JPH11140650A - Rotary vapor phase thin film growth device - Google Patents

Rotary vapor phase thin film growth device

Info

Publication number
JPH11140650A
JPH11140650A JP32386697A JP32386697A JPH11140650A JP H11140650 A JPH11140650 A JP H11140650A JP 32386697 A JP32386697 A JP 32386697A JP 32386697 A JP32386697 A JP 32386697A JP H11140650 A JPH11140650 A JP H11140650A
Authority
JP
Japan
Prior art keywords
wafer substrate
wafer
thin film
holder
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32386697A
Other languages
Japanese (ja)
Other versions
JP4003899B2 (en
Inventor
Taira Shin
平 辛
Kazuo Ota
一雄 太田
Tadashi Ohashi
忠 大橋
Katsuhiro Chagi
勝弘 茶木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP32386697A priority Critical patent/JP4003899B2/en
Publication of JPH11140650A publication Critical patent/JPH11140650A/en
Application granted granted Critical
Publication of JP4003899B2 publication Critical patent/JP4003899B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a rotary vapor phase thin film growth device by which temp. difference in the plane of a wafer substrate generated at the time of vapor phase growth reaction, particularly, the temp. difference among the center part of the wafer, the outer peripheral part and the vicinity thereof, thermal stress generated thereby can be reduced as much as possible, and, therefore, wafer substrate laminated thin film free from lattice strips or the like and homogeneous in physical properties can be obtd. SOLUTION: Heat radiation directed to a wafer mounting part 6 from a heater 15 for heating is directly transmitted to a wafer substrate W through a through opening 1a and furthermore passes through the wafer mounting part 6 and is transmitted to the mounted wafer substrate W, and heat radiation directed to the bottom face part 4 from the heater 15 for heating is transmitted from the side face direction of the mounted wafer substrate through the inside wall face part 2 by a radiation heat inducing means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気相薄膜成長装置
に関し、より詳細には、シリコンウエハ等の基板表面上
にCVD膜成長やエピタキシャル膜成長等により薄膜を
形成するための改良された回転式気相薄膜成長装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase thin film growth apparatus, and more particularly, to an improved rotating apparatus for forming a thin film on a substrate surface such as a silicon wafer by CVD film growth or epitaxial film growth. The present invention relates to a vapor phase thin film growth apparatus.

【0002】[0002]

【従来の技術】近年、回転式気相薄膜成長装置はバッチ
式装置に比べ多くの特性を有しているため、半導体産業
分野に於いてその使用が広がっている。例えば、大口径
化ウエハの処理に際しては、面内特性の均一な膜の形成
に、高速回転枚葉式ウエハエピタキシャル装置が不可欠
の存在と成りつつある。
2. Description of the Related Art In recent years, a rotary type vapor phase thin film growth apparatus has many characteristics as compared with a batch type apparatus, and therefore its use has been widespread in the semiconductor industry. For example, in processing a large-diameter wafer, a high-speed rotating single-wafer type wafer epitaxial apparatus is becoming indispensable for forming a film having uniform in-plane characteristics.

【0003】従来の回転気相成長装置は、例えば図8に
示すように、その反応炉11上部に、炉内に原料ガスや
キャリアガスを供給するガス導入管12と、ガスの流れ
を整える整流板13が配置され、またその下方に、ウエ
ハ基板W等が載置される基板ホルダ14と、基板ホルダ
14の下方に配設され前記ウエハ基板W等を加熱するウ
エハ基板加熱用ヒ−タ15と、該基板ホルダ14を回転
させるための回転軸16とが配設され、また反応炉11
の下部に、前記回転軸16を回転駆動させるモータ(図
示せず)と、反応炉内の未反応ガスを含む排ガスを排出
する排気管17が配置されている。更に、基板ホルダ1
4について詳述すると、ウエハ基板Wの下面側(下方)
から加熱する形式の炉に於いて用いられているウエハ基
板載置用ホルダ14は、環状ホルダ上面14aと、その
内周縁に沿って凹状に設けられ、中央部に貫通開口14
cを有する円環状底板14bとを備え、該円環状底板1
4bによってウエハ基板Wの外周縁部を支持するように
構成されている。
In a conventional rotary vapor phase epitaxy apparatus, for example, as shown in FIG. 8, a gas introduction pipe 12 for supplying a raw material gas and a carrier gas into the furnace and a rectifier for regulating a gas flow are provided above the reaction furnace 11. A plate 13 is disposed, and a substrate holder 14 on which a wafer substrate W and the like are mounted, and a wafer substrate heating heater 15 disposed below the substrate holder 14 for heating the wafer substrate W and the like. And a rotating shaft 16 for rotating the substrate holder 14 are provided.
A motor (not shown) for driving the rotary shaft 16 to rotate and an exhaust pipe 17 for discharging exhaust gas containing unreacted gas in the reaction furnace are arranged below the lower part of the reactor. Further, the substrate holder 1
4 will be described in detail below (the lower side of the wafer substrate W).
The wafer substrate mounting holder 14 used in the furnace of the type that heats from the bottom is provided with an annular holder upper surface 14a and a concave shape along the inner peripheral edge thereof, and a through-opening 14 in the center.
c, and an annular bottom plate 14b having
The outer peripheral portion of the wafer substrate W is supported by 4b.

【0004】このような装置を使用して、例えばウエハ
基板W上に薄膜を気相成長させるには、まずガス導入管
12を介して反応ガス、キャリアガス等を供給し、該ガ
スの運動量や圧分布を均一化し、更に整流板13を通し
て均一な流速を有するガス流を流下させる。そして該ガ
ス流を、ホルダ14内に載置されたウエハ基板W上に供
給すると共に、ウエハ基板Wをホルダ14と共に回転さ
せながら下部に設置された加熱用ヒ−タ15で加熱し、
その表面に薄膜を気相成長させる。なお、未反応ガスを
含む排ガスは下方に設けられた排気口17から排出され
る。
In order to vapor-grow a thin film on a wafer substrate W using such an apparatus, for example, first, a reaction gas, a carrier gas, and the like are supplied through a gas introduction pipe 12, and the momentum and the gas of the gas are supplied. The pressure distribution is made uniform, and a gas flow having a uniform flow velocity is caused to flow down through the current plate 13. The gas flow is supplied onto the wafer substrate W placed in the holder 14, and the wafer substrate W is heated by a heating heater 15 installed below while rotating the wafer substrate W together with the holder 14.
A thin film is vapor-phase grown on the surface. Exhaust gas containing unreacted gas is discharged from an exhaust port 17 provided below.

【0005】[0005]

【発明が解決しようとする課題】ところで、このような
従来の基板ホルダ14を用いて、ウエハ基板Wを支持し
た状態で所定の熱処理を行うと、ウエハ基板Wの面内に
おける上記ウエハ基板支持部及びその近傍領域(以下、
ウエハ基板外周縁近傍領域と称する)と、それ以外の領
域とにおいて、加熱用ヒ−タ15からの受ける熱放射の
態様が異なるため、ウエハ基板面内に温度差が生じ、そ
れによる熱応力が発生する。即ち、ウエハ基板Wの中央
部領域等は、基板ホルダ14の貫通開口14cから直接
放射熱を受ける領域であるのに対し、円環状底板14b
と接するウエハ基板外周縁近傍領域では、放射熱が円環
状底板14bを透過して間接的に伝達される。また、円
環状底板14bからの伝達熱の一部は基板ホルダ14の
外周縁部等から放散されて失われるためより低温とな
る。その結果、ウエハ基板外周縁近傍領域では、加熱用
ヒ−タ15から十分な熱の伝達を受けることができな
い。そのため、ウエハ基板Wの中央部領域等と外周縁近
傍領域との間に温度差が生じ、これに起因してウエハ基
板に熱応力によるスリップが発生する。
When a predetermined heat treatment is performed while supporting the wafer substrate W by using such a conventional substrate holder 14, the wafer substrate supporting portion in the plane of the wafer substrate W is formed. And its neighboring area (hereinafter, referred to as
Since the manner of heat radiation received from the heating heater 15 is different between the region near the outer periphery of the wafer substrate and the other region, a temperature difference occurs in the wafer substrate surface, and thermal stress due to the temperature difference occurs. Occur. That is, while the central region of the wafer substrate W is a region that directly receives radiant heat from the through-opening 14c of the substrate holder 14, the annular bottom plate 14b
In the region near the outer peripheral edge of the wafer substrate in contact with the substrate, the radiant heat is transmitted indirectly through the annular bottom plate 14b. Further, a part of the heat transfer from the annular bottom plate 14b is dissipated from the outer peripheral edge of the substrate holder 14 and is lost, so that the temperature becomes lower. As a result, in the region near the outer peripheral edge of the wafer substrate, sufficient heat cannot be transmitted from the heating heater 15. For this reason, a temperature difference occurs between the central region or the like of the wafer substrate W and the region near the outer peripheral edge, and as a result, a slip occurs on the wafer substrate due to thermal stress.

【0006】特に、ウエハ基板Wを支持する円環状底板
14bの幅は非常に小さいため、該部分近傍領域のウエ
ハ基板面内温度勾配は非常に大きいものとなる。このよ
うな熱応力歪み発生の不都合を回避するため、ホルダ1
4を透明材料で形成してこの温度差を低減することが考
えられる。しかし、材質を単に透明材料に変更しただけ
では、基板ホルダ14の表面における光反射、基板ホル
ダ14自体の熱吸収は避けられず、ウエハ基板Wの中央
部領域等と外周縁近傍領域との間に、依然として温度差
が生じ、ウエハ基板のスリップの発生を抑制することが
できない。
In particular, since the width of the annular bottom plate 14b for supporting the wafer substrate W is very small, the temperature gradient in the wafer substrate surface in the vicinity of the portion becomes very large. In order to avoid such inconvenience of thermal stress distortion, holder 1
It is conceivable that this temperature difference is reduced by forming 4 from a transparent material. However, simply changing the material to a transparent material inevitably causes light reflection on the surface of the substrate holder 14 and heat absorption of the substrate holder 14 itself. However, a temperature difference still occurs, and the occurrence of slip of the wafer substrate cannot be suppressed.

【0007】このような従来のウエハ基板ホルダを用い
た場合、上述したように熱応力の発生により、ウエハ基
板結晶内に格子面スリップを生じる虞があるだけでな
く、ウエハ基板面内の温度の不均一分布により、成長す
る薄膜の厚さが不均一となり、その結果、薄膜の電気特
性等の諸物性も不均一となるという技術的課題があっ
た。そのため、ウエハ基板の支持部での温度差が可及的
に低減できる回転式気相薄膜成長装置の出現が求められ
ていた。
When such a conventional wafer substrate holder is used, as described above, the generation of thermal stress may not only cause a lattice plane slip in the wafer substrate crystal but also reduce the temperature within the wafer substrate surface. Due to the non-uniform distribution, there is a technical problem that the thickness of the growing thin film becomes non-uniform, and as a result, various physical properties such as the electrical characteristics of the thin film also become non-uniform. For this reason, there has been a demand for the emergence of a rotary vapor phase thin film growth apparatus capable of reducing the temperature difference at the support portion of the wafer substrate as much as possible.

【0008】本発明は、上記した従来装置の技術的課題
を解決するためになされたものであり、ウエハ基板の中
央部領域等と外周縁近傍領域との間の温度差を極力小さ
なものとすることにより、格子面スリップ等の発現がな
く、得られた成長薄膜の面内厚さ及び物性が均質な良質
のウエハ基板基板積層薄膜を得ることのできる回転式気
相薄膜成長装置を提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned technical problems of the conventional apparatus, and minimizes a temperature difference between a central region or the like of a wafer substrate and a region near an outer peripheral edge. Accordingly, there is provided a rotary vapor phase thin film growth apparatus capable of obtaining a high-quality wafer-substrate laminated thin film having a uniform in-plane thickness and physical properties of the obtained growth thin film without occurrence of lattice plane slip or the like. It is intended for.

【0009】[0009]

【課題を解決するための手段】上記技術的課題を解決す
るためになされた本発明は、ウエハ基板を載置、保持す
る基板ホルダ及びその下方にウエハ基板加熱用ヒ−タを
備えた反応炉からなり、ウエハ基板をホルダと共に回転
させながら、反応ガスを上方から流下させ、その表面に
薄膜を成長させる回転式気相薄膜成長装置において、前
記基板ホルダは、外周縁と内周縁とで画定される環状の
ホルダ上面部と、該内周縁から下方に延びる内側壁面部
と、該内側壁面から内方へ延設した中央部に貫通開口を
有するウエハ載置部と、ホルダ上面の外周縁から下方に
延びた外周側面部と、底面部とを有し、加熱用ヒ−タか
らウエハ載置部に向けられた熱放射は、前記貫通開口を
通して直接ウエハ基板に伝達される共に、ウエハ載置部
を透過して載置されたウエハ基板に伝達され、加熱用ヒ
−タから底面部に向けられた熱放射は、放射熱誘導手段
によって内側壁面部を通して載置されたウエハ基板の側
面方向から伝達されるようになされていることを基本的
構成としている。
SUMMARY OF THE INVENTION In order to solve the above-mentioned technical problems, the present invention is directed to a reactor having a substrate holder for mounting and holding a wafer substrate and a heater for heating the wafer substrate below the substrate holder. In the rotary vapor phase thin film growth apparatus for flowing a reaction gas from above while rotating a wafer substrate together with a holder and growing a thin film on the surface thereof, the substrate holder is defined by an outer peripheral edge and an inner peripheral edge. An annular upper surface of the holder, an inner wall portion extending downward from the inner peripheral edge, a wafer mounting portion extending inward from the inner wall surface and having a through-opening at a central portion, and a lower portion extending from the outer peripheral edge of the upper surface of the holder. The heat radiation directed from the heating heater to the wafer mounting portion is directly transmitted to the wafer substrate through the through-opening, and the wafer mounting portion is also provided. Placed through The heat radiation transmitted to the heated wafer substrate and directed from the heating heater to the bottom portion is transmitted from the side of the wafer substrate placed through the inner wall portion by the radiation heat guiding means. That is the basic configuration.

【0010】ここで、前記ウエハ載置部から外側の底面
部に向けられた熱放射の一部は、内側壁面部を通して載
置されたウエハ基板の側面方向から伝達され、かつ前記
熱放射の他部はウエハ載置部に伝達されるように放射熱
誘導手段が設けられていることが望ましく、前記放射熱
誘導手段が、ウエハ基板ホルダの上面部、外周側面部、
内側壁面部、底面部で画定される域内に設けられた放射
熱反射面であることが望ましい。また、前記放射熱反射
面は、ウエハ基板ホルダの上面部に対して、45度の角
度を有するように設置されていることが望ましい。
Here, a part of the heat radiation directed from the wafer mounting portion to the outer bottom surface portion is transmitted from the side surface direction of the mounted wafer substrate through the inner wall surface portion. Preferably, the portion is provided with radiant heat guiding means so as to be transmitted to the wafer mounting portion, and the radiant heat guiding means includes an upper surface portion, an outer peripheral side surface portion of the wafer substrate holder,
It is desirable that the radiating heat reflecting surface is provided in an area defined by the inner wall surface and the bottom. Further, it is preferable that the radiant heat reflecting surface is installed so as to have an angle of 45 degrees with respect to the upper surface of the wafer substrate holder.

【0011】本発明は、基板ホルダに載置されたウエハ
基板が、加熱時に放射熱が直接当たらないウエハ基板面
内の特定領域(より具体的には、基板ホルダのウエハ載
置部と接するウエハ基板の領域部分)と、加熱時に放射
熱が直接当たるそれ以外の領域(ウエハ載置部の貫通開
口に対応したウエハ基板の領域部分)とで、受ける熱放
射の態様及び熱量が異なり、ウエハ基板面内に温度差に
よる熱応力が発生する。このため、得られる薄膜に結晶
格子面スリップが発生したり、膜厚や物性特性等の面内
不均一を生じ易いという従来装置における不都合を解決
するため、ホルダの底面部が受けた放射熱を、内側壁面
を経由してウエハ基板の側面から入射されるように放射
熱を誘導する手段、例えば、ホルダ内に反射面を設置す
る等の手段を設けることにより、上記ウエハ基板の特定
領域(放射熱が直接当たらないウエハ基板面内の領域部
分)の照射熱量の不足を補い、他の領域との温度差によ
り生ずる熱応力の発生を抑制するものである。
According to the present invention, a wafer substrate placed on a substrate holder is placed in a specific area within a wafer substrate surface to which radiation heat is not directly applied during heating (more specifically, a wafer in contact with a wafer mounting portion of the substrate holder). The area and the amount of heat radiation to be received are different between the area of the substrate) and the other area to which the radiant heat is directly applied during heating (the area of the wafer substrate corresponding to the through opening of the wafer mounting portion). Thermal stress occurs in the plane due to the temperature difference. For this reason, in order to solve the inconvenience in the conventional apparatus that the crystal thin film is likely to slip on the obtained thin film and to cause in-plane non-uniformity such as film thickness and physical properties, the radiant heat received by the bottom portion of the holder is solved. By providing a means for inducing radiant heat so as to be incident from the side surface of the wafer substrate via the inner wall surface, for example, a means for installing a reflection surface in a holder, a specific area (radiation) of the wafer substrate is provided. This compensates for the shortage of irradiation heat in the area of the wafer substrate that is not directly exposed to heat, and suppresses the generation of thermal stress caused by a temperature difference from other areas.

【0012】まず、このウエハ基板基板の面内温度不均
一分布とそれにより生ずる熱応力について以下に説明す
る。ウエハ基板面内の温度分布による熱応力は、径方
向、周方向の応力成分に分けて考えると、一般的に次式
により表される。
First, the in-plane temperature non-uniform distribution of the wafer substrate and the resulting thermal stress will be described below. The thermal stress due to the temperature distribution in the wafer substrate surface is generally represented by the following equation when considered in terms of radial and circumferential stress components.

【0013】[0013]

【数1】 (Equation 1)

【0014】[0014]

【数2】 (Equation 2)

【0015】ここで、σr 、σθ はそれぞれ径方向、
周方向の応力成分、Tはウエハ基板面内の温度分布関
数、rはウエハ基板の動径座標、Rはウエハ基板の半
径、α、Eはそれぞれウエハ基板材料の線熱膨張係数、
弾性率である。
Here, σr and σθ are respectively in the radial direction,
Circumferential stress component, T is a temperature distribution function in the wafer substrate surface, r is the radial coordinate of the wafer substrate, R is the radius of the wafer substrate, α and E are the linear thermal expansion coefficients of the wafer substrate material,
The elastic modulus.

【0016】一方、ウエハ基板面内の温度分布は、単純
化したモデルとしては、ウエハ基板載置部(支持部)近
傍を除けば、中心から周辺へ連続する2次曲線(例えば
図2(a)に破線で示す)で近似できる。即ち、温度分
布関数を次式(3)で近似すると、 T=T0 +ΔT(r/R)2 (3) で表すことができる。したがって、上記(1)(2)式
に上記(3)を代入することにより、熱応力を求める
と、その熱応力は σr =αEΔT[1−(r/R)2 ]/4 (4) σθ=αEΔT[1−3(r/R)2 ]/4 (5) で表される。ここで、T0 はウエハ基板中心の温度、Δ
Tはウエハ基板面内温度差(厳密には、ウエハ基板中心
と周辺との温度差)である。
On the other hand, as a simplified model, the temperature distribution in the wafer substrate surface is a quadratic curve continuous from the center to the periphery except for the vicinity of the wafer substrate mounting portion (supporting portion) (for example, FIG. ) Is indicated by a broken line). That is, when the temperature distribution function is approximated by the following equation (3), it can be expressed by T = T 0 + ΔT (r / R) 2 (3). Accordingly, when the thermal stress is obtained by substituting the above equation (3) into the above equations (1) and (2), the thermal stress becomes σr = αEΔT [1- (r / R) 2 ] / 4 (4) σθ = ΑEΔT [1-3 (r / R) 2 ] / 4 (5) Here, T 0 is the temperature at the center of the wafer substrate, Δ
T is the temperature difference in the wafer substrate surface (strictly speaking, the temperature difference between the center and the periphery of the wafer substrate).

【0017】そして、式(4)(5)から得られた応力
成分σr 、σθから相当熱応力σeを求め、応力成分σr
、σθ及び相当応力σe のウエハ基板面内の分布を図
1に線図として示した。相当熱応力σe とは、多軸応力
状態における代表的な応力を意味し、σr とσθを用い
て表せば、σe =(σr2 −σr×σθ+σθ21/2
で表される。なお、図中、相当熱応力はσe1として表
し、縦軸はσe1/(αEΔT/4)、横軸は、ウエハ中
心からの距離r/Rで表している。
Then, the equivalent thermal stress σe is obtained from the stress components σr and σθ obtained from the equations (4) and (5), and the stress component σr
, Σθ, and the equivalent stress σe in the plane of the wafer substrate are shown in FIG. The equivalent thermal stress σe means a typical stress in a multiaxial stress state, and when expressed using σr and σθ, σe = (σr 2 −σr × σθ + σθ 2 ) 1/2
It is represented by In the drawings, corresponding thermal stress expressed as Sigma] e 1, the vertical axis σe 1 / (αEΔT / 4) , the horizontal axis represents the distance r / R from the wafer center.

【0018】上記の様な計算式による誘導を、現実のウ
エハ基板ホルダの状態に合わせて、図2(a)に示すよ
うに、ウエハ基板の中心から半径bまでの間では温度T
0 が一定で、半径bの外側の領域の温度分布ΔTが半径
方向の距離に対して2次曲線で表されるモデルの場合に
ついて計算すると、ウエハ基板面内の相当熱応力中、最
大である最大相当熱応力σemaxは式(4)(5)で計算
した上記の場合の値より大きくなる。その解析結果を図
2(b)に示す。
In accordance with the above-described calculation formula, the temperature T is calculated from the center of the wafer substrate to the radius b as shown in FIG.
When the temperature distribution ΔT in the region outside the radius b is constant and the temperature distribution ΔT is calculated in the case of a model represented by a quadratic curve with respect to the radial distance, the temperature distribution ΔT is the largest in the equivalent thermal stress in the wafer substrate surface The maximum equivalent thermal stress σe max is larger than the value in the above case calculated by the equations (4) and (5). The result of the analysis is shown in FIG.

【0019】この図2の場合は、b=0.9、即ち、ウ
エハ基板の外周縁から中心までの距離を1として、その
外周縁近傍の、全長1に対し1/10に相当する範囲
(領域)がホルダのウエハ載置部と接するものと仮定し
ている。なお、図中の点線は、前述の単純化したモデル
(接触部は無限に小さく、一様に加熱した場合)の温度
分布(図2(a))および相当熱応力(図2(b))を
示している。ここで、図1に示された最大相当熱応力σ
e1max と、図2に示された最大相当熱応力σe2max との
計算結果を対比すると、ウエハ基板の面内温度差が同じ
でも、後者の場合は、前者に対し約1.9倍の熱応力と
なり、ホルダ上のウエハ基板は実際には加熱によって、
予想以上の大きな熱応力を受けることが判る。
In the case of FIG. 2, b = 0.9, that is, assuming that the distance from the outer peripheral edge to the center of the wafer substrate is 1, a range corresponding to 1/10 of the total length 1 near the outer peripheral edge (1) Region) is in contact with the wafer mounting portion of the holder. The dotted line in the figure indicates the temperature distribution (FIG. 2 (a)) and the equivalent thermal stress (FIG. 2 (b)) of the above-described simplified model (when the contact portion is infinitely small and uniformly heated). Is shown. Here, the maximum equivalent thermal stress σ shown in FIG.
Comparing the calculation results of e 1max and the maximum equivalent thermal stress σe 2max shown in FIG. 2, even if the in-plane temperature difference of the wafer substrate is the same, in the latter case, the heat difference is about 1.9 times that of the former. Stress, and the wafer substrate on the holder is actually heated,
It turns out that it receives a bigger thermal stress than expected.

【0020】また、図3に、ウエハ載置部の支持部領域
の範囲(パラメータb/R)を変えた場合の最大相当熱
応力σemaxの変化を示した。なお、この図において、縦
軸はσemax/(αEΔT/4)を、また横軸は、b/R
を示している。この図から、ウエハ載置部の支持部領域
の範囲によっては、相当熱応力が式(3)の2次曲線温
度分布の場合(図1の場合)に比べて2倍以上になる場
合があることが判る。
FIG. 3 shows a change in the maximum equivalent thermal stress σe max when the range (parameter b / R) of the support region of the wafer mounting portion is changed. In this figure, the vertical axis represents σe max / (αEΔT / 4), and the horizontal axis represents b / R
Is shown. From this drawing, depending on the range of the supporting portion area of the wafer mounting portion, the equivalent thermal stress may be twice or more as compared with the case of the quadratic curve temperature distribution of Expression (3) (in the case of FIG. 1). You can see that.

【0021】以上の結果からも、気相成長時に、加熱に
よるウエハ基板の面内温度分布を出来る限り均一化する
ことが極めて重要であることが判る。以上に述べた通
り、本発明は、ホルダの周辺部の受けた放射熱及び吸収
熱の損失を、ホルダの外周部が受けた放射熱を反射等に
よりウエハ基板の周辺部に誘導供給して補償することに
より、ウエハ基板周辺部(支持部)での温度低下を回避
した点に特徴を有するものである。
From the above results, it is understood that it is extremely important to make the in-plane temperature distribution of the wafer substrate by heating as uniform as possible during the vapor phase growth. As described above, the present invention compensates for the loss of radiant heat and absorbed heat received at the peripheral portion of the holder by guiding the radiated heat received at the outer peripheral portion of the holder to the peripheral portion of the wafer substrate by reflection or the like. By doing so, a feature is that a temperature drop in the peripheral portion (support portion) of the wafer substrate is avoided.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図4乃至図7に基づいて説明する。ここで、図4
は、本発明の回転式気相薄膜成長装置に設けられるウエ
ハ基板ホルダの一実施例の斜視図であり、図5は図4に
示されたウエハ基板ホルダの一部断面図である。また、
図6は加熱ヒ−タからの熱流束の伝達パスの様子を示す
模式図であり、図7は、本発明の基板ホルダ−の他の一
例を示す断面図である。なお、基板ホルダ以外の部分
は、図8に示された部材と同一の構成であるため、その
説明は省略する。 図において、ホルダ1は、内側壁面
部2を境としてその外周側部分に位置する円環状ホルダ
上面部3と、ホルダの底面部4と、ホルダ外周側面部
5、前記内側壁面部から内方へ延設し、その中央部に貫
通開口1aを有するウエハ載置部6とを有している。な
お、ホルダ1の外周側面部5は、別の保持部材(図示せ
ず)により保持される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS. Here, FIG.
FIG. 5 is a perspective view of an embodiment of a wafer substrate holder provided in the rotary vapor phase thin film growth apparatus of the present invention, and FIG. 5 is a partial sectional view of the wafer substrate holder shown in FIG. Also,
FIG. 6 is a schematic view showing a state of a transmission path of a heat flux from a heating heater, and FIG. 7 is a sectional view showing another example of the substrate holder of the present invention. Note that parts other than the substrate holder have the same configuration as the members shown in FIG. 8, and thus description thereof will be omitted. In the drawing, a holder 1 has an annular holder upper surface portion 3 located on an outer peripheral side portion of an inner wall surface portion 2, a bottom surface portion 4 of the holder, a holder outer peripheral side surface portion 5, and inward from the inner wall surface portion. A wafer mounting portion 6 which extends and has a through opening 1a at the center thereof. The outer peripheral side surface portion 5 of the holder 1 is held by another holding member (not shown).

【0023】基板ホルダ1のウエハ基板載置部6内に
は、図5に示すようにホルダ上面部3に対し約45度の
傾斜角度を有する反射面7が、放射熱誘導手段として設
けられている。この反射面7により、基板ホルダ1の底
面部4を透過した放射熱は反射され、反射熱の大部分
を、内側壁面部2を経由してウエハ基板Wの側面から、
ウエハ基板周辺部に照射受熱させ、またその反射熱の一
部はウエハ基板載置部6に伝達され、ウエハ基板周辺部
にその下面側から受熱させる。これにより、ウエハ基板
載置部6での表面熱反射、及びそれ自身の熱吸収による
ウエハ基板周辺部の熱流束損失が補償される。なお、加
熱用ヒータ15からの熱流束の伝達パスの様子を図6に
模式的に示す。
In the wafer substrate mounting portion 6 of the substrate holder 1, a reflection surface 7 having an inclination angle of about 45 degrees with respect to the holder upper surface portion 3 as shown in FIG. I have. Radiation heat transmitted through the bottom surface portion 4 of the substrate holder 1 is reflected by the reflection surface 7, and most of the reflected heat is transmitted from the side surface of the wafer substrate W via the inner wall surface portion 2.
The peripheral portion of the wafer substrate is irradiated and received, and a part of the reflected heat is transmitted to the wafer substrate mounting portion 6, and the peripheral portion of the wafer substrate receives the heat from the lower surface side. This compensates for surface heat reflection at the wafer substrate mounting portion 6 and heat flux loss around the wafer substrate due to heat absorption by itself. FIG. 6 schematically shows the state of the transmission path of the heat flux from the heater 15.

【0024】本発明の基板ホルダ1を構成する材質とし
ては、石英ガラス、光透過性アルミナ等が用いられ、こ
れらの内でも透明性石英ガラスが好適に用いられる。こ
のように透明性石英ガラスが用いられるのは、赤外線の
透過率が高いのためである。好適な透明石英ガラスの具
体例として、例えば、東芝セラミックス(株)製の市販
品(品番名T2630)石英ガラスを挙げることができ
る。
As a material for forming the substrate holder 1 of the present invention, quartz glass, light transmissive alumina, or the like is used, and among these, transparent quartz glass is preferably used. The reason why the transparent quartz glass is used is that the transmittance of infrared rays is high. A specific example of a suitable transparent quartz glass is, for example, a commercial product (product number T2630) quartz glass manufactured by Toshiba Ceramics Corporation.

【0025】本発明にかかる基板ホルダ1は、上記透明
石英ガラス等の材料単一から構成されたものであっても
良いが、基板ホルダ1には反射面等の放射熱誘導手段7
を形成する必要があるため、特に、該手段が反射面であ
る場合には、二つの部材を結合させた構成のものを用
い、その結合面に反射膜をコーティングする等の方法で
反射面を形成するのがより好ましい。コーティングされ
る反射膜としては、金を用いることができ、蒸着等の公
知の手段によって形成することができる。また、放射熱
誘導手段7の上方、上面部3及び外周側面部5によって
画定される部分は、不透明性材料により形成されること
が好ましい。不透明性材料を用いることにより、同じく
赤外線の反射効果を得ることができる。この不透明性材
料としては、例えば不透明性石英を用いて良く、またこ
の種のホルダ1の形成用材料として一般に用いられてい
る公知の他の材料を用いても良い。
The substrate holder 1 according to the present invention may be made of a single material such as the transparent quartz glass, but the substrate holder 1 has a radiant heat guiding means 7 such as a reflection surface.
In particular, when the means is a reflection surface, a structure in which two members are combined is used, and the reflection surface is coated by a method such as coating a reflection film on the combined surface. More preferably, it is formed. Gold can be used as the reflective film to be coated, and can be formed by a known means such as vapor deposition. Further, a portion defined by the upper surface portion 3 and the outer peripheral side portion 5 above the radiant heat guiding means 7 is preferably formed of an opaque material. By using an opaque material, an infrared reflection effect can also be obtained. As this opaque material, for example, opaque quartz may be used, or another known material generally used as a material for forming this kind of holder 1 may be used.

【0026】本発明における放射熱誘導手段7として
は、既に上記した反射面形成による放射熱反射手段が最
も簡易且つ有効な手段であるが、必ずしもこれに限定さ
れるものではなく、例えば、図7に模式的に示したよう
に、ガラス光ファイバー束9等を、基板ホルダ1の底面
部4から内側壁面部2及びウエハ載置部6に向けて配列
設置して放射熱線を誘導しても良く、また屈折等、その
他の赤外線の進路変更手段を利用して放射熱線を誘導し
ても良い。
As the radiant heat guiding means 7 in the present invention, the above-described radiant heat reflecting means by forming a reflecting surface is the simplest and most effective means, but is not necessarily limited thereto. As schematically shown in FIG. 2, the glass optical fiber bundle 9 and the like may be arranged and arranged from the bottom surface portion 4 of the substrate holder 1 to the inner wall surface portion 2 and the wafer mounting portion 6 to guide radiant heat rays. Further, the radiant heat ray may be guided using other infrared ray path changing means such as refraction.

【0027】反射面形成による放射熱反射手段7を用い
る場合、その反射面は、例えば図5に示すようにウエハ
基板ホルダ1の上面部3に対し45度の角度(通常底面
に対しても45度の角度となる)を有するように円錐台
型(テーパー型)の側面形状に形成、設置されるのが好
ましい。また、下方の加熱用ヒ−タ5から放射熱を受け
るホルダ底面部4の表面及び内側壁面部2の表面は、放
射熱線の光透過性を良好にするために、鏡面研磨加工を
施すことが好ましい。
In the case where the radiant heat reflecting means 7 by forming a reflecting surface is used, its reflecting surface is, for example, at an angle of 45 degrees with respect to the upper surface 3 of the wafer substrate holder 1 as shown in FIG. It is preferable to form and install it in a frustoconical (tapered) side shape so as to have a degree angle. Further, the surface of the holder bottom surface portion 4 and the surface of the inner wall surface portion 2 which receive the radiant heat from the lower heating heater 5 may be subjected to mirror polishing to improve the light transmittance of the radiant heat rays. preferable.

【0028】本発明のホルダにおいて、内側壁面部2の
半径は、ウエハ基板の半径より、半径として0.5乃至
2mm程度大きく設定され、中央部の貫通開口1aの半
径は、半径として、ウエハ基板の半径の0.7乃至0.
95倍の大きさに設定されることが好ましい。ホルダ外
周縁の大きさは装置の全体構造、ホルダの強度等を勘案
して適宜設定される。本発明の回転式気相薄膜成長装置
の主要部を構成する反応炉には、上記ウエハホルダ構成
部分を除き、それ自体公知の、いわゆる縦型反応炉形式
のものを用いることができる。例えば、その全体構成が
図8に示されているような反応炉が好適に使用される。
In the holder of the present invention, the radius of the inner wall portion 2 is set to be larger than the radius of the wafer substrate by about 0.5 to 2 mm, and the radius of the through-opening 1a at the central portion is defined as the radius of the wafer substrate. 0.7 to 0.
It is preferable to set the size to 95 times. The size of the outer peripheral edge of the holder is appropriately set in consideration of the overall structure of the device, the strength of the holder, and the like. As a reaction furnace constituting a main part of the rotary type vapor phase thin film growth apparatus of the present invention, a so-called vertical reaction furnace type known per se can be used except for the above-mentioned wafer holder constituent part. For example, a reactor whose entire configuration is shown in FIG. 8 is preferably used.

【0029】本発明のこの回転式気相薄膜成長装置を用
いてウエハ基板W上に薄膜を気相成長により形成させる
には、炉内上部供給口12から整流板13を経由して反
応ガスをキャリアガスと共に流下させ、整流板13の下
方に位置する基板ホルダ14のウエハ載置部6載置され
たウエハ基板Wを、加熱下に基板ホルダ1と共に回転さ
せながら、その表面に薄膜を気相成長させることによ
り、薄膜を形成することができる。
In order to form a thin film on a wafer substrate W by vapor phase growth using the rotary vapor phase thin film growth apparatus of the present invention, a reaction gas is supplied from an upper supply port 12 in a furnace via a rectifying plate 13. The wafer substrate W on the wafer mounting part 6 of the substrate holder 14 located below the rectifying plate 13 is caused to flow down together with the carrier gas, and the thin film is vapor-phased on the surface thereof while being rotated together with the substrate holder 1 under heating. By growing, a thin film can be formed.

【0030】[0030]

【発明の効果】本発明の回転式気相薄膜成長装置によれ
ば、従来装置の問題点であった気相成長反応時に発生す
るウエハ基板基板の面内温度差、特に、ウエハ基板の中
央部領域と、外周縁近傍領域との温度差が低減され、そ
れに起因して発生する熱応力を可及的に低減でき、その
結果として、格子スリップ等がなく、成長薄膜の面内厚
さ、物性等が均質な良質のウエハ基板基板積層薄膜を得
ることができる。
According to the rotary type vapor phase thin film growth apparatus of the present invention, the in-plane temperature difference of the wafer substrate generated at the time of the vapor phase growth reaction, which is a problem of the conventional apparatus, especially the central portion of the wafer substrate. The temperature difference between the region and the region near the outer periphery is reduced, and the resulting thermal stress can be reduced as much as possible. As a result, there is no lattice slip or the like, and the in-plane thickness and physical properties of the grown thin film are reduced. It is possible to obtain a high-quality wafer-substrate laminated thin film having a uniform quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、二次曲線温度分布モデルにおける熱応
力(応力成分及び相当熱応力)のウエハ面内分布を示す
図である。
FIG. 1 is a diagram illustrating a distribution of thermal stress (stress component and equivalent thermal stress) in a wafer surface in a quadratic curve temperature distribution model.

【図2】図2(a)は、b/R=0.9モデルにおける
温度分布変を示す図であり、(b)は熱相当応力の変化
を示す図である。
FIG. 2A is a diagram showing a change in temperature distribution in a b / R = 0.9 model, and FIG. 2B is a diagram showing a change in stress equivalent to heat.

【図3】図3は、最大相当熱応力の変化を示す図であ
る。
FIG. 3 is a diagram showing a change in a maximum equivalent thermal stress.

【図4】図4は、本発明にかかる基板ホルダの形状を示
す斜視図である。
FIG. 4 is a perspective view showing a shape of a substrate holder according to the present invention.

【図5】図5は、図4に示された基板ホルダの要部断面
を示す図である。
FIG. 5 is a view showing a cross section of a main part of the substrate holder shown in FIG. 4;

【図6】図6は、加熱ヒ−タからの熱流束の伝達パスの
様子を示す模式図である。
FIG. 6 is a schematic diagram showing a state of a transmission path of a heat flux from a heating heater.

【図7】図7は、本発明の基板ホルダの他の一例を示す
断面図である。
FIG. 7 is a sectional view showing another example of the substrate holder of the present invention.

【図8】図8は、回転式気相成長装置の一例を示す断面
概略図である。
FIG. 8 is a schematic sectional view showing an example of a rotary vapor phase growth apparatus.

【符号の説明】[Explanation of symbols]

1 基板ホルダ 1a 貫通開口 2 内側壁面部 3 上面部 4 底面部 5 加熱用ヒ−タ 6 ウエハ基板載置部 7 放射熱誘導手段 9 光ファイバ−束 11 反応炉 12 ガス導入管 13 整流板 14 基板ホルダ− 15 加熱用ヒ−タ 16 回転軸 17 排気管 W ウエハ基板 DESCRIPTION OF SYMBOLS 1 Substrate holder 1a Through-opening 2 Inner wall surface part 3 Top surface part 4 Bottom part 5 Heating heater 6 Wafer substrate mounting part 7 Radiation heat induction means 9 Optical fiber bundle 11 Reaction furnace 12 Gas introduction pipe 13 Rectifier plate 14 Substrate Holder 15 Heating heater 16 Rotating shaft 17 Exhaust pipe W Wafer substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 茶木 勝弘 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Katsuhiro Chaki 30 Soya, Hadano-shi, Kanagawa Prefecture Toshiba Ceramics Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ウエハ基板を載置、保持する基板ホルダ
及びその下方にウエハ基板加熱用ヒ−タを備えた反応炉
からなり、ウエハ基板をホルダと共に回転させながら、
反応ガスを上方から流下させ、その表面に薄膜を成長さ
せる回転式気相薄膜成長装置において、 前記基板ホルダは、外周縁と内周縁とで画定される環状
のホルダ上面部と、該内周縁から下方に延びる内側壁面
部と、該内側壁面から内方へ延設した中央部に貫通開口
を有するウエハ載置部と、ホルダ上面の外周縁から下方
に延びた外周側面部と、底面部とを有し、 加熱用ヒ−タからウエハ載置部に向けられた熱放射は、
前記貫通開口を通して直接ウエハ基板に伝達される共
に、ウエハ載置部を透過して載置されたウエハ基板に伝
達され、加熱用ヒ−タから底面部に向けられた熱放射
は、放射熱誘導手段によって内側壁面部を通して載置さ
れたウエハ基板の側面方向から伝達されるようになされ
ていることを特徴とする回転式気相薄膜成長装置。
1. A reaction furnace comprising a substrate holder for mounting and holding a wafer substrate and a heater for heating the wafer substrate below the substrate holder, while rotating the wafer substrate together with the holder.
In a rotary vapor phase thin film growth apparatus that causes a reaction gas to flow down from above and grow a thin film on the surface thereof, the substrate holder is an annular holder upper surface defined by an outer peripheral edge and an inner peripheral edge, and from the inner peripheral edge. An inner wall portion extending downward, a wafer mounting portion extending inward from the inner wall surface and having a through opening in a central portion, an outer peripheral side portion extending downward from an outer peripheral edge of the upper surface of the holder, and a bottom portion. The heat radiation directed from the heating heater to the wafer mounting portion is:
The heat radiation transmitted directly to the wafer substrate through the through-opening and transmitted through the wafer mounting portion to the mounted wafer substrate, and directed from the heating heater to the bottom portion is radiant heat induction. A rotating vapor phase thin film growth apparatus, wherein the wafer is transmitted from a side direction of a wafer substrate placed through an inner wall portion by means.
【請求項2】 前記ウエハ載置部から外側の底面部に向
けられた熱放射の一部は、内側壁面部を通して載置され
たウエハ基板の側面方向から伝達され、かつ前記熱放射
の他部はウエハ載置部に伝達されるように放射熱誘導手
段が設けられていることを特徴とする請求項1に記載さ
れた回転式気相薄膜成長装置。
2. A part of the heat radiation directed from the wafer mounting portion to an outer bottom surface portion is transmitted from a side direction of the mounted wafer substrate through an inner wall surface portion, and the other portion of the heat radiation. 2. The rotary vapor phase thin film growing apparatus according to claim 1, further comprising a radiant heat guide means for transmitting the heat to the wafer mounting portion.
【請求項3】 前記放射熱誘導手段が、ウエハ基板ホル
ダの上面部、外周側面部、内側壁面部、底面部で画定さ
れる域内に設けられた放射熱反射面であることを特徴と
する請求項1または請求項2に記載されたの回転式気相
薄膜成長装置。
3. The radiant heat guiding means is a radiant heat reflection surface provided in an area defined by an upper surface portion, an outer peripheral side surface portion, an inner wall surface portion, and a bottom surface portion of the wafer substrate holder. 3. The rotary vapor phase thin film growth apparatus according to claim 1 or 2.
【請求項4】 前記放射熱反射面は、ウエハ基板ホルダ
の上面部に対して、45度の角度を有するように設置さ
れていることを特徴とする請求項3に記載された回転式
気相薄膜成長装置。
4. The rotary vapor phase according to claim 3, wherein the radiant heat reflecting surface is installed at an angle of 45 degrees with respect to an upper surface of the wafer substrate holder. Thin film growth equipment.
JP32386697A 1997-11-10 1997-11-10 Rotary vapor phase thin film growth system Expired - Fee Related JP4003899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32386697A JP4003899B2 (en) 1997-11-10 1997-11-10 Rotary vapor phase thin film growth system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32386697A JP4003899B2 (en) 1997-11-10 1997-11-10 Rotary vapor phase thin film growth system

Publications (2)

Publication Number Publication Date
JPH11140650A true JPH11140650A (en) 1999-05-25
JP4003899B2 JP4003899B2 (en) 2007-11-07

Family

ID=18159476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32386697A Expired - Fee Related JP4003899B2 (en) 1997-11-10 1997-11-10 Rotary vapor phase thin film growth system

Country Status (1)

Country Link
JP (1) JP4003899B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091638A1 (en) * 2006-02-09 2007-08-16 Sumco Techxiv Corporation Susceptor and apparatus for manufacturing epitaxial wafer
JP2013211521A (en) * 2012-03-02 2013-10-10 Stanley Electric Co Ltd Vapor growth device
JP2014212249A (en) * 2013-04-19 2014-11-13 株式会社アルバック Substrate heating mechanism, film formation device, and susceptor
JP2015519472A (en) * 2012-04-06 2015-07-09 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Edge ring for deposition chamber
CN111446194A (en) * 2020-03-05 2020-07-24 绍兴同芯成集成电路有限公司 Glass carrier plate for wafer processing
JPWO2020090164A1 (en) * 2018-10-30 2021-09-02 株式会社アルバック Vacuum processing equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015002166A1 (en) * 2013-07-01 2017-02-23 ヤマハ発動機株式会社 Vehicle with tiltable body frame and two front wheels

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091638A1 (en) * 2006-02-09 2007-08-16 Sumco Techxiv Corporation Susceptor and apparatus for manufacturing epitaxial wafer
JP2013211521A (en) * 2012-03-02 2013-10-10 Stanley Electric Co Ltd Vapor growth device
JP2015519472A (en) * 2012-04-06 2015-07-09 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Edge ring for deposition chamber
JP2014212249A (en) * 2013-04-19 2014-11-13 株式会社アルバック Substrate heating mechanism, film formation device, and susceptor
JPWO2020090164A1 (en) * 2018-10-30 2021-09-02 株式会社アルバック Vacuum processing equipment
CN111446194A (en) * 2020-03-05 2020-07-24 绍兴同芯成集成电路有限公司 Glass carrier plate for wafer processing

Also Published As

Publication number Publication date
JP4003899B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
US5053247A (en) Method for increasing the batch size of a barrel epitaxial reactor and reactor produced thereby
TW451360B (en) Gas driven rotating susceptor for rapid thermal processing (RTP) system
US6617247B2 (en) Method of processing a semiconductor wafer in a reaction chamber with a rotating component
EP0461194B1 (en) A high capacity epitaxial reactor
US5493987A (en) Chemical vapor deposition reactor and method
JP4108748B2 (en) Cold wall vapor deposition
US5332442A (en) Surface processing apparatus
KR910007109B1 (en) Reflector apparatus for chemical vapor deposition reactors
JP2002118071A (en) Apparatus and method for heat treatment by light irradiation
JP2002141294A (en) Improved heat lamp for heating zone
JP5402657B2 (en) Epitaxial growth equipment
TW201535476A (en) Epitaxial growth apparatus
JPS60186013A (en) Induction heating reactor for chemical deposition
JPH11140650A (en) Rotary vapor phase thin film growth device
US4848272A (en) Apparatus for forming thin films
US6099650A (en) Structure and method for reducing slip in semiconductor wafers
JP2002217110A (en) Heating apparatus and semiconductor manufacturing apparatus using the same
CN109487237B (en) Apparatus and method for chemical vapor deposition process for semiconductor substrate
JP2000138170A (en) Semiconductor equipment
JPH05190464A (en) Vapor growth device
TW202230491A (en) Systems and methods for a preheat ring in a semiconductor wafer reactor
US5743956A (en) Method of producing single crystal thin film
JPH09246202A (en) Heat treatment and semiconductor single crystal substrate
JPS60161616A (en) Infrared heating unit for semiconductor wafer
JP2002050583A (en) Substrate-heating method and substrate-heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040531

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070201

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070817

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20070817

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees