JPH1114148A - Hot-water supplier - Google Patents

Hot-water supplier

Info

Publication number
JPH1114148A
JPH1114148A JP16823997A JP16823997A JPH1114148A JP H1114148 A JPH1114148 A JP H1114148A JP 16823997 A JP16823997 A JP 16823997A JP 16823997 A JP16823997 A JP 16823997A JP H1114148 A JPH1114148 A JP H1114148A
Authority
JP
Japan
Prior art keywords
temperature
air
thermistor
heating
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16823997A
Other languages
Japanese (ja)
Other versions
JP3787963B2 (en
Inventor
Junichi Ueda
順一 植田
Hiroaki Yonekubo
寛明 米久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16823997A priority Critical patent/JP3787963B2/en
Publication of JPH1114148A publication Critical patent/JPH1114148A/en
Application granted granted Critical
Publication of JP3787963B2 publication Critical patent/JP3787963B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To quicken the start of hot water supply, and besides, supply hot water safely, by equipping a hot-water supplier with a controller which has controls for stoppage not performing the heating of a heat exchanger by a heating means, when an air detector using a thermistor and a freezing preventive heater detects air bite. SOLUTION: A thermistor 31 and a freezing preventive heater 37 are attached in opposition in the same position of the water pipe in the vicinity of the exit of a heat exchanger 10, and an air detector 15 using those thermistor 31 and the freezing preventive heater 37 is heated by performing current application for a certain time to the freezing preventive heater 37 after measurement of reference temperature by a thermistor 31 after start of air detection, and then, it is stopped, and it is heated again, and the temperature after reheating is measured. Then, the difference between the measured temperature after heating and the reference temperature is found, and it is compared with the preset water-air judgment temperature difference. When, it is judged to be in air bite condition by the comparison result, it is so arranged as not to perform the heating of the heat exchanger 10 by the controls 26 at stoppage of a controller 24.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、給湯の開始時に早
く湯を供給することのできる給湯装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot water supply apparatus which can supply hot water at the start of hot water supply.

【0002】[0002]

【従来の技術】従来この種の給湯装置には、図21に示
すようなものがあった(例えば特公平4−9972号公
報)。同図において1は瞬間給湯機であり、給湯口2と
瞬間給湯機1は給湯管3で結ばれている。給湯口2の手
前には給湯弁4が設けられており、給湯管3の給湯弁4
の上流側から排水管5が分岐しており、この排水管5に
は排水弁6が設けられている。また、排水管5の給湯管
3からの分岐部には温度検出部7が設けられていて、温
度設定器8の設定温度とこの温度検出部7の温度を比較
して給湯制御部9が給湯弁4と排水弁6を制御してい
る。
2. Description of the Related Art Conventionally, there is a hot water supply apparatus of this type as shown in FIG. 21 (for example, Japanese Patent Publication No. 4-9972). In FIG. 1, reference numeral 1 denotes an instantaneous water heater, and a hot water supply port 2 and the instantaneous water heater 1 are connected by a hot water supply pipe 3. A hot water supply valve 4 is provided in front of the hot water supply port 2, and the hot water supply valve 4 of the hot water supply pipe 3 is provided.
A drain pipe 5 branches from the upstream side of the drain pipe, and the drain pipe 5 is provided with a drain valve 6. Further, a temperature detecting section 7 is provided at a branch of the drain pipe 5 from the hot water supply pipe 3, and the hot water supply control section 9 compares the set temperature of the temperature setting device 8 with the temperature of the temperature detecting section 7 to supply hot water. The valve 4 and the drain valve 6 are controlled.

【0003】そして、給湯要求時に温度検出部7により
検出された湯水の温度が温度設定器8の設定温度の許容
範囲内の場合、給湯弁4を開き給湯口2に給湯管3内の
湯水を供給するとともに、許容範囲外の場合、排水弁6
を開き給湯管3内の湯水を排水管5を経て排水口から捨
て、常に許容範囲内の温度の湯水を給湯口2から供給す
るというものである。
When the temperature of the hot water detected by the temperature detector 7 at the time of the hot water supply request is within the allowable range of the set temperature of the temperature setting device 8, the hot water valve 4 is opened and the hot water in the hot water pipe 3 is supplied to the hot water inlet 2. Supply and if out of tolerance, drain valve 6
The hot water in the hot water supply pipe 3 is discarded from the drain through the drain pipe 5, and hot water having a temperature within an allowable range is always supplied from the hot water supply port 2.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記した
ような従来の給湯装置では、出湯要求時に湯水の温度が
許容範囲外、例えば低い場合、排水弁6を開き給湯管3
内の湯水を排水口から捨てる動作をするため、給湯口2
から湯が供給される迄の時間は大幅に改善することがで
きないという課題を有していた。また給湯弁4、排水管
5、排水弁6、温度検出部7などを現場で配管工事や配
線工事を行って取り付ける必要があり、設置が大変であ
るとともに、通常の給湯装置では必要ない給湯弁4、排
水管5、排水弁6、温度検出部7等の部材を必要とする
という課題もあった。
However, in the above-described conventional hot water supply apparatus, when the temperature of hot water is out of an allowable range, for example, low when the hot water is requested, the drain valve 6 is opened and the hot water supply pipe 3 is opened.
In order to perform the operation of discarding the hot water inside from the drain,
There is a problem that the time until the hot water is supplied cannot be greatly improved. Further, it is necessary to install the hot water supply valve 4, the drain pipe 5, the drain valve 6, the temperature detecting section 7 and the like by performing piping work and wiring work on site, and the installation is troublesome, and the hot water supply valve which is not necessary in a normal hot water supply device. 4, there is also a problem that members such as a drain pipe 5, a drain valve 6, and a temperature detector 7 are required.

【0005】本発明は上記した課題を解決するものであ
り、給湯装置自身の改善により、給湯の開始時に早く、
かつ安全に湯を供給できる給湯装置を提供するものであ
る。
[0005] The present invention is to solve the above-mentioned problems, the improvement of the hot water supply device itself, early at the start of hot water supply,
Another object of the present invention is to provide a hot water supply device that can safely supply hot water.

【0006】[0006]

【課題を解決するための手段】本願発明は、熱交換器
と、熱交換器を加熱する加熱手段、加熱を調節する加熱
調節手段、熱交換器近傍の温度を検出する温度検出手
段、水の流動を検出する流動検出手段、熱交換器内の空
気噛みを熱交換器出口近傍に設けたサーミスタあるいは
他の検出器を用い検出する空気検出手段、流動検出手段
で水の流動を検出していない時は温度検出手段で検出さ
れる温度が所定温度以下になったら加熱調節手段を制御
して加熱手段による熱交換器の加熱を開始し、予め設定
した時間あるいは温度に達したら加熱を停止するととも
に、空気検出器で空気噛みを検出した時は、熱交換器の
加熱を行わない停止時制御部を有する制御器を備え、給
湯の停止中は温度検出手段で検出される温度が所定温度
以下になったら加熱調節手段を制御して加熱手段による
熱交換器の加熱を開始し、あらかじめ設定した時間ある
いは温度に達したら加熱を停止して、給湯の停止時に熱
交換器が冷却されることを防止し、再給湯時に端末への
湯の供給を早く行えるようにするとともに、空気検出器
で空気噛みを検出している時は、熱交換器の加熱を行わ
ないことにより、から焚きを防止し熱交換器内に蒸気が
満たされ給湯開始時に万一の異常温度上昇による危険等
を防止しているものである。
SUMMARY OF THE INVENTION The present invention provides a heat exchanger, a heating means for heating the heat exchanger, a heating adjusting means for adjusting the heating, a temperature detecting means for detecting a temperature near the heat exchanger, The flow detecting means for detecting the flow, the air detecting means for detecting the air bite in the heat exchanger by using a thermistor or another detector provided near the heat exchanger outlet, the flow detecting means does not detect the flow of water. At the time, when the temperature detected by the temperature detecting means falls below a predetermined temperature, the heating control means is controlled to start heating the heat exchanger by the heating means, and when the temperature reaches a preset time or temperature, the heating is stopped. When the air detector detects an air bite, the controller has a stop control unit that does not perform heating of the heat exchanger, and the temperature detected by the temperature detection unit becomes lower than a predetermined temperature while the hot water supply is stopped. When it comes to heating Control the means to start heating the heat exchanger by the heating means, stop the heating when the preset time or temperature is reached, prevent the heat exchanger from cooling when the hot water supply is stopped, In some cases, hot water can be quickly supplied to the terminal, and when the air detector detects an air bite, it does not heat the heat exchanger, preventing it from burning and keeping it inside the heat exchanger. The steam is filled to prevent danger or the like due to an abnormal temperature rise at the start of hot water supply.

【0007】[0007]

【発明の実施の形態】請求校1記載に係る発明は、給水
管と給湯管が接続された熱交換器と、熱交換器を加熱す
る加熱手段と、加熱手段による加熱を調節する加熱調節
手段と、熱交換器近傍の温度を検出する温度検出手段
と、水の流動を検出する流動検出手段と、熱交換器内の
空気噛みを熱交換器出口近傍に設けたサーミスタと凍結
防止ヒータを用い検出する空気検出手段と、流動検出手
段で水の流動を検出していない時に温度検出手段で検出
される温度が所定温度以下になったら加熱調節手段を制
御して加熱手段による熱交換器の加熱を開始し、予め設
定した時間あるいは温度に達したら加熱を停止するとと
もに、空気検出器で空気噛みを検出した時は、加熱手段
による熱交換器の加熱を行わない停止時制御部を有する
制御器を備えて構成するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 is a heat exchanger in which a water supply pipe and a hot water supply pipe are connected, heating means for heating the heat exchanger, and heating adjustment means for adjusting heating by the heating means. A temperature detecting means for detecting a temperature in the vicinity of the heat exchanger, a flow detecting means for detecting a flow of water, and a thermistor and an anti-freezing heater provided with an air bite in the heat exchanger near the heat exchanger outlet. When the temperature detected by the temperature detecting means becomes equal to or lower than a predetermined temperature when the flow of water is not detected by the air detecting means and the flow detecting means, the heating control means is controlled to heat the heat exchanger by the heating means. A controller having a stop control unit that stops heating when a preset time or temperature is reached, and stops heating when the air detector detects an air bite, and does not heat the heat exchanger by the heating unit. Configuration with Is shall.

【0008】そして、給湯の停止時に熱交換器への水の
流動が停止していることを流動検出手段で検出して、温
度検出手段で検出される温度が所定温度以下になったら
加熱手段による熱交換器の加熱を開始し、予め定めた時
間あるいは温度に達したら加熱を停止することにより、
給湯の停止時に熱交換器が冷却されることを防止し、再
給湯時に給湯時の端末への湯の供給を早く行えるように
するとともに、空気検出器で空気噛みを検出している時
は、加熱手段による熱交換器の加熱を開始する動作を行
わないことにより、設置初期時や凍結防止のための水抜
きの後など熱交換器内に空気が噛んでいる時に加熱を行
い、熱交換器が空焚きされることを防止しているもので
ある。
When the flow of water to the heat exchanger is stopped when the hot water supply is stopped, the flow detecting means detects that the flow of water is stopped, and when the temperature detected by the temperature detecting means falls below a predetermined temperature, the heating means detects the stop. By starting heating of the heat exchanger and stopping the heating when a predetermined time or temperature is reached,
Prevents the heat exchanger from cooling when hot water supply is stopped, and enables quick supply of hot water to the terminal at the time of hot water supply at the time of re-hot water supply, and when the air detector detects air entrapment, By not performing the operation of starting heating of the heat exchanger by the heating means, heating is performed when air is trapped in the heat exchanger at the beginning of installation or after draining to prevent freezing, Are prevented from being fired.

【0009】また、請求項2記載に係る発明は、第1の
発明の構成に加え、熱交換器近傍の温度を検出する温度
検出手段と空気検出手段のサーミスタとを共用すること
でサーミスタを2つから1つに削減し低コスト化を図れ
る。そして、空気検出動作は給湯動作を停止している場
合にのみ作動するので給湯動作時における熱交換器の出
口温度を計測する温度検出手段の動作を妨げることは無
く温度検出手段の機能はサーミスタ2つの場合と何ら変
わることはない。
According to a second aspect of the present invention, in addition to the configuration of the first aspect, the thermistor of the air detecting means and the temperature detecting means for detecting the temperature near the heat exchanger are commonly used. The cost can be reduced by reducing one to one. Since the air detection operation is performed only when the hot water supply operation is stopped, the operation of the temperature detection means for measuring the outlet temperature of the heat exchanger during the hot water supply operation is not hindered, and the function of the temperature detection means is thermistor 2 There is no difference from the two cases.

【0010】また、請求項3記載に係る発明は、第1の
発明の構成に加え、熱交換器出口近傍の水管の同位置に
サーミスタと凍結防止ヒータとを対向して取り付けた構
成としたことでサーミスタと凍結防止ヒータを最短距離
に配置でき、凍結防止ヒ―タの加熱による水管・水管内
の温度上昇をサーミスタによって高速かつ顕著に検出す
ることができる。よって短時間かつ精度良く水管内の水
の有無が判定できる。
According to a third aspect of the present invention, in addition to the configuration of the first aspect, the thermistor and the anti-freezing heater are mounted opposite to each other at the same position of the water pipe near the heat exchanger outlet. Thus, the thermistor and the anti-freezing heater can be arranged at the shortest distance, and the temperature rise in the water pipe / water pipe due to heating of the anti-freezing heater can be detected at high speed and remarkably by the thermistor. Therefore, the presence / absence of water in the water pipe can be determined in a short time and accurately.

【0011】また、請求項4記載に係る発明は、第1の
発明の構成に加え、空気検出手段は、空気検出開始後、
サーミスタにより基準温度T0を測定した後凍結防止ヒ
ータへの一定時間の通電を行い発熱させ発熱停止直後、
再度発熱後温度T1を測定し発熱後温度T1と基準温度T
0との差ΔTを予め設定された水空気判定温度差ΔT a
比較しΔT>ΔTaの場合は空気噛み状態と判定しΔT
≦ΔTaの場合は水があると判定する。そして、熱交換
器内の水の有無を確実に判定できるので空焚きを防止す
ることができる。
[0011] The invention according to claim 4 is the first invention.
In addition to the configuration of the present invention, the air detection means, after the start of air detection,
Reference temperature T by thermistor0After measuring the
Immediately after the power is turned on for a certain period of time,
Temperature T after heating again1Is measured and the temperature T after the heat is generated1And reference temperature T
0The difference ΔT between the temperature and the predetermined temperature difference ΔT aWhen
Compare ΔT> ΔTaIn the case of, it is determined that the air is in
≤ΔTaIn the case of, it is determined that there is water. And heat exchange
Prevents empty firing as it can reliably determine the presence of water in the vessel
Can be

【0012】また、請求項5記載に係る発明は、第1の
発明の構成に加え、空気検出手段は、空気検出開始後、
サーミスタにより基準温度T0を測定した後凍結防止ヒ
ータへの一定時間の通電を行い発熱させ発熱停止後、一
定時間ΔL経過した後、再度発熱後温度T1を測定し発
熱後温度T1と基準温度T0との差ΔTを予め設定された
水空気判定温度差ΔTaと比較しΔT>ΔTaの場合は空
気噛み状態と判定しΔT≦ΔTaの場合は水があると判
定する。そして、熱交換器内の水の有無を確実に判定で
きるので空焚きを防止することができる。
According to a fifth aspect of the present invention, in addition to the configuration of the first aspect, the air detecting means includes:
Reference temperature T 0 and after a certain performs energization time heating is not heating stopped to antifreeze heater was measured by the thermistor, after a certain time ΔL elapses, the heat generation after temperatures T 1 measures the heating after temperatures T 1 again and the reference for comparison with the preset water air determined temperature difference [Delta] T a difference [Delta] T between the temperature T 0 ΔT> ΔT a is determined and in the case of [Delta] T ≦ [Delta] T a is determined as the air biting state is water. Since the presence or absence of water in the heat exchanger can be reliably determined, it is possible to prevent dry burning.

【0013】また、請求項6記載に係る発明は、第1の
発明の構成に加え、空気検出手段は、空気検出開始後、
凍結防止ヒータへの通電、サーミスタ温度Tsの検出を
繰り返しサーミスタ温度Tsと経過時間tの測定結果よ
りサーミスタ温度時間的変化率dTs/dtを求め予め
設定された水空気判別サーミスタ温度時間的変化率bと
比較しdTs/dt>bの場合は空気噛み状態と判定し
dTs/dt≦bの場合は水があると判定する。そし
て、熱交換器内の水の有無を確実に判定できるので空焚
きを防止することができる。
According to a sixth aspect of the present invention, in addition to the configuration of the first aspect, the air detecting means comprises:
Energization of the antifreeze heater, thermistor temperature T s detecting the repeat thermistor temperature T s and the elapsed time t measured results water air determined thermistor temperature time that is set previously obtained thermistor temperature temporal change rate dT s / dt than in Compared with the change rate b, if dT s / dt> b, it is determined that the air is caught, and if dT s / dt ≦ b, it is determined that there is water. Since the presence or absence of water in the heat exchanger can be reliably determined, it is possible to prevent dry burning.

【0014】また、請求項7記載に係る発明は、第1の
発明の構成に加え、空気検出手段は、空気検出開始後、
凍結防止ヒータへの一定時間の通電を行い発熱停止後、
一定時間ΔL経過した後、サーミスタ温度Tsの検出を
繰り返しサーミスタ温度Tsと経過時間tの測定結果よ
りサーミスタ温度時間的変化率dTs/dtを求め予め
設定された水空気判別サーミスタ温度時間的変化率cと
比較しdTs/dt≦cの場合は空気噛み状態と判定しd
s/dt>cの場合は水があると判定する。そして、熱
交換器内の水の有無を確実に判定できるので空焚きを防
止することができる。
According to a seventh aspect of the present invention, in addition to the configuration of the first aspect, the air detecting means includes:
After energizing the anti-freezing heater for a certain period of time and stopping heat generation,
After a certain time ΔL course, thermistor temperature T s detecting the repeat thermistor temperature T s and the elapsed time t measured results water air determined thermistor temperature time that is set previously obtained thermistor temperature temporal change rate dT s / dt than in Compared with the change rate c, if dT s / dt ≦ c, it is determined that the air is caught and d
If T s / dt> c, it is determined that there is water. Since the presence or absence of water in the heat exchanger can be reliably determined, it is possible to prevent dry burning.

【0015】また、請求項8記載に係る発明は、第1の
発明の構成に加え、空気検出手段は、空気検出開始後、
凍結防止ヒータへの通電、サーミスタ温度Tsの検出を
繰り返しサーミスタ温度Tsと経過時間tの測定結果よ
りサーミスタの蓄熱熱量を積分値∫t 0dTs・dtとし
て求め予め設定された水空気判別サーミスタ蓄熱熱量e
と比較し、∫t 0dTs・dt>eの場合は空気噛み状態と
判定し、∫t 0dTs・dt≦eの場合は水があると判定す
る。そして、熱交換器内の水の有無を確実に判定できる
ので空焚きを防止することができる。
The invention according to an eighth aspect is the invention according to the first aspect, further comprising the step of:
Energization of the antifreeze heater, integrated value heat storage heat of the thermistor from the measurement results of the repeated thermistor temperature T s and the elapsed time t detected by the thermistor temperature T s ∫ t 0 dT s · dt as determined preset water air discriminated Thermistor heat storage e
Compared to determine the case of ∫ t 0 dT s · dt> e it determines that the air chewing state, in the case of ∫ t 0 dT s · dt ≦ e is water. Since the presence or absence of water in the heat exchanger can be reliably determined, it is possible to prevent dry burning.

【0016】また、請求項9記載に係る発明は、第1の
発明の構成に加え、空気検出手段は、空気検出開始後、
凍結防止ヒータへの一定時間の通電を行い発熱停止後、
サーミスタ温度Tsの検出を繰り返しサーミスタ温度Ts
と経過時間tの測定結果よりサーミスタの蓄熱熱量を積
分値∫t 0dTs・dtとして求め予め設定された水空気
判別サーミスタ蓄熱熱量fと比較し、∫t 0dTs・dt>
fの場合は空気噛み状態と判定し、∫t 0dTs・dt≦f
の場合は水があると判定する。そして、熱交換器内の水
の有無を確実に判定できるので空焚きを防止することが
できる。
According to a ninth aspect of the present invention, in addition to the configuration of the first aspect, the air detecting means includes:
After energizing the anti-freezing heater for a certain period of time and stopping heat generation,
Thermistor temperature T s repeat the detection of the thermistor temperature T s
Compared with the elapsed time integral value of the thermal storage heat of the thermistor from the measurement results of the t ∫ t 0 dT s · dt as determined preset water air discriminated thermistor thermal storage heat f and, ∫ t 0 dT s · dt >
For f is determined that the air biting state, ∫ t 0 dT s · dt ≦ f
In the case of, it is determined that there is water. Since the presence or absence of water in the heat exchanger can be reliably determined, it is possible to prevent dry burning.

【0017】また、請求項10記載に係る発明は、第1
の発明の構成に加え、空気検出手段は、空気検出開始
後、凍結防止ヒータへの一定時間の通電を行い発熱させ
発熱終了前後の一定時間ΔFの間サーミスタ温度Ts
検出を繰り返しサーミスタ温度Tsと経過時間tの測定
結果よりサーミスタの蓄熱熱量を積分値∫ΔF 0dTs
dtとして求め、予め設定された水空気判別サーミスタ
蓄熱熱量gと比較し、∫ΔF0dTs・dt>gの場合は空
気噛み状態と判定し、∫ΔF0dTs・dt≦gの場合は水
があると判定する。そして、熱交換器内の水の有無を確
実に判定できるので空焚きを防止することができる。
The invention according to claim 10 is the first invention.
In addition to the configuration of the invention, the air detection means, after air detection starting, thermistor temperature T repeatedly detected by the thermistor temperature T s for a predetermined time ΔF around constant performs energization time heating is not heating the end of the anti-freeze heater integrated value from the thermal storage heat thermistor s elapsed time t measured results of ∫Δ F 0 dT s ·
determined as dt, and compared with a preset water air discriminated thermistor thermal storage heat g, in the case of ∫Δ F 0dT s · dt> g is determined that the air chewing state, in the case of ∫Δ F 0dT s · dt ≦ g It is determined that there is water. Since the presence or absence of water in the heat exchanger can be reliably determined, it is possible to prevent dry burning.

【0018】[0018]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】(実施例1)図1は本発明の実施例1にお
ける給湯装置の概略構成図である。図1において、熱交
換器10には、給水管11と給湯管12が接続されてい
る。給水管11には、熱交換器10への水の流入を検出
する流動検出手段である水量検出器13、水温を検出す
る水温検出器14が設けられている。熱交換器10の出
口のパイプには、空気噛みを検出するサーミスタ31と
凍結防止ヒータ37を利用した空気検出器15が設けら
れている。また、熱交換器10を迂回し給水管11と給
湯管12を連絡するバイパス管16が設けられ、このバ
イパス管16には、熱交換器10からの湯とバイパス管
16からの水の混合比を調節する水比例弁17が設けら
れている。この水比例弁17は、ソレノイドへの電流の
調節によって水圧に対してバランスを取った弁が、バイ
パス管16の開度を調節し通過する水量を調節するもの
で、電流の停止により全開状態で保持されるノーマルオ
ープン型となっている。
(Embodiment 1) FIG. 1 is a schematic configuration diagram of a hot water supply apparatus in Embodiment 1 of the present invention. In FIG. 1, a water supply pipe 11 and a hot water supply pipe 12 are connected to a heat exchanger 10. The water supply pipe 11 is provided with a water amount detector 13 which is a flow detecting means for detecting inflow of water into the heat exchanger 10, and a water temperature detector 14 for detecting a water temperature. The pipe at the outlet of the heat exchanger 10 is provided with a thermistor 31 for detecting air entrapment and an air detector 15 utilizing a freeze prevention heater 37. A bypass pipe 16 is provided to bypass the heat exchanger 10 and connect the water supply pipe 11 and the hot water supply pipe 12. The bypass pipe 16 has a mixing ratio of hot water from the heat exchanger 10 and water from the bypass pipe 16. Is provided with a water proportional valve 17. The water proportional valve 17 is a valve that balances the water pressure by adjusting the current to the solenoid, and adjusts the opening degree of the bypass pipe 16 to adjust the amount of water passing therethrough. It is a normally open type that is retained.

【0020】熱交換器10の近傍の給湯管12には温度
検出手段である湯温検出器18が設けられ、また、バイ
パス管16の合流点以降に水量制御弁19、混合水温検
出器20が設けられている。給湯管12は更に給湯装置
本体21外の給湯管22に接続され、端末に設けた湯水
混合栓23に連通している。制御器24にはタイマー2
5をしており、各種センサーの信号が取り込まれ、また
各種アクチュエータへの信号や操作出力が出力されてい
る。そして、制御器24にはボリュームで構成された湯
温設定器25や停止時制御部26が設けられている。熱
交換器10は、加熱手段であるガスバーナ27で加熱さ
れ、このガスバーナ27へのガス量を調節する加熱調節
手段の一部としてガス比例弁28が設けられている。ま
た、ガスのオン、オフは加熱調節手段の別の一部を構成
する元電磁弁29により行われる。なお、本実施例では
燃料をガスで説明しているが石油等の他の燃料でも良
い。
The hot water supply pipe 12 near the heat exchanger 10 is provided with a hot water temperature detector 18 as a temperature detecting means, and a water quantity control valve 19 and a mixed water temperature detector 20 are provided after the junction of the bypass pipe 16. Is provided. The hot-water supply pipe 12 is further connected to a hot-water supply pipe 22 outside the hot-water supply apparatus main body 21 and communicates with a hot-water mixing tap 23 provided at a terminal. The controller 24 has a timer 2
5, signals from various sensors are taken in, and signals and operation outputs to various actuators are output. The controller 24 is provided with a hot water temperature setter 25 constituted by a volume and a stop-time control unit 26. The heat exchanger 10 is heated by a gas burner 27 as a heating means, and a gas proportional valve 28 is provided as a part of a heating adjustment means for adjusting a gas amount to the gas burner 27. The gas is turned on and off by a main solenoid valve 29 which constitutes another part of the heating control means. In this embodiment, the fuel is described as gas, but other fuel such as petroleum may be used.

【0021】空気検出器15の実装部は図2に示すよう
に構成されている。空気検出器15は保護管30で保護
されたサーミスタ31が充填剤32で充填され、リード
線33を外に臨ませて構成されており、固定具34によ
りシール材35でシールされて熱交換器10の出口の水
管36に取りつけられている。凍結防止ヒータ37はサ
ーミスタ31と対向するように水管31に取り付けられ
ている。そして、凍結防止ヒータ37を発熱させサーミ
スタ31の抵抗値より温度を測定し、凍結防止ヒータ3
7からサーミスタ31への伝熱状態の変化から周囲に介
在するものが水か空気か判断をしている。
The mounting portion of the air detector 15 is configured as shown in FIG. The air detector 15 is configured such that a thermistor 31 protected by a protective tube 30 is filled with a filler 32 and a lead wire 33 is exposed to the outside. It is attached to a water pipe 36 at the outlet of the ten. The freeze prevention heater 37 is attached to the water pipe 31 so as to face the thermistor 31. Then, the anti-freezing heater 37 is caused to generate heat, and the temperature is measured from the resistance value of the thermistor 31.
From the change in the state of heat transfer from 7 to the thermistor 31, it is determined whether or not the surroundings are water or air.

【0022】次にこの実施例の動作を説明する。動作に
ついては、図3のフローチャートにその要部を示してい
る。電源スイッチがオン操作され〈S1〉、かつ加熱ス
イッチがオン操作されていると〈S2〉、給湯の停止時
において熱交換器10を加熱できるモードに入る。この
状態で水量検出器13で検出される水の流量が所定値
(例えば2l/min)を越えると、端末の湯水混合栓23
が開けられたと判断して通常の給湯モードに入り〈S
3〉、設定された温度の湯を供給する。また、湯温検出
器18で検出される出湯温度と設定の温度が比較され、
水温検出器14の水温と水量検出器13の値が取り込ま
れ、水比例弁17と水量制御弁17、ガス比例弁28が
調節されて、所望の温度の湯が給湯管22から供給され
る〈S4〉。水量検出器13で検出される水の流量が所
定値(例えば1.5l/min)以下の場合、あるいは給湯
の停止時においては〈S3〉、給湯停止時の熱交換器1
0への加熱モードが可能となる。
Next, the operation of this embodiment will be described. The operation is shown in the flowchart of FIG. If the power switch is turned on and <S1> and the heating switch is turned on <S2>, a mode is entered in which the heat exchanger 10 can be heated when the hot water supply is stopped. In this state, when the flow rate of water detected by the water amount detector 13 exceeds a predetermined value (for example, 2 l / min), the hot water mixing tap 23
Is determined to have been opened and enters the normal hot water supply mode <S
3> Supply hot water at a set temperature. Also, the hot water temperature detected by the hot water temperature detector 18 is compared with the set temperature,
The water temperature of the water temperature detector 14 and the value of the water amount detector 13 are taken in, the water proportional valve 17, the water amount control valve 17, and the gas proportional valve 28 are adjusted, and hot water at a desired temperature is supplied from the hot water supply pipe 22 <S4>. When the flow rate of water detected by the water amount detector 13 is equal to or less than a predetermined value (for example, 1.5 l / min) or when the hot water supply is stopped <S3>, the heat exchanger 1 when the hot water supply is stopped is stopped.
A heating mode to zero is possible.

【0023】ここで、空気検出器15が空気噛みを検出
している時は、制御を止める加熱停止モードに移行し、
バーナ27による熱交換器10への加熱を行わない〈S
5〉。通電加熱後、十分時間が経過した後は、周囲温度
の検出もでき、熱交換器10の温度が異常に上昇した場
合に補完的に温度検出を行っている。空気検出器15が
空気噛みを検出していない時は、湯温検出器18で検出
される温度が所定温度として定めた下限値を下回ると
〈S6〉、給湯装置全体が冷えていると停止時制御部2
6が判断して流動停止時に於ける加熱モードを進める。
湯温検出器18と比較される下限値は、50℃前後と
し、湯温検出器18で検出される温度がこの下限値以下
であると、流動停止時に於ける加熱モードの次のステッ
プに進む〈S6〉。湯温検出器18で検出される温度が
下限値を下回ったら、まず、タイマー25の設定された
加熱時間を読み込む〈S7〉。
Here, when the air detector 15 detects the air bite, the control is shifted to the heating stop mode for stopping the control,
The heating of the heat exchanger 10 by the burner 27 is not performed <S
5>. After a sufficient time has passed after the heating, the ambient temperature can be detected. When the temperature of the heat exchanger 10 rises abnormally, the temperature is detected complementarily. When the temperature detected by the hot water temperature detector 18 falls below a predetermined lower limit value when the air detector 15 has not detected the air bite (S6), when the entire hot water supply device is cold, the operation is stopped. Control unit 2
6 judges and advances the heating mode when the flow is stopped.
The lower limit value to be compared with the hot water temperature detector 18 is about 50 ° C., and when the temperature detected by the hot water temperature detector 18 is equal to or lower than the lower limit value, the process proceeds to the next step of the heating mode when the flow is stopped. <S6>. When the temperature detected by the hot water temperature detector 18 falls below the lower limit value, first, the heating time set by the timer 25 is read <S7>.

【0024】次に、前回給湯を行った時のメモリーされ
た水温検出器14で検出された水温と現在の水温を読み
込む〈S8〉。これは、給水温度が何度であるかを判断
し加熱時間や加熱開始温度を補正するためであり、水温
が高い場合は時間は短目に温度は低目に、水温が低い場
合は時間は長目に温度は高目になるように熱交換器10
を加熱する時間を補正する〈S9〉。そして、再出湯時
に給湯管12を経て極力、設定温度に近い温度の湯を供
給することに役立てている。次に、元電磁弁29を開け
〈S11〉、同時にタイマー25が計時を開始し〈S1
2〉、ガス比例弁28の開度を点火し易い開度1の状態
にまで開けて点火を行う〈S13〉。
Next, the water temperature detected by the water temperature detector 14 and the current water temperature stored in the memory at the time of the previous hot water supply are read (S8). This is to judge how many times the supply water temperature is and to correct the heating time and the heating start temperature.If the water temperature is high, the time is short, the temperature is low, and if the water temperature is low, the time is Heat exchanger 10 so that the temperature is longer
The time for heating is corrected <S9>. Then, it is useful to supply hot water having a temperature as close as possible to the set temperature via the hot water supply pipe 12 at the time of re-water supply. Next, the original solenoid valve 29 is opened <S11>, and at the same time, the timer 25 starts counting time (S1).
2> The ignition of the gas proportional valve 28 is performed by opening the opening of the gas proportional valve 28 to the state of the opening 1 that facilitates ignition (S13).

【0025】次に、着火を確認しガス比例弁28の開度
を開度2の状態にまで絞る〈S14〉。この開度は、通
常の給湯が行われている状態での最小の開度に相当して
おり、この最小開度で加熱しても負荷が小さいため、熱
交換器10の温度は、次第に上昇して行く。なお、給湯
装置として最少加熱量が極めて低く取れる場合は、湯温
検出器18で検出される温度を一定に保つ方法も可能で
ある。熱交換器10の加熱中に湯温検出器18で検出さ
れる温度が異常な変化勾配を示す時は、熱交換器10へ
の空気噛み、あるいは加熱異常と判断して加熱を停止す
る〈S15〉。加熱の開始を判断する所定値である下限
値は、T1=50℃である。そして上限値T2を人が万一
触れても火傷をしない程度の60℃に定めている。加熱
時間は標準状態(水温15℃、混合水温40℃)で5秒
間となっており、前述のように、水温に応じて補正がさ
れている。
Next, the ignition is confirmed, and the opening of the gas proportional valve 28 is reduced to the state of the opening 2 (S14). This opening corresponds to the minimum opening in a state where normal hot water supply is performed. Even when heating is performed at this minimum opening, the load is small, and the temperature of the heat exchanger 10 gradually increases. Go. In addition, when the minimum heating amount can be taken extremely low as a hot water supply device, a method of keeping the temperature detected by the hot water temperature detector 18 constant is also possible. If the temperature detected by the hot water temperature detector 18 during the heating of the heat exchanger 10 shows an abnormal change gradient, it is determined that air has caught in the heat exchanger 10 or that the heating is abnormal, and the heating is stopped <S15. 〉. The lower limit, which is a predetermined value for judging the start of heating, is T 1 = 50 ° C. The upper limit T 2 is set to 60 ° C. so that a person does not get burned even if touched. The heating time is 5 seconds under standard conditions (water temperature 15 ° C., mixed water temperature 40 ° C.), and correction is made according to the water temperature as described above.

【0026】なお、タイマー25が所定時間(5秒また
は5秒の補正値)を越えたら、タイムアップと見なし、
停止動作に入る〈S16〉。万が一、タイマー25が故
障したり、ガスバーナ27の能力制御が故障して、湯温
検出器18で検出される温度が上限値(70℃)を越え
た場合は、直ちに温度優先で元電磁弁29を閉成する停
止動作に入る〈S17〉。また、補完的に空気検出器1
5で検出される温度が上限値(70℃)を越えた場合
も、直ちに温度優先で元電磁弁29を閉成する停止動作
に入る〈S18〉。加熱の停止に当たっては、元電磁弁
29が閉じられ〈S19〉、以後、加熱の停止した後
は、湯温検出器18で検出される温度が所定温度である
下限値以下になる迄は燃焼は停止している。
If the timer 25 exceeds a predetermined time (5 seconds or a correction value of 5 seconds), it is considered that the time is up, and
The operation enters the stop operation <S16>. In the event that the timer 25 fails or the capacity control of the gas burner 27 fails and the temperature detected by the hot water temperature detector 18 exceeds the upper limit (70 ° C.), the original solenoid valve 29 is immediately given priority to the temperature. <S17>. In addition, the air detector 1
If the temperature detected in step 5 exceeds the upper limit value (70 ° C.), a stop operation for closing the original solenoid valve 29 immediately with priority on temperature is started (S18). When the heating is stopped, the original solenoid valve 29 is closed <S19>, and thereafter, after the heating is stopped, the combustion is not performed until the temperature detected by the hot water temperature detector 18 becomes equal to or lower than the lower limit value which is the predetermined temperature. Has stopped.

【0027】以上のような動作により、給湯停止時の湯
の温度を一定値に保持し即出湯体制にしている。したが
って一般の家庭用の給湯装置を想定すると、従来の給湯
装置では配管長が5m程度のシステムで、端末の蛇口を
ひねってから約15秒位かかって湯が供給されることが
普通であったものが、本発明実施例品によれば5秒程度
に短縮可能である。
With the above operation, the temperature of the hot water when the hot water supply is stopped is maintained at a constant value, and the system is ready for hot water supply. Therefore, assuming a general household hot water supply device, in a conventional hot water supply device, in a system having a pipe length of about 5 m, it is normal that hot water is supplied in about 15 seconds after twisting a faucet of a terminal. However, according to the embodiment of the present invention, it can be reduced to about 5 seconds.

【0028】従来の給湯装置は、保有水量等に起因する
給湯装置自身の立ち上がりの時間が10秒程度、また配
管の保有水量を押し出す時間が5秒程度かかっていた
が、本実施例品では給湯装置自身の立ち上がりの時間が
短縮できるため、配管の滞留水の押し出し時間だけで済
む結果となる。
In the conventional hot water supply apparatus, it takes about 10 seconds for the hot water supply apparatus itself to rise due to the amount of retained water and the like and about 5 seconds to push out the amount of water retained in the piping. Since the rise time of the apparatus itself can be shortened, only the time for pushing out the staying water in the pipe is required.

【0029】(実施例2)図4に実施例2を示す。図4
は本発明の実施例2における給湯装置の概略構成図であ
る。湯温検出器15のサーミスタ31は熱交換器10近
傍の温度を検出する湯温検出器18のサーミスタ38と
共用している。空気検出動作は給湯動作を停止している
場合にのみ作動するので給湯動作時における熱交換器1
0の出口温度を計測する湯温検出器18の動作を妨げる
ことは無く湯温検出器18の機能はサーミスタ31とサ
ーミスタ38が別個の場合と何ら変わることはない。ま
た空気検出はサーミスタ31と凍結防止ヒータ37で行
うので従来の給湯器と比較し部品点数を増やすことなく
制御器24のソフト内容を変更するだけで良い。よって
給湯時に湯温制御を行うため必要とされる温度検出手段
と空気検出手段のサーミスタとを共用することでサーミ
スタを2つから1つに削減し性能を低下させることなく
低コスト化を図れる効果がある。
Second Embodiment FIG. 4 shows a second embodiment. FIG.
FIG. 4 is a schematic configuration diagram of a hot water supply device according to a second embodiment of the present invention. The thermistor 31 of the hot water temperature detector 15 is used in common with the thermistor 38 of the hot water temperature detector 18 for detecting the temperature near the heat exchanger 10. The air detection operation is performed only when the hot water supply operation is stopped.
The operation of the hot water temperature detector 18 for measuring the outlet temperature of 0 is not hindered, and the function of the hot water temperature detector 18 is not different from the case where the thermistor 31 and the thermistor 38 are separate. Further, since the air detection is performed by the thermistor 31 and the anti-freezing heater 37, it is only necessary to change the software content of the controller 24 without increasing the number of parts as compared with the conventional water heater. Therefore, by sharing the thermistor of the temperature detection means and the thermistor of the air detection means required for performing hot water temperature control at the time of hot water supply, the number of thermistors can be reduced from two to one, and the cost can be reduced without lowering the performance. There is.

【0030】(実施例3)図5に実施例3を示す。図5
は本発明の実施例3における空気検出手段15の概略構
成図である。熱交換器出口近傍の水管の同位置にサーミ
スタ31と凍結防止ヒータ37とを対向して水管36に
取り付けた構成としている。よってサーミスタ31と凍
結防止ヒータ37を最短距離に配置でき、凍結防止ヒ―
タ37の加熱による水管36・水管36内の温度上昇を
サーミスタ31によって高速かつ顕著に検出することが
できる。よって短時間かつ精度良く水管内の水の有無が
判定できる効果がある。また、サーミスタ31と凍結防
止ヒータ37を近接する構成とし、サーミスタ31によ
る水管36内の温度上昇の検出感度を落とし、凍結防止
ヒータ37の取付に便宜を図るようにしてもよい。なお
近接とは水管36の円筒方向及び円周方向に近い位置と
する。
Third Embodiment FIG. 5 shows a third embodiment. FIG.
FIG. 9 is a schematic configuration diagram of an air detection unit 15 in Embodiment 3 of the present invention. The thermistor 31 and the anti-freezing heater 37 are attached to the water tube 36 at the same position of the water tube near the heat exchanger outlet, facing the same. Therefore, the thermistor 31 and the anti-freezing heater 37 can be arranged at the shortest distance, and the anti-freezing heater
The temperature rise in the water pipe 36 and the water pipe 36 due to the heating of the heater 37 can be rapidly and remarkably detected by the thermistor 31. Therefore, there is an effect that the presence or absence of water in the water pipe can be determined in a short time and accurately. Alternatively, the thermistor 31 and the anti-freezing heater 37 may be configured to be close to each other, so that the detection sensitivity of the temperature rise in the water pipe 36 by the thermistor 31 may be reduced to facilitate installation of the anti-freezing heater 37. Note that “close” means a position near the cylindrical direction and the circumferential direction of the water pipe 36.

【0031】(実施例4)図6、図7に実施例4を示
す。図6は空気噛みの検出動作原理図、図7は空気噛み
検出のフローチャートである。
(Fourth Embodiment) FIGS. 6 and 7 show a fourth embodiment. FIG. 6 is a principle diagram of the operation of detecting air entrapment, and FIG. 7 is a flowchart of air entrapment detection.

【0032】まず、基準温度T0を検出した(1)後、
凍結防止ヒータへの一定時間の通電を行い発熱させ発熱
停止直後、サーミスタの抵抗値を測定し発熱停止後温度
1を求め(2)、空気噛み判別値ΔT=T1−T0を算出
し、予め器具の特性によって決めておいた水空気判別値
ΔTaより大きい場合は空気、小さい場合は水と判定す
る。原理的には水がある場合は水がある分サーミスタ周
辺の熱容量が大きくなり凍結防止ヒータからの伝達熱量
が水管、水に吸収されてサーミスタの昇温が小さくな
る。空気がある場合は空気の比熱が水に比べ著しく小さ
いのでサーミスタ周辺の熱容量が小さくなり凍結防止ヒ
ータからの伝達熱量が水管と空気に吸収される結果サー
ミスタの昇温が大きくなることを利用している。
First, after detecting the reference temperature T 0 (1),
Immediately after a predetermined performs energization time heating is not heating stopped to antifreeze heater, to determine the resistance value measured heat generation stop after the temperature T 1 of the thermistor (2), to calculate the air chewing discrimination value ΔT = T 1 -T 0 , if previously instrument characteristics greater than the water-air discriminant value [Delta] T a which has been determined by the determining air, is smaller than the water. In principle, when there is water, the heat capacity around the thermistor increases due to the presence of water, and the amount of heat transferred from the anti-freezing heater is absorbed by the water pipe and water, so that the temperature rise of the thermistor decreases. When air is present, the specific heat of air is much smaller than that of water, so the heat capacity around the thermistor is small, and the amount of heat transferred from the anti-freezing heater is absorbed by the water pipe and air. I have.

【0033】図8に発明者らの実験したデータを示す。
凍結防止ヒータを120秒通電した後、自然放熱させた
場合の経過時間と空気噛み判別値ΔT(deg)を水管
に水が有る場合と空気が有る場合についてプロットした
ものである。水が有る場合に比べ、空気が有る場合は空
気噛み判別値ΔTが大きくなるのがわかる。また、凍結
防止ヒータ通電後一定時間は水、空気がある場合とも凍
結防止ヒータの余熱でサーミスタ温度が上昇を続け最大
値を付けた後サーミスタ温度が下降に向かう。凍結防止
ヒータ通電後サーミスタ温度が最大値を付けるまでの時
間は空気の方が水に比べ速い。よって水が有ると判定さ
れた場合は加熱モードへ進みバーナによる加熱が開始さ
れ、即出湯体制にはいる。空気噛みと判定された場合は
加熱停止モードに進みバーナによる加熱は中止され、熱
交換器の空焚きを防止することができる。
FIG. 8 shows data obtained by experiments performed by the inventors.
The elapsed time and the air bite determination value ΔT (deg) in the case where the anti-freezing heater is energized for 120 seconds and the heat is naturally radiated are plotted for the case where there is water in the water pipe and the case where there is air. It can be seen that the air bite determination value ΔT is larger when there is air than when there is water. In addition, even if there is water and air for a certain period of time after energization of the antifreeze heater, the thermistor temperature continues to rise due to the residual heat of the antifreeze heater, reaches a maximum value, and then decreases. The time required for the thermistor temperature to reach the maximum value after energization of the antifreeze heater is faster in air than in water. Therefore, when it is determined that there is water, the process proceeds to the heating mode, heating by the burner is started, and the system is immediately in a hot water supply system. If it is determined that the air has been caught, the process proceeds to the heating stop mode, in which the heating by the burner is stopped, and it is possible to prevent the heat exchanger from being idle.

【0034】なお、凍結防止ヒータ通電加熱時間はサー
ミスタ周囲の温度が高くなるに従って凍結防止ヒータ通
電加熱時間を長くし、加熱温度を上げることでサーミス
タ周囲温度の影響を少なくしている。よってサーミスタ
周囲の温度により凍結防止ヒータ通電加熱時間を変化さ
せる方が空気噛み判別値ΔTを精度良く算出できる。我
々の実験では次の表のごとく最適な凍結防止ヒータ通電
加熱時間を設定している。
The anti-freezing heater energizing heating time is made longer by increasing the anti-freezing heater energizing heating time as the temperature around the thermistor increases, and the heating temperature is increased to reduce the influence of the thermistor ambient temperature. Therefore, the air bite determination value ΔT can be calculated more accurately by changing the anti-freezing heater energizing heating time depending on the temperature around the thermistor. In our experiments, the optimal anti-freezing heater energizing heating time is set as shown in the following table.

【0035】[0035]

【表1】 [Table 1]

【0036】(実施例5)図9、図10に実施例5を示
す。図9は空気噛みの検出動作原理図、図10は空気噛
み検出のフローチャートである。まず、基準温度T0
検出した(1)後、凍結防止ヒータへの一定時間の通電
を行い発熱させる。通電を断った後、ΔL経過した時点
のサーミスタの抵抗値を測定しサーミスタ温度T1を求
め(2)、空気噛み判別値ΔT=T1−T0を算出し、予
め器具の特性によって決めておいた水空気判別値ΔTa
より大きい場合は空気、小さい場合は水と判定する。原
理的には凍結防止ヒータ通電後一定時間は水、空気があ
る場合とも凍結防止ヒータの余熱でサーミスタ温度が上
昇を続け空気有りの最大値を付けた時点が水・空気の判
定となる空気噛み判別値ΔTの差が最も顕著となる。こ
の余熱で空気が有る場合にサーミスタの温度が最大値を
付けるまでの時間をΔLとすることで水空気の判別をよ
り精度の高いものとすることができる。
Fifth Embodiment FIGS. 9 and 10 show a fifth embodiment. FIG. 9 is a principle diagram of the operation of detecting air entrapment, and FIG. 10 is a flowchart of air entrapment detection. First, after detecting the reference temperature T 0 (1), the anti-freezing heater is energized for a certain period of time to generate heat. After the power is turned off, the resistance value of the thermistor at the time when ΔL has elapsed is measured to determine the thermistor temperature T 1 (2), and the air bite determination value ΔT = T 1 −T 0 is calculated and determined in advance according to the characteristics of the appliance. Put water / air discrimination value ΔT a
If it is larger, it is judged as air, and if smaller, it is judged as water. In principle, even if there is water and air for a certain period of time after energization of the antifreeze heater, the thermistor temperature continues to rise due to the residual heat of the antifreeze heater, and when the maximum value of the presence of air is reached, the air bite that determines water / air The difference between the discrimination values ΔT is most noticeable. If the time until the temperature of the thermistor reaches the maximum value when there is air due to the residual heat is set to ΔL, the determination of water / air can be made more accurate.

【0037】図8の例では凍結防止ヒータの通電時間を
120秒とした場合ΔL=60秒が最適な設定値とな
る。そして水が有ると判定された場合は加熱モードへ進
みバーナによる加熱が開始され、即出湯体制にはいる。
空気噛みと判定された場合は加熱停止モードに進みバー
ナによる加熱は中止され、熱交換器の空焚きを防止する
ことができる。
In the example of FIG. 8, when the energization time of the anti-freezing heater is 120 seconds, ΔL = 60 seconds is the optimum set value. When it is determined that there is water, the process proceeds to the heating mode, in which heating by the burner is started, and the system is immediately in a hot water supply system.
If it is determined that the air has been caught, the process proceeds to the heating stop mode, in which the heating by the burner is stopped, and it is possible to prevent the heat exchanger from being idle.

【0038】なお、凍結防止ヒータ通電加熱時間は実施
例4と同様にサーミスタ周囲の温度が高くなるに従って
凍結防止ヒータ通電加熱時間を長くし、加熱温度を上げ
ることでサーミスタ周囲温度の影響を少なくし空気噛み
判別値ΔTを精度良く算出できるようにしている。
As in the case of the fourth embodiment, the anti-freezing heater energizing heating time is increased as the temperature around the thermistor increases, and the effect of the thermistor ambient temperature is reduced by increasing the heating temperature. The air bite determination value ΔT can be accurately calculated.

【0039】(実施例6)図11、図12に実施例6を
示す。図11は空気噛みの検出動作原理図、図12は空
気噛み検出のフローチャートである。空気噛み検出スタ
ート(経過時間t=0)よりサーミスタ温度Tsを測定、
凍結防止ヒータ通電加熱を予め設定しておいた設定時間
tpを越えるまでn回繰り返し行い、その後計測したT
sとtの関係よりサーミスタの加熱時温度勾配、すなわ
ちサーミスタ温度時間的変化率dT s/dtを算出し、
予め器具の特性によって決めておいた水空気判別サーミ
スタ温度時間的変化率bより大きい場合は空気、小さい
場合は水と判定する。原理的には水がある場合は水があ
る分サーミスタ周辺の熱容量が大きくなり凍結防止ヒー
タからの伝達熱量が水管、水に吸収されてサーミスタの
昇温が小さくなり温度勾配は小さくなる。空気がある場
合は空気の比熱が水に比べ著しく小さいのでサーミスタ
周辺の熱容量が小さくなり凍結防止ヒータからの伝達熱
量が水管と空気に吸収される結果サーミスタの昇温が大
きくなり温度勾配が大きいなることを利用している。水
が有ると判定された場合は加熱モードへ進みバーナによ
る加熱が開始され、即出湯体制にはいる。空気噛みと判
定された場合は加熱停止モードに進みバーナによる加熱
は中止され、熱交換器の空焚きを防止することができ
る。
(Embodiment 6) FIG. 11 and FIG.
Show. FIG. 11 is a diagram illustrating the principle of operation for detecting air entrapment, and FIG.
It is a flowchart of a bite detection. Air bite detection star
From the thermistor temperature T (elapsed time t = 0)sMeasure the
Preset time for anti-freezing heater energizing heating
Repeated n times until it exceeds tp, and then measured T
sFrom the relationship between t and t, the temperature gradient during heating of the thermistor,
Thermistor temperature change rate over time dT s/ Dt, and
Water / air discrimination thermistor determined in advance according to the characteristics of the equipment
Air if smaller than star temperature temporal change rate b, small
In this case, it is determined to be water. In principle, if there is water,
The heat capacity around the thermistor increases,
Heat transferred from the thermistor is absorbed by the water pipe and water.
The temperature rise becomes smaller and the temperature gradient becomes smaller. Place with air
In this case, the specific heat of air is significantly smaller than that of water.
Heat transfer from the anti-freezing heater due to a decrease in heat capacity around
Volume is absorbed by the water tube and air, resulting in a large temperature rise of the thermistor.
It takes advantage of the fact that the temperature gradient becomes large. water
If it is determined that there is
Heating is started and the system is ready for hot water. Air bite and size
If set, proceed to heating stop mode and heat with burner
Has been stopped, and it is possible to prevent empty heating of the heat exchanger.
You.

【0040】なお、凍結防止ヒータ通電加熱時間は実施
例4と同様にサーミスタ周囲の温度が高くなるに従って
凍結防止ヒータ通電加熱時間を長くし、加熱温度を上げ
ることでサーミスタ周囲温度の影響を少なくしサーミス
タ温度時間的変化率dTs/dtを精度良く算出できる
ようにしている。
As in the case of the fourth embodiment, the anti-freezing heater energizing heating time is increased as the temperature around the thermistor increases, and the effect of the thermistor ambient temperature is reduced by increasing the heating temperature. the thermistor temperature temporal change rate dT s / dt is allowed to be accurately calculated.

【0041】(実施例7)図13、図14に実施例7を
示す。図13は空気噛みの検出動作原理図、図14は空
気噛み検出のフローチャートである。まず、凍結防止ヒ
ータへの一定時間の通電を行い発熱させる。通電を断っ
た後、ΔL経過した時点よりサーミスタ温度Tsの計測
を開始し(経過時間t=0)、予め設定しておいた設定
時間tqを越えるまでn回繰り返し行い、その後計測し
たTsとtの関係よりサーミスタの放熱時温度勾配、す
なわちサーミスタ温度時間的変化率dTs/dtを算出
し、予め器具の特性によって決めておいた水空気判別サ
ーミスタ温度時間的変化率cより大きい場合は水、小さ
い場合は空気と判定する。原理的には凍結防止ヒータ通
電後は水、空気がある場合とも凍結防止ヒータの余熱で
サーミスタ温度が上昇を続け空気有りの場合が最大値を
付け下降に転じた後も水有りの場合は一定時間温度上昇
を続け最大値に達することを利用する。つまりΔLを余
熱で空気が有る場合にサーミスタの温度が最大値を付け
るまでの時間に設定することでΔL経過後の温度勾配は
水が有る場合は正の傾き、空気が有る場合は負の傾きと
なるので水空気の判別をより精度の高いものとすること
ができる。水が有ると判定された場合は加熱モードへ進
みバーナによる加熱が開始され、即出湯体制にはいる。
空気噛みと判定された場合は加熱停止モードに進みバー
ナによる加熱は中止され、熱交換器の空焚きを防止する
ことができる。
(Seventh Embodiment) FIGS. 13 and 14 show a seventh embodiment. FIG. 13 is a diagram illustrating the principle of operation for detecting air entrapment, and FIG. 14 is a flowchart of air entrapment detection. First, the anti-freezing heater is energized for a certain time to generate heat. After refused energization, from the time of the ΔL elapsed starts measuring the thermistor temperature T s (elapsed time t = 0), repeated n times until exceeds the set time tq set in advance, then the measured T s The temperature gradient at the time of heat radiation of the thermistor, that is, the thermistor temperature temporal change rate dT s / dt is calculated from the relationship between t and t. It is determined to be water, and to be air if smaller. In principle, the temperature of the thermistor continues to rise due to the residual heat of the anti-freeze heater, even when there is water and air after the anti-freeze heater is energized. Utilize the fact that the temperature keeps rising for a time and reaches the maximum value. In other words, by setting ΔL to the time until the temperature of the thermistor reaches the maximum value when there is air due to residual heat, the temperature gradient after elapse of ΔL has a positive slope when there is water and a negative slope when there is air. Therefore, the determination of water / air can be made more accurate. If it is determined that there is water, the process proceeds to the heating mode, in which heating by the burner is started, and the system is immediately in the hot water supply system.
If it is determined that the air has been caught, the process proceeds to the heating stop mode, in which the heating by the burner is stopped, and it is possible to prevent the heat exchanger from being idle.

【0042】なお、凍結防止ヒータ通電加熱時間は実施
例4と同様にサーミスタ周囲の温度が高くなるに従って
凍結防止ヒータ通電加熱時間を長くし、加熱温度を上げ
ることでサーミスタ周囲温度の影響を少なくしサーミス
タ温度時間的変化率dTs/dtを精度良く算出できる
ようにしている。
As in the case of the fourth embodiment, the anti-freezing heater energizing heating time is increased as the temperature around the thermistor increases, and the influence of the thermistor ambient temperature is reduced by increasing the heating temperature. the thermistor temperature temporal change rate dT s / dt is allowed to be accurately calculated.

【0043】(実施例8)図15、図16に実施例8を
示す。図15は空気噛みの検出動作原理図、図16は空
気噛み検出のフローチャートである。空気噛み検出スタ
ート(経過時間t=0)よりサーミスタ温度Tsを測定、
凍結防止ヒータ通電加熱を予め設定しておいた設定時間
trを越えるまでn回繰り返し行い、その後計測したT
sとtの関係よりサーミスタの加熱時の蓄熱熱量を積分
値∫tr 0dTs・dtとして求め、予め設定された水空気
判別サーミスタ蓄熱熱量eより大きい場合は空気、小さ
い場合は水と判定する。原理的には水がある場合は水が
ある分サーミスタ周辺の熱容量が大きくなり凍結防止ヒ
ータからの伝達熱量が水管、水に吸収されてサーミスタ
の昇温が小さくなり蓄熱熱量∫tr 0dTs・dtは小さく
なる。
(Eighth Embodiment) FIGS. 15 and 16 show an eighth embodiment. FIG. 15 is a principle diagram of the operation of detecting air entrapment, and FIG. 16 is a flowchart of air entrapment detection. Measuring the thermistor temperature T s than air chewing detection start (elapsed time t = 0),
The anti-freezing heater energization heating is repeated n times until a preset time tr is exceeded, and then the measured T
From the relationship between s and t, the amount of heat stored during the heating of the thermistor is determined as an integral value ∫ tr 0 dT s · dt. . In principle, if there is water, the heat capacity around the thermistor increases due to the presence of water, and the amount of heat transferred from the anti-freezing heater is absorbed by the water pipe and water, so that the temperature rise of the thermistor decreases and the heat storage heat quantity ∫ tr 0 dT s · dt becomes smaller.

【0044】空気がある場合は空気の比熱が水に比べ著
しく小さいのでサーミスタ周辺の熱容量が小さくなり凍
結防止ヒータからの伝達熱量が水管と空気に吸収される
結果サーミスタの昇温が大きくなり蓄熱熱量∫tr 0dTs
・dtが大きくなることを利用している。水が有ると判
定された場合は加熱モードへ進みバーナによる加熱が開
始され、即出湯体制にはいる。空気噛みと判定された場
合は加熱停止モードに進みバーナによる加熱は中止さ
れ、熱交換器の空焚きを防止することができる。なお、
凍結防止ヒータ通電加熱時間は実施例4と同様にサーミ
スタ周囲の温度が高くなるに従って凍結防止ヒータ通電
加熱時間を長くし、加熱温度を上げることでサーミスタ
周囲温度の影響を少なくしサーミスタの蓄熱熱量∫tr 0
dTs・dtを精度良く算出できるようにしている。
In the presence of air, the specific heat of air is much smaller than that of water, so the heat capacity around the thermistor is reduced, and the amount of heat transferred from the anti-freezing heater is absorbed by the water pipe and air. ∫ tr 0 dT s
-The fact that dt is increased is used. If it is determined that there is water, the process proceeds to the heating mode, in which heating by the burner is started, and the system is immediately in the hot water supply system. If it is determined that the air has been caught, the process proceeds to the heating stop mode, in which the heating by the burner is stopped, and it is possible to prevent the heat exchanger from being idle. In addition,
The energization heating time of the anti-freezing heater is increased as the temperature around the thermistor increases as in the fourth embodiment, and the energization heating time of the anti-freezing heater is lengthened to increase the heating temperature, thereby reducing the effect of the thermistor ambient temperature and reducing the heat storage heat of the thermistor. tr 0
The dT s · dt has to be able to accurately calculate.

【0045】(実施例9)図17、図18に実施例9を
示す。図17は空気噛みの検出動作原理図、図18は空
気噛み検出のフローチャートである。まず、凍結防止ヒ
ータへの一定時間の通電を行い発熱させる。通電を断っ
た後、サーミスタ温度Tsの計測を開始し(経過時間t=
0)、予め設定しておいた設定時間tsを越えるまでn
回繰り返し行い、その後計測したTsとtの関係よりサ
ーミスタの放熱時の蓄熱熱量と積分値∫ts 0dTs・dt
として求め、予め設定された水空気判別サーミスタ蓄熱
熱量fより大きい場合は空気、小さい場合は水と判定す
る。水が有ると判定された場合は加熱モードへ進みバー
ナによる加熱が開始され、即出湯体制にはいる。空気噛
みと判定された場合は加熱停止モードに進みバーナによ
る加熱は中止され、熱交換器の空焚きを防止することが
できる。
Ninth Embodiment FIGS. 17 and 18 show a ninth embodiment. FIG. 17 is a principle diagram of the operation of detecting air entrapment, and FIG. 18 is a flowchart of air entrapment detection. First, the anti-freezing heater is energized for a certain time to generate heat. After refusing the energization, and starts measuring the thermistor temperature T s (elapsed time t =
0), n until the preset time ts exceeds
Times, and then the heat storage amount and the integrated value ∫ ts 0 dT s · dt during the heat release of the thermistor from the relationship between the measured T s and t.
Is determined as air, and if it is larger than the preset water / air discriminating thermistor heat storage heat amount f, it is determined to be air; If it is determined that there is water, the process proceeds to the heating mode, in which heating by the burner is started, and the system is immediately in the hot water supply system. If it is determined that the air has been caught, the process proceeds to the heating stop mode, in which the heating by the burner is stopped, and it is possible to prevent the heat exchanger from being idle.

【0046】なお、凍結防止ヒータ通電加熱時間は実施
例4と同様にサーミスタ周囲の温度が高くなるに従って
凍結防止ヒータ通電加熱時間を長くし、加熱温度を上げ
ることでサーミスタ周囲温度の影響を少なくしサーミス
タの蓄熱熱量∫ts 0dTs・dtを精度良く算出できるよ
うにしている。
As in the case of the fourth embodiment, the anti-freezing heater energizing heating time is increased as the temperature around the thermistor is increased, and the influence of the thermistor ambient temperature is reduced by increasing the heating temperature. The amount of heat stored in the thermistor ∫ ts 0 dT s · dt can be accurately calculated.

【0047】(実施例10)図19、図20に実施例1
0を示す。図19は空気噛みの検出動作原理図、図20
は空気噛み検出のフローチャートである。まず、凍結防
止ヒータへの通電を行い発熱させ発熱終了前後の一定時
間ΔFの間サーミスタ温度Tsの検出を繰り返す。図1
9の例では凍結防止ヒータ通電終了時間より1/2・Δ
F前をサーミスタ温度計測の開始時(t=0)とし残り
のサーミスタ計測時間1/2・ΔFはサーミスタ通電終
了時間後となる。一定時間ΔF経過後、サーミスタ温度
sと経過時間tの測定結果よりサーミスタの蓄熱熱量
を積分値∫ΔF 0dTs・dtとして求め予め設定された
水空気判別サーミスタ蓄熱熱量gと比較しgより大きい
場合は空気噛み状態と判定し、小さい場合は水があると
判定する。原理的には実施例8と実施例9を融合した形
となり温度変化が最も激しいサーミスタ加熱終了前後の
みのサーミスタへの蓄熱熱量により水の有無を判定する
ため、より精度の高い判定ができる。水が有ると判定さ
れた場合は加熱モードへ進みバーナによる加熱が開始さ
れ、即出湯体制にはいる。空気噛みと判定された場合は
加熱停止モードに進みバーナによる加熱は中止され、熱
交換器の空焚きを防止することができる。
Embodiment 10 FIGS. 19 and 20 show Embodiment 1.
Indicates 0. FIG. 19 is a diagram showing the principle of operation for detecting air entrapment, and FIG.
8 is a flowchart of air bite detection. First, heat is generated performs energization of the antifreeze heater repeated detection of the thermistor temperature T s for a predetermined time ΔF before and after when the heat generation. FIG.
In the example of No. 9, 1 / 2..DELTA.
The time before F is the start of the thermistor temperature measurement (t = 0), and the remaining thermistor measurement time ・ · ΔF is after the thermistor energization end time. After a certain time ΔF elapsed, the thermistor temperature T s and the thermal storage heat of the thermistor than the measurement of the elapsed time t as compared with the integrated value ∫Δ F 0 dT s · dt as determined preset water air discriminated thermistor thermal storage heat g g If it is larger, it is determined that the air is caught, and if it is smaller, it is determined that there is water. In principle, Embodiment 8 and Embodiment 9 are combined, and the presence or absence of water is determined based on the amount of heat stored in the thermistor only before and after the end of heating of the thermistor where the temperature change is the most intense. If it is determined that there is water, the process proceeds to the heating mode, in which heating by the burner is started, and the system is immediately in the hot water supply system. If it is determined that the air has been caught, the process proceeds to the heating stop mode, in which the heating by the burner is stopped, and it is possible to prevent the heat exchanger from being idle.

【0048】なお、凍結防止ヒータ通電加熱時間は実施
例4と同様にサーミスタ周囲の温度が高くなるに従って
凍結防止ヒータ通電加熱時間を長くし、加熱温度を上げ
ることでサーミスタ周囲温度の影響を少なくしサーミス
タの蓄熱熱量∫ΔF 0dTs・dtを精度良く算出できる
ようにしている。
As in the case of the fourth embodiment, the anti-freezing heater energizing heating time is increased as the temperature around the thermistor increases, and the influence of the thermistor ambient temperature is reduced by increasing the heating temperature. the thermal storage heat ∫Δ F 0 dT s · dt of the thermistor is to be able to accurately calculate.

【0049】[0049]

【発明の効果】以上のように本発明の給湯装置によれば
次のような効果が得られる。
As described above, according to the hot water supply apparatus of the present invention, the following effects can be obtained.

【0050】(1)給湯の停止時に熱交換器への水の流
動が停止していることを流動検出手段で検出して、温度
検出手段で検出される温度が所定温度以下になったら加
熱調節手段で加熱手段による熱交換器の加熱を開始し、
予め定めた時間あるいは温度に達したら加熱を停止する
ことにより、給湯の停止時に熱交換器が冷却されること
を防止し、再給湯時に熱交換器内の保有水を加熱する時
間を節約して、給湯装置本体だけで給湯時の端末におけ
る湯の供給を早く行える。また、凍結防止ヒータを利用
した空気検出器で空気噛みを検出している時は、加熱手
段による熱交換器の加熱を行わないので、設置初期時や
凍結防止のための水抜きの後などに熱交換器内に空気が
噛んでいる時に加熱を行い、熱交換器が空焚きされるこ
とを防止して安全性の向上と耐久性維持を図ることがで
きる。
(1) It is detected by the flow detecting means that the flow of water to the heat exchanger has stopped when the hot water supply is stopped, and when the temperature detected by the temperature detecting means falls below a predetermined temperature, the heating is adjusted. Start heating the heat exchanger by the heating means by means,
By stopping the heating when a predetermined time or temperature is reached, the heat exchanger is prevented from being cooled when the hot water supply is stopped, and the time for heating the water in the heat exchanger when the hot water is resupplied is saved. In addition, hot water can be quickly supplied to the terminal at the time of hot water supply using only the hot water supply device main body. Also, when the air detector using an anti-freezing heater detects air entrapment, the heat exchanger is not heated by the heating means, so it can be used at the initial stage of installation or after draining to prevent freezing. Heating is performed when air is biting in the heat exchanger, and it is possible to prevent the heat exchanger from being fired and improve safety and maintain durability.

【0051】(2)熱交換器近傍の温度を検出する温度
検出手段と空気検出手段のサーミスタとを共用すること
でサーミスタを2つから1つに削減し低コスト化を図れ
る効果がある。また、空気検出動作は給湯動作を停止し
ている場合にのみ作動するので給湯動作時における熱交
換器の出口温度を計測する温度検出手段の動作を妨げる
ことは無く温度検出手段の機能と空気検出手段の機能を
両立することができる。
(2) By sharing the temperature detecting means for detecting the temperature near the heat exchanger and the thermistor of the air detecting means, the number of thermistors can be reduced from two to one, and the cost can be reduced. Also, since the air detection operation is performed only when the hot water supply operation is stopped, the operation of the temperature detection means for measuring the outlet temperature of the heat exchanger during the hot water supply operation is not hindered, and the function of the temperature detection means and the air detection The functions of the means can be compatible.

【0052】(3)熱交換器出口近傍の水管の同位置に
サーミスタと凍結防止ヒータとを対向して取り付けた構
成としたことでサーミスタと凍結防止ヒータを最短距離
に配置でき、凍結防止ヒ―タの加熱による水管・水管内
の温度上昇をサーミスタによって高速かつ顕著に検出す
ることができる。よって短時間かつ精度良く水管内の水
の有無が判定でき、熱交換器の空焚きを防止することが
できる。
(3) Since the thermistor and the anti-freezing heater are mounted opposite to each other at the same position of the water pipe near the outlet of the heat exchanger, the thermistor and the anti-freezing heater can be arranged at the shortest distance. The temperature rise in the water tube / water tube due to heating of the heater can be rapidly and remarkably detected by the thermistor. Therefore, the presence / absence of water in the water pipe can be determined in a short time and with high accuracy, and it is possible to prevent empty heating of the heat exchanger.

【0053】(4)空気検出手段は、空気検出開始後、
サーミスタにより基準温度T0を測定した後凍結防止ヒ
ータへの一定時間の通電を行い発熱させ発熱停止直後、
再度発熱後温度T1を測定し発熱後温度T1と基準温度T
0との差ΔTを予め設定された水空気判定温度差ΔTa
比較しΔT>ΔTaの場合は空気噛み状態と判定しΔT
≦ΔTaの場合は水があると判定するので熱交換器内の
水の有無を確実に判断し水が有ると判定された場合は加
熱モードへ進みバーナによる加熱が開始され、即出湯体
制にはいる。空気噛みと判定された場合は加熱停止モー
ドに進みバーナによる加熱は中止され、熱交換器の空焚
きを防止することができる。
(4) The air detecting means, after starting the air detection,
After measuring the reference temperature T 0 with a thermistor, the anti-freezing heater is energized for a certain period of time to generate heat, and immediately after the heat generation is stopped,
After the heat generation after temperatures T 1 measured again heating temperature T 1 of the reference temperature T
Compared with a preset water air determined temperature difference [Delta] T a difference [Delta] T between 0 ΔT> ΔT a ΔT is determined that the air biting state in the case of
≦ For [Delta] T a If reliably determine the presence or absence of water in the heat exchanger water is determined that there because it is determined that there is a water started heating by burner proceeds to the heating mode, the immediate tapping system Yes. If it is determined that the air has been caught, the process proceeds to the heating stop mode, in which the heating by the burner is stopped, and it is possible to prevent the heat exchanger from being idle.

【0054】(5)空気検出手段は、空気検出開始後、
サーミスタにより基準温度T0を測定した後凍結防止ヒ
ータへの一定時間の通電を行い発熱させ発熱停止後、一
定時間ΔL経過した後、再度発熱後温度T1を測定し発
熱後温度T1と基準温度T0との差ΔTを予め設定された
水空気判定温度差ΔTaと比較しΔT>ΔTaの場合は空
気噛み状態と判定しΔT≦ΔTaの場合は水があると判
定するので熱交換器内の水の有無を確実に判断し水が有
ると判定された場合は加熱モードへ進みバーナによる加
熱が開始され、即出湯体制にはいる。空気噛みと判定さ
れた場合は加熱停止モードに進みバーナによる加熱は中
止され、熱交換器の空焚きを防止することができる。
(5) The air detecting means, after starting the air detection,
Reference temperature T 0 and after a certain performs energization time heating is not heating stopped to antifreeze heater was measured by the thermistor, after a certain time ΔL elapses, the heat generation after temperatures T 1 measures the heating after temperatures T 1 again and the reference heat because in the case of comparing with a preset water air determined temperature difference [Delta] T a difference [Delta] T between the temperature T 0 ΔT> ΔT a is determined in the case of [Delta] T ≦ [Delta] T a is determined as the air biting state is water The presence or absence of water in the exchanger is reliably determined, and if it is determined that there is water, the process proceeds to a heating mode, in which heating by a burner is started, and the system is immediately in a hot water supply system. If it is determined that the air has been caught, the process proceeds to the heating stop mode, in which the heating by the burner is stopped, and it is possible to prevent the heat exchanger from being idle.

【0055】(6)空気検出手段は、空気検出開始後、
凍結防止ヒータへの通電、サーミスタ温度Tsの検出を
繰り返しサーミスタ温度Tsと経過時間tの測定結果よ
りサーミスタ温度時間的変化率dTs/dtを求め予め
設定された水空気判別サーミスタ温度時間的変化率bと
比較しdTs/dt>bの場合は空気噛み状態と判定し
dTs/dt≦bの場合は水があると判定するので熱交
換器内の水の有無を確実に判断し水が有ると判定された
場合は加熱モードへ進みバーナによる加熱が開始され、
即出湯体制にはいる。空気噛みと判定された場合は加熱
停止モードに進みバーナによる加熱は中止され、熱交換
器の空焚きを防止することができる。
(6) The air detecting means, after starting the air detection,
Energization of the antifreeze heater, thermistor temperature T s detecting the repeat thermistor temperature T s and the elapsed time t measured results water air determined thermistor temperature time that is set previously obtained thermistor temperature temporal change rate dT s / dt than in Compared with the rate of change b, if dT s / dt> b, it is determined that the air is caught, and if dT s / dt ≦ b, it is determined that there is water. Therefore, the presence or absence of water in the heat exchanger is reliably determined. When it is determined that there is water, the process proceeds to the heating mode and heating by the burner is started,
Enter the immediate hot water system. If it is determined that the air has been caught, the process proceeds to the heating stop mode, in which the heating by the burner is stopped, and it is possible to prevent the heat exchanger from being idle.

【0056】(7)空気検出手段は、空気検出開始後、
凍結防止ヒータへの一定時間の通電を行い発熱停止後、
一定時間ΔL経過した後、サーミスタ温度Tsの検出を
繰り返しサーミスタ温度Tsと経過時間tの測定結果よ
りサーミスタ温度時間的変化率dTs/dtを求め予め
設定された水空気判別サーミスタ温度時間的変化率cと
比較しdTs/dt≦cの場合は空気噛み状態と判定しd
s/dt>cの場合は水があると判定するので熱交換器
内の水の有無を確実に判断し水が有ると判定された場合
は加熱モードへ進みバーナによる加熱が開始され、即出
湯体制にはいる。空気噛みと判定された場合は加熱停止
モードに進みバーナによる加熱は中止され、熱交換器の
空焚きを防止することができる。
(7) The air detecting means, after starting the air detection,
After energizing the anti-freezing heater for a certain period of time and stopping heat generation,
After a certain time ΔL course, thermistor temperature T s detecting the repeat thermistor temperature T s and the elapsed time t measured results water air determined thermistor temperature time that is set previously obtained thermistor temperature temporal change rate dT s / dt than in Compared with the change rate c, if dT s / dt ≦ c, it is determined that the air is caught and d
If T s / dt> c, it is determined that there is water. Therefore, the presence or absence of water in the heat exchanger is reliably determined. If it is determined that there is water, the process proceeds to the heating mode and heating by the burner is started. Enter the hot water system. If it is determined that the air has been caught, the process proceeds to the heating stop mode, in which the heating by the burner is stopped, and it is possible to prevent the heat exchanger from being idle.

【0057】(8)空気検出手段は、空気検出開始後、
凍結防止ヒータへの通電、サーミスタ温度Tsの検出を
繰り返しサーミスタ温度Tsと経過時間tの測定結果よ
りサーミスタの蓄熱熱量∫t 0dTs・dtを求め予め設
定された水空気判別サーミスタ蓄熱熱量eと比較し∫t 0
dTs・dt>eの場合は空気噛み状態と判定し∫t 0dT
s・dt≦eの場合は水があると判定するので熱交換器内
の水の有無を確実に判断し水が有ると判定された場合は
加熱モードへ進みバーナによる加熱が開始され、即出湯
体制にはいる。空気噛みと判定された場合は加熱停止モ
ードに進みバーナによる加熱は中止され、熱交換器の空
焚きを防止することができる。
(8) After the air detection means starts the air detection,
Energization of the antifreeze heater, thermistor temperature T s thermal storage heat ∫ t 0 dT s · dt look preset water air discriminated thermistor thermal storage heat detecting the repetitive thermistor from the measurement result of the thermistor temperature T s and the elapsed time t Compare with e ∫ t 0
In the case of dT s · dt> e determined that the air bite state ∫ t 0 dT
If s · dt ≦ e, it is determined that there is water. Therefore, the presence or absence of water in the heat exchanger is reliably determined. If it is determined that there is water, the process proceeds to the heating mode, and heating by the burner is started. Enter the system. If it is determined that the air has been caught, the process proceeds to the heating stop mode, in which the heating by the burner is stopped, and it is possible to prevent the heat exchanger from being idle.

【0058】(9)空気検出手段は、空気検出開始後、
凍結防止ヒータへの一定時間の通電を行い発熱停止後、
サーミスタ温度Tsの検出を繰り返しサーミスタ温度Ts
と経過時間tの測定結果よりサーミスタの蓄熱熱量∫t 0
dTs・dtを求め予め設定された水空気判別サーミス
タ蓄熱熱量fと比較し∫t 0dTs・dt>fの場合は空気
噛み状態と判定し∫t 0dTs・dt≦fの場合は水がある
と判定するので熱交換器内の水の有無を確実に判断し水
が有ると判定された場合は加熱モードへ進みバーナによ
る加熱が開始され、即出湯体制にはいる。空気噛みと判
定された場合は加熱停止モードに進みバーナによる加熱
は中止され、熱交換器の空焚きを防止することができ
る。
(9) After the air detection is started, the air detection means
After energizing the anti-freezing heater for a certain period of time and stopping heat generation,
Thermistor temperature T s repeat the detection of the thermistor temperature T s
From the measurement result of the elapsed time t and the accumulated heat amount of the thermistor ∫ t 0
dT s · dt is obtained and compared with a preset heat / heat discrimination value f of the water / air discriminating thermistor. If t 0 dT s dt> f, it is determined that the air is in the air bite state. If t 0 dT s · dt ≦ f, Since it is determined that there is water, the presence or absence of water in the heat exchanger is reliably determined. If it is determined that there is water, the process proceeds to the heating mode, in which heating by the burner is started, and the system immediately enters the hot water supply system. If it is determined that the air has been caught, the process proceeds to the heating stop mode, in which the heating by the burner is stopped, and it is possible to prevent the heat exchanger from being idle.

【0059】(10)空気検出手段は、空気検出開始
後、凍結防止ヒータへの一定時間の通電を行い発熱させ
発熱終了前後の一定時間ΔFの間サーミスタ温度Ts
検出を繰り返しサーミスタ温度Tsと経過時間tの測定
結果よりサーミスタの蓄熱熱量∫ΔF 0dTs・dtを求
め予め設定された水空気判別サーミスタ蓄熱熱量gと比
較し∫ΔF 0dTs・dt>gの場合は空気噛み状態と判定
し∫ΔF 0dTs・dt≦gの場合は水があると判定するの
で熱交換器内の水の有無を確実に判断し水が有ると判定
された場合は加熱モードへ進みバーナによる加熱が開始
され、即出湯体制にはいる。空気噛みと判定された場合
は加熱停止モードに進みバーナによる加熱は中止され、
熱交換器の空焚きを防止することができる。
[0059] (10) air detection means, after air detection starting, thermistor temperature T s repeated detection of the thermistor temperature T s for a predetermined time ΔF around constant performs energization time heating is not heating the end of the anti-freeze heater air for comparison ∫Δ F 0 dT s · dt> g water air discrimination thermistor thermal storage heat g of the measurement results from the thermal storage heat ∫Δ F 0 dT s · dt thermistor elapsed time t is set in advance determined to determines that the bite state to ∫Δ F 0 dT s · dt ≦ g reliably determine heating mode if it is determined that the water is present the presence of water in the heat exchanger so is determined that there is a water case Heating by the advance burner is started and the system is ready for hot water. If it is determined that the air is caught, the process proceeds to the heating stop mode, and the heating by the burner is stopped.
It is possible to prevent empty heating of the heat exchanger.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における給湯装置の構成図FIG. 1 is a configuration diagram of a hot water supply apparatus according to a first embodiment of the present invention.

【図2】同給湯装置のサーミスタの取付状態を示す部分
断面図
FIG. 2 is a partial cross-sectional view showing an attached state of a thermistor of the water heater.

【図3】同給湯装置の要部動作のフローチャートFIG. 3 is a flowchart of an operation of a main part of the water heater.

【図4】本発明の実施例2における給湯装置の構成図FIG. 4 is a configuration diagram of a hot water supply apparatus according to a second embodiment of the present invention.

【図5】本発明の実施例3における給湯装置に用いた空
気検出器の切り欠き断面図
FIG. 5 is a cutaway sectional view of an air detector used in a hot water supply apparatus according to Embodiment 3 of the present invention.

【図6】本発明の実施例4における給湯装置の要部動作
を説明する図
FIG. 6 is a diagram illustrating an operation of a main part of a hot water supply apparatus according to a fourth embodiment of the present invention.

【図7】同給湯装置の要部動作のフローチャートFIG. 7 is a flowchart of an operation of a main part of the water heater.

【図8】同給湯装置の原理を実験データに基づいて説明
する図
FIG. 8 is a view for explaining the principle of the hot water supply apparatus based on experimental data.

【図9】本発明の実施例5における給湯装置の要部動作
を説明する図
FIG. 9 is a diagram illustrating an operation of a main part of a hot water supply apparatus according to a fifth embodiment of the present invention.

【図10】同給湯装置の要部動作のフローチャートFIG. 10 is a flowchart of an operation of a main part of the water heater.

【図11】本発明の実施例6における給湯装置の要部動
作を説明する図
FIG. 11 is a diagram illustrating an operation of a main part of a hot water supply apparatus according to a sixth embodiment of the present invention.

【図12】同給湯装置の要部動作のフローチャートFIG. 12 is a flowchart of an operation of a main part of the water heater.

【図13】本発明の実施例7における給湯装置の要部動
作を説明する図
FIG. 13 is a view for explaining the operation of a main part of a hot water supply apparatus according to a seventh embodiment of the present invention.

【図14】同給湯装置の要部動作のフローチャートFIG. 14 is a flowchart of an operation of a main part of the water heater.

【図15】本発明の実施例8における給湯装置の要部動
作を説明する図
FIG. 15 is a diagram illustrating an operation of a main part of a hot water supply apparatus according to an eighth embodiment of the present invention.

【図16】同給湯装置の要部動作のフローチャートFIG. 16 is a flowchart of an operation of a main part of the water heater.

【図17】本発明の実施例9における給湯装置の要部動
作を説明する図
FIG. 17 is a diagram illustrating an operation of a main part of a hot water supply apparatus according to a ninth embodiment of the present invention.

【図18】同給湯装置の要部動作のフローチャートFIG. 18 is a flowchart of an operation of a main part of the water heater.

【図19】本発明の実施例10における給湯装置の要部
動作を説明する図
FIG. 19 is a diagram illustrating an operation of a main part of a hot water supply apparatus according to Embodiment 10 of the present invention.

【図20】同給湯装置の要部動作のフローチャートFIG. 20 is a flowchart of an operation of a main part of the water heater.

【図21】従来の給湯装置の構成図FIG. 21 is a configuration diagram of a conventional hot water supply apparatus.

【符号の説明】[Explanation of symbols]

10 熱交換器 11 給水管 12 給湯管 13 水量検出器 15 空気検出器 18 湯温検出器(温度検出手段) 24 制御器 26 停止時制御部 27 ガスバーナ 28 ガス比例弁(加熱調節手段) 29 元電磁弁 31 サーミスタ(空気検出手段) 37 凍結防止ヒータ 38 サーミスタ(温度検出手段) DESCRIPTION OF SYMBOLS 10 Heat exchanger 11 Water supply pipe 12 Hot water supply pipe 13 Water quantity detector 15 Air detector 18 Hot water temperature detector (temperature detection means) 24 Controller 26 Stop control unit 27 Gas burner 28 Gas proportional valve (Heating adjustment means) 29 Source electromagnetic Valve 31 Thermistor (air detecting means) 37 Freezing prevention heater 38 Thermistor (temperature detecting means)

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】給水管と給湯管が接続された熱交換器と、
前記熱交換器を加熱する加熱手段と、前記加熱手段を調
節する加熱調節手段と、前記熱交換器の近傍の温度を検
出する温度検出手段と、水の流動を検出する流動検出手
段と、前記熱交換器の出口近傍に設けたサーミスタと凍
結防止ヒータを用い前記熱交換器内の空気噛みを検出す
る空気検出手段と、前記流動検出手段で水の流動を検出
していない場合に前記温度検出手段で検出される温度が
所定温度以下になったとき前記加熱調節手段を制御して
前記加熱手段による前記熱交換器の加熱を開始し、予め
設定した時間あるいは温度に達したとき加熱を停止する
とともに、前記空気検出手段で空気噛みを検出した場合
は、前記加熱手段による前記熱交換器の加熱を行わない
停止時制御部を有する制御器を備えた給湯装置。
1. A heat exchanger to which a water supply pipe and a hot water supply pipe are connected,
A heating unit that heats the heat exchanger, a heating adjustment unit that adjusts the heating unit, a temperature detection unit that detects a temperature near the heat exchanger, a flow detection unit that detects a flow of water, Air detecting means for detecting air entrainment in the heat exchanger using a thermistor and an anti-freezing heater provided near the outlet of the heat exchanger; and detecting the temperature when the flow detecting means does not detect the flow of water. When the temperature detected by the means becomes equal to or lower than a predetermined temperature, the heating control means is controlled to start heating the heat exchanger by the heating means, and the heating is stopped when the temperature reaches a preset time or temperature. In addition, a hot water supply device including a controller having a stop-time control unit that does not heat the heat exchanger by the heating unit when the air detection unit detects an air bite.
【請求項2】温度検出手段とサーミスタとを兼用する請
求項1記載の給湯装置。
2. The hot water supply apparatus according to claim 1, wherein the hot water supply apparatus also serves as a temperature detecting means and a thermistor.
【請求項3】サーミスタは凍結防止ヒータと対向する位
置に取り付けられた請求項1または2記載の給湯装置。
3. The hot water supply apparatus according to claim 1, wherein the thermistor is mounted at a position facing the anti-freezing heater.
【請求項4】空気検出手段は、空気検出開始後、サーミ
スタにより基準温度T 0を測定した後凍結防止ヒータへ
の一定時間の通電を行い発熱させ発熱停止直後、再度発
熱後温度T1を測定し、発熱後温度T1と基準温度T0
の差ΔTを予め設定された水空気判定温度差ΔTaと比
較し、ΔT>ΔTaの場合は空気噛み状態と判定し、Δ
T≦ΔTaの場合は水があると判定する請求項1、2ま
たは3記載の給湯装置。
4. An air detecting means, comprising:
The reference temperature T 0To the antifreeze heater after measuring
Power for a certain period of time to generate heat,
Post-heating temperature T1And the temperature T after the heat generation1And reference temperature T0When
The difference ΔT between the temperature and the predetermined temperature difference ΔTaAnd ratio
ΔT> ΔTaIn the case of, it is determined that the air is caught and Δ
T ≦ ΔTaIn the case of, it is determined that there is water.
Or the hot water supply apparatus according to 3.
【請求項5】空気検出手段は、空気検出開始後、サーミ
スタにより基準温度T 0を測定した後凍結防止ヒータへ
の一定時間の通電を行い発熱させ発熱停止後、一定時間
ΔL経過した後、再度発熱後温度T1を測定し発熱後温
度T1と基準温度T0との差ΔTを予め設定された水空気
判定温度差ΔTaと比較し、ΔT>ΔTaの場合は空気噛
み状態と判定し、ΔT≦ΔTaの場合は水があると判定
する請求項1、2または3記載の給湯装置。
5. An air detecting means, comprising:
The reference temperature T 0To the antifreeze heater after measuring
For a certain period of time and generate heat to stop the heat generation.
After the lapse of ΔL, the temperature T after the heat is generated again1Measure the temperature after fever
Degree T1And reference temperature T0The difference ΔT from water air set in advance
Judgment temperature difference ΔTaΔT> ΔTaIf air bite
Is determined to be in the ON state, and ΔT ≦ ΔTaIn the case of, it is determined that there is water
The hot water supply device according to claim 1, 2 or 3, wherein
【請求項6】空気検出手段は、空気検出開始後、凍結防
止ヒータへの通電、サーミスタ温度Tsの検出を繰り返
しサーミスタ温度Tsと経過時間tの測定結果よりサー
ミスタ温度時間的変化率dTs/dtを求め、予め設定
された水空気判別サーミスタ温度時間的変化率bと比較
し、dTs/dt>bの場合は空気噛み状態と判定し、
dTs/dt≦bの場合は水があると判定する請求項
1、2または3記載の給湯装置。
6. The air detection means, after air detection start energization of the antifreeze heater, thermistor temperature T repeatedly thermistor temperature detection of s T s a thermistor temperature from the measurement result of the elapsed time t temporal change rate dT s / look dt, and compared with a preset water air discriminated thermistor temperature temporal change rate b, in the case of dT s / dt> b it determines that the air biting state,
dT s / dt ≦ b water heater is determined according to claim 1, wherein the presence of water in the case of.
【請求項7】空気検出手段は、空気検出開始後、凍結防
止ヒータへの一定時間の通電を行い発熱停止後、一定時
間ΔL経過した後、サーミスタ温度Tsの検出を繰り返
しサーミスタ温度Tsと経過時間tの測定結果よりサー
ミスタ温度時間的変化率dTs/dtを求め、予め設定
された水空気判別サーミスタ温度時間的変化率cと比較
し、dTs/dt≦cの場合は空気噛み状態と判定し、d
s/dt>cの場合は水があると判定する請求項1、2
または3記載の給湯装置。
7. air detection means, after air detection start, after heating is stopped performs energization of a predetermined time to antifreeze heater, after a certain time ΔL elapsed, the thermistor temperature T s repeated detection of the thermistor temperature T s The thermistor temperature temporal change rate dT s / dt is obtained from the measurement result of the elapsed time t, and is compared with a preset water-air discriminating thermistor temperature temporal change rate c. If dT s / dt ≦ c, the air bite state And d
T s / dt> and it determines claims if there is water in the c 1, 2
Or the hot water supply apparatus of 3.
【請求項8】空気検出手段は、空気検出開始後、凍結防
止ヒータへの通電、サーミスタ温度Tsの検出を繰り返
しサーミスタ温度Tsと経過時間tの測定結果よりサー
ミスタの蓄熱熱量を積分値∫t 0dTs・dtとして求
め、予め設定された水空気判別サーミスタ蓄熱熱量eと
比較し、∫t 0dTs・dt>eの場合は空気噛み状態と判
定し、∫t 0dTs・dt≦eの場合は水があると判定する
請求項1、2または3記載の給湯装置。
8. The air detection means, after air detection start energization of the antifreeze heater, integrated value heat storage heat of the thermistor from the measurement results of the repeated thermistor temperature T s and the elapsed time t detected by the thermistor temperature T st 0 determined as dT s · dt, and compared with a preset water air discriminated thermistor thermal storage heat e, ∫ t 0 for dT s · dt> e determines that the air biting state, ∫ t 0 dT s · dt 4. The hot water supply apparatus according to claim 1, wherein it is determined that there is water when ≤e.
【請求項9】空気検出手段は、空気検出開始後、凍結防
止ヒータへの一定時間の通電を行い発熱停止後、サーミ
スタ温度Tsの検出を繰り返しサーミスタ温度Tsと経過
時間tの測定結果よりサーミスタの蓄熱熱量を積分値∫
t 0dTs・dtとして求め、予め設定された水空気判別
サーミスタ蓄熱熱量fと比較し、∫t 0dTs・dt>fの
場合は空気噛み状態と判定し、∫t 0dTs・dt≦fの場
合は水があると判定する請求項1、2または3記載の給
湯装置。
9. The air detecting means energizes the anti-freezing heater for a certain period of time after the start of air detection and repeats the detection of the thermistor temperature T s after the stop of heat generation, based on the measurement results of the thermistor temperature T s and the elapsed time t. The integrated value of the heat storage heat of the thermistor ∫
t 0 determined as dT s · dt, and compared with a preset water air discriminated thermistor thermal storage heat f, ∫ t 0 For dT s · dt> f is determined that the air biting state, ∫ t 0 dT s · dt 4. The hot water supply apparatus according to claim 1, wherein it is determined that water is present when ≤f.
【請求項10】空気検出手段は、空気検出開始後、凍結
防止ヒータへの一定時間の通電を行い発熱させ発熱終了
前後の一定時間ΔFの間サーミスタ温度Tsの検出を繰
り返し、サーミスタ温度Tsと経過時間tの測定結果よ
りサーミスタの蓄熱熱量を積分値∫ΔF 0dTs・dtと
して求め、予め設定された水空気判別サーミスタ蓄熱熱
量gと比較し、∫ΔF0dTs・dt>gの場合は空気噛み
状態と判定し、∫ΔF0dTs・dt≦gの場合は水があ
ると判定する請求項1、2または3記載の給湯装置。
10. air detection means, after air detection start, heat is generated performs energization of a predetermined time to antifreeze heater repeatedly detected by the thermistor temperature T s for a predetermined time ΔF before and after when the heat generation, the thermistor temperature T s the heat storage heat of the thermistor than the measurement of the elapsed time t and the calculated as the integral value ∫Δ F 0 dT s · dt, and compared with a preset water air discriminated thermistor thermal storage heat g, ∫Δ F 0dT s · dt > g of If it is determined that the air biting state, water heater determines claim 1, wherein the presence of water in the case of ∫ΔF0dT s · dt ≦ g.
JP16823997A 1997-06-25 1997-06-25 Water heater Expired - Lifetime JP3787963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16823997A JP3787963B2 (en) 1997-06-25 1997-06-25 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16823997A JP3787963B2 (en) 1997-06-25 1997-06-25 Water heater

Publications (2)

Publication Number Publication Date
JPH1114148A true JPH1114148A (en) 1999-01-22
JP3787963B2 JP3787963B2 (en) 2006-06-21

Family

ID=15864351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16823997A Expired - Lifetime JP3787963B2 (en) 1997-06-25 1997-06-25 Water heater

Country Status (1)

Country Link
JP (1) JP3787963B2 (en)

Also Published As

Publication number Publication date
JP3787963B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
KR100598548B1 (en) Complex heat source machine with one fan
JPH1114148A (en) Hot-water supplier
JP3855328B2 (en) Water heater
JP3242053B2 (en) Water heater
JP3787958B2 (en) Water heater
JP3777676B2 (en) Water heater
JP2616437B2 (en) Water heater drainage plug leak detector
JP4114123B2 (en) Water heater
JP3800724B2 (en) Heating device
JP3240928B2 (en) Water heater
JP3811998B2 (en) Water heater
JP3271428B2 (en) Water heater drain plug leak detector
JPH06117646A (en) Hot water heating device
JP2010054062A (en) Water heater
JPH10253156A (en) Hot water supply device
JP3767012B2 (en) Water heater
JP3034754B2 (en) Hot water supply temperature control device
JP3273005B2 (en) Water heater
JP4026893B2 (en) Water heater
JP3240929B2 (en) Water heater
JP3242048B2 (en) Water heater
JP3273004B2 (en) Water heater
JPH11153356A (en) Control method of prevention from discharging high-temperature hot-water
JPH11344257A (en) Water heater provided with freezing preventive function
JPH07243699A (en) Hot water feeding-temperature control device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350