JPH11140647A - Coated cemented carbide - Google Patents

Coated cemented carbide

Info

Publication number
JPH11140647A
JPH11140647A JP30159997A JP30159997A JPH11140647A JP H11140647 A JPH11140647 A JP H11140647A JP 30159997 A JP30159997 A JP 30159997A JP 30159997 A JP30159997 A JP 30159997A JP H11140647 A JPH11140647 A JP H11140647A
Authority
JP
Japan
Prior art keywords
layer
cemented carbide
aluminum oxide
plane
coated cemented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30159997A
Other languages
Japanese (ja)
Other versions
JP3658949B2 (en
Inventor
Katsuya Uchino
克哉 内野
Akihiko Ikegaya
明彦 池ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP30159997A priority Critical patent/JP3658949B2/en
Publication of JPH11140647A publication Critical patent/JPH11140647A/en
Application granted granted Critical
Publication of JP3658949B2 publication Critical patent/JP3658949B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an alloy having excellent peeling resistance, wear resistance, crater resistance and rupture strength and suitable for cutting tools by regulating the orientational properties of a carbon nitride titanium layer included in the internal layer of a ceramics coating layer to a specified range. SOLUTION: On the surface of a base material of a cemented carbide composed of the WC series hard phase contg. one or more kinds among the carbides, carbon nitrides and nitrides of the group IVa, Va and VIa metals and the Co series bonding phase, ceramics-coating layers as an internal layer and an external layer are formed. The external layer includes at least an aluminum oxide layer, and the crystal structure of the layer has the α type. The internal layer has a multilayer structure having a carbon nitride titanium layer, the layer is composed of a columnar structure having a thickness of >=10 μ, and, in the case the index of the orientational properties TC of the layer is defined as the formula, Both indexes of the orientational properties TC (422) and TC (311) expressed by the formula are regulated to 1.3 to 3. In the formula, I (hk1) denotes the measured diffraction intensity in the measured (hk1) plane, I0 (hk1) denotes the average value of the powder diffraction intensity of TiC and TiN in the (hk1) plane in accordance with the ASTM standard, and (hk1) denotes 8 planes such as (111) or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被覆超硬合金に関
し、より特定的には、切削工具などに使用される強靱か
つ耐摩耗性に優れる被覆超硬合金に関するものである。
The present invention relates to a coated cemented carbide, and more particularly to a coated cemented carbide used for cutting tools and the like, which is excellent in toughness and wear resistance.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】超硬
合金の表面に炭化チタン、窒化チタン、炭窒化チタンあ
るいは酸化アルミニウムなどの被覆層を蒸着することに
より切削工具の寿命を向上させることが行なわれてお
り、一般に化学蒸着法、プラズマCVD(Chemical Vap
or Deposition )法、物理蒸着法などを用いて生成され
た被覆層などが広く普及している。
2. Description of the Related Art The life of a cutting tool has been improved by depositing a coating layer of titanium carbide, titanium nitride, titanium carbonitride or aluminum oxide on the surface of a cemented carbide. In general, chemical vapor deposition, plasma CVD (Chemical Vap
or a deposition layer formed by using a physical vapor deposition method or the like.

【0003】しかし、これらの被覆切削工具を用いて加
工を行なった場合、特に鋼の高速切削加工や高速でのダ
クタイル鋳鉄の加工のように高温での被覆層の耐摩耗性
が必要な加工、あるいは小物部品加工のように加工数が
多く被削材への食いつき回数が多い加工などで被覆層の
耐摩耗性が不足したり、被覆層の損傷、剥離が発生する
ことによる工具寿命の低下が発生していた。
[0003] However, when machining is performed using these coated cutting tools, machining that requires wear resistance of the coating layer at high temperatures, such as high-speed cutting of steel or machining of ductile cast iron at high speeds, In addition, the wear resistance of the coating layer may be insufficient due to the large number of processes such as small component processing and the number of bites to the work material, or the tool life may be shortened due to damage or peeling of the coating layer. Had occurred.

【0004】これらの課題を克服するために、これまで
に被覆技術については、被覆層の組織制御あるいは、特
開平8−132130号公報や特開平5−269606
号公報に示されるような被覆層の配向性の制御など、多
くの改良が試みられてきた。しかし、その効果は十分と
は言えないのが現状であった。
[0004] In order to overcome these problems, a coating technique has heretofore been controlled by controlling the structure of a coating layer or disclosed in JP-A-8-132130 and JP-A-5-269606.
Many improvements have been attempted, such as the control of the orientation of the coating layer as disclosed in Japanese Patent Application Laid-Open Publication No. H11-163,036. However, the effect was not enough at present.

【0005】それゆえ、本発明の目的は、優れた耐剥離
性、耐摩耗性および耐クレータ性と優れた破壊強度とを
有し、切削工具に適した被覆超硬合金を提供することで
ある。
Accordingly, an object of the present invention is to provide a coated cemented carbide having excellent peel resistance, wear resistance, crater resistance and excellent breaking strength, and suitable for a cutting tool. .

【0006】[0006]

【課題を解決するための手段】本願発明者らは、上記問
題点を解決すべく鋭意検討した結果、従来の被覆切削工
具用の被覆超硬合金に比較して、切削における被覆層の
耐剥離性を大きく向上させるとともに、膜自体の耐摩耗
性を向上させ、膜の破壊強度の向上を可能にすることに
より、工具の寿命を安定して飛躍的に向上させ得る被覆
超硬合金を見出した。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the inventors of the present invention have found that compared with conventional coated cemented carbides for coated cutting tools, peeling of the coating layer during cutting is more difficult. Has found a coated cemented carbide that can greatly improve the tool life by stably improving the tool life by greatly improving the wear resistance of the film itself and improving the breaking strength of the film. .

【0007】このため、本発明の被覆超硬合金は以下の
構成を有する。本発明の被覆超硬合金は、炭化タングス
テンを主成分とし、IVa、Va、VIa族金属の炭化
物、窒化物、炭窒化物の少なくとも1種を含む硬質相と
Coを主成分とする結合相とからなる超硬合金を基材と
し、その基材の表面に形成された内層および外層を有す
るセラミックス被覆層を有し、内層および外層は以下の
特徴を有する。
Therefore, the coated cemented carbide of the present invention has the following constitution. The coated cemented carbide of the present invention contains tungsten carbide as a main component, a hard phase containing at least one of carbides, nitrides, and carbonitrides of group IVa, Va, and VIa metals, and a binder phase containing Co as a main component. And a ceramic coating layer having an inner layer and an outer layer formed on the surface of the base material. The inner layer and the outer layer have the following characteristics.

【0008】外層は、少なくとも酸化アルミニウム層を
含み、その酸化アルミニウム層の結晶構造がα型を有し
ている。
The outer layer includes at least an aluminum oxide layer, and the aluminum oxide layer has an α-type crystal structure.

【0009】内層は、炭窒化チタン層を有する多層構造
を有し、その炭化チタン層は10μm以上の厚みを有す
る柱状組織からなり、炭窒化チタン層の配向性指数TC
を、
The inner layer has a multilayer structure having a titanium carbonitride layer. The titanium carbide layer has a columnar structure having a thickness of 10 μm or more, and has an orientation index TC of the titanium carbonitride layer.
To

【0010】[0010]

【数3】 (Equation 3)

【0011】と定義したとき、この式で表わされる(4
22)面と(311)面との配向性指数TC(42
2)、TC(311)がともに1.3以上3以下であ
る。
When defined as (4)
The orientation index TC (42) between the (22) plane and the (311) plane
2) and TC (311) are both 1.3 or more and 3 or less.

【0012】本発明の被覆超硬合金において、炭窒化チ
タン層の配向性指数TC(422)、TC(311)を
ともに1.3以上とし、その組織を柱状組織とすること
により、10μm以上の膜厚でも膜の耐破壊性を大きく
向上させつつ耐摩耗性を向上させることが可能となる。
ただし、配向性指数TC(422)、TC(311)が
3を超えると、一定方向の配向が強くなりすぎることに
より、逆に膜の耐破壊性が低下する。
In the coated cemented carbide of the present invention, both the orientation index TC (422) and TC (311) of the titanium carbonitride layer are set to 1.3 or more, and the structure is made to be a columnar structure, so that it is 10 μm or more. Even with a film thickness, it is possible to improve the abrasion resistance while greatly improving the destruction resistance of the film.
However, if the orientation index TC (422) or TC (311) exceeds 3, the orientation in a certain direction becomes too strong, and conversely, the film has reduced fracture resistance.

【0013】また、耐摩耗性が向上するのは、10μm
以上の厚膜とした柱状組織の効果以外にも、膜の耐破壊
性の向上により切削中に膜中のチッピングによる摩耗の
進行が抑制される効果も大きいと考えられる。さらに、
膜中のチッピングが生じにくくなることにより、これに
起因する切削中の被削材の溶着が起こりにくくなり、膜
にかかる切削応力の増大が防げることから耐剥離性が大
幅に向上できる。
[0013] The wear resistance is improved only by 10 µm.
In addition to the effect of the columnar structure having the thick film, the improvement of the fracture resistance of the film is considered to have a great effect of suppressing the progress of wear due to chipping in the film during cutting. further,
Since chipping in the film is less likely to occur, welding of the workpiece during cutting due to this is less likely to occur, and an increase in cutting stress applied to the film can be prevented, so that peeling resistance can be significantly improved.

【0014】本構造において、炭窒化チタン層は、その
被覆時の雰囲気をTiCl4 、CH 3 CN、N2 および
2 とし、前半と後半との条件を次のように変更して成
膜される。すなわち、成膜初期から120分の間は、
(TiCl4 +CH3 CN)/トータルガス量の比率を
後半に比べて小さくし、かつ前半のN2 /トータルガス
量の比率を後半の2倍以上とすることにより炭窒化チタ
ン層は成膜される。
In the present structure, the titanium carbonitride layer is
The atmosphere during coating is TiClFour , CH Three CN, NTwo and
HTwo The conditions for the first half and the second half were changed as follows.
Filmed. That is, for 120 minutes from the beginning of film formation,
(TiClFour + CHThree CN) / Total gas volume ratio
N smaller than the second half, and N in the first halfTwo / Total gas
By setting the ratio of the amount to twice or more of the latter half,
A layer is formed.

【0015】本発明の被覆超硬合金において、内層は炭
窒化チタン層以外に、窒化チタン層および硼窒化チタン
層の少なくとも1層を有し、外層は酸化アルミニウム層
以外に炭化チタン層、炭窒化チタン層および窒化チタン
層の少なくとも1層を有することが好ましい。
In the coated cemented carbide of the present invention, the inner layer has at least one layer of a titanium nitride layer and a titanium boronitride layer in addition to the titanium carbonitride layer, and the outer layer has a titanium carbide layer and a carbonitride layer other than the aluminum oxide layer. It is preferable to have at least one layer of a titanium layer and a titanium nitride layer.

【0016】本発明の被覆超硬合金において、配向性指
数TC(422)とTC(311)とを除く配向性指数
TC(hkl)がすべて1.5以下であることが好まし
い。
In the coated cemented carbide of the present invention, the orientation index TC (hkl) except for the orientation index TC (422) and TC (311) is preferably 1.5 or less.

【0017】本発明の被覆超硬合金の構造において、炭
窒化チタン層の配向性が、TC(422)とTC(31
1)のみで強く、これらを除く結晶面の配向性指数TC
(hkl)がすべて1.5以下であることにより、より
顕著な効果が得られる。
In the structure of the coated cemented carbide according to the present invention, the orientation of the titanium carbonitride layer is TC (422) and TC (31).
1) alone and strong, orientation index TC of crystal plane excluding these
By setting (hkl) to 1.5 or less, more remarkable effects can be obtained.

【0018】本発明の被覆超硬合金において、外層の酸
化アルミニウム層の直下の層が、硼窒化チタン層である
ことが好ましい。
In the coated cemented carbide of the present invention, it is preferable that the layer immediately below the outer aluminum oxide layer is a titanium boronitride layer.

【0019】本発明の被覆超硬合金において、α型結晶
構造の酸化アルミニウム層の配向性指数TCaを、
In the coated cemented carbide of the present invention, the orientation index TCa of the aluminum oxide layer having the α-type crystal structure is represented by

【0020】[0020]

【数4】 (Equation 4)

【0021】と定義したとき、この式で表わされる(1
10)面と(104)面との配向性指数は、TCa(1
10)≧1.2かつTCa(104)≧1.2であるこ
とが好ましい。
When defined as (1)
The orientation index between the (10) plane and the (104) plane is TCa (1).
10) It is preferred that ≧ 1.2 and TCa (104) ≧ 1.2.

【0022】本発明の被覆超硬合金の構造では、外層と
して上記の配向を有するα型結晶構造を主とする酸化ア
ルミニウム層を被覆することにより、さらなる性能向上
効果が得られる。
In the structure of the coated cemented carbide according to the present invention, an effect of further improving the performance can be obtained by coating the outer layer with an aluminum oxide layer mainly having an α-type crystal structure having the above-mentioned orientation.

【0023】またさらなる性能向上効果の観点より、α
型結晶構造の酸化アルミニウム層の配向性指数TCa
が、TCa(104)≧1.3かつTCa(116)≧
1.3であることが好ましい。
From the viewpoint of further improving the performance, α
Index TCa of the aluminum oxide layer having the p-type crystal structure
Are TCa (104) ≧ 1.3 and TCa (116) ≧
It is preferably 1.3.

【0024】この構造により、すくい面で生じるクレー
タ摩耗を抑制する効果が向上する。これは、従来の膜質
で生じていたクレータ摩耗は、一般に言われる化学摩耗
と切り粉により生じた膜の剥離および膜の破壊といった
機械的損傷の複合として現れていたのに対し、本発明の
構造では酸化アルミニウム層の下地の膜強度、硬度が著
しく向上している効果により、機械的損傷が抑制され、
かつ酸化アルミニウム層の効果により化学的摩耗も抑制
されることによる。
With this structure, the effect of suppressing crater wear occurring on the rake face is improved. This is because crater abrasion, which occurred in the conventional film quality, appeared as a combination of general chemical abrasion and mechanical damage such as film peeling and film destruction caused by cutting chips, whereas the structure of the present invention With the effect that the film strength and hardness of the base of the aluminum oxide layer are significantly improved, mechanical damage is suppressed,
In addition, chemical wear is suppressed by the effect of the aluminum oxide layer.

【0025】ここで、α型の酸化アルミニウム層は、A
lCl3 およびCO2 を原料ガスとする通常のCVDプ
ロセスにより製造される。一般に本原料ガスによるCV
Dプロセスでは、酸化アルミニウムの結晶構造は、α、
κあるいはθ構造が得られる。一般に酸化アルミニウム
の中でκ型の酸化アルミニウムにおいて、最も微粒の酸
化アルミニウムが得られやすく、高強度でかつ高密着度
化が得られやすいとされている。しかし、κ型酸化アル
ミニウムは、比較的低温で安定な準安定相であるため
か、硬度、特に高温硬度がα型酸化アルミニウムに比較
して低く耐摩耗性に劣る傾向にあった。
Here, the α-type aluminum oxide layer is made of A
It is manufactured by a normal CVD process using lCl 3 and CO 2 as source gases. Generally, CV using this source gas
In the D process, the crystal structure of aluminum oxide is α,
A κ or θ structure is obtained. In general, among aluminum oxides, among κ-type aluminum oxides, the finest aluminum oxide is easily obtained, and high strength and high adhesion are easily obtained. However, because κ-type aluminum oxide is a metastable phase that is stable at a relatively low temperature, the hardness, especially the high-temperature hardness, tends to be lower than that of α-type aluminum oxide, resulting in inferior wear resistance.

【0026】本発明の内層の配向性との組合せと、α型
酸化アルミニウム層の組合せにより、従来の問題点の1
つであった密着強度の低下を抑制することに成功したも
のである。また、本発明の酸化アルミニウム層では、配
向性を本発明の範囲とすることにより、α型酸化アルミ
ニウムであるにもかかわらず、κ型並みの高強度を実現
しつつ、酸化アルミニウム層の高硬度、高耐摩耗化する
ことに成功したものである。
According to the combination of the orientation of the inner layer of the present invention and the combination of the α-type aluminum oxide layer, one of the conventional problems can be solved.
Thus, it has succeeded in suppressing the decrease in the adhesion strength. In addition, in the aluminum oxide layer of the present invention, by setting the orientation within the range of the present invention, despite being an α-type aluminum oxide, a high hardness similar to that of a κ-type can be realized while a high hardness of the aluminum oxide layer is achieved. And high wear resistance.

【0027】具体的なα型酸化アルミニウムの配向性の
制御は、以下の方法による。まず、酸化アルミニウム層
直下層まで被覆した後、酸化アルミニウム層の成膜を開
始する前に、CO2 とキャリアとしてのH2 のみの雰囲
気とし、この際のCO2 分圧PCO2 を、PCO2 =0.3
〜0.6torrとし、5〜10分間直下層を表面を部
分的にわずかに酸化させ、その後、1000〜1050
℃の温度で酸化アルミニウム層を成膜する。これによ
り、酸化アルミニウム層の成膜温度にかかわらず、α型
の酸化アルミニウム層の成膜が可能となるが、この際の
直下層表面の酸化条件の選定により、酸化アルミニウム
層の配向性の制御が可能である。また、同じ酸化条件を
用いて酸化アルミニウム層の膜厚を変えることによって
も配向性を変化させることが可能である。
The specific control of the orientation of the α-type aluminum oxide is carried out by the following method. First, after coating the layer immediately below the aluminum oxide layer, before starting the film formation of the aluminum oxide layer, an atmosphere containing only CO 2 and H 2 as a carrier is used, and the CO 2 partial pressure P CO2 at this time is changed to P CO2 = 0.3
0.60.6 torr and slightly oxidize the surface of the layer directly underneath for 5 to 10 minutes.
An aluminum oxide layer is formed at a temperature of ° C. This makes it possible to form an α-type aluminum oxide layer irrespective of the film formation temperature of the aluminum oxide layer. However, by controlling the oxidation conditions on the surface immediately below the α-type aluminum oxide layer, the orientation of the aluminum oxide layer can be controlled. Is possible. The orientation can also be changed by changing the thickness of the aluminum oxide layer using the same oxidation conditions.

【0028】なお、この直下層としてTiNに硼素を微
量添加したTiBN層を用いることにより、上層の酸化
アルミニウム層の密着度向上により有効である。
The use of a TiBN layer obtained by adding a small amount of boron to TiN as the immediately lower layer is effective for improving the adhesion of the upper aluminum oxide layer.

【0029】本発明の被覆超硬合金において、切刃稜線
部付近のみにおいて酸化アルミニウム層が存在しないこ
とが好ましい。
In the coated cemented carbide of the present invention, it is preferable that the aluminum oxide layer does not exist only in the vicinity of the ridge of the cutting edge.

【0030】被覆層を被覆した後、その被覆層の表面に
ブラスト処理あるいは、ブラシ処理などの機械的処理に
より、切刃稜線部のみで酸化アルミニウム層が除去され
るまで表面を処理することにより、上述の効果はより大
きくなる。この際の処理の程度は、切刃稜線部の中でも
実際に切削時に切り粉が接触する刃先部で確実に酸化ア
ルミニウム層が除去されていることが必要である。しか
し、処理の程度により、刃先から離れた位置の稜線部で
酸化アルミニウム層が一部除去されずに残留していても
全く問題はなく、本発明の効果は得られる。また、本発
明では、酸化アルミニウム層が存在しないのは切刃稜線
部のみとしているが、処理法によってはチップの座面周
辺などの切削と関係ない角張った場所でも除去されるこ
とがあるが、これについても実質的には、本発明の効果
には全く影響しない。
After the coating layer is coated, the surface of the coating layer is treated by mechanical treatment such as blasting or brushing until the aluminum oxide layer is removed only at the cutting edge ridge portion, whereby the surface is treated. The above effect is greater. The degree of treatment at this time is required to ensure that the aluminum oxide layer is surely removed at the cutting edge portion of the cutting edge ridge line with which the cutting powder actually contacts during cutting. However, depending on the degree of treatment, there is no problem even if the aluminum oxide layer remains without being partially removed at the ridge portion at a position away from the cutting edge, and the effects of the present invention can be obtained. Also, in the present invention, the aluminum oxide layer does not exist only at the cutting edge ridge portion, but depending on the processing method, it may be removed even at an angular location unrelated to cutting, such as around the seating surface of the chip, This does not substantially affect the effects of the present invention.

【0031】本発明の被覆超硬合金において、切刃稜線
部において内層の炭窒化チタン層の引張り残留応力が1
0kg/mm2 以下であることが好ましい。
[0031] In the coated cemented carbide of the present invention, the tensile residual stress of the inner titanium carbonitride layer at the cutting edge ridge portion is 1
It is preferably 0 kg / mm 2 or less.

【0032】上記のような膜表面処理により、被覆後、
被覆層中に存在する引張り残留応力を内層のTiCN層
で10kg/mm2 以下まで低減させることにより、膜
の耐破壊に対する効果を向上させることが可能となる。
After coating by the film surface treatment as described above,
By reducing the residual tensile stress existing in the coating layer to 10 kg / mm 2 or less in the TiCN layer as the inner layer, it is possible to improve the effect on the breakdown resistance of the film.

【0033】本発明の被覆超硬合金において、超硬合金
の基材の表面部で炭化タングステンを除く硬質相が減少
または消失した層を有し、その層の厚みが平坦部におい
て50μm以下であることが好ましい。
The coated cemented carbide according to the present invention has a layer in which the hard phase other than tungsten carbide is reduced or disappears on the surface of the substrate of the cemented carbide, and the thickness of the layer is 50 μm or less in the flat part. Is preferred.

【0034】超硬合金基材の表面部で炭化タングステン
を除く硬質相が減少または消失した層を有し、その厚み
が平坦部において50μm以下である表層部が強靱化さ
れた超硬合金と本発明の被覆層および表面処理とを組合
せることにより、超硬合金部表層付近ごと被覆層が脱落
するような損傷に対し、非常に効果がある。
The surface of the cemented carbide substrate has a layer in which the hard phase other than tungsten carbide has been reduced or disappeared, and the thickness of the flat layer is 50 μm or less. The combination of the coating layer and the surface treatment according to the present invention is very effective against damage such that the coating layer falls off near the surface layer of the cemented carbide part.

【0035】基材表層領域の厚みを50μm以下とした
のは、50μmを超えると切削中に表層部でやや塑性変
形あるいは弾性変形が生じる傾向があるためで、50μ
m以下でより効果的であるためである。
The reason why the thickness of the substrate surface layer region is set to 50 μm or less is that if the thickness exceeds 50 μm, a slight plastic deformation or elastic deformation tends to occur in the surface layer during cutting.
m or less is more effective.

【0036】なお、表層領域は、従来より知られている
ような窒素含有硬質相原料を用いる方法、または焼結時
の昇温過程で加窒雰囲気とし結合相の液相出現後に脱
窒、脱炭雰囲気とする方法で製造できる。
The surface layer is formed by a known method using a nitrogen-containing hard phase raw material, or a nitriding atmosphere during the heating process during sintering. It can be manufactured by a method of setting a charcoal atmosphere.

【0037】[0037]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0038】実施例1 基材として以下のA〜Dの組成でCNMG120408
の形状を有するWC基超硬合金基材を準備した。
Example 1 CNMG120408 was used as a substrate with the following compositions A to D.
A WC-based cemented carbide substrate having the following shape was prepared.

【0039】 A:WC−10%Co−3%ZrCN−6%NbC B:WC−6%Co−3%ZrCN−2%TiCN C:WC−10%Co−5%TiCN−3%NbC D:WC−6%Co−2%ZrC−3%TiC この基材の表面に表1に示す内層および外層の構造の被
覆膜を生成した。
A: WC-10% Co-3% ZrCN-6% NbC B: WC-6% Co-3% ZrCN-2% TiCN C: WC-10% Co-5% TiCN-3% NbC D: WC-6% Co-2% ZrC-3% TiC A coating film having the structure of the inner layer and the outer layer shown in Table 1 was formed on the surface of the substrate.

【0040】[0040]

【表1】 [Table 1]

【0041】サンプルA〜Cの基材表層部には、WCと
Coのみからなる層が存在し、それぞれのサンプルにお
けるその層の厚みは平坦部厚みで、A:25μm、B:
50μm、C:55μmであった。サンプルDの基材表
面には表層領域は存在しなかった。以下に本発明品の各
層の被覆条件を示す。
Samples A to C have a layer consisting of WC and Co only on the surface layer of the base material. The thickness of each layer in each sample is a flat part thickness, A: 25 μm, B:
50 μm, C: 55 μm. No surface layer region was present on the substrate surface of Sample D. The coating conditions of each layer of the product of the present invention are shown below.

【0042】(TiN層) 温度:880℃、圧力:120torr、反応ガス組
成:容量%で、46%H2 −4%TiCl4 −50%N
2 (本発明品1〜5のTiCN層) TiCN層(前半120分): 温度:880℃、圧力:68torr、反応ガス組成:
容量%で、68.6%H2 −1.2%TiCl4 −0.
2%CH3 CN−30%N2 TiCN層(後半残り): 温度:880℃、圧力:68torr、反応ガス組成:
容量%で、76.6%H2 −7.2%TiCl4 −1.
2%CH3 CN−15%N2 (TiBN層) 温度:990℃、圧力:150torr、反応ガス組
成:容量%で、45.5%H2 −4%TiCl4 −49
%N2 −1.5%BCl3 (Al23 層) 温度:1030℃、圧力:68torr、反応ガス組
成:容量%で、85%H2 −9%AlCl3 −6%CO
2 (TiC層) 温度:1030℃、圧力:68torr、反応ガス組
成:容量%で、90%H2 −3%TiCl4 −7%CH
4 ここで、内層のTiCN層の配向性指数は、X線回折に
よる回折ピークから求めた。この際、TiCNの(31
1)面の回折ピークは基材のWCの(111)面ピーク
と重なり、(111)面のピーク強度は、(WCの最強
ピークである(101)面の強度)×0.25であるこ
とから、TiCNの(311)面の強度からこれを減じ
てWC(111)面による強度分を差し引いた。
(TiN layer) Temperature: 880 ° C., pressure: 120 torr, reaction gas composition: 46% H 2 -4% TiCl 4 -50% N in volume%
2 (TiCN layer of present invention products 1 to 5) TiCN layer (first half 120 minutes): temperature: 880 ° C., pressure: 68 torr, reaction gas composition:
By volume%, 68.6% H 2 -1.2% TiCl 4 -0.
2% CH 3 CN-30% N 2 TiCN layer (remaining in the latter half): temperature: 880 ° C., pressure: 68 torr, reaction gas composition:
By volume%, 76.6% H 2 -7.2% TiCl 4 -1.
2% CH 3 CN-15% N 2 (TiBN layer) Temperature: 990 ° C., pressure: 150 torr, reaction gas composition: 45.5% H 2 -4% TiCl 4 -49 by volume%
% N 2 -1.5% BCl 3 (Al 2 O 3 layer) Temperature: 1030 ° C., Pressure: 68 torr, Reaction gas composition: 85% H 2 -9% AlCl 3 -6% CO by volume%
2 (TiC layer) Temperature: 1030 ° C., pressure: 68 torr, reaction gas composition: 90% H 2 -3% TiCl 4 -7% CH by volume%
4 Here, the orientation index of the inner TiCN layer was determined from a diffraction peak by X-ray diffraction. At this time, (31) of TiCN
1) The diffraction peak of the plane overlaps the peak of the (111) plane of the WC of the substrate, and the peak intensity of the (111) plane is (the intensity of the (101) plane, which is the strongest peak of the WC) × 0.25. This was subtracted from the strength of the (311) plane of TiCN to subtract the strength of the WC (111) plane.

【0043】また、各試料のTiCN層の配向性を表2
に示す。またアルミナの配向性を表3に示す。
Table 2 shows the orientation of the TiCN layer of each sample.
Shown in Table 3 shows the orientation of alumina.

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【表3】 [Table 3]

【0046】ここでアルミナ成膜前のTiBN膜表面の
酸化状態を変えることにより、アルミナの配向性を変え
たサンプルを同時に作製し、これをたとえば1a、1
b、1cというように表記して表中に示した。ここで、
aの試料はPCO2 =0.3torr、5分、bの試料は
CO2 =0.4torr、10分、cの試料はPCO2
0.6torr,10分の酸化条件を用いたものであ
る。
Here, by changing the oxidation state of the surface of the TiBN film before the formation of the alumina, a sample in which the orientation of the alumina was changed was simultaneously produced.
These are shown in the table as b, 1c. here,
The sample of a, P CO2 = 0.3 torr, 5 minutes, the sample of b, P CO2 = 0.4 torr, 10 minutes, the sample of c, P CO2 =
Oxidation conditions of 0.6 torr and 10 minutes are used.

【0047】なお、本発明のTiCN層は被覆後破断
し、破断面のSEM(走査型電子顕微鏡)観察で柱状組
織となっていることを確認した。
The TiCN layer of the present invention was broken after coating, and it was confirmed by SEM (scanning electron microscope) observation of the fractured surface that it had a columnar structure.

【0048】表1および2には比較のために比較品も併
せて載せた。比較品6および7のTiCN膜の成膜は、
以下に示す条件で行なった。
Tables 1 and 2 also show comparative products for comparison. The TiCN films of Comparative Products 6 and 7 were formed as follows.
The test was performed under the following conditions.

【0049】(TiCN層(比較品6)) 温度:880℃、圧力:68torr、反応ガス組成:
容量%で、76.6%H2 −7.2%TiCl4 −1.
2%CH3 CN−15%N2 (TiCN層(比較品7)) 温度:1000℃、圧力:150torr、反応ガス組
成:容量%で、90%H2 −4%TiCl4 −4%CH
4 −2%N 2 また、比較品8のアルミナ層は、以下に示す成膜条件で
κ型アルミナを生成した。なお、比較品8においては、
アルミナ層以外は本発明品の条件で成膜を実施した。
(TiCN layer (Comparative product 6)) Temperature: 880 ° C., Pressure: 68 torr, Reaction gas composition:
76.6% H in volume%Two -7.2% TiClFour -1.
2% CHThree CN-15% NTwo (TiCN layer (Comparative product 7)) Temperature: 1000 ° C, pressure: 150 torr, reaction gas set
Composition: 90% H by volume%Two -4% TiClFour -4% CH
Four -2% N Two The alumina layer of the comparative product 8 was formed under the following film forming conditions.
A κ-type alumina was produced. In comparison product 8,
Except for the alumina layer, a film was formed under the conditions of the product of the present invention.

【0050】(アルミナ層(比較品8)) 温度:980℃、圧力:68torr、反応ガス組成:
容量%で、85%H2 −9%AlCl3 −6%CO2 (アルミナ生成前のTiBN層表面の酸化処理は行なわ
ず、アルミナの反応ガス組成で同時にアルミナ生成を開
始)以上のサンプルを用い、次に示す切削条件1および
2で切削評価を行なった。
(Alumina layer (comparative product 8)) Temperature: 980 ° C., pressure: 68 torr, reaction gas composition:
A sample with a volume percentage of 85% H 2 -9% AlCl 3 -6% CO 2 (oxidation of the surface of the TiBN layer before alumina formation is not performed, and alumina formation is started simultaneously with the reaction gas composition of alumina) is used. The cutting evaluation was performed under the following cutting conditions 1 and 2.

【0051】(切削条件1) 被削材:SCM415(4溝材) 切削速度:250m/min 送り:0.20mm/rev 切り込み:1.5mm 衝撃回数:500回 切削油:水溶性 (切削条件2) 被削材:FCD70 切削速度:250m/min 送り:0.3mm/rev 切り込み:1.5mm 切削時間:10分 切削油:水溶性 この評価結果を表4および表5に示す。(Cutting condition 1) Work material: SCM415 (4-groove material) Cutting speed: 250 m / min Feeding: 0.20 mm / rev Cutting depth: 1.5 mm Number of impacts: 500 times Cutting oil: water soluble (Cutting condition 2) ) Work material: FCD70 Cutting speed: 250 m / min Feed: 0.3 mm / rev Cutting depth: 1.5 mm Cutting time: 10 minutes Cutting oil: Water-soluble The evaluation results are shown in Tables 4 and 5.

【0052】[0052]

【表4】 [Table 4]

【0053】[0053]

【表5】 [Table 5]

【0054】この結果から、本発明品では、従来品に比
較して、膜の耐摩耗性、耐チッピング性と、耐クレータ
性のいずれにおいても優れていることがわかる。
From these results, it can be seen that the product of the present invention is superior to the conventional product in all of the abrasion resistance, chipping resistance and crater resistance of the film.

【0055】実施例2 実施例1で作製したサンプル1aおよび2aを用い、こ
れに被覆層を被覆した後、稜線部のアルミナ層が除去さ
れるまでSiC砥粒を含有するナイロンブラシで、膜表
面に処理を施した。表面を処理した試料を作製し、これ
らを1aHおよび2aHとした。また、さらにこれに鉄
粉を用いたブラスト処理を施した試料1aHBおよび2
aHBを作製し、これらについてX線回折装置を用い
て、sin 2 ψ法により内層のTiCN層の残留応力を
測定した。応力測定結果を表6に、実施例1の切削条件
1および2の条件で切削評価した結果を表7および表8
に示す。
[0055]Example 2 Using samples 1a and 2a produced in Example 1,
After coating the coating layer, the alumina layer at the ridge was removed.
Until it is coated with a nylon brush containing SiC abrasive grains.
The surface was treated. Prepare a surface-treated sample,
These were 1aH and 2aH. In addition, iron
Samples 1aHB and 2 blasted using powder
aHB was prepared, and these were measured using an X-ray diffractometer.
And sin Two The residual stress of the inner TiCN layer is reduced by the ψ method.
It was measured. Table 6 shows the stress measurement results, and the cutting conditions of Example 1.
Tables 7 and 8 show the results of cutting evaluation under the conditions 1 and 2.
Shown in

【0056】[0056]

【表6】 [Table 6]

【0057】[0057]

【表7】 [Table 7]

【0058】[0058]

【表8】 [Table 8]

【0059】これらの結果から、ブラスト処理を施さな
い試料1aHおよび2aHでは引張り残留応力がすべて
10kg/mm2 より大きかったのに対し、ブラスト処
理を施した試料1aHBおよび2aHBでは引張り残留
応力は10kg/mm2 以下となることが判明した。ま
たブラスト処理を施した試料1aHB、2aHBでは、
切削条件1および2の双方においてブラスト処理を施さ
ない試料1aH、2aHよりも逃げ面摩耗およびチッピ
ングの双方が改善されることが判明した。
From these results, it was found that the samples 1aH and 2aH not subjected to the blast treatment all had a tensile residual stress of more than 10 kg / mm 2 , whereas the samples 1aHB and 2aHB subjected to the blast treatment had a residual tensile stress of 10 kg / mm 2. mm 2 or less. In the samples 1aHB and 2aHB subjected to the blast treatment,
It was found that both the flank wear and the chipping were improved as compared with the samples 1aH and 2aH which were not subjected to the blast treatment under both the cutting conditions 1 and 2.

【0060】今回開示された実施例はすべての点で例示
であって制限的なものではないと考えられるべきであ
る。本発明の範囲は上記した説明ではなくて特許請求の
範囲によって示され、特許請求の範囲と均等の意味およ
び範囲内でのすべての変更が含まれることが意図され
る。
The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

【0061】[0061]

【発明の効果】以上説明したように、本発明の被覆超硬
合金においてはセラミックス被覆層の内層に含まれる炭
窒化チタン層の配向性を所定の範囲とすることにより、
優れた耐剥離性、耐摩耗性および耐クレータ性と優れた
破壊強度とを有し、切削工具に適した被覆超硬合金を得
ることができる。これにより、切削工具の寿命を安定し
て飛躍的に向上させることが可能となる。
As described above, in the coated cemented carbide of the present invention, by setting the orientation of the titanium carbonitride layer contained in the inner layer of the ceramic coating layer to a predetermined range,
A coated cemented carbide having excellent exfoliation resistance, abrasion resistance, crater resistance and excellent breaking strength, and suitable for a cutting tool can be obtained. This makes it possible to stably and dramatically improve the life of the cutting tool.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 炭化タングステンを主成分とし、IV
a、Va、VIa族金属の炭化物、窒化物、炭窒化物の
少なくとも1種を含む硬質相とCoを主成分とする結合
相とからなる超硬合金を基材とし、前記基材の表面に形
成された内層および外層からなるセラミックス被覆層を
有し、 前記内層が、炭窒化チタン層を有する多層構造を有し、 前記外層が、少なくとも酸化アルミニウム層を含み、前
記酸化アルミニウム層の結晶構造がα型を有し、 前記内層の炭窒化チタン層は10μm以上の厚みを有す
る柱状組織からなり、前記炭窒化チタン層の配向性にお
いて、以下の式で表される(422)面と(311)面
との配向性指数TC(422)、TC(311)がとも
に1.3以上3以下であることを特徴とする、被覆超硬
合金。 【数1】
1. The method according to claim 1, wherein the main component is tungsten carbide.
a, Va, a cemented carbide composed of a hard phase containing at least one of carbides, nitrides, and carbonitrides of Group VIa metals and a binder phase containing Co as a main component; A ceramic coating layer comprising an inner layer and an outer layer formed, wherein the inner layer has a multilayer structure having a titanium carbonitride layer, the outer layer includes at least an aluminum oxide layer, and the crystal structure of the aluminum oxide layer is The titanium carbonitride layer of the inner layer has an α-type, and has a columnar structure having a thickness of 10 μm or more. In the orientation of the titanium carbonitride layer, the (422) plane represented by the following formula and the (311) plane A coated cemented carbide, wherein both the orientation index TC (422) and the TC (311) with the surface are 1.3 or more and 3 or less. (Equation 1)
【請求項2】 前記内層は前記炭窒化チタン層以外に、
窒化チタン層および硼窒化チタン層の少なくとも1層を
有し、 前記外層は前記酸化アルミニウム層以外に、炭化チタン
層、炭窒化チタン層および窒化チタン層の少なくとも1
層を有する、請求項1に記載の被覆超硬合金。
2. The inner layer, other than the titanium carbonitride layer,
At least one of a titanium nitride layer and a titanium boronitride layer, wherein the outer layer is at least one of a titanium carbide layer, a titanium carbonitride layer, and a titanium nitride layer in addition to the aluminum oxide layer.
The coated cemented carbide of claim 1 having a layer.
【請求項3】 前記配向性指数TC(422)とTC
(311)とを除く配向性指数TC(hkl)がすべて
1.5以下であることを特徴とする、請求項1または2
に記載の被覆超硬合金。
3. The orientation index TC (422) and TC
3. The orientation index TC (hkl) except for (311) is 1.5 or less.
2. The coated cemented carbide according to item 1.
【請求項4】 前記外層の前記酸化アルミニウム層の直
下の層が、硼窒化チタン層であることを特徴とする、請
求項1から3のいずれかに記載の被覆超硬合金。
4. The coated cemented carbide according to claim 1, wherein a layer of the outer layer immediately below the aluminum oxide layer is a titanium boronitride layer.
【請求項5】 以下の式で表わされるα型結晶構造の前
記酸化アルミニウム層の(110)面と(104)面と
の配向性指数TCaが、TCa(110)≧1.2かつ
TCa(104)≧1.2であることを特徴とする、請
求項1から4のいずれかに記載の被覆超硬合金。 【数2】
5. An orientation index TCa between the (110) plane and the (104) plane of the aluminum oxide layer having an α-type crystal structure represented by the following formula: TCa (110) ≧ 1.2 and TCa (104) 5. The coated cemented carbide according to claim 1, wherein ≧ 1.2. (Equation 2)
【請求項6】 α型結晶構造の前記酸化アルミニウム層
の(104)面と(116)面との前記配向性指数TC
aが、TCa(104)≧1.3かつTCa(116)
≧1.3であることを特徴とする、請求項1から4のい
ずれかに記載の被覆超硬合金。
6. The orientation index TC between the (104) plane and the (116) plane of the aluminum oxide layer having an α-type crystal structure.
a is TCa (104) ≧ 1.3 and TCa (116)
The coated cemented carbide according to any one of claims 1 to 4, wherein ≥ 1.3.
【請求項7】 切刃稜線部付近のみにおいて前記酸化ア
ルミニウム層が存在しないことを特徴とする、請求項1
から6のいずれかに記載の被覆超硬合金。
7. The method according to claim 1, wherein the aluminum oxide layer does not exist only near the edge of the cutting edge.
7. The coated cemented carbide according to any one of items 1 to 6.
【請求項8】 少なくとも前記切刃稜線部において、前
記内層の前記炭窒化チタン層の引張り残留応力が10k
g/mm2 以下であることを特徴とする、請求項7に記
載の被覆超硬合金。
8. At least at the cutting edge ridge portion, a tensile residual stress of the inner layer of the titanium carbonitride layer is 10 k.
and characterized in that g / mm 2 or less, Cemented carbide according to claim 7.
【請求項9】 超硬合金の前記基材の表面部で前記炭化
タングステンを除く前記硬質相が減少または消失した層
を有し、その層の厚みが平坦部において50μm以下で
あることを特徴とする、請求項1から8のいずれかに記
載の被覆超硬合金。
9. A layer in which the hard phase excluding the tungsten carbide is reduced or disappears on a surface portion of the base material of the cemented carbide, wherein the thickness of the layer is 50 μm or less in a flat portion. The coated cemented carbide according to any one of claims 1 to 8,
JP30159997A 1997-11-04 1997-11-04 Coated cemented carbide Expired - Lifetime JP3658949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30159997A JP3658949B2 (en) 1997-11-04 1997-11-04 Coated cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30159997A JP3658949B2 (en) 1997-11-04 1997-11-04 Coated cemented carbide

Publications (2)

Publication Number Publication Date
JPH11140647A true JPH11140647A (en) 1999-05-25
JP3658949B2 JP3658949B2 (en) 2005-06-15

Family

ID=17898893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30159997A Expired - Lifetime JP3658949B2 (en) 1997-11-04 1997-11-04 Coated cemented carbide

Country Status (1)

Country Link
JP (1) JP3658949B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003061885A1 (en) * 2002-01-18 2003-07-31 Sumitomo Electric Industries, Ltd. Surface-coated cutting tool
EP1614769A1 (en) * 2004-06-30 2006-01-11 Mitsubishi Materials Corporation Coated cutting tool
WO2006011396A1 (en) * 2004-07-29 2006-02-02 Kyocera Corporation Surface coated cutting tool
JP2006231512A (en) * 2005-02-25 2006-09-07 Sandvik Intellectual Property Ab Coated cutting tool insert
JP2006305714A (en) * 2005-03-29 2006-11-09 Kyocera Corp Surface coated cutting tool
JP2007007847A (en) * 2005-06-17 2007-01-18 Sandvik Intellectual Property Ab Coated cutting tool insert
WO2007058065A1 (en) * 2005-11-21 2007-05-24 Sumitomo Electric Hardmetal Corp. Cutting tip of cutting edge replacement type
WO2007077822A1 (en) * 2006-01-06 2007-07-12 Sumitomo Electric Hardmetal Corp. Blade edge replacing type cutting tip
JP2008100346A (en) * 2006-10-18 2008-05-01 Sandvik Intellectual Property Ab Coated cutting tool insert
EP1689898B1 (en) 2003-12-03 2009-05-27 Kennametal Inc. Cemented carbide body containing zirconium and niobium and method of making the same
US7597970B2 (en) * 2005-03-22 2009-10-06 Kyocera Corporation Surface coated member and cutting tool
JP2012030359A (en) * 2011-09-21 2012-02-16 Sumitomo Electric Hardmetal Corp Cutting edge replaceable cutting tip
US20120275870A1 (en) * 2011-03-31 2012-11-01 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and manufacturing method thereof
US8394169B2 (en) 2003-12-03 2013-03-12 Kennametal Inc. Cemented carbide body containing zirconium and niobium and method of making the same
US20130164547A1 (en) * 2011-12-21 2013-06-27 Kennametal Inc. Cemented carbide body and applications thereof
WO2013099752A1 (en) 2011-12-26 2013-07-04 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating that exhibits excellent chipping resistance and abrasion resistance
JP2015168047A (en) * 2014-03-11 2015-09-28 三菱日立ツール株式会社 COATED CUTTING TOOL AND Ni-BASE SUPER ALLOY CUTTING METHOD
WO2016158717A1 (en) * 2015-03-27 2016-10-06 株式会社タンガロイ Coated cutting tool
US10300533B2 (en) 2014-08-01 2019-05-28 Tungaloy Corporation Coated cutting tool
CN111032259A (en) * 2017-11-16 2020-04-17 三菱日立工具株式会社 Coated cutting tool, method for manufacturing same, and chemical vapor deposition apparatus
CN116162918A (en) * 2023-04-26 2023-05-26 赣州澳克泰工具技术有限公司 High-hardness high-toughness cutter coating and preparation method thereof

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087295B2 (en) 2002-01-18 2006-08-08 Sumitomo Electric Industries, Ltd. Surface-coated cutting tool
WO2003061885A1 (en) * 2002-01-18 2003-07-31 Sumitomo Electric Industries, Ltd. Surface-coated cutting tool
CN1319689C (en) * 2002-01-18 2007-06-06 住友电气工业株式会社 Surface-coated cutting tool
EP1689898B2 (en) 2003-12-03 2018-10-10 Kennametal Inc. Cemented carbide body containing zirconium and niobium and method of making the same
US8394169B2 (en) 2003-12-03 2013-03-12 Kennametal Inc. Cemented carbide body containing zirconium and niobium and method of making the same
EP1689898B1 (en) 2003-12-03 2009-05-27 Kennametal Inc. Cemented carbide body containing zirconium and niobium and method of making the same
EP1614769A1 (en) * 2004-06-30 2006-01-11 Mitsubishi Materials Corporation Coated cutting tool
EP2267182A3 (en) * 2004-06-30 2011-06-15 Mitsubishi Materials Corporation Coated cutting tool
JPWO2006011396A1 (en) * 2004-07-29 2008-05-01 京セラ株式会社 Surface coated cutting tool
WO2006011396A1 (en) * 2004-07-29 2006-02-02 Kyocera Corporation Surface coated cutting tool
US8007929B2 (en) 2004-07-29 2011-08-30 Kyocera Corporation Surface coated cutting tool
JP4658939B2 (en) * 2004-07-29 2011-03-23 京セラ株式会社 Surface coated cutting tool
JP2010269446A (en) * 2005-02-25 2010-12-02 Sandvik Intellectual Property Ab Coated cutting tool insert
JP2013163264A (en) * 2005-02-25 2013-08-22 Sandvik Intellectual Property Ab Coated cutting tool insert
JP2006231512A (en) * 2005-02-25 2006-09-07 Sandvik Intellectual Property Ab Coated cutting tool insert
JP4624940B2 (en) * 2005-02-25 2011-02-02 サンドビック インテレクチュアル プロパティー アクティエボラーグ Method for manufacturing a cutting tool insert
US7597970B2 (en) * 2005-03-22 2009-10-06 Kyocera Corporation Surface coated member and cutting tool
JP2006305714A (en) * 2005-03-29 2006-11-09 Kyocera Corp Surface coated cutting tool
JP2012213853A (en) * 2005-06-17 2012-11-08 Sandvik Intellectual Property Ab Coated cutting tool insert
JP2007007847A (en) * 2005-06-17 2007-01-18 Sandvik Intellectual Property Ab Coated cutting tool insert
KR101334577B1 (en) * 2005-06-17 2013-11-28 산드빅 인터렉츄얼 프로퍼티 에이비 Coated cutting tool insert
US8318293B2 (en) 2005-06-17 2012-11-27 Sandvik Intellectual Property Ab Coated cutting tool insert
WO2007058065A1 (en) * 2005-11-21 2007-05-24 Sumitomo Electric Hardmetal Corp. Cutting tip of cutting edge replacement type
US8137795B2 (en) 2005-11-21 2012-03-20 Sumitomo Electric Hardmetal Corp. Indexable insert
JP2007136631A (en) * 2005-11-21 2007-06-07 Sumitomo Electric Hardmetal Corp Cutting tip with replaceable edge
DE112006001156C5 (en) * 2006-01-06 2016-12-22 Sumitomo Electric Hardmetal Corp. Cutting tip with exchangeable blades
US8097332B2 (en) 2006-01-06 2012-01-17 Sumitomo Electric Hardmetal Corp. Indexable cutting insert
WO2007077822A1 (en) * 2006-01-06 2007-07-12 Sumitomo Electric Hardmetal Corp. Blade edge replacing type cutting tip
JP2007181896A (en) * 2006-01-06 2007-07-19 Sumitomo Electric Hardmetal Corp Cutting edge exchange type cutting tip
JP2008100346A (en) * 2006-10-18 2008-05-01 Sandvik Intellectual Property Ab Coated cutting tool insert
US8801817B2 (en) * 2011-03-31 2014-08-12 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and manufacturing method thereof
US20120275870A1 (en) * 2011-03-31 2012-11-01 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and manufacturing method thereof
JP2012030359A (en) * 2011-09-21 2012-02-16 Sumitomo Electric Hardmetal Corp Cutting edge replaceable cutting tip
US20130164547A1 (en) * 2011-12-21 2013-06-27 Kennametal Inc. Cemented carbide body and applications thereof
US8834594B2 (en) * 2011-12-21 2014-09-16 Kennametal Inc. Cemented carbide body and applications thereof
KR20140109857A (en) 2011-12-26 2014-09-16 미쓰비시 마테리알 가부시키가이샤 Surface-coated cutting tool with hard coating that exhibits excellent chipping resistance and abrasion resistance
WO2013099752A1 (en) 2011-12-26 2013-07-04 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating that exhibits excellent chipping resistance and abrasion resistance
US9724762B2 (en) 2011-12-26 2017-08-08 Mitsubishi Materials Corporation Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance and wear resistance
JP2015168047A (en) * 2014-03-11 2015-09-28 三菱日立ツール株式会社 COATED CUTTING TOOL AND Ni-BASE SUPER ALLOY CUTTING METHOD
US10300533B2 (en) 2014-08-01 2019-05-28 Tungaloy Corporation Coated cutting tool
WO2016158717A1 (en) * 2015-03-27 2016-10-06 株式会社タンガロイ Coated cutting tool
JP6071100B1 (en) * 2015-03-27 2017-02-01 株式会社タンガロイ Coated cutting tool
US11583935B2 (en) 2015-03-27 2023-02-21 Tungaloy Corporation Coated cutting tool
CN111032259A (en) * 2017-11-16 2020-04-17 三菱日立工具株式会社 Coated cutting tool, method for manufacturing same, and chemical vapor deposition apparatus
CN116162918A (en) * 2023-04-26 2023-05-26 赣州澳克泰工具技术有限公司 High-hardness high-toughness cutter coating and preparation method thereof
CN116162918B (en) * 2023-04-26 2023-07-14 赣州澳克泰工具技术有限公司 High-hardness high-toughness cutter coating and preparation method thereof

Also Published As

Publication number Publication date
JP3658949B2 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
JP3658949B2 (en) Coated cemented carbide
KR0165923B1 (en) Coated cutting tool and production thereof
WO1999052662A1 (en) Coated cemented carbide cutting tool
JP5099747B2 (en) Coated cermet cutting tool
JP2007528941A (en) Coated body and method for coating substrate
JP3671623B2 (en) Coated cemented carbide
JP5710008B2 (en) Cutting tools
JP3658948B2 (en) Coated cemented carbide
JPH09174304A (en) Surface coated cemented carbide-made cutting tool excellent in pitching resistance
CN109562461B (en) Surface-coated cutting tool having excellent welding chipping resistance and peeling resistance
WO2012032839A1 (en) Surface-coated cutting tool
JPS6117909B2 (en)
JP3236899B2 (en) Manufacturing method of surface coated tungsten carbide based cemented carbide cutting tool with excellent wear and fracture resistance
JP3250414B2 (en) Method for producing cutting tool coated with titanium carbonitride layer surface
JP4351521B2 (en) Surface coated cutting tool
JP3697894B2 (en) Coated cemented carbide cutting tool
JPH08257808A (en) Surface coated cutting tool
JP3266047B2 (en) Surface coated cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP2000024808A (en) Covered cemented carbide cutting tool
JP4210930B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JPH10310878A (en) Cutting tool made of surface-coated cemented carbide having hard coating layer excellent in wear resistance
JP2864798B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool members
JPH08290307A (en) Composite hard layer surface coating cutting tool
JP2002239808A (en) Surface covered cemented carbide cutting tool
JPH0387368A (en) Coated sintered hard alloy tool

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term