JPH1113765A - Magnetic fluid-impregnated sintered slide bearing and manufacture thereof - Google Patents

Magnetic fluid-impregnated sintered slide bearing and manufacture thereof

Info

Publication number
JPH1113765A
JPH1113765A JP9168550A JP16855097A JPH1113765A JP H1113765 A JPH1113765 A JP H1113765A JP 9168550 A JP9168550 A JP 9168550A JP 16855097 A JP16855097 A JP 16855097A JP H1113765 A JPH1113765 A JP H1113765A
Authority
JP
Japan
Prior art keywords
bearing
powder
magnetic fluid
sintered
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9168550A
Other languages
Japanese (ja)
Other versions
JP3512314B2 (en
Inventor
Hiroyuki Kuwabara
宏行 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP16855097A priority Critical patent/JP3512314B2/en
Publication of JPH1113765A publication Critical patent/JPH1113765A/en
Application granted granted Critical
Publication of JP3512314B2 publication Critical patent/JP3512314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic fluid-impregnated sintered slide bearing to have excellent slide performance and prevent outflow of lubrication oil, in a composite material of a bronze alloy, having excellent slide characteristics, and a permanent magnet. SOLUTION: Mixture powder with metal powder forming a bronze alloy, containing 30-70 wt.% Alnico powder, on which age hardening treatment is applied, and 10-50 wt.% foil powder of copper is green-molded at temperature of 700 deg.C or less in reduction atmosphere, and sizing, magnetizing treatment, and magnetic fluid-impregnation are effected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁性流体含浸焼結
滑り軸受及びその製造方法に関し、潤滑剤が磁性流体で
ある焼結滑り軸受であって、比較的に高速低荷重で用い
られる音響・映像機器用のモータ、走査用ポリゴンモー
タ、光磁気ディスク等用のスピンドルモータに利用する
ことができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered sliding bearing impregnated with a magnetic fluid and a method of manufacturing the same. It can be used for a motor for video equipment, a polygon motor for scanning, a spindle motor for a magneto-optical disk and the like.

【0002】[0002]

【従来の技術】磁性流体を利用した焼結軸受要素として
は、青銅系多孔質焼結軸受に隣接して永久磁石を配置し
たものや、実開平3−49416号公報に記載されてい
るように、多孔質焼結軸受に永久磁石を埋没させたも
の、或いは多孔質焼結軸受のマトリックス合金中に着磁
された強磁性体粒子が分散したものが知られている。
2. Description of the Related Art As a sintered bearing element utilizing a magnetic fluid, a permanent magnet is disposed adjacent to a bronze-based porous sintered bearing, or as disclosed in Japanese Utility Model Laid-Open No. 3-49416. Further, there are known porous sintered bearings in which permanent magnets are buried, or magnetized ferromagnetic particles dispersed in a matrix alloy of the porous sintered bearings.

【0003】[0003]

【発明が解決しようとする課題】従来技術の内、滑り軸
受合金と強磁性体粒子との複合材料からなり磁性流体が
含浸された焼結軸受は、前者の永久磁石部材を隣接配置
した構造のものに比べれば、軸受要素の構造が簡単であ
り、磁石が摺動面近傍に分散しているので、摺動面への
油膜保持の状態が優れ、滑り特性のよい軸受要素になる
ことが予想される。しかしながら、通常の金属粉と磁性
粉の混合粉を用いた焼結軸受では、摺動面に比較的に硬
質な磁性粒子が露出するため、軸とのなじみ性が悪く、
またアブレシブな摩耗の原因となり、実用的なものとは
ならない。
Among the prior arts, a sintered bearing made of a composite material of a sliding bearing alloy and ferromagnetic particles and impregnated with a magnetic fluid has a structure in which permanent magnet members are arranged adjacent to each other. Compared to the bearings, the bearing element has a simpler structure, and the magnets are dispersed near the sliding surface. Is done. However, in a sintered bearing using a mixed powder of a normal metal powder and a magnetic powder, relatively hard magnetic particles are exposed on a sliding surface, so that the compatibility with the shaft is poor,
It also causes abrasive wear and is not practical.

【0004】そこで、本発明は、摺動特性に優れた青銅
系合金と永久磁石の複合材料において、摺動性能に優
れ、潤滑油の流出を防止できる磁性流体含浸焼結滑り軸
受を提供することを技術的課題とするものである。
[0004] Therefore, the present invention provides a magnetic fluid impregnated sintered sliding bearing which is excellent in sliding performance and can prevent outflow of lubricating oil in a composite material of a bronze alloy and a permanent magnet having excellent sliding characteristics. Is a technical issue.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するため開発されたもので、その技術手段は、磁化され
たアルニコ粒子30〜70重量%と青銅合金残部との複
合合金からなり、表面のアルニコ粒子が青銅合金で覆わ
れている多孔質焼結合金の気孔中に、潤滑油をベースと
する磁性流体を含浸させたことを特徴とする磁性流体含
浸滑り軸受である。青銅合金はいずれの合金でもよい
が、特に好ましい青銅合金としてりん青銅が挙げられ
る。軸受性能及び耐久性が優れているからである。
SUMMARY OF THE INVENTION The present invention has been developed to solve the above-mentioned problems, and its technical means consists of a composite alloy of 30 to 70% by weight of magnetized alnico particles and the balance of a bronze alloy, A magnetic fluid impregnated sliding bearing characterized in that pores of a porous sintered alloy whose surface alnico particles are covered with a bronze alloy are impregnated with a magnetic fluid based on lubricating oil. The bronze alloy may be any alloy, but a particularly preferred bronze alloy is phosphor bronze. This is because the bearing performance and durability are excellent.

【0006】ここで、アルニコは、組成がAl:8〜1
3重量%、Ni:1〜28重量%、Co:2〜24重量
%、必要に応じてCu、Tiを含有する鉄合金で、アト
マイズにより粉末とした後、加熱して時効処理を施して
析出硬化させたものである。時効処理は、通常の温度と
時間で処理したものでよいが、圧粉体の焼結によって時
効が更に進むように、温度と時間が少なめの不完全な状
態のものが望ましい。粒度は特に限定されないが、市販
のものは、サブシーブ粉35〜45重量%を含み、80
メッシュ篩を通過するものである。
Here, Alnico has a composition of Al: 8 to 1
An iron alloy containing 3% by weight, Ni: 1 to 28% by weight, Co: 2 to 24% by weight, and if necessary, Cu and Ti. After being powdered by atomization, it is heated and subjected to aging treatment to precipitate. It is cured. The aging treatment may be performed at a normal temperature and time, but it is preferable that the aging treatment is performed in an incomplete state with a small temperature and time so that the aging is further advanced by sintering the green compact. The particle size is not particularly limited, but commercially available ones contain 35 to 45% by weight of sub-sieve powder,
It passes through a mesh sieve.

【0007】軸受合金中に占めるアルニコ粒子の量は、
30〜70重量%とし、最適には50重量%前後であ
る。アルニコ粒子の含有量が30重量%未満では、軸受
全体の漏れ磁束の量が少なくなり、磁性流体の保持力が
低くなる。従って、30重量%以上が軸受として適して
いる。しかし、70重量%を越えると、軸受摺動面にア
ルニコ粒子が露出しやすく、軸受性能が悪くなってしま
うので限定される。
[0007] The amount of alnico particles in the bearing alloy is
The content is 30 to 70% by weight, optimally around 50% by weight. When the content of the alnico particles is less than 30% by weight, the amount of leakage magnetic flux of the entire bearing decreases, and the holding force of the magnetic fluid decreases. Therefore, 30% by weight or more is suitable as a bearing. However, when the content exceeds 70% by weight, the alnico particles are likely to be exposed on the bearing sliding surface, and the bearing performance is deteriorated.

【0008】次に、本発明では、前記焼結滑り軸受の端
面に、非磁性材料からなり焼結滑り軸受より有効多孔率
が大きく潤滑油をベースとする磁性流体が含浸された部
材を当接した構成とすることによって、この部材が油溜
の作用をなし、軸受寿命が延びるので好ましい。上記の
滑り軸受の製造方法は、時効硬化処理を施したアルニコ
粉末を30〜70重量%と、銅の箔粉10〜50重量%
を含む青銅合金を形成する金属粉との混合粉を軸受形状
に圧粉成形し、その圧粉体を還元雰囲気中で温度700
℃以下で焼結を行い、サイジング、磁化処理及び磁性流
体含浸を行うことを特徴とするものである。
Next, in the present invention, a member made of a non-magnetic material and having a higher effective porosity than a sintered sliding bearing and impregnated with a magnetic fluid based on lubricating oil is brought into contact with the end face of the sintered sliding bearing. This configuration is preferable because this member functions as an oil reservoir and extends the life of the bearing. The above-mentioned method for manufacturing a plain bearing includes 30 to 70% by weight of an alnico powder subjected to age hardening treatment and 10 to 50% by weight of a copper foil powder.
Of a mixed powder with a metal powder forming a bronze alloy containing aluminum is compacted into a bearing shape, and the compact is subjected to a temperature of 700 in a reducing atmosphere.
It is characterized in that sintering is performed at a temperature of not more than ℃ and sizing, magnetization treatment and magnetic fluid impregnation are performed.

【0009】青銅合金部は、Sn含有量が7〜11重量
%程度の通常の組成、或いは、更にP含有量が0.1〜
0.5重量%程度のリン青銅組成である。後者の方が耐
久性の点で優れている。青銅合金部は、銅及び錫の粉
末、リン青銅では更にCu−P(例えばP:15重量%
程度含有)合金粉を混合したものであるが、このうち、
銅は、少なくとも混合粉における10〜50重量%の箔
粉の形で添加することが必要である。この技術は、本出
願人により開示された特開昭60−128201号公
報、特開平3−166303号公報に記載されているも
ので、この箔粉によって前記のアルニコ粉を包み込むよ
うな混合粉が得られ、圧粉の状態及び焼結した後に、軸
受の表面にアルニコ粉が露出することなく、摺動面は青
銅合金の多孔質面が形成される。アルニコ粉の含有量に
より銅箔粉の量を調整してよいが、箔粉の量が10重量
%未満では被覆が不完全になることがあり好ましくな
い。また、箔粉の量は必要とするCu量の全部としても
軸受は製作できるが、混合粉における50重量%を越え
ると混合粉の見掛密度が低くなり、圧縮成形の作業性が
悪くなる。必要なCu量の不足部分は、通常の電解又は
アトマイズされた銅粉末の形、必要に応じて青銅合金粉
の形で添加される。
[0009] The bronze alloy part has a normal composition having an Sn content of about 7 to 11% by weight, or a P content of 0.1 to 11% by weight.
It has a phosphor bronze composition of about 0.5% by weight. The latter is superior in durability. The bronze alloy part is made of copper and tin powder, and phosphor bronze is further Cu-P (for example, P: 15% by weight).
Content) alloy powder mixed, of which
Copper must be added in the form of foil powder of at least 10 to 50% by weight of the mixed powder. This technique is described in Japanese Patent Application Laid-Open No. 60-128201 and Japanese Patent Application Laid-Open No. 3-166303 disclosed by the present applicant, and a mixed powder that wraps the alnico powder with the foil powder is used. After being obtained and compacted and sintered, the sliding surface forms a porous surface of a bronze alloy without exposing the alnico powder on the surface of the bearing. The amount of copper foil powder may be adjusted depending on the content of alnico powder, but if the amount of foil powder is less than 10% by weight, coating may be incomplete, which is not preferable. A bearing can be manufactured even if the amount of foil powder is all of the required amount of Cu. However, if it exceeds 50% by weight of the mixed powder, the apparent density of the mixed powder becomes low, and the workability of compression molding becomes poor. The required shortage of the amount of Cu is added in the form of ordinary electrolytic or atomized copper powder and, if necessary, in the form of bronze alloy powder.

【0010】永久磁石粒子としてアルニコが選ばれる理
由は、青銅合金を得るに必要な温度で焼結しても残留磁
化量が低下しないからである。他の永久磁石材料では残
留磁化量が少ないものとなり不適当である。アルニコ
は、通常の時効を行ったものを磁化させた材料の漏れ磁
束に対して、更に700℃に加熱処理した材料では、漏
れ磁束は約10%程度低下するに留まる。同様に770
℃に加熱処理すると、約50%程度となる。このことか
ら、圧粉体の焼結は、700℃以下の温度で行われ、6
50〜700℃が好ましい温度である。青銅合金部は液
相焼結される。アルニコ粉末の表面に銅めっきを施した
ものを用いれば、摺動面への露出をより少なく用いるこ
とができるが、処理工程が多くなり、割高になる点で好
ましくない。
The reason that alnico is selected as the permanent magnet particles is that the amount of remanent magnetization does not decrease even when sintering at a temperature required for obtaining a bronze alloy. Other permanent magnet materials are unsuitable because of their small residual magnetization. For Alnico, the leakage flux of a material heat-treated at 700 ° C. is reduced by only about 10% with respect to the leakage flux of a material obtained by magnetizing a material subjected to normal aging. Similarly 770
When heated to ℃, it becomes about 50%. From this, sintering of the green compact is performed at a temperature of 700 ° C. or less,
50-700C is a preferred temperature. The bronze alloy is liquid phase sintered. If the surface of the alnico powder is plated with copper, less exposure to the sliding surface can be used, but it is not preferable because the number of processing steps increases and the cost increases.

【0011】本発明の焼結体は、サイジングによって寸
法、密度、表面露出気孔量等が調整される。軸受の磁
化、磁性流体の含浸は、どちらが先の工程でも差し支え
ない。軸受の磁化は、軸受を磁場に置くことにより、軸
受中のアルニコ粒子が磁化されて永久磁石になる。磁化
方向は、軸方向でも径方向でもよいが、軸受の用途から
すれば、内径寸法が数mm程度のものであるから、径方
向に形成すると隣接する磁極同士が作用しあって希望す
る磁性が得られないことがあり、軸方向に形成すること
が望ましい。
The sizing of the sintered body of the present invention controls the size, density, surface exposed porosity and the like. Either the magnetization of the bearing or the impregnation of the magnetic fluid may be performed in the previous step. The magnetization of the bearing is such that by placing the bearing in a magnetic field, the alnico particles in the bearing are magnetized into permanent magnets. The magnetization direction may be axial or radial, but for bearing applications, the inner diameter is about several mm, so if formed in the radial direction, adjacent magnetic poles will act and the desired magnetism will be obtained. It may not be obtained, and it is desirable to form in the axial direction.

【0012】このようにして作られる磁性流体が含浸さ
れ、永久磁石粒子が包含された焼結滑り軸受は、気孔中
及び摺動面に磁性流体を保持する効率が高いものであ
り、潤滑油膜が強く形成されると共に潤滑油が軸受要素
から漏れ出ることがより少ないものである。軸受の表面
は青銅合金となっているので、通常の焼結滑り軸受と同
様な摺動特性が得られる。
The sintered sliding bearing impregnated with the magnetic fluid thus produced and containing the permanent magnet particles has a high efficiency of retaining the magnetic fluid in the pores and on the sliding surface, and has a lubricating oil film. It is strongly formed and less lubricating oil leaks out of the bearing elements. Since the surface of the bearing is made of a bronze alloy, the same sliding characteristics as those of a normal sintered sliding bearing can be obtained.

【0013】前述した磁性流体が含浸された焼結軸受の
端面(必要に応じて片面又は両面)に非磁性材料からな
る多孔質体に焼結軸受に含浸されているものと同じ磁性
流体を含浸した部材を当接させた構成にすると、この多
孔質部材は、油溜めの役割をなし、軸受の潤滑寿命を著
しく延長することができる。この多孔質部材を非磁性材
料にすると、磁性流体は主に毛細管現象により気孔に保
持されており、隣接する磁性のある滑り軸受内の磁性流
体が運転により、或いは損耗により減少したときに、毛
細管現象に抗して磁力により吸引し減少分を補填するよ
うになる。軸回転が止まり滑り軸受周囲の磁性流体が余
剰になれば、多孔質部材へ吸引される訳である。多孔質
部材は焼結滑り軸受より有効多孔率が大きく、気孔が大
きいことが望ましい。
The end surface (one or both surfaces as necessary) of the sintered bearing impregnated with the magnetic fluid is impregnated with the same magnetic fluid as that impregnated in the sintered bearing in the porous body made of a nonmagnetic material. When the above-mentioned members are configured to be in contact with each other, the porous member plays a role of an oil reservoir, and can significantly extend the lubrication life of the bearing. When the porous member is made of a non-magnetic material, the magnetic fluid is held in the pores mainly by capillary action, and when the magnetic fluid in the adjacent magnetic sliding bearing is reduced by operation or wear, the capillary is used. The decrease is compensated for by attracting by magnetic force against the phenomenon. If the rotation of the shaft stops and the magnetic fluid around the sliding bearing becomes excessive, it is sucked into the porous member. It is desirable that the porous member has a higher effective porosity and a larger porosity than the sintered plain bearing.

【0014】[0014]

【発明の実施の形態】以下、実施例により本発明を説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to examples.

【0015】[0015]

【実施例】原料として、下記の粉末を準備した。 (1)アルニコ2粉末:全体組成が重量比で12%C
o、18%Ni、10%Al、6%Cu及び残部Fe、
粒度−80メッシュ (2)銅箔粉:粒度−200メッシュ (3)銅粉:粒度−100メッシュ、電解銅粉 (4)錫粉:粒度−200メッシュ (5)銅リン合金粉:全体組成が重量比で15%P及び
残部Cu、粒度−150メッシュ これらを重量比で、アルニコ粉50%、銅箔粉15%、
銅粉28.8%、錫粉4.5%、銅燐粉1.7%の割合
で混合した。焼結された後の2相の合金組成に換算する
と、前記(1)に記載したアルニコが50%と、9%S
n−0.6%P−残部Cuからなるリン青銅が50%で
ある。
EXAMPLES The following powders were prepared as raw materials. (1) Alnico 2 powder: the total composition is 12% C by weight.
o, 18% Ni, 10% Al, 6% Cu and balance Fe,
Particle size -80 mesh (2) Copper foil powder: Particle size -200 mesh (3) Copper powder: Particle size -100 mesh, electrolytic copper powder (4) Tin powder: Particle size -200 mesh (5) Copper phosphorus alloy powder: Overall composition 15% P in weight ratio and the balance Cu, particle size -150 mesh These are in weight ratio, alnico powder 50%, copper foil powder 15%,
Copper powder 28.8%, tin powder 4.5%, and copper phosphorous powder 1.7% were mixed. When converted to the two-phase alloy composition after sintering, the alnico described in (1) above was 50% and 9% S.
Phosphor bronze consisting of n-0.6% P-remainder Cu is 50%.

【0016】また、比較例として錫粉9%、銅燐合金粉
2.4%、電解銅粉87.6%の混合粉を作製した。そ
れぞれの混合粉を寸法が内径10mm、外径16mm、
長さ10mmの円筒状に成形し、それぞれアンモニア分
解ガス中で温度690℃で焼結した。焼結体は金型でサ
イジングされ、寸法調整され、有効多孔率を18%とし
た。
As a comparative example, a mixed powder of 9% of tin powder, 2.4% of copper-phosphorus alloy powder and 87.6% of electrolytic copper powder was prepared. The size of each mixed powder is 10 mm in inner diameter, 16 mm in outer diameter,
It was formed into a cylindrical shape having a length of 10 mm, and each was sintered at a temperature of 690 ° C. in an ammonia decomposition gas. The sintered body was sized with a mold, adjusted in size, and had an effective porosity of 18%.

【0017】実施例の前者のサイジング体は、電磁石リ
ングの中において着磁した後、潤滑油ベースの磁性流体
を通常の減圧含浸装置を用いて含浸させた。後者のリン
青銅軸受試料には、低粘度の潤滑油を含浸させた。これ
ら試料をそれぞれ軸受試験装置のハウジングにセット
し、回転軸にはステンレス鋼SUS420J2を熱処理
したものを用い、軸受へのラジアル荷重を196kP
a、軸回転数4000rpmにて100時間運転を行
い、運転中の軸受の温度上昇の平均値、及び運転後の潤
滑油消耗率を比較した。
The former sizing body of the embodiment was magnetized in an electromagnet ring, and then impregnated with a lubricating oil-based magnetic fluid using an ordinary vacuum impregnating apparatus. The latter phosphor bronze bearing sample was impregnated with a low-viscosity lubricating oil. Each of these samples was set in a housing of a bearing test device, and a rotary shaft of a heat-treated stainless steel SUS420J2 was used, and a radial load on the bearing was 196 kP.
a, The operation was performed for 100 hours at a shaft rotation speed of 4000 rpm, and the average value of the temperature rise of the bearing during the operation and the lubricating oil consumption rate after the operation were compared.

【0018】温度上昇は実施例の軸受では5℃以下であ
ったが、比較例の軸受では15℃であった。また、潤滑
油消耗率は実施例の軸受では4%で、比較例の軸受では
11%であり、前者の方が約1/3である。軸受要素を
軸方向から観察すると、後者の方は潤滑油がハウジング
まで流れ落ちて汚染しており、前者は回転軸と軸受の面
取り部の部分に磁性流体が溜っているが、外部には流出
していない。
The temperature rise was 5 ° C. or less in the bearing of the embodiment, but was 15 ° C. in the bearing of the comparative example. Further, the lubricating oil consumption rate is 4% in the bearing of the example and 11% in the bearing of the comparative example, and the former is about 1/3. Observation of the bearing element from the axial direction shows that the latter has lubricant flowing down to the housing and is contaminated, while the former has magnetic fluid accumulated in the rotating shaft and the chamfered part of the bearing, but has leaked to the outside. Not.

【0019】実施例及び比較例の軸受は、摺動面が同じ
リン青銅であるが、実施例の軸受は、永久磁石粒子を含
み気孔に磁性流体潤滑剤を含むものであるから、摺動面
及び気孔中に潤滑剤をしっかり保持しているため、温度
上昇及び潤滑剤消耗が少なくなっているものと考えられ
る。次に、前記した本発明に係る軸受試料と全体組成が
同様であるが、銅箔粉を用いずに電解銅粉だけにした混
合粉を用いて、前例と同様に製作した試料について軸受
試験を行った。この試料の場合、温度上昇が高く、回転
軸と軸受の面取り部の部分に磁性流体がたくさん溜って
軸回転で飛散する状態であり、潤滑油消耗率は8%とな
った。軸受の温度上昇は、軸受摺動面に露出しているア
ルニコ粒子の影響と考えられ、軸と金属接触になったと
き、青銅に比べて摺動特性に不利であることによるもの
と考えられる。
The bearings of the embodiment and the comparative example are made of phosphor bronze having the same sliding surface. However, since the bearing of the embodiment contains permanent magnet particles and pores containing a magnetic fluid lubricant, the sliding face and the pores are made. It is considered that the temperature rise and the consumption of the lubricant are reduced because the lubricant is held firmly therein. Next, a bearing test was performed on a sample manufactured in the same manner as in the previous example using a mixed powder having the same overall composition as the above-described bearing sample according to the present invention but using only electrolytic copper powder without using copper foil powder. went. In the case of this sample, the temperature rise was high, a lot of magnetic fluid accumulated in the portion of the chamfer of the rotating shaft and the bearing, and was scattered by the shaft rotation, and the lubricating oil consumption rate was 8%. The temperature rise of the bearing is considered to be due to the effect of the alnico particles exposed on the bearing sliding surface, and is considered to be due to the fact that the sliding characteristics are disadvantageous as compared with bronze when metal contact occurs with the shaft.

【0020】また、前記した本発明に関わる軸受試料の
端面に、軸受試料に含浸したと同じ磁性流体を含浸して
ある有効多孔率が22%の円筒状の焼結青銅リングを当
接してハウジングに固定し、軸受試験を行ったところ、
潤滑油消耗率は2%で前記実施例の軸受の場合の1/2
となり、軸受寿命が延びることが予測できた。
Further, a cylindrical sintered bronze ring having an effective porosity of 22%, impregnated with the same magnetic fluid as that impregnated in the bearing sample, is brought into contact with the end surface of the bearing sample according to the present invention described above. And a bearing test was performed.
The lubricating oil consumption rate is 2%, which is 1/2 that of the bearing of the above embodiment.
It can be expected that the bearing life will be prolonged.

【0021】[0021]

【発明の効果】以上説明したように、本発明の製造方法
による本発明の磁性流体含浸焼結滑り軸受は、摺動面は
滑り特性のよい青銅であり、永久磁石粒子が軸受材料中
に分散して軸受気孔及び摺動面に効率よく保油する構造
をしているから、潤滑油の飛散消耗がなく、軸受要素周
囲を汚すことがなく、長寿命が得られる。また、軸受の
製造方法及び組立手段が通常の含油軸受と同様であり、
能率よく製作できる利点もある。
As described above, in the magnetic fluid impregnated sintered plain bearing of the present invention according to the manufacturing method of the present invention, the sliding surface is made of bronze having good sliding properties, and the permanent magnet particles are dispersed in the bearing material. As a result, the oil is efficiently retained in the bearing pores and the sliding surface, so that the lubricating oil is not scattered and consumed, the periphery of the bearing element is not stained, and a long life can be obtained. In addition, the manufacturing method and assembling means of the bearing are the same as ordinary oil-impregnated bearings,
There is also an advantage that it can be manufactured efficiently.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 磁化されたアルニコ粒子30〜70重量
%と青銅合金残部との複合合金からなり、表面のアルニ
コ粒子が青銅合金で覆われている多孔質焼結合金の気孔
中に、潤滑油をベースとする磁性流体を含浸させたこと
を特徴とする磁性流体含浸焼結滑り軸受。
1. The method according to claim 1, wherein a lubricating oil is contained in pores of a porous sintered alloy comprising a composite alloy of 30 to 70% by weight of magnetized alnico particles and the rest of the bronze alloy, the alnico particles on the surface being covered with a bronze alloy. A magnetic fluid-impregnated sintered plain bearing characterized by being impregnated with a magnetic fluid based on.
【請求項2】 請求項1に記載の焼結滑り軸受の端面に
潤滑油をベースとする磁性流体が含浸された非磁性材料
からなる多孔質部材が当接されていることを特徴とする
磁性流体含浸焼結滑り軸受。
2. A magnetic member, wherein a porous member made of a non-magnetic material impregnated with a lubricating oil-based magnetic fluid is in contact with an end surface of the sintered plain bearing according to claim 1. Fluid impregnated sintered plain bearing.
【請求項3】 青銅合金がりん青銅であることを特徴と
する請求項1又は2記載の磁性流体含浸焼結滑り軸受。
3. The sintered sliding bearing as claimed in claim 1, wherein the bronze alloy is phosphor bronze.
【請求項4】 時効硬化処理を施したアルニコ粉末を3
0〜70重量%と、銅の箔粉10〜50重量%を含む青
銅合金を形成する金属粉との混合粉を軸受形状に圧粉成
形し、その圧粉体を還元雰囲気中で温度700℃以下で
焼結を行い、サイジング、磁化処理及び磁性流体含浸を
行うことを特徴とする磁性流体含浸焼結滑り軸受の製造
方法。
4. An aging-hardened alnico powder is mixed with 3
A mixed powder of 0 to 70% by weight and a metal powder forming a bronze alloy containing 10 to 50% by weight of copper foil powder is compacted into a bearing shape, and the compact is subjected to a temperature of 700 ° C. in a reducing atmosphere. A method for producing a sintered sliding bearing with magnetic fluid impregnation, comprising sintering, sizing, magnetizing, and impregnating with magnetic fluid.
JP16855097A 1997-06-25 1997-06-25 Magnetic fluid impregnated sintered plain bearing and method of manufacturing the same Expired - Fee Related JP3512314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16855097A JP3512314B2 (en) 1997-06-25 1997-06-25 Magnetic fluid impregnated sintered plain bearing and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16855097A JP3512314B2 (en) 1997-06-25 1997-06-25 Magnetic fluid impregnated sintered plain bearing and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH1113765A true JPH1113765A (en) 1999-01-22
JP3512314B2 JP3512314B2 (en) 2004-03-29

Family

ID=15870109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16855097A Expired - Fee Related JP3512314B2 (en) 1997-06-25 1997-06-25 Magnetic fluid impregnated sintered plain bearing and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3512314B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6657343B2 (en) 2000-12-26 2003-12-02 Kura Laboratory Corporation Magnetic fluid bearing motor employing porous sleeve
US6846109B2 (en) 2002-03-18 2005-01-25 Minebea Co., Ltd. Sintered bearing and production method therefor
US6851859B2 (en) 2002-02-07 2005-02-08 Hitachi Powdered Metals Co., Ltd. Bearing unit, production method therefor and spindle motor
WO2006123453A1 (en) * 2005-05-20 2006-11-23 Aisin Seiki Kabushiki Kaisha Metal bearing
CN101799111A (en) * 2010-03-26 2010-08-11 南京航空航天大学 Magnetic liquid lubrication structure with controllable viscosity and method thereof
US10960633B2 (en) 2015-03-20 2021-03-30 Hitachi Chemical Company, Ltd. Method for forming molded article by press molding
CN112955984A (en) * 2019-07-29 2021-06-11 韩国铸造,安全印刷与Id卡操作公司 AlNiCo hard magnet particles and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6657343B2 (en) 2000-12-26 2003-12-02 Kura Laboratory Corporation Magnetic fluid bearing motor employing porous sleeve
US6851859B2 (en) 2002-02-07 2005-02-08 Hitachi Powdered Metals Co., Ltd. Bearing unit, production method therefor and spindle motor
US6846109B2 (en) 2002-03-18 2005-01-25 Minebea Co., Ltd. Sintered bearing and production method therefor
WO2006123453A1 (en) * 2005-05-20 2006-11-23 Aisin Seiki Kabushiki Kaisha Metal bearing
CN101799111A (en) * 2010-03-26 2010-08-11 南京航空航天大学 Magnetic liquid lubrication structure with controllable viscosity and method thereof
US10960633B2 (en) 2015-03-20 2021-03-30 Hitachi Chemical Company, Ltd. Method for forming molded article by press molding
CN112955984A (en) * 2019-07-29 2021-06-11 韩国铸造,安全印刷与Id卡操作公司 AlNiCo hard magnet particles and method for producing same
EP3886125A4 (en) * 2019-07-29 2022-08-24 Korea Minting, Security Printing & ID Card Operating Corp. Alnico-based hard magnetic particle and method for manufacturing same

Also Published As

Publication number Publication date
JP3512314B2 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
JP4886545B2 (en) Sintered oil-impregnated bearing and manufacturing method thereof
JP2010077474A (en) Iron-based sintered bearing, and method for manufacturing the same
US6851859B2 (en) Bearing unit, production method therefor and spindle motor
CN109562456B (en) Iron-copper-based sintered oil-retaining bearing and manufacturing method thereof
JP2005350722A (en) Pb-FREE BEARING FOR FUEL INJECTION PUMP
WO2011021418A1 (en) Iron-based sintered sliding member, and process for production thereof
JP3512314B2 (en) Magnetic fluid impregnated sintered plain bearing and method of manufacturing the same
EP3040141B1 (en) Sintered bearing for fuel pump and method for manufacturing same
JP2008019929A (en) Oil-impregnated sintered bearing
JP3200556B2 (en) Magnetic fluid bearing unit and motor equipped with the same
US6663344B2 (en) Copper-based sintered alloy bearing and motor fuel pump
US10697494B2 (en) Sintered bearing
GB2333779A (en) Composite metal powder for sintered bearing, and sintered oil-retaining bearing
JP6424983B2 (en) Iron-based sintered oil-impregnated bearing
JP4743565B2 (en) Graphite-dispersed Cu-based sintered alloy bearing for motor-type fuel pump that exhibits excellent wear resistance under high-pressure and high-speed circulation of gasoline, and motor-type fuel pump using the same
JPS60153109A (en) Permanent magnet
JP2000124019A (en) Resin-bonded rare-earth magnet
JP2021099134A (en) Sintered oil-impregnated bearing and manufacturing method of the same
JP2022169498A (en) Sintered alloy valve guide and method for manufacturing sintered alloy valve guide
WO2018100660A1 (en) Ferrous sinter oil-containing bearing
JPS6347762B2 (en)
JP3038105B2 (en) Fluid bearing device and motor
CN110475982B (en) Sintered bearing and method for manufacturing same
JP2974738B2 (en) Sintered copper sliding material
JPH0941071A (en) Wear resistant sintered oilless bearing low in mating attackability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees