としての円錐ころ
軸受の側面図である。
FIG. 1 is a side view of a tapered roller bearing as an example of a rolling bearing of the present invention.

【図2】図1におけるI−I矢視断面図である。FIG. 2 is a sectional view taken along the line II in FIG.

【図3】図1および図2に示す円錐ころ軸受の力学モデ
ルを示す図である。
FIG. 3 is a diagram showing a dynamic model of the tapered roller bearing shown in FIGS. 1 and 2;

【図4】図1および図2における円錐ころに適用される
クラウニング量の一例を示す図である。
FIG. 4 is a diagram showing an example of a crowning amount applied to the tapered rollers in FIGS. 1 and 2;

【図5】図1および図2における円錐ころの接触圧力分
布を示す図である。
FIG. 5 is a view showing a contact pressure distribution of tapered rollers in FIGS. 1 and 2;

【図6】図1および図2における円錐ころの無次元化相
当応力分布を示す図である。
6 is a view showing a dimensionless equivalent stress distribution of the tapered rollers in FIGS. 1 and 2. FIG.

【図7】円錐ころにこの発明に係るクラウニング形状を
適用した場合とルンドベルグのクラウニング形状を適用
した場合との累積破損確率と寿命時間との関係を示す図
である。
FIG. 7 is a diagram showing the relationship between the cumulative failure probability and the life time when the crowning shape according to the present invention is applied to the tapered rollers and when the Lundberg crowning shape is applied.

【図8】ルンドベルグのクラウニング形状を適用したこ
ろにおける図6と同じ荷重条件下での無次元化相当応力
分布を示す図である。
FIG. 8 is a diagram illustrating a dimensionless equivalent stress distribution under the same load condition as in FIG. 6 when a Lundberg crowning shape is applied.

【符号の説明】 11…円錐ころ軸受、 12…内輪、13
…外輪、 14,15…軌道面、
16…円錐ころ、 20…円錐ころの
軸21…外輪の軸。
[Description of Signs] 11: Tapered roller bearing, 12: Inner ring, 13
... outer ring, 14,15 ... track surface,
16: tapered roller, 20: tapered roller shaft 21: outer ring shaft.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 軌道ところを有する転がり軸受におい
て、 上記ころと軌道との接触面の間隔における上記ころの軸
方向への変化が、接触圧力下の上記軸方向への相当応力
分布または最大剪断応力分布等の材料が受けるダメージ
を評価する物理量が均一になるように設定されているこ
とを特徴とする転がり軸受。
1. A rolling bearing having a raceway, wherein a change in the distance between the contact surface of the roller and the raceway in the axial direction of the roller corresponds to an equivalent stress distribution or a maximum shear stress in the axial direction under a contact pressure. A rolling bearing, wherein a physical quantity for evaluating damage to a material such as distribution is set to be uniform.
【請求項2】 請求項1に記載の転がり軸受において、 上記ころと軌道との接触面の間隔における上記軸方向へ
の変化が、実質的に下記の式で表されることを特徴とす
る転がり軸受。 【数1】
2. The rolling bearing according to claim 1, wherein the change in the distance between the contact surfaces of the rollers and the raceway in the axial direction is substantially represented by the following equation. bearing. (Equation 1)
JP30308897A 1997-11-05 1997-11-05 Rolling bearing Expired - Fee Related JP3683084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30308897A JP3683084B2 (en) 1997-11-05 1997-11-05 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30308897A JP3683084B2 (en) 1997-11-05 1997-11-05 Rolling bearing

Publications (2)

Publication Number Publication Date
JPH11141554A true JPH11141554A (en) 1999-05-25
JP3683084B2 JP3683084B2 (en) 2005-08-17

Family

ID=17916755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30308897A Expired - Fee Related JP3683084B2 (en) 1997-11-05 1997-11-05 Rolling bearing

Country Status (1)

Country Link
JP (1) JP3683084B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017113933A1 (en) * 2017-06-23 2018-12-27 Schaeffler Technologies AG & Co. KG Tapered roller bearing with corrected tread

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017113933A1 (en) * 2017-06-23 2018-12-27 Schaeffler Technologies AG & Co. KG Tapered roller bearing with corrected tread

Also Published As

Publication number Publication date
JP3683084B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
US6113279A (en) Hub unit for supporting a wheel shaft
US6672770B2 (en) Rolling bearing unit for supporting vehicle wheel
US20050185874A1 (en) Roller bearing cage and method of producing the same
US5176457A (en) Anchoring a double row angular anti-friction bearings
JPH0519652U (en) Needle-shaped roller bearings with split cage
US6254277B1 (en) Roller bearing
US6533461B2 (en) Anti-reversal and anti-rotation thrust washer
JPH11141554A (en) Rolling bearing
JP2003042173A (en) Roller bearing unit for supporting wheel
JPH10252728A (en) Axial direction rotation preventing mechanism for lipped thrust bearing ring
CN103415362B (en) The manufacture method of wheel rolling bearing arrangement
JP2003090334A (en) Manufacturing method of hub unit for supporting wheel
JPH1151064A (en) Hub unit bearing
JPH11141634A (en) Traction drive
JPH11190333A (en) Conical roller bearing
JP3356540B2 (en) Axle bearings for vehicles
EP0964175A3 (en) Hydrodynamic gas bearing and manufacturing method thereof
JP2006064037A (en) Roller bearing
JPH11141553A (en) Intercontact member device
JPH0342257Y2 (en)
JP2018162804A (en) Sealed rolling bearing
EP2345821B1 (en) Bearing structure
JP2003156056A (en) Roller bearing
JPH087145Y2 (en) Roller bearings for vehicle wheels
JP3753849B2 (en) One-way clutch

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees