JPH11136082A - Piezoelectric element - Google Patents

Piezoelectric element

Info

Publication number
JPH11136082A
JPH11136082A JP29511997A JP29511997A JPH11136082A JP H11136082 A JPH11136082 A JP H11136082A JP 29511997 A JP29511997 A JP 29511997A JP 29511997 A JP29511997 A JP 29511997A JP H11136082 A JPH11136082 A JP H11136082A
Authority
JP
Japan
Prior art keywords
coupling coefficient
electromechanical coupling
piezoelectric element
piezoelectric
elastic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29511997A
Other languages
Japanese (ja)
Inventor
Hiroshi Ichikawa
洋 市川
Kenji Iijima
賢二 飯島
Masatoshi Kitagawa
雅俊 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29511997A priority Critical patent/JPH11136082A/en
Publication of JPH11136082A publication Critical patent/JPH11136082A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric element which has its reduced insertion loss compared with another piezoelectric element that is made of a single material by using a material of a large electromechanical coupling coefficient at an exciting/receiving part of elastic waves and also using a material of a small electromechanical coupling coefficient and a small propagation damping factor at a propagating part of elastic waves. SOLUTION: A piezoelectric ceramic having an electromechanical coupling coefficient larger than that of LiTaO3 is formed on a piezoelectric ceramic including an LiTaO3 crystal, and further elastic wave transmitting and receiving electrodes are formed thereon. That is, an LiNbO3 thin film 2 of 1 μm is stacked on an LiTaO3 single crystal substrate 1 and then an elastic wave transmitting comb-like electrode 3 and an elastic wave receiving comb-like electrode 4 are formed of aluminum on the film 2. Thus, an SAW device is produced. Then the electromechanical coupling coefficient is increased twice or more at the working center frequency of 300 MHz by stacking the film 2 on the substrate 1. As a result, the conversion efficiency of a piezoelectric element can be well satisfied and the advantages of piezoelectric ceramics can be sufficiently utilized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は移動体通信などに広
く用いられている圧電体素子の構造と製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure and a manufacturing method of a piezoelectric element widely used in mobile communication and the like.

【0002】[0002]

【従来の技術】PHS(Personal Handy Phone System)を
初めとする、移動体通信システムでは、数多くのセラミ
ックス電子部品、半導体、などが使われている。中で
も、フィルターには圧電体セラミックスが主に使われて
いる。
BACKGROUND OF THE INVENTION beginning with PHS (P ersonal H andy Phone S ystem), in a mobile communication system, a number of ceramic electronic components, semiconductors, and the like are used. Among them, piezoelectric ceramics are mainly used for filters.

【0003】[0003]

【発明が解決しようとする課題】前記圧電材料にはそれ
ぞれ固有の特性がある。電気エネルギーから圧電エネル
ギーへの変換効率を表す電気機械結合係数k2は、LiN
bO3は5〜20%と大きく、LiTaO3は0.5〜8%である。一
般にk2が大きいほど、電気信号による弾性波は誘起さ
れやすくなる。一方、弾性波の伝搬減衰率は、LiTaO
3でほぼゼロであるのに対し、LiNbO3では0.04dB/λ
と、水晶の100倍程度と大きい。伝搬減衰率は圧電体素
子の挿入損失の増大に直接効いてくるもので、小さいほ
ど有利であることは言うまでもない。従って、LiNb
3、LiTaO3のセラミックス、LiNb1-xTax
3の混相系セラミックスでは、充分な圧電素子の変換効
率を満たすことができず、いまだ十分に圧電セラミック
スの利点を活かした素子構造の提供はなされていなかっ
た。
The above-mentioned piezoelectric materials have their own characteristics. Electromechanical coupling coefficient k 2 representing the conversion efficiency from electrical energy to the piezoelectric energy, LiN
bO 3 is as large as 5 to 20%, and LiTaO 3 is 0.5 to 8%. In general, as k 2 is larger, an elastic wave due to an electric signal is more likely to be induced. On the other hand, the propagation attenuation rate of the elastic wave is LiTaO
3 is almost zero, whereas 0.04 dB / λ for LiNbO 3
And it is about 100 times larger than crystal. The propagation attenuation rate directly affects the insertion loss of the piezoelectric element, and it goes without saying that the smaller the propagation attenuation rate, the more advantageous. Therefore, LiNb
O 3, LiTaO 3 of ceramics, LiNb 1-x Ta x O
The three- phase ceramics cannot satisfy a sufficient conversion efficiency of the piezoelectric element, and an element structure utilizing the advantages of the piezoelectric ceramic has not yet been provided.

【0004】[0004]

【課題を解決するための手段】本発明の圧電体素子は、
少なくともLiTaO3結晶を含む圧電性セラミックス
A上にLiTaO3より電気機械結合係数の大きい圧電
性セラミックスBが形成され、さらにその上に弾性波送
信用及び受信用電極が形成された構成を有する。
According to the present invention, there is provided a piezoelectric element comprising:
A piezoelectric ceramic B having a larger electromechanical coupling coefficient than LiTaO 3 is formed on a piezoelectric ceramic A containing at least a LiTaO 3 crystal, and an electrode for transmitting and receiving an elastic wave is further formed thereon.

【0005】また、前記構成においては、圧電性セラミ
ックスBが、少なくともLiNbO3、Li247、Zn
O、AlN、Ta2O5、Pb-Nd-Ti-Mn-In-O、Pb-
Zn-Ti-O、KNbO3から選ばれる一つの材料であるこ
とが望ましい。
In the above structure, the piezoelectric ceramic B is made of at least LiNbO 3 , Li 2 B 4 O 7 , Zn
O, AlN, Ta 2 O5, Pb-Nd-Ti-Mn-In-O, Pb-
Zn-Ti-O, it is desirable that one material selected from the KNbO 3.

【0006】また、前記構成においては、圧電性セラミ
ックスBが、薄膜であることが望ましい。
In the above structure, the piezoelectric ceramic B is preferably a thin film.

【0007】また、前記構成においては、圧電性セラミ
ックスBの厚みが、1λ(ただし、λは弾性波の波長を
示す)より薄いことが望ましい。
In the above structure, it is desirable that the thickness of the piezoelectric ceramic B is smaller than 1λ (where λ indicates the wavelength of the elastic wave).

【0008】[0008]

【発明の実施の形態】前記のように、圧電性材料におい
て、電気機械結合係数k2と、弾性波の伝搬減衰率は、
相反する関係にある。そこで、本発明者らは、弾性波の
励振・受信部分には電気機械結合係数k2の大きい材料
を用い、弾性波の伝搬部分には、電気機械結合係数k2
の小さい、すなわち伝搬減衰率の小さい材料を用いれ
ば、単一材料の圧電体素子に比べて、挿入損失も少ない
のではと考え、実験的に検証を進めた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, in a piezoelectric material, the electromechanical coupling coefficient k 2 and the propagation attenuation rate of an elastic wave are:
There are conflicting relationships. The present inventors, using a material having a large electromechanical coupling coefficient k 2 is the excitation and reception portion of the elastic wave, the propagation part of the acoustic wave, the electromechanical coupling coefficient k 2
Therefore, it was considered that the insertion loss was small when a material having a small propagation loss, that is, a material having a small propagation attenuation rate was used as compared with a piezoelectric element made of a single material.

【0009】そこで、図1に示すようなLiTaO3
結晶基板1上に、LiNbO3薄膜2を1μm堆積し
て、薄膜2の上に。弾性波送信用櫛型電極3と弾性波受
信用櫛型電極4をアルミニウムで形成してSAW素子を
作製し、挿入損失を測定して、薄膜2のない場合と比較
した。比較結果を表1に示す。動作中心周波数は、30
0MHzとした。
Therefore, a LiNbO 3 thin film 2 is deposited to a thickness of 1 μm on a LiTaO 3 single crystal substrate 1 as shown in FIG. The SAW element was manufactured by forming the elastic wave transmitting comb electrode 3 and the elastic wave receiving comb electrode 4 from aluminum, and the insertion loss was measured and compared with the case without the thin film 2. Table 1 shows the comparison results. The operating center frequency is 30
0 MHz.

【0010】[0010]

【表1】 [Table 1]

【0011】この結果、挿入損失は、LiTaO3基板
1の低いままでほとんど変わらず、電気機械結合係数k
2は、LiNbO3膜2を基板1の上に堆積することで、
2倍以上に増えることがわかった。
As a result, the insertion loss hardly changes while the LiTaO 3 substrate 1 remains low, and the electromechanical coupling coefficient k
2 is to deposit a LiNbO 3 film 2 on the substrate 1,
It was found to increase more than twice.

【0012】[0012]

【発明の効果】以上のように本発明によれば、LiNb
3、LiTaO3のセラミックス、LiNb1-xTax
3の混相系セラミックスにおいても、充分な圧電素子の
変換効率を満たすことができ、圧電セラミックスの利点
を十分に活かした素子構造を提供することが出来る。
As described above, according to the present invention, LiNb
O 3, LiTaO 3 of ceramics, LiNb 1-x Ta x O
Even with the mixed-phase ceramics of 3 , the sufficient conversion efficiency of the piezoelectric element can be satisfied, and an element structure fully utilizing the advantages of the piezoelectric ceramic can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】SAW素子の断面構造概略図FIG. 1 is a schematic sectional view of a SAW element.

【符号の説明】[Explanation of symbols]

1 LiTaO3基板 2 LiNbO3膜 3 送信用櫛型電極 4 受信用櫛型電極Reference Signs List 1 LiTaO 3 substrate 2 LiNbO 3 film 3 Comb electrode for transmission 4 Comb electrode for reception

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくともLiTaO3結晶を含む圧電
性セラミックスA上にLiTaO3より電気機械結合係
数の大きい圧電性セラミックスBが形成され、さらにそ
の上に弾性波送信用あるいは受信用電極が形成された圧
電体素子。
1. A piezoelectric ceramic B having a larger electromechanical coupling coefficient than LiTaO 3 is formed on a piezoelectric ceramic A containing at least a LiTaO 3 crystal, and an electrode for transmitting or receiving an elastic wave is formed thereon. Piezoelectric element.
【請求項2】 圧電性セラミックスBが、少なくともL
iNbO3、Li247、ZnO、AlN、Ta2O5、Pb-
Nd-Ti-Mn-In-O、Pb-Zn-Ti-O、KNbO3から選
ばれる1つあるいは複数から構成されることを特徴とす
る請求項1に記載の圧電体素子。
2. The piezoelectric ceramic B has at least L
iNbO 3, Li 2 B 4 O 7, ZnO, AlN, Ta 2 O5, Pb-
Nd-Ti-Mn-In- O, Pb-Zn-Ti-O, the piezoelectric element according to claim 1, characterized in that they are composed of one or more selected from the KNbO 3.
【請求項3】 圧電性セラミックスBが、薄膜である請
求項1に記載の圧電体素子。
3. The piezoelectric element according to claim 1, wherein the piezoelectric ceramic B is a thin film.
【請求項4】 圧電性セラミックスBの厚みが、1λ
(ただし、λは弾性波の波長を示す)より薄い請求項1
に記載の圧電体素子。
4. The piezoelectric ceramic B has a thickness of 1λ.
(1) where λ represents the wavelength of an elastic wave.
3. The piezoelectric element according to item 1.
JP29511997A 1997-10-28 1997-10-28 Piezoelectric element Pending JPH11136082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29511997A JPH11136082A (en) 1997-10-28 1997-10-28 Piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29511997A JPH11136082A (en) 1997-10-28 1997-10-28 Piezoelectric element

Publications (1)

Publication Number Publication Date
JPH11136082A true JPH11136082A (en) 1999-05-21

Family

ID=17816542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29511997A Pending JPH11136082A (en) 1997-10-28 1997-10-28 Piezoelectric element

Country Status (1)

Country Link
JP (1) JPH11136082A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002095941A1 (en) * 2001-05-21 2002-11-28 Microtechnology Centre Management Limited Surface acoustic wave device
WO2002095940A1 (en) * 2001-05-21 2002-11-28 Microtechnology Centre Management Limited Surface acoustic wave sensor
WO2005050836A1 (en) * 2003-11-19 2005-06-02 Murata Manufacturing Co., Ltd. End surface reflection surface acoustic wave device and its manufacturing method
AU2002308401B2 (en) * 2001-05-21 2005-08-04 Mnt Innovations Pty Ltd Surface acoustic wave sensor
WO2022230723A1 (en) * 2021-04-30 2022-11-03 株式会社村田製作所 Elastic wave device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002095941A1 (en) * 2001-05-21 2002-11-28 Microtechnology Centre Management Limited Surface acoustic wave device
WO2002095940A1 (en) * 2001-05-21 2002-11-28 Microtechnology Centre Management Limited Surface acoustic wave sensor
AU2002308401B2 (en) * 2001-05-21 2005-08-04 Mnt Innovations Pty Ltd Surface acoustic wave sensor
US7027921B2 (en) 2001-05-21 2006-04-11 Microtechnology Centre Management Limited Surface acoustic wave sensor
WO2005050836A1 (en) * 2003-11-19 2005-06-02 Murata Manufacturing Co., Ltd. End surface reflection surface acoustic wave device and its manufacturing method
JPWO2005050836A1 (en) * 2003-11-19 2007-06-14 株式会社村田製作所 End surface reflection type surface acoustic wave device and method of manufacturing the same
WO2022230723A1 (en) * 2021-04-30 2022-11-03 株式会社村田製作所 Elastic wave device

Similar Documents

Publication Publication Date Title
JP5099151B2 (en) Method for manufacturing boundary acoustic wave device
US7132779B2 (en) Surface acoustic wave device
CN100576733C (en) Boundary acoustic wave device
US20080067891A1 (en) Acoustic wave device and filter
EP2068444B1 (en) Acoustic wave filter
KR20190077224A (en) Elastic wave device
KR102458076B1 (en) Elastic wave device, radio-frequency front-end circuit, and communication apparatus
CN112088490A (en) SAW device with composite substrate for ultra high frequencies
CN109257027A (en) A kind of mixing acoustic resonator and preparation method thereof
CN101796727A (en) Elastic boundary wave device
CN108173528A (en) Wave filter
CN101964642A (en) Boundary acoustic wave device
JP2021532655A (en) Resonant cavity surface acoustic wave (SAW) filter
WO2000076067A1 (en) Saw filter
EP4032184A2 (en) Transducer structure for an acoustic wave device
JP2004135267A (en) Surface acoustic wave device
JPH11136082A (en) Piezoelectric element
Tanaka et al. IDT-based acoustic wave devices using ultrathin lithium niobate and lithium tantalate
US6452306B1 (en) Surface acoustic wave device and piezoelectric substrate used therefor
JPH1131942A (en) Surface acoustic wave module element and its production
EP3766176B1 (en) Transducer structure for source suppression in saw filter devices
Mimura et al. Mitigation of High Frequency Spurious Responses in Rayleigh SAW Resonators on LiNbO 3 Substrate
CN114070257A (en) Acoustic wave device, filter and multiplexer
JP2022176790A (en) Elastic wave device, wafer, filter and multiplexer
CN113206651A (en) Lamb wave resonator with high electromechanical coupling coefficient and preparation method thereof