JPH11137989A - Gas-liquid contact method and device therefor - Google Patents

Gas-liquid contact method and device therefor

Info

Publication number
JPH11137989A
JPH11137989A JP32244897A JP32244897A JPH11137989A JP H11137989 A JPH11137989 A JP H11137989A JP 32244897 A JP32244897 A JP 32244897A JP 32244897 A JP32244897 A JP 32244897A JP H11137989 A JPH11137989 A JP H11137989A
Authority
JP
Japan
Prior art keywords
gas
liquid
tank
impeller
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32244897A
Other languages
Japanese (ja)
Other versions
JP3268246B2 (en
Inventor
Masami Shino
雅美 志野
Akihito Umeda
明史 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyodo Oxygen Co Ltd
Original Assignee
Kyodo Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyodo Oxygen Co Ltd filed Critical Kyodo Oxygen Co Ltd
Priority to JP32244897A priority Critical patent/JP3268246B2/en
Publication of JPH11137989A publication Critical patent/JPH11137989A/en
Application granted granted Critical
Publication of JP3268246B2 publication Critical patent/JP3268246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas-liquid contact method and the device capable of efficiently dissolving a gas in a liquid or allowing the gas to react with the liquid. SOLUTION: The gas is highly efficiently dissolved in the liquid or allowed to react with the liquid by combing gas-liquid contact vessels 1a-1d verically into multistages, which is for efficiently dissolving the gas into the liquid or allowing the gas to react with the liquid by continuously sucking the gas into the liquid by the action of the negative pressure generated in the liquid in the back face of the rotating impellers 8a-8d (8) in the rotating direction and generating a large quantity of fine bubbles by the vortex flow generated by the rotation of the impeller 8 and the shearing force of the impeller 8, and supplying the liquid to the uppermost vessel 1a, making the liquid to overflow successively to the lower vessel to recover in the lowermost vessel 1d, introducing the gas into the lowermost vessel 1d, inhaling the gas successively to the upper vessel to discharge at the uppermost vessel 1a to make counter current flow compactly without using power except for the rotation of the impellers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体に気体を効率
よく溶解あるいは反応させることができる気液接触方法
および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-liquid contact method and apparatus capable of efficiently dissolving or reacting a gas with a liquid.

【0002】[0002]

【従来の技術】液体に気体を溶解あるいは反応させる目
的は、液体あるいは液体中の含有物質と気体を化学反応
させる場合、液体中の不純物質を気体に付着させて浮上
させる場合、液体中に溶解した気体を他の気体により置
換する場合あるいは液体中に特定気体を溶解させた特定
気体溶解液体を製造する場合等がある。前記いずれの場
合においても気液接触装置の最大の要点は、気液接触面
積を大きくして気液間の物質移動を促進させることにあ
る。
2. Description of the Related Art The purpose of dissolving or reacting a gas with a liquid is to chemically react a gas or a substance contained in the liquid with a gas, to cause an impurity in the liquid to adhere to the gas and to float, and to dissolve the gas in the liquid. In some cases, the specified gas is replaced with another gas, or a specific gas-dissolved liquid in which a specific gas is dissolved in a liquid is produced. In any of the above cases, the most important point of the gas-liquid contact device is to increase the gas-liquid contact area to promote mass transfer between gas and liquid.

【0003】従来、気液接触面積を大きくして気液間の
物質移動を促進させる気液接触装置としては、容器内底
部に散気管を配置し、気体を気泡として液体中に送り込
む散気管方式、容器手前にエジェクターを配置し、気体
を気泡として液体と共に容器内底部に送り込むエジェク
ター方式、液体中で気体を加圧し、その後減圧した時に
発生する気泡によって気液接触させる加圧方式が一般に
用いられている。
[0003] Conventionally, as a gas-liquid contacting device for enlarging the gas-liquid contact area to promote mass transfer between gas and liquid, a diffuser tube is disposed at the bottom of a container and a gas diffuser system is used to send gas as bubbles into the liquid. An ejector system in which an ejector is arranged in front of a container and gas is sent as bubbles to the bottom of the container together with the liquid, and a pressurizing method in which gas is pressurized in the liquid and then gas-liquid contacted by bubbles generated when the pressure is reduced, is generally used. ing.

【0004】また、他の気液混合装置としては、回転す
るインペラーの背面に発生する負圧を利用して連続的に
気体を液体中に吸引し、インペラーの回転により発生す
る渦流とインペラーの剪断力とにより微細気泡を多量に
発生させる自吸式気液混合装置(特公昭62−1524
9号公報、特公昭62−34436号公報、特公昭62
−34437号公報、特公昭62−34438号公報)
等が知られている。
Further, as another gas-liquid mixing device, a gas is continuously sucked into a liquid by using a negative pressure generated on the back of a rotating impeller, and a vortex generated by rotation of the impeller and a shear of the impeller are generated. Self-priming gas-liquid mixing device that generates a large amount of fine bubbles by force (Japanese Patent Publication No. 62-1524)
No. 9, JP-B-62-34436, JP-B-62
-34437, JP-B-62-34438)
Etc. are known.

【0005】[0005]

【発明が解決しようとする課題】前記散気管方式の気液
接触装置は、気体と液体との接触に限界があり、大きな
気液接触面積が要求される用途では、容器高さ(塔高)
を極端に高くしなければならないという問題点を有して
いる。また、エジェクター方式の気液接触装置は、気体
供給側にかなりの加圧力が必要となり、前記散気管方式
と同様に大きな気液接触面積が要求される用途では、容
器高さ(塔高)を極端に高くしなければならないという
問題点を有している。さらに、加圧方式の気液接触装置
は、液体容器内を加圧する必要があり、減圧した時に多
量の未反応気体または未溶解気体が発生する問題があ
る。
The gas-liquid contact device of the diffuser type has a limit on the contact between the gas and the liquid. In applications requiring a large gas-liquid contact area, the height of the container (tower height) is high.
Has to be extremely high. In addition, the ejector-type gas-liquid contact device requires a considerable pressure on the gas supply side, and in applications where a large gas-liquid contact area is required as in the case of the diffuser tube type, the container height (tower height) is reduced. There is a problem that it must be extremely high. Further, the pressurized gas-liquid contact device needs to pressurize the inside of the liquid container, and there is a problem that a large amount of unreacted gas or undissolved gas is generated when the pressure is reduced.

【0006】また、従来の自吸式気液混合装置は、コン
パクトでランニングコストが安く、しかも液体中に気体
を微細気泡として混合できるが、液体中に溶解した気体
を他の気体により置換する場合、あるいは液体中に特定
気体を溶解させた特定気体溶解液体を製造する場合に
は、気体の使用量が多く効率が悪いという問題点を有し
ている。
A conventional self-priming gas-liquid mixing apparatus is compact and inexpensive in running cost and can mix gas as fine bubbles in a liquid. However, when a gas dissolved in a liquid is replaced by another gas. In the case of producing a specific gas-dissolved liquid in which a specific gas is dissolved in a liquid, there is a problem that the amount of gas used is large and the efficiency is low.

【0007】本発明の目的は、上記従来技術の欠点を解
消し、コンパクトでランニングコストが易く、しかも液
体中に気体を高効率で溶解あるいは反応させることので
きる気液接触方法および装置を提供することにある。
An object of the present invention is to provide a gas-liquid contact method and apparatus which solve the above-mentioned disadvantages of the prior art, are compact, easily run, and can dissolve or react a gas in a liquid with high efficiency. It is in.

【0008】[0008]

【課題を解決するための手段】本発明の請求項1の気液
接触方法は、回転するインペラーの回転方向の背面の液
体中に発生する負圧の作用によって気体を連続的に液体
中に吸入させ、インペラーの回転により発生する渦流と
インペラーの剪断力とにより微細気泡を多量に発生さ
せ、気体を液体中に効率よく溶解あるいは反応させる気
液接触槽を複数槽上下方向に直列に組合せ、液体を第1
槽に供給して順次後槽にオーバフローさせて最終槽で回
収すると共に、気体を最終槽に導入して順次前槽に吸入
させて第1槽で排出することとしている。
According to a first aspect of the present invention, there is provided a gas-liquid contact method, wherein a gas is continuously sucked into a liquid by the action of a negative pressure generated in the liquid on the back side in the rotation direction of the rotating impeller. The vortex generated by the rotation of the impeller and the shearing force of the impeller generate a large amount of fine bubbles, and a plurality of gas-liquid contact tanks for dissolving or reacting gas efficiently in the liquid are combined in series in the vertical direction of the tank. The first
The gas is supplied to the tank, sequentially overflows to the rear tank, is collected in the final tank, and gas is introduced into the final tank, sucked into the previous tank sequentially, and discharged in the first tank.

【0009】このように、回転するインペラーの回転方
向の背面の液体中に発生する負圧の作用によって気体を
連続的に液体中に吸入させ、インペラーの回転により発
生する渦流とインペラーの剪断力とにより微細気泡を多
量に発生させ、気体を液体中に効率よく溶解あるいは反
応させる気液接触槽を複数槽上下方向に直列に組合せ、
液体を第1槽に供給して順次後槽にオーバフローさせて
最終槽で回収すると共に、気体を最終槽に導入して順次
前槽に吸入させて第1槽で排出することによって、気液
接触槽内の液体と気体をインペラーを回転させる動力以
外は使用しないで移動できると共に、気体を微細気泡と
なして液体と向流接触させるから、導入気体の純度差分
(分圧差分)をロスなく利用でき、液体に気体を効率よ
く溶解あるいは反応させることができる。
As described above, the gas is continuously sucked into the liquid by the action of the negative pressure generated in the liquid behind the rotating impeller in the rotation direction, and the vortex generated by the rotation of the impeller, the shear force of the impeller and A large number of fine bubbles are generated, and a plurality of gas-liquid contact tanks for efficiently dissolving or reacting a gas in a liquid are combined in series in the vertical direction of a plurality of tanks,
The liquid is supplied to the first tank, overflows sequentially to the rear tank, and is recovered in the final tank. Gas is introduced into the final tank, is sucked into the previous tank, and is discharged in the first tank. The liquid and gas in the tank can be moved without using only the power to rotate the impeller, and the gas is converted into fine bubbles and brought into countercurrent contact with the liquid, so the difference in purity of the introduced gas (partial pressure difference) is used without loss. The gas can be dissolved or reacted with the liquid efficiently.

【0010】本発明の請求項2の気液接触装置は、気体
導入口と気体排気口および液体導入口と液体回収口を備
えた液体を収容する容器内に、下部にインペラーを有す
る回転軸と、該回転軸が貫通する筒体の下部開口を前記
インペラーの上端部と間隙を保って配置した自吸式微細
気泡発生装置を設置し、筒体の開口直上の気体取入れ口
と前記容器の気体導入口を配管により接続した気液接触
槽を複数槽上下方向に直列に配置し、上槽の気液接触槽
の気体導入口と下槽の気体排気口を配管により連通し、
かつ上槽の気液接触槽の液体回収口と下槽の液体導入口
を配管により連通し、最上槽の液体導入口に液体供給管
を連結して順次次槽にオーバフローさせると共に、最下
槽の気体導入口に気体導入管を連結し、回転するインペ
ラーの回転方向の背面の液体中に発生する負圧の作用に
よって下槽の気体を吸引させ最上槽の気体排気口より排
気させることとしている。
According to a second aspect of the present invention, there is provided a gas-liquid contact device, wherein a rotating shaft having an impeller at a lower portion is provided in a container containing a liquid having a gas inlet and a gas outlet and a liquid inlet and a liquid recovery port. A self-priming microbubble generator in which a lower opening of a cylindrical body through which the rotating shaft penetrates is arranged with a gap kept between the upper end of the impeller and a gas inlet just above the opening of the cylindrical body and a gas in the container. A plurality of gas-liquid contact tanks with inlets connected by piping are arranged in series in the vertical direction of the tank, and the gas inlet of the gas-liquid contact tank of the upper tank and the gas exhaust port of the lower tank are connected by piping,
In addition, the liquid recovery port of the gas-liquid contact tank of the upper tank and the liquid introduction port of the lower tank are connected by a pipe, and the liquid supply pipe is connected to the liquid introduction port of the uppermost tank to overflow sequentially to the next tank, and the lowermost tank. A gas inlet tube is connected to the gas inlet of the lower impeller, and the gas in the lower tank is sucked by the action of the negative pressure generated in the liquid on the back side in the rotating direction of the rotating impeller, and the gas is exhausted from the gas outlet of the uppermost tank. .

【0011】このように、気泡発生装置を設置した気液
接触槽を複数槽上下方向に直列に配置し、上槽の気液接
触槽の気体導入口と後槽の気体排気口を配管により連通
し、かつ上槽の気液接触槽の液体回収口と後槽の液体導
入口を配管により連通し、最上槽の液体導入口に液体供
給管を連結し、最下槽の気体導入口に気体導入管を連結
したことによって、最上槽の液体導入口に連続供給され
た液体は、順次オーバフローして最終槽の液体回収口か
ら自然に排出されると共に、最下槽から吸入された気体
は、順次上槽の回転するインペラーの回転方向の背面の
液体中に発生する負圧の作用によって吸入され、最上槽
の気体排気口から排出される間に、気体を微細気泡とな
して順次液体と向流接触させるから、導入気体の純度差
分(分圧差分)をロスなく利用でき、液体に気体を効率
よく溶解あるいは反応させることができる。
As described above, a plurality of gas-liquid contact tanks provided with a bubble generator are arranged in series in the vertical direction, and the gas inlet of the gas-liquid contact tank of the upper tank and the gas exhaust port of the rear tank are communicated by piping. The pipe connects the liquid recovery port of the gas-liquid contact tank in the upper tank to the liquid inlet in the rear tank, connects the liquid supply pipe to the liquid inlet in the uppermost tank, and connects the gas inlet to the gas inlet in the lower tank. By connecting the inlet pipe, the liquid continuously supplied to the liquid inlet of the uppermost tank overflows sequentially and is naturally discharged from the liquid recovery port of the last tank, and the gas sucked from the lowermost tank is The gas is successively sucked by the action of the negative pressure generated in the liquid on the back side of the rotating impeller of the upper tank in the rotating direction, and is discharged from the gas exhaust port of the uppermost tank, forming gas into fine bubbles and sequentially moving toward the liquid. Flow contact, the purity difference (partial pressure difference) Scan without available gas can be a efficiently dissolved or reaction liquid.

【0012】[0012]

【発明の実施の形態】前記気泡発生装置を設置した気液
接触槽のインペラーの回転軸を駆動モータにより回転さ
せると、インペラーが液体中で回転して渦流を生じ、イ
ンペラーの回転方向の背面液体中に負圧が生じて後槽か
ら気体が気体導入口を介して配管から筒体下部に自動的
に吸引され、渦流中に混入する。渦流中に混入した気体
は、渦流とインペラー剪断力とによって多量の微細気泡
となり、液体と気体との接触面積が増大するから、気体
は液体中に効率よく溶解あるいは反応する。さらに、気
液接触槽を複数槽上下方向に直列に配置したことによっ
て、液体と気体を順次向流接触させるから、導入気体の
純度差分(分圧差分)をロスなく利用でき、液体に気体
を効率よく溶解あるいは反応させることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS When a rotating shaft of an impeller of a gas-liquid contact tank provided with the bubble generating device is rotated by a drive motor, the impeller rotates in the liquid to generate a vortex, and the liquid in the back of the impeller rotates. Negative pressure is generated therein, and gas is automatically sucked from the rear tank through the gas inlet to the lower part of the cylinder from the pipe, and is mixed into the vortex. The gas mixed into the vortex becomes a large amount of fine bubbles by the vortex and the impeller shear force, and the contact area between the liquid and the gas increases, so that the gas is efficiently dissolved or reacted in the liquid. Further, by arranging a plurality of gas-liquid contacting tanks in series in the vertical direction of the tanks, the liquid and the gas are sequentially brought into countercurrent contact, so that the purity difference (partial pressure difference) of the introduced gas can be utilized without loss, and It can be dissolved or reacted efficiently.

【0013】本発明において回転軸の下部に設けるイン
ペラーは、板状のものを1〜8枚回転軸の下部に固定す
るが、複数枚用いる場合には放射状に個々の自由端が拡
がる形態で固定する。微細気泡を発生させる筒体下部の
開口部の深さは、液面から100mm程度以上あればよ
いが、好ましくは300〜500mmである。また、イ
ンペラー上端と筒体下部の開口端との間隙は、インペラ
ーの回転方向の背面に生じる負圧を有効に利用して気体
を吸い込める程度、すなわち10mm以下、好ましくは
2〜5mm以下がよい。筒体下部の開口部の直径は、イ
ンペラーの回転直径よりも著しく小さくなると、筒体下
部の開口部に液体が入り込み、回転軸駆動時の初期負荷
が大きくなると共に、気体の吸入効率、微細気泡の発生
効率が低下する。さらに、インペラーの回転直径は、回
転軸の直径よりも通常かなり大きいので、筒体は回転軸
の下部で上部よりも直径を大きくすると好都合である。
In the present invention, the impeller provided below the rotating shaft is fixed to a plate-like one to eight below the rotating shaft. When a plurality of impellers are used, each free end is fixed in a radially expanding manner. I do. The depth of the opening at the lower part of the cylindrical body for generating fine bubbles may be about 100 mm or more from the liquid level, and is preferably 300 to 500 mm. Further, the gap between the upper end of the impeller and the opening end of the lower portion of the cylindrical body is such that the gas can be sucked by effectively utilizing the negative pressure generated on the back surface in the rotation direction of the impeller, that is, 10 mm or less, preferably 2 to 5 mm or less. . If the diameter of the opening at the lower part of the cylinder is significantly smaller than the rotating diameter of the impeller, liquid enters into the opening at the lower part of the cylinder, the initial load at the time of driving the rotating shaft increases, the gas suction efficiency, the fine bubbles Generation efficiency decreases. Further, since the rotating diameter of the impeller is usually much larger than the diameter of the rotating shaft, it is advantageous to make the cylinder larger in diameter at the lower part of the rotating shaft than at the upper part.

【0014】インペラーの回転数は、インペラーの回転
方向の背面に気体を吸入できる負圧が生じればよく、特
に限定されないが、インペラーの回転直径や強度により
制約されるので、例えば、1000rpm以上、好まし
くは1200rpm以上である。
The rotation speed of the impeller is not particularly limited as long as a negative pressure capable of sucking gas is generated on the back surface in the rotation direction of the impeller, and is not particularly limited. However, since it is restricted by the rotation diameter and strength of the impeller, for example, 1000 rpm or more, Preferably, it is 1200 rpm or more.

【0015】自吸式微細気泡発生装置設置した気液接触
槽を上下方向に直列に配置する槽数は、用途に応じて2
槽、3槽あるいは4槽以上を組合わせることとなる。ま
た、気液接触槽の複数槽を上下方向直列配置は、気液接
触槽を上下方向に千鳥状に直列に配置することも、気液
接触槽を上下方向に垂直に接続配置することも、あるい
は気液接触槽を上下方向に階段状に接続配置することも
できる。上下方向に垂直に接続配置した場合は、1本の
回転軸を第1槽から最終槽まで貫通させれば、駆動モー
タは1台で全気液接触槽のインペラーを回転させること
ができる。
The number of gas-liquid contacting tanks provided with the self-priming microbubble generator is vertically arranged in series.
A tank, three tanks or a combination of four or more tanks will be used. In addition, the plurality of gas-liquid contact tanks are arranged in series in the vertical direction, the gas-liquid contact tanks may be arranged in series in a staggered manner in the vertical direction, or the gas-liquid contact tanks may be connected and arranged vertically in the vertical direction, Alternatively, the gas-liquid contact tank may be connected and arranged stepwise in the vertical direction. In the case of vertically connecting and arranging vertically, one drive shaft can rotate the impeller of all the gas-liquid contact tanks by penetrating one rotating shaft from the first tank to the last tank.

【0016】本発明で用いる自吸式微細気泡発生装置と
しては、前記下部にインペラーを有する回転軸と、該回
転軸が貫通する筒体の下部開口を前記インペラーの上端
部と間隙を保って配置した自吸式微細気泡発生装置に限
定されるものではなく、回転するインペラーの回転方向
の背面に気体を吸入できる負圧が生じればどのような構
造のものを用いてもよく、例えば、前記特公昭62−1
5249号公報、特公昭62−34436号公報、特公
昭62−34437号公報、特公昭62−34438号
公報等に開示のものを使用することができる。
In the self-priming microbubble generator used in the present invention, a rotary shaft having an impeller at the lower portion and a lower opening of a cylindrical body through which the rotary shaft passes are arranged with a gap kept between the upper end portion of the impeller. The structure is not limited to the self-priming microbubble generator, and any structure may be used as long as a negative pressure capable of inhaling gas is generated on the back side in the rotation direction of the rotating impeller. Tokiko Sho 62-1
No. 5,249, JP-B-62-34436, JP-B-62-34437, JP-B-62-34438, and the like can be used.

【0017】[0017]

【実施例】実施例1 以下に本発明の気液接触方法の詳細を実施の一例を示す
図1〜図3により説明する。図1は本発明の駆動モータ
1台で稼働させる4段式の気液接触装置の一例を示す全
体説明図、図2は本発明の駆動モータ4台で稼働させる
4段式の気液接触装置の一例を示す全体説明図、図3は
図1の最下段の自吸式微細気泡発生装置の要部拡大図で
ある。
Embodiment 1 The details of the gas-liquid contact method of the present invention will be described below with reference to FIGS. FIG. 1 is an overall explanatory view showing an example of a four-stage gas-liquid contact device operated by one drive motor of the present invention. FIG. 2 is a four-stage gas-liquid contact device operated by four drive motors of the present invention. FIG. 3 is an enlarged view of a main part of a self-priming microbubble generator at the bottom of FIG.

【0018】図1、図3において、1a〜1dは液体導
入管2a〜2d、液体回収管3a〜3d、気体導入管4
a〜4d、気体排気管5a〜5dを有する液体を収容す
る容器で、垂直に積み重ねられている。容器1aに液体
導入管2aから導入された液体は、容器1aの液体回収
管3aと容器1bの液体導入管2bが連結され、容器1
bの液体回収管3bと容器1cの液体導入管2cが連結
され、容器1cの液体回収管3cと容器1dの液体導入
管2dが連結されているため、順次下段にオーバフロー
し、容器1dの液体回収管3dより外部に回収するよう
に構成されている。
1 and 3, reference numerals 1a to 1d denote liquid introduction pipes 2a to 2d, liquid recovery pipes 3a to 3d, and gas introduction pipes 4.
a to 4d, containers for storing liquids having gas exhaust pipes 5a to 5d, which are vertically stacked. The liquid introduced into the container 1a from the liquid introduction tube 2a is connected to the liquid collection tube 3a of the container 1a and the liquid introduction tube 2b of the container 1b.
b, the liquid collection tube 3c of the container 1c is connected to the liquid introduction tube 2c, and the liquid collection tube 3c of the container 1c is connected to the liquid introduction tube 2d of the container 1d. It is configured to be collected outside from the collection pipe 3d.

【0019】6は容器1aの上面から容器1dの底面近
くまで貫通する回転軸で、該回転軸6の上端には駆動モ
ータ7が設けられている。8a〜8dは回転軸6の各容
器1a〜1dの底部近傍に固定されたインペラー、9a
〜9dは各容器1a〜1dの天井面から垂下した回転軸
6を包囲する筒体で、各筒体9a〜9dの下部開口部1
0a〜10dの下端は、前記インペラー8a〜8dの上
端と所定の間隙、例えば2〜5mmの間隙を有してい
る。
Reference numeral 6 denotes a rotating shaft penetrating from the upper surface of the container 1a to near the bottom surface of the container 1d. A driving motor 7 is provided at the upper end of the rotating shaft 6. 8a to 8d are impellers fixed near the bottoms of the containers 1a to 1d of the rotating shaft 6, 9a
9d are cylindrical bodies surrounding the rotating shaft 6 hanging from the ceiling surface of each container 1a-1d, and the lower opening 1 of each cylindrical body 9a-9d.
The lower ends of 0a to 10d have a predetermined gap with the upper ends of the impellers 8a to 8d, for example, a gap of 2 to 5 mm.

【0020】容器1dに気体導入管4dに導入された気
体は、各インペラー8a〜8dの回転により生じる回転
方向の背面の負圧によって吸引され、上部空間に上昇し
たのち、容器1dの気体排気管5dと容器1cの気体導
入管4cが連結され、容器1cの気体排気管5cと容器
1bの気体導入管4bが連結され、容器1bの気体排気
管5bと容器1aの気体導入管4が連結されているた
め、順次上段に吸引されて容器1aの気体排気管5aか
ら排気されるよう構成されている。
The gas introduced into the gas introduction pipe 4d into the vessel 1d is sucked by the negative pressure on the back surface in the rotation direction generated by the rotation of each of the impellers 8a to 8d, rises into the upper space, and then rises into the gas exhaust pipe of the vessel 1d. 5d is connected to the gas introducing pipe 4c of the container 1c, the gas exhaust pipe 5c of the container 1c is connected to the gas introducing pipe 4b of the container 1b, and the gas exhaust pipe 5b of the container 1b is connected to the gas introducing pipe 4 of the container 1a. Therefore, it is configured to be sequentially sucked upward and exhausted from the gas exhaust pipe 5a of the container 1a.

【0021】上記のとおり構成したことによって、各容
器1a〜1dに液体が充満した状態で、容器1aの液体
導入管2aから液体を連続導入しつつ、駆動モータ7を
駆動して各インペラー8a〜8dを回転させれば、各容
器1a〜1d内で各インペラー8a〜8dの回転により
渦流が生じ、各インペラー8a〜8dの回転方向の背面
の液体中に負圧が生じ、各容器1a〜1dの筒体9a〜
9dの下部開口部10a〜10d近傍の気体導入管4a
〜4dから気体が吸引されて渦流中に混入する。渦流中
に混入した気体は、渦流とインペラー8a〜8dの剪断
力とにより多量の微細気泡となって液体と気体の接触面
積を増大させ、液体中を各容器1a〜1dの上部空間ま
で上昇する間に液体中に効率よく溶解あるいは反応す
る。
With the above-described configuration, while the containers 1a to 1d are filled with the liquid, the drive motor 7 is driven while continuously introducing the liquid from the liquid introduction pipe 2a of the container 1a to drive the impellers 8a to 8d. When the impeller 8d is rotated, the impellers 8a to 8d rotate in each of the containers 1a to 1d to generate a vortex, and a negative pressure is generated in the liquid on the back surface of the impellers 8a to 8d in the rotation direction. Cylindrical body 9a-
Gas introduction pipe 4a near the lower openings 10a to 10d of 9d
The gas is sucked from .about.4d and mixed into the vortex. The gas mixed into the vortex becomes a large amount of fine bubbles due to the vortex and the shearing force of the impellers 8a to 8d, increases the contact area between the liquid and the gas, and rises in the liquid to the upper space of each of the containers 1a to 1d. During this time, it dissolves or reacts efficiently in the liquid.

【0022】容器1a〜1dの上部空間に上昇した気体
は、容器1dの気体排気管5dと容器1cの気体導入管
4cが連結され、容器1cの気体排気管5cと容器1b
の気体導入管4bが連結され、容器1bの気体排気管5
bと容器1aの気体導入管4が連結されているため、順
次上段に吸引されて容器1aの気体排気管5aから排気
される。一方、容器1aの液体導入管2aから連続導入
された液体は、容器1aの液体回収管3aと容器1bの
液体導入管2bが連結され、容器1bの液体回収管3b
と容器1cの液体導入管2cが連結され、容器1cの液
体回収管3cと容器1dの液体導入管2dが連結されて
いるため、順次下段にオーバフローし、容器1dの液体
回収管3dより外部に回収する間に、順次多量の微細気
泡と接触して効率よく気体が溶解あるいは反応する。
The gas that has risen into the upper space of the containers 1a to 1d is connected to the gas exhaust pipe 5d of the container 1d and the gas introduction pipe 4c of the container 1c, and the gas exhaust pipe 5c of the container 1c and the container 1b.
Is connected to the gas introduction pipe 4b of the container 1b.
Since b is connected to the gas introduction pipe 4 of the container 1a, the gas is sequentially sucked upward and exhausted from the gas exhaust pipe 5a of the container 1a. On the other hand, the liquid continuously introduced from the liquid introducing tube 2a of the container 1a is connected to the liquid collecting tube 3a of the container 1a and the liquid introducing tube 2b of the container 1b, and the liquid collecting tube 3b of the container 1b is connected.
Is connected to the liquid introduction pipe 2c of the container 1c, and the liquid recovery pipe 3c of the container 1c is connected to the liquid introduction pipe 2d of the container 1d. During the collection, the gas sequentially comes into contact with a large number of fine bubbles, and the gas is efficiently dissolved or reacted.

【0023】図2において、21a〜21dは液体導入
管22a〜22d、液体回収管23a〜23d、気体導
入管24a〜24d、気体排気管25a〜25dを有す
る液体を収容する容器で、千鳥状に多段に配置されてい
る。容器21aに液体導入管22aから導入された液体
は、容器21aの液体回収管23aと容器21bの液体
導入管22bが連結され、容器21bの液体回収管23
bと容器21cの液体導入管22cが連結され、容器2
1cの液体回収管23cと容器21dの液体導入管22
dが連結されているため、順次下段にオーバフローし、
容器21dの液体回収管23dより外部に回収するよう
に構成されている。
In FIG. 2, reference numerals 21a to 21d denote containers each containing a liquid having liquid introduction pipes 22a to 22d, liquid recovery pipes 23a to 23d, gas introduction pipes 24a to 24d, and gas exhaust pipes 25a to 25d. They are arranged in multiple stages. The liquid introduced into the container 21a from the liquid introduction tube 22a is connected to the liquid collection tube 23a of the container 21a and the liquid introduction tube 22b of the container 21b, and is connected to the liquid collection tube 23 of the container 21b.
b is connected to the liquid introduction pipe 22c of the container 21c,
1c liquid recovery pipe 23c and container 21d liquid introduction pipe 22
Since d is connected, it overflows sequentially down,
It is configured to be collected outside from the liquid collection pipe 23d of the container 21d.

【0024】26a〜26dは各容器21a〜21dの
底面近くまで貫通する回転軸で、各回転軸26a〜26
dの上端には駆動モータ27a〜27dが設けられてい
る。28a〜28dは各容器21a〜21dの底部近傍
で各回転軸26a〜26dに固定されたインペラー、2
9a〜29dは各容器21a〜21dの天井面から垂下
した各回転軸26a〜26dを包囲する筒体で、各筒体
29a〜29dの下部開口部30a〜30dの下端は、
前記インペラー28a〜28dの上端と所定の間隙、例
えば2〜5mmの間隙を有し、前記図3と同様の構造で
ある。
Reference numerals 26a to 26d denote rotating shafts penetrating to near the bottom of each of the containers 21a to 21d.
Drive motors 27a to 27d are provided at the upper end of d. 28a to 28d are impellers fixed to the rotating shafts 26a to 26d near the bottom of each of the containers 21a to 21d.
9a to 29d are cylindrical bodies surrounding the respective rotating shafts 26a to 26d hanging from the ceiling surface of each of the containers 21a to 21d, and the lower ends of the lower openings 30a to 30d of the cylindrical bodies 29a to 29d are
It has a predetermined gap between the upper ends of the impellers 28a to 28d, for example, a gap of 2 to 5 mm, and has a structure similar to that of FIG.

【0025】容器21dにインペラー28dの回転によ
り生じる回転方向の背面の負圧によって気体導入管24
dから吸引された気体は、容器21dの上部空間に上昇
したのち、容器21dの気体排気管25dと容器21c
の気体導入管24cが連結され、容器21cの気体排気
管25cと容器21bの気体導入管24bが連結され、
容器21bの気体排気管25bと容器21aの気体導入
管24が連結されているため、順次上段に吸引されて容
器21aの気体排気管25aから排気されるよう構成さ
れている。
The gas introduction pipe 24 is formed in the container 21d by the negative pressure on the back surface in the rotation direction generated by the rotation of the impeller 28d.
After the gas sucked from the container d rises to the upper space of the container 21d, the gas exhaust pipe 25d of the container 21d and the container 21c
Is connected, the gas exhaust pipe 25c of the container 21c is connected to the gas introduction pipe 24b of the container 21b,
Since the gas exhaust pipe 25b of the container 21b is connected to the gas introduction pipe 24 of the container 21a, the gas is sequentially sucked upward and exhausted from the gas exhaust pipe 25a of the container 21a.

【0026】上記のとおり構成したことによって、各容
器21a〜21dに液体が充満した状態で、容器21a
の液体導入管22aから液体を連続導入しつつ、各駆動
モータ27a〜27dを駆動して各インペラー28a〜
28dを回転させれば、各容器21a〜21d内で各イ
ンペラー28a〜28dの回転により渦流が生じ、各イ
ンペラー28a〜28dの回転方向の背面の液体中に負
圧が生じ、各容器21a〜21dの筒体29a〜29d
の下部開口部30a〜30d近傍の気体導入管24a〜
24dから気体が吸引されて渦流中に混入する。渦流中
に混入した気体は、渦流とインペラー28a〜28dの
剪断力とにより多量の微細気泡となって液体と気体の接
触面積を増大させ、液体中を各容器21a〜21dの上
部空間まで上昇する間に液体中に効率よく溶解あるいは
反応する。
With the above configuration, the containers 21a to 21d are filled with the liquid, and the containers 21a to 21d are filled with the liquid.
While continuously introducing the liquid from the liquid introduction pipe 22a, the respective drive motors 27a to 27d are driven to drive the impellers 28a to 28d.
When the impeller 28d is rotated, the impellers 28a to 28d rotate in each of the containers 21a to 21d to generate a vortex, and a negative pressure is generated in the liquid on the back surface in the rotation direction of each of the impellers 28a to 28d. Cylindrical bodies 29a to 29d
Gas introduction pipes 24a to 24a near the lower openings 30a to 30d of
Gas is sucked from 24d and mixed into the vortex. The gas mixed in the vortex becomes a large amount of fine bubbles due to the vortex and the shearing force of the impellers 28a to 28d, increases the contact area between the liquid and the gas, and rises in the liquid to the upper space of each of the containers 21a to 21d. During this time, it dissolves or reacts efficiently in the liquid.

【0027】容器21a〜21dの上部空間に上昇した
気体は、容器21dの気体排気管25dと容器21cの
気体導入管24cが連結され、容器21cの気体排気管
25cと容器21bの気体導入管24bが連結され、容
器21bの気体排気管25bと容器21aの気体導入管
24aが連結されているため、順次上段に吸引されて容
器21aの気体排気管25aから排気される。一方、容
器21aの液体導入管22aから連続導入された液体
は、容器21aの液体回収管23aと容器21bの液体
導入管22bが連結され、容器21bの液体回収管23
bと容器21cの液体導入管22cが連結され、容器2
1cの液体回収管23cと容器21dの液体導入管22
dが連結されているため、順次下段にオーバフローし、
容器21dの液体回収管23dより外部に回収する間
に、順次多量の微細気泡と接触して効率よく気体が溶解
あるいは反応する。
The gas rising to the upper space of the containers 21a to 21d is connected to the gas exhaust pipe 25d of the container 21d and the gas introduction pipe 24c of the container 21c, and the gas exhaust pipe 25c of the container 21c and the gas introduction pipe 24b of the container 21b. Are connected, and the gas exhaust pipe 25b of the container 21b and the gas introduction pipe 24a of the container 21a are connected, so that the gas is sequentially sucked upward and exhausted from the gas exhaust pipe 25a of the container 21a. On the other hand, the liquid continuously introduced from the liquid introduction tube 22a of the container 21a is connected to the liquid collection tube 23a of the container 21a and the liquid introduction tube 22b of the container 21b,
b is connected to the liquid introduction pipe 22c of the container 21c,
1c liquid recovery pipe 23c and container 21d liquid introduction pipe 22
Since d is connected, it overflows sequentially down,
During the recovery from the liquid recovery pipe 23d of the container 21d to the outside, the gas sequentially comes into contact with a large amount of fine bubbles to efficiently dissolve or react with the gas.

【0028】実施例2 表1に示す仕様の気液接触槽4槽を前記図2に示すよう
に上下千鳥状に配列した4槽式の本発明による気液接触
装置を使用し、液体として水を、気体として窒素ガスを
使用し、水中の溶存酸素を低減する脱酸素試験を行なっ
た。脱酸素試験の条件と結果を表2に示す。なお、水中
の溶存酸素濃度は、隔膜電極法の溶存酸素計を用いて測
定した。
Example 2 A gas / liquid contacting apparatus according to the present invention of a four-tank type in which four gas-liquid contact tanks having the specifications shown in Table 1 are arranged in a staggered manner as shown in FIG. Was subjected to a deoxygenation test using nitrogen gas as a gas to reduce dissolved oxygen in water. Table 2 shows the conditions and results of the deoxidation test. In addition, the dissolved oxygen concentration in water was measured using the dissolved oxygen meter of the diaphragm electrode method.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】表2に示すとおり、ケース1の処理水中の
溶存酸素濃度120ppbは、配管等の腐食抑制を必要
とする密閉系冷却水、一般ボイラの供給水として十分な
脱酸素が図られている。また、ケース2の処理水中の溶
存酸素濃度10ppbは、半導体用の洗浄用に用いられ
る超純水で要求されるレベルの溶存酸素濃度であった。
窒素ガスを使った他の方法あるいは原理の異なる他の方
法と比較すると、滞留時間5分から判断されるコンパク
ト性および必要窒素ガス量と消費電力から判断される低
ランニングコスト性から、本発明方法ならびに装置は、
非常に高性能であると判断できる。
As shown in Table 2, the dissolved oxygen concentration of 120 ppb in the treated water of Case 1 is sufficient for deoxygenation as a closed system cooling water which needs to suppress corrosion of pipes and the like, and a supply water for a general boiler. . The dissolved oxygen concentration in the treated water of Case 2 was 10 ppb, which was a level required for ultrapure water used for cleaning semiconductors.
Compared with other methods using nitrogen gas or other methods using different principles, the method of the present invention and the low running cost property determined from the required nitrogen gas amount and power consumption due to the compactness determined from the residence time of 5 minutes and The equipment is
It can be judged that it is very high performance.

【0032】実施例3 表3に示す仕様の気液接触槽3槽を上下千鳥状に配列し
た3槽式の本発明による気液接触装置を使用し、液体と
して水を、気体として酸素ガスとオゾンとの混合ガスを
使用し、水中ヘのオゾンの吸収試験を行なった。オゾン
吸収試験の条件と結果を表4に示す。なお、ガス中のオ
ゾン濃度は、紫外線吸収法により測定した。
Example 3 A gas-liquid contacting device according to the present invention of a three-tank type in which three gas-liquid contacting tanks having the specifications shown in Table 3 were arranged in a staggered manner was used. Water was used as a liquid, and oxygen gas was used as a gas. Using a gas mixture with ozone, an ozone absorption test into water was performed. Table 4 shows the conditions and results of the ozone absorption test. The ozone concentration in the gas was measured by an ultraviolet absorption method.

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】本試験において水は上水を使用したが、表
4に示すとおり、入口オゾンガス濃度が74mg/lレ
ベルでは、上水へのオゾン吸収率は85%と非常に高い
数値であった。
In this test, tap water was used. As shown in Table 4, when the inlet ozone gas concentration was at a level of 74 mg / l, the ozone absorption rate in tap water was a very high value of 85%.

【0036】[0036]

【発明の効果】本発明の請求項1の気液接触方法は、回
転するインペラーの回転方向の背面の液体中に発生する
負圧の作用によって気体を連続的に液体中に吸入させ、
インペラーの回転により発生する渦流とインペラーの剪
断力とにより微細気泡を多量に発生させ、気体を液体中
に効率よく溶解あるいは反応させる単位操作を多段に組
合せ、液体を最上槽に供給して順次下槽にオーバフロー
させて最下槽で回収すると共に、気体を最下槽に導入し
て順次上槽に吸入させて最上槽で排気させて対向流させ
ることによって、液体に気体を高効率で溶解あるいは反
応させることができる。
According to the gas-liquid contact method of the first aspect of the present invention, the gas is continuously sucked into the liquid by the action of the negative pressure generated in the liquid on the back side in the rotating direction of the rotating impeller.
A large number of fine bubbles are generated by the vortex generated by the rotation of the impeller and the shearing force of the impeller, and the unit operations for efficiently dissolving or reacting the gas in the liquid are combined in multiple stages. By overflowing the tank and collecting it in the lower tank, introducing gas into the lower tank, sequentially sucking it into the upper tank, exhausting it in the upper tank, and causing it to flow countercurrently, the gas is dissolved in the liquid with high efficiency or Can react.

【0037】本発明の請求項2の気液接触装置は、気体
導入口と気体排気口および液体導入口と液体回収口を備
えた液体を収容する容器内に、下部にインペラーを有す
る回転軸と、該回転軸が貫通する筒体を前記インペラー
の上端部と間隙を保って液体内に開口せしめ、筒体の開
口直上の気体取入れ口と前記容器の気体導入口を配管に
より接続した自吸式微細気泡発生装置を設置した気液接
触槽を上下多段に配置し、上槽の気液接触槽の気体導入
口と下槽の気体排気口を配管により連通し、かつ上槽の
気液接触槽の液体回収口と下槽の液体導入口を配管によ
り連通し、最上槽の液体導入口に液体供給管を連結して
順次次槽にオーバフローさせると共に、最下槽の気体導
入口に気体導入管を連結し、回転するインペラーの回転
方向の背面の液体中に発生する負圧の作用によって順次
下槽の気体を吸引させ最上槽の気体排気口より排気させ
ることによって、コンパクトにかつインペラーを回転さ
せる動力以外は使用しないで対向流を実現でき、従来方
式に比較してランニングコスト、設備費等のコストダウ
ンを図ることができる。
According to a second aspect of the present invention, there is provided a gas-liquid contact device, comprising: a rotary shaft having an impeller at a lower portion in a container containing a liquid having a gas inlet and a gas outlet and a liquid inlet and a liquid recovery port. A self-priming type in which a cylinder through which the rotating shaft passes is opened into the liquid while keeping a gap with the upper end of the impeller, and a gas intake port immediately above the opening of the cylinder and a gas inlet port of the container are connected by piping. A gas-liquid contact tank equipped with a microbubble generator is arranged in multiple stages up and down, the gas inlet of the gas-liquid contact tank of the upper tank and the gas exhaust port of the lower tank are connected by piping, and the gas-liquid contact tank of the upper tank The liquid recovery port of the lower tank and the liquid inlet of the lower tank are connected by a pipe, and a liquid supply pipe is connected to the liquid inlet of the uppermost tank to overflow sequentially to the next tank, and a gas inlet pipe is connected to the gas inlet of the lower tank. Liquid on the back side of the rotating direction of the impeller By using the negative pressure generated in the tank, the gas in the lower tank is sequentially sucked and exhausted from the gas exhaust port in the uppermost tank, so that the counter flow can be realized compactly and without using any power other than rotating the impeller. In comparison, costs such as running costs and equipment costs can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の駆動モータ1台で稼働させる4段式の
気液接触装置の一例を示す全体説明図である。
FIG. 1 is an overall explanatory view showing an example of a four-stage gas-liquid contact device operated by one drive motor according to the present invention.

【図2】本発明の駆動モータ4台で稼働させる4段式の
気液接触装置の一例を示す全体説明図である。
FIG. 2 is an overall explanatory view showing an example of a four-stage gas-liquid contact device operated by four drive motors of the present invention.

【図3】図1の最下段の自吸式微細気泡発生装置の要部
拡大図である。
FIG. 3 is an enlarged view of a main part of the self-priming microbubble generator at the bottom of FIG. 1;

【符号の説明】[Explanation of symbols]

1a〜1d、21a〜21d 容器 2a〜2d、22a〜22d 液体導入管 3a〜3d、23a〜23d 液体回収管 4a〜4d、24a〜24d 気体導入管 5a〜5d、25a〜25d 気体排気管 6、26a〜26d 回転軸 7、27a〜27d 駆動モータ 8a〜8d、28a〜28d インペラー 9a〜9d、29a〜29d 筒体 10a〜10d、30a〜30d 下部開口部 1a to 1d, 21a to 21d Containers 2a to 2d, 22a to 22d Liquid introduction pipes 3a to 3d, 23a to 23d Liquid recovery pipes 4a to 4d, 24a to 24d Gas introduction pipes 5a to 5d, 25a to 25d Gas exhaust pipe 6, 26a-26d Rotary shaft 7, 27a-27d Drive motor 8a-8d, 28a-28d Impeller 9a-9d, 29a-29d Cylindrical body 10a-10d, 30a-30d Lower opening

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回転するインペラーの回転方向の背面の
液体中に発生する負圧の作用によって気体を連続的に液
体中に吸入させ、インペラーの回転により発生する渦流
とインペラーの剪断力とにより微細気泡を多量に発生さ
せ、気体を液体中に効率よく溶解あるいは反応させる単
位操作を多段に組合せ、液体を最上槽に供給して順次下
槽にオーバフローさせて最下槽で回収すると共に、気体
を最下槽に導入して順次上槽に吸入させて最上槽で排気
させて対向流させることを特徴とする気液接触方法。
1. A gas is continuously sucked into a liquid by the action of a negative pressure generated in a liquid behind a rotating impeller in a rotation direction, and finer is formed by a vortex generated by rotation of the impeller and a shear force of the impeller. Combine the unit operations to generate a large amount of bubbles and dissolve or react gas efficiently in the liquid in multiple stages, supply the liquid to the uppermost tank, overflow the liquid sequentially to the lower tank, collect the liquid in the lower tank, and collect the gas in the lower tank. A gas-liquid contact method, wherein the gas-liquid contact method is introduced into the lowermost tank, sequentially sucked into the upper tank, exhausted from the uppermost tank, and caused to flow countercurrently.
【請求項2】 気体導入口と気体排気口および液体導入
口と液体回収口を備えた液体を収容する容器内に、下部
にインペラーを有する回転軸と、該回転軸が貫通する筒
体を前記インペラーの上端部と間隙を保って液体内に開
口せしめ、筒体の開口直上の気体取入れ口と前記容器の
気体導入口を配管により接続した自吸式微細気泡発生装
置を設置した気液接触槽を多段に配置し、上槽の気液接
触槽の気体導入口と下槽の気体排気口を配管により連通
し、かつ上槽の気液接触槽の液体回収口と下槽の液体導
入口を配管により連通し、最上槽の液体導入口に液体供
給管を連結して順次次槽にオーバフローさせると共に、
最下槽の気体導入口に気体導入管を連結し、回転するイ
ンペラーの回転方向の背面の液体中に発生する負圧の作
用によって下槽の気体を吸引させ最上槽の気体排気口よ
り排気させることを特徴とする気液接触装置。
2. A rotating shaft having an impeller at a lower part thereof, and a cylindrical body through which the rotating shaft penetrates, in a container containing a liquid having a gas inlet and a gas outlet and a liquid inlet and a liquid recovery port. A gas-liquid contacting tank provided with a self-priming microbubble generator in which a gas inlet opening just above the opening of the cylindrical body and a gas inlet of the container are connected by piping so as to open into the liquid while keeping a gap with the upper end of the impeller. Are arranged in multiple stages, the gas inlet of the gas-liquid contact tank of the upper tank and the gas exhaust port of the lower tank are connected by piping, and the liquid recovery port of the gas-liquid contact tank of the upper tank and the liquid inlet of the lower tank are connected. Communicate by piping, connect the liquid supply pipe to the liquid introduction port of the uppermost tank and overflow sequentially to the next tank,
A gas inlet pipe is connected to the gas inlet of the lowermost tank, and the gas in the lower tank is sucked by the action of the negative pressure generated in the liquid on the back side in the rotating direction of the rotating impeller and exhausted from the gas outlet of the uppermost tank. A gas-liquid contact device, comprising:
JP32244897A 1997-11-07 1997-11-07 Gas-liquid contact method and apparatus Expired - Fee Related JP3268246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32244897A JP3268246B2 (en) 1997-11-07 1997-11-07 Gas-liquid contact method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32244897A JP3268246B2 (en) 1997-11-07 1997-11-07 Gas-liquid contact method and apparatus

Publications (2)

Publication Number Publication Date
JPH11137989A true JPH11137989A (en) 1999-05-25
JP3268246B2 JP3268246B2 (en) 2002-03-25

Family

ID=18143784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32244897A Expired - Fee Related JP3268246B2 (en) 1997-11-07 1997-11-07 Gas-liquid contact method and apparatus

Country Status (1)

Country Link
JP (1) JP3268246B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387769B2 (en) 1999-04-16 2008-06-17 Minerals Technologies Inc. Method and apparatus for continuous gas liquid reactions
CN108312524A (en) * 2018-01-17 2018-07-24 华南理工大学 A kind of 3D printing device and operation method based on gas-liquid chemical reaction deposit
KR20190047606A (en) * 2017-10-27 2019-05-08 한국과학기술원 Apparatus for separating soluble exhaust gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387769B2 (en) 1999-04-16 2008-06-17 Minerals Technologies Inc. Method and apparatus for continuous gas liquid reactions
KR20190047606A (en) * 2017-10-27 2019-05-08 한국과학기술원 Apparatus for separating soluble exhaust gas
CN108312524A (en) * 2018-01-17 2018-07-24 华南理工大学 A kind of 3D printing device and operation method based on gas-liquid chemical reaction deposit
CN108312524B (en) * 2018-01-17 2024-03-26 华南理工大学 3D printing device based on gas-liquid chemical reaction deposition and operation method

Also Published As

Publication number Publication date
JP3268246B2 (en) 2002-03-25

Similar Documents

Publication Publication Date Title
US3945918A (en) Methods and apparatus for treating a liquid with a gas
JPH05184894A (en) Improved method and device for mixing gas and liquid
US6322056B1 (en) Submarine type liquid mixer with aeration
JP3397096B2 (en) Apparatus and method for ozone treatment of biological sludge
KR20030071706A (en) Aerators with the Functions of muli-step mixing and sepataion
JP3268246B2 (en) Gas-liquid contact method and apparatus
CN108892320A (en) A kind of industrial oily waste water processing system
CN200966986Y (en) Air and liquid mixer
US3954565A (en) Apparatus for cultivating microorganisms
EP1183093A1 (en) Counterbalanced dual submarine-type liquid mixer pairs
CN201770530U (en) Device for promoting dissolution of gas in liquid and sewage treatment system using the device
CN212655505U (en) Dissolved air flotation system for treating oilfield produced water
JPH0788346A (en) Gas-liquid mixing device
JPH08299971A (en) Separating injection type ozone contact method
JP2002301305A (en) Deaeration unit and deaeration apparatus
JP2004261691A (en) Method and apparatus for manufacturing deoxidized water
CA1266843A (en) Apparatus for continuously recovering ethanol from fermentable sugar solutions
JP4011431B2 (en) Ozone treatment method
CN219663131U (en) Knockout drum with preseparation structure
CN216106343U (en) Oil-water separation device in kitchen waste wastewater treatment
BR102019005801A2 (en) LIQUID GAS DISSOLVING EQUIPMENT BY DIVING JET, CONTAINING COLLECTION AND REDISOLUTION OF UNSOLVED GAS
JP2569077B2 (en) Gas-liquid mixing device
JP2003039099A (en) Methane fermentation tank
Ebner et al. Self‐priming aerator and mechanical defoamer for microbiological processes
CN216403948U (en) Biochemical device of type of deposiing

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011206

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees