JPH11135135A - Electrochemical element - Google Patents

Electrochemical element

Info

Publication number
JPH11135135A
JPH11135135A JP9297514A JP29751497A JPH11135135A JP H11135135 A JPH11135135 A JP H11135135A JP 9297514 A JP9297514 A JP 9297514A JP 29751497 A JP29751497 A JP 29751497A JP H11135135 A JPH11135135 A JP H11135135A
Authority
JP
Japan
Prior art keywords
exchange membrane
ion exchange
electrode
membrane
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9297514A
Other languages
Japanese (ja)
Inventor
Masaru Yoshitake
優 吉武
Naoki Yoshida
直樹 吉田
Yasuhiro Kotsukiyou
康弘 国狭
Tetsuji Shimodaira
哲司 下平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP9297514A priority Critical patent/JPH11135135A/en
Publication of JPH11135135A publication Critical patent/JPH11135135A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain drying of an ion exchange membrane and prevent short- circuit of an electrode by containing non-conductive pillar particles in an ion exchange membrane consisting of a fluorocarbon polymer having a phosphonic acid and allocating a positive electrode, in contact with one side face thereof and negative electrode in contact with the other side face. SOLUTION: On both side faces of an ion-exchange membrane, consisting of a fluorocarbon polymer having a phosphonic acid group, a positive electrode and a negative electrode such as a gas dispersion electrodes are disposed respectively, and a slide poly electrolyte type fuel cell is obtained. In this electrochemical element, in the above ion-exchange membrane, non-conductive, hydrophilic, acid resistant pillar particles of 10 to 90% in particle size of thickness of the ion exchange membrane, and preferably about 30 to 70% is made to be contained in 5 to 50% by volume, preferably 10 to 40% uniformly. As the pillar particles, oxide such as silica, a composite oxide such as spinel, and glass such as silicate are preferred. Thereby, even if an ion exchange membrane is thinned, penetration of an electrode can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子電解質
型燃料電池、空気−亜鉛電池等の電気化学素子に関す
る。
The present invention relates to an electrochemical device such as a solid polymer electrolyte fuel cell and an air-zinc battery.

【0002】[0002]

【従来の技術】水素を燃料とする固体高分子型燃料電池
は、代表的なものとして固体電解質としてフッ素樹脂系
のイオン交換膜を用いるものが従来より知られており、
常温からの作動が可能で、高出力密度が得られ、原理的
に水のみが生成するという特徴を有する。このため、近
年のエネルギー、地球環境問題への社会的要請の高まり
とともに、大きな期待が寄せられている。また、空気−
亜鉛電池などにおいては、セパレータとしてイオン交換
樹脂を成膜したものを用いたものがすでに実用化されて
いる。
2. Description of the Related Art As a typical polymer electrolyte fuel cell using hydrogen as a fuel, a type using a fluororesin-based ion exchange membrane as a solid electrolyte has been conventionally known.
It can be operated from room temperature, has a high output density, and has the characteristic that only water is generated in principle. For this reason, with increasing social demands for energy and global environmental issues in recent years, great expectations have been placed. In addition, air
In a zinc battery or the like, a separator using an ion-exchange resin film as a separator has already been put to practical use.

【0003】固体高分子型燃料電池に用いられる固体電
解質は、通常、厚さ50〜200μmのプロトン伝導性
イオン交換膜が用いられ、特にスルホン酸基を有するパ
ーフルオロカーボン重合体からなるイオン交換膜が基本
特性に優れ広く検討されている。
As a solid electrolyte used in a polymer electrolyte fuel cell, a proton-conducting ion exchange membrane having a thickness of 50 to 200 μm is usually used. In particular, an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group is used. Excellent in basic characteristics and widely studied.

【0004】このイオン交換膜を用いた固体高分子型燃
料電池では、イオン交換膜の導電性を保持するために加
湿したガスを供給しながら運転する。そのため、常圧で
作動温度を100℃以上にすると水の蒸気圧が急激に高
くなり、イオン交換膜が乾燥し膜抵抗が増大するととも
に、反応ガスの分圧が低下し電池性能が低下する。その
ため、常圧では100℃未満の温度条件下で運転されて
いる。
A polymer electrolyte fuel cell using this ion exchange membrane operates while supplying a humidified gas in order to maintain the conductivity of the ion exchange membrane. Therefore, when the operating temperature is set to 100 ° C. or more at normal pressure, the vapor pressure of water sharply increases, the ion exchange membrane dries, the membrane resistance increases, and the partial pressure of the reaction gas decreases, and the battery performance decreases. Therefore, it is operated under a temperature condition of less than 100 ° C. at normal pressure.

【0005】この種の燃料電池は、電解質膜の両面にガ
ス拡散性の電極層を形成し、それぞれの電極に燃料であ
る水素と酸化剤となる酸素または空気を供給することに
より発電を行うものである。出力特性のさらなる向上を
目的として、電極触媒活性の向上、ガス拡散電極の特性
改善、抵抗損の低減等の検討がなされている。抵抗損と
しては導体抵抗損、接触抵抗損、膜抵抗損がある。
[0005] This type of fuel cell generates gas by forming gas-diffusing electrode layers on both sides of an electrolyte membrane and supplying hydrogen as a fuel and oxygen or air as an oxidant to each electrode. It is. For the purpose of further improving the output characteristics, studies have been made on improving the electrode catalyst activity, improving the characteristics of the gas diffusion electrode, reducing the resistance loss, and the like. The resistance loss includes a conductor resistance loss, a contact resistance loss, and a film resistance loss.

【0006】[0006]

【発明が解決しようとする課題】上記のようにイオン交
換膜を用いた固体高分子型燃料電池では、加湿したガス
を供給して運転する。一方、空気極においては反応によ
り水が生成し、空気極内で凝縮する(いわゆるフラッデ
ィング)と、反応物である酸素が充分に供給できなくな
り電池性能の低下を引き起こすため、空気極から反応生
成物である水をすばやく除去する必要がある。このよう
に固体高分子型燃料電池で電池出力を得るためには、系
の加湿と、系からの水の除去という相反する操作をバラ
ンスよく行わなければならない。
As described above, a polymer electrolyte fuel cell using an ion exchange membrane is operated by supplying a humidified gas. On the other hand, when water is generated by the reaction at the air electrode and condensed in the air electrode (so-called flooding), oxygen, which is a reactant, cannot be supplied sufficiently and battery performance deteriorates. Need to be quickly removed. As described above, in order to obtain a cell output with the polymer electrolyte fuel cell, the opposing operations of humidifying the system and removing water from the system must be performed in a well-balanced manner.

【0007】また、イオン交換膜の抵抗は、膜の含水率
が高いほど、膜中のイオン交換基濃度が高いほど、膜の
厚さが薄いほど、小さくなる傾向にある。膜の含水率は
供給するガスの湿度等の運転条件により変化し、また入
手しうるイオン交換膜のイオン交換基濃度はおのずから
一定の制限があるため、比較的容易な方法として膜厚の
薄いイオン交換膜を用いて膜抵抗損を低減することが期
待されている。
The resistance of an ion exchange membrane tends to decrease as the moisture content of the membrane increases, as the concentration of ion exchange groups in the membrane increases, and as the thickness of the membrane decreases. The water content of the membrane changes depending on the operating conditions such as the humidity of the gas to be supplied, and the ion exchange group concentration of the available ion exchange membrane naturally has a certain limit. It is expected to reduce the film resistance loss by using an exchange film.

【0008】しかし、イオン交換膜厚を薄くすると、膜
自体の強度の低下や、電極−膜接合体の作製時や燃料電
池の使用中に電極がイオン交換膜を貫通することにより
生ずる電極の短絡の問題がある。
However, when the thickness of the ion exchange membrane is reduced, the strength of the membrane itself is reduced, and the electrode is short-circuited when the electrode penetrates the ion exchange membrane during production of the electrode-membrane assembly or during use of the fuel cell. There is a problem.

【0009】空気−亜鉛電池等のセパレータは従来のセ
ロファン等のフィルムの場合、厚さは100〜200μ
m程度であり、イオン交換膜を用いる場合は、セロファ
ン等の従来のセパレータフィルムに比較して薄膜化でき
るが、この場合も上記と同様の問題がある。
When the separator of an air-zinc battery or the like is a conventional film such as cellophane, the thickness is 100 to 200 μm.
m, and when an ion exchange membrane is used, it can be made thinner than a conventional separator film such as cellophane. However, in this case, the same problem as described above occurs.

【0010】膜抵抗の低減のためにイオン交換膜を薄膜
化した際の膜の寸法安定性および機械的強度を改善する
方法として、多孔性のポリテトラフルオロエチレン(P
TFE)のフィルムにパーフルオロ系イオン交換樹脂を
含浸させ、補強したイオン交換膜が提案されている(特
公平5−75835、特公平6−10277等)が、必
ずしも充分ではない。
As a method for improving the dimensional stability and mechanical strength of an ion-exchange membrane when the ion exchange membrane is made thinner to reduce the membrane resistance, porous polytetrafluoroethylene (P)
Ion exchange membranes in which a TFE) film is impregnated with a perfluoro-based ion exchange resin and reinforced have been proposed (Japanese Patent Publication No. 5-75835, Japanese Patent Publication No. 6-10277, etc.), but are not always sufficient.

【0011】本発明は上記課題を解決すべくなされたも
のであり、特にイオン交換膜の乾燥による膜抵抗増加の
抑制および電極がイオン交換膜を貫通することにより生
ずる電極の短絡を防止することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. In particular, it is an object of the present invention to suppress an increase in membrane resistance due to drying of an ion exchange membrane and to prevent a short circuit of an electrode caused by the penetration of an electrode through the ion exchange membrane. Aim.

【0012】[0012]

【課題を解決するための手段】本発明は、ホスホン酸基
を有するフルオロカーボン重合体からなるイオン交換膜
の一側面に陽極を、他側面に陰極を接触して配置した電
気化学素子であって、上記イオン交換膜が非導電性のピ
ラー粒子を含有することを特徴とする電気化学素子であ
る。
The present invention relates to an electrochemical device comprising an ion exchange membrane comprising a fluorocarbon polymer having a phosphonic acid group, wherein an anode is arranged on one side and a cathode is arranged on the other side. An electrochemical device wherein the ion exchange membrane contains non-conductive pillar particles.

【0013】本発明の電気化学素子に用いられるイオン
交換膜の厚さは、特に限定されないが、100μm以
下、特には5〜50μmであるときは、特に電極の短絡
防止の効果が大きく好ましい。
The thickness of the ion-exchange membrane used in the electrochemical device of the present invention is not particularly limited, but when it is 100 μm or less, particularly 5 to 50 μm, the effect of preventing short-circuiting of the electrodes is particularly large and is preferable.

【0014】本明細書中において、ピラー粒子とは、イ
オン交換膜が軟化した場合にもその存在によりイオン交
換膜の厚みを保持し、いわゆるピラー(pillar)
として機能する粒子をいう。本発明におけるピラー粒子
としては、電極の短絡を防止する目的から非導電性であ
り、親水性であり、さらにはパーフルオロホスホン酸の
ような強酸の存在下でも耐食性を有するものが好まし
い。
In the present specification, the term "pillar particles" refers to pillars that maintain the thickness of an ion exchange membrane due to its presence even when the ion exchange membrane is softened.
Refers to particles that function as The pillar particles in the present invention are preferably non-conductive, hydrophilic, and have corrosion resistance even in the presence of a strong acid such as perfluorophosphonic acid for the purpose of preventing a short circuit of the electrode.

【0015】具体的には、シリカ、チタニア、アルミナ
等の酸化物、スピネル、ペロブスカイト等の複合酸化
物、ケイ酸塩ガラス等のガラス、炭化ケイ素、炭化チタ
ン等の炭化物、窒化ケイ素、窒化ホウ素等の窒化物、ナ
イロン、PTFE等のフッ素樹脂等のプラスチック等が
好ましい。なかでも、上記酸化物、複合酸化物またはガ
ラスは特に好ましい。
Specifically, oxides such as silica, titania, and alumina; composite oxides such as spinel and perovskite; glass such as silicate glass; carbides such as silicon carbide and titanium carbide; silicon nitride; Preference is given to nitrides, plastics such as nylon and fluororesins such as PTFE. Among them, the above oxides, composite oxides and glasses are particularly preferred.

【0016】ピラー粒子の形状はいずれでもよいが、均
一な形状を得やすい点で球状のものが好ましい。ピラー
粒子の大きさは、イオン交換膜の厚さにより異なるが、
イオン交換膜の厚さの10〜90%、特には30〜70
%であることが好ましい。上記範囲より小さい場合は充
分な電極の短絡防止効果が得られず、一方、大きい場合
はイオン交換膜を貫通するポア等の欠陥が生じやすくな
るため好ましくない。なお、ピラー粒子の粒径は、具体
的には0.5〜50μm、特には1〜30μmであるの
が好ましい。
The pillar particles may have any shape, but are preferably spherical in that a uniform shape can be easily obtained. The size of the pillar particles depends on the thickness of the ion exchange membrane,
10 to 90% of the thickness of the ion exchange membrane, especially 30 to 70%
%. When the diameter is smaller than the above range, a sufficient effect of preventing short-circuiting of the electrode cannot be obtained. The particle size of the pillar particles is specifically 0.5 to 50 μm, and particularly preferably 1 to 30 μm.

【0017】上記のイオン交換膜は、ピラー粒子を5〜
50体積%、特には10〜40体積%の割合で含有する
のが好ましい。含有割合が上記範囲より小さい場合は膜
中におけるピラー粒子の存在量が小さいためにピラー粒
子の添加効果が低下して充分な電極の短絡防止効果が得
られず、一方、大きい場合はイオン交換樹脂の含有比率
が小さくなるため、イオン交換膜の機械的強度の低下や
膜抵抗の増加が起こり好ましくない。また、ピラー粒子
は膜全体に均一に含有されるのが好ましい。
In the above-mentioned ion exchange membrane, the number of pillar particles is 5 to 5.
The content is preferably 50% by volume, particularly preferably 10 to 40% by volume. When the content ratio is smaller than the above range, the effect of adding the pillar particles is reduced due to the small amount of the pillar particles in the film, and a sufficient electrode short-circuit preventing effect cannot be obtained. Is small, the mechanical strength of the ion exchange membrane is reduced and the membrane resistance is increased, which is not preferable. Further, it is preferable that the pillar particles are uniformly contained in the entire film.

【0018】本発明におけるイオン交換膜は、ホスホン
酸基を有するフルオロカーボン重合体よりなる。上記フ
ルオロカーボン重合体としては、CF2 =CF−(OC
2CFX)m −Op −(CF2n −A(式中、mは
0〜8の整数、nは0〜12の整数、pは0または1、
Xはフッ素原子またはトリフルオロメチル基、Aはホス
ホン酸基(−PO32 )またはその前駆体官能基を示
す。)で表されるフルオロビニル化合物と、CF2 =C
2 との共重合体が好ましい。
The ion exchange membrane of the present invention comprises a fluorocarbon polymer having a phosphonic acid group. As the fluorocarbon polymer, CF 2 = CF— (OC
F 2 CFX) m -O p - (CF 2) in n -A (wherein, m is an integer of 0 to 8, n is from 0 to 12 integer, p is 0 or 1,
X represents a fluorine atom or a trifluoromethyl group, and A represents a phosphonic acid group (—PO 3 H 2 ) or a precursor functional group thereof. ) And CF 2 CC
A copolymer of F 2 is preferred.

【0019】上記フルオロビニル化合物の好ましい例と
しては、以下の化合物が挙げられる。なお、Rおよび
R’はアルキル基を表し、RとR’は同一のアルキル
基、異なるアルキル基のいずれでもよい。上記アルキル
基としては、炭素数1〜3であるものが好ましい。ま
た、qおよびrは1〜8の整数、sは0〜8の整数、t
は1〜5の整数である。
Preferred examples of the above fluorovinyl compound include the following compounds. R and R 'represent an alkyl group, and R and R' may be the same alkyl group or different alkyl groups. The alkyl group preferably has 1 to 3 carbon atoms. Also, q and r are integers of 1 to 8, s is an integer of 0 to 8, t
Is an integer of 1 to 5.

【0020】[0020]

【化1】CF2 =CFO(CF2q −PO3 RR’、 CF2 =CFOCF2 CF(CF3 )O(CF2r
PO3 RR’、 CF2 =CF(CF2s −PO3 RR’、 CF2 =CF(OCF2 CF(CF3 ))t −(CF
22 −PO3 RR’。
## STR1 ## CF 2 = CFO (CF 2) q -PO 3 RR ', CF 2 = CFOCF 2 CF (CF 3) O (CF 2) r -
PO 3 RR ', CF 2 = CF (CF 2) s -PO 3 RR', CF 2 = CF (OCF 2 CF (CF 3)) t - (CF
2) 2 -PO 3 RR '.

【0021】なお、上記フルオロカーボン共重合体は、
ヘキサフルオロプロピレン、クロロトリフルオロエチレ
ン等のパーフルオロオレフィン、またはパーフルオロ
(アルキルビニルエーテル)等の第三成分を含む共重合
体であってもよい。
The above fluorocarbon copolymer is
It may be a perfluoroolefin such as hexafluoropropylene or chlorotrifluoroethylene, or a copolymer containing a third component such as perfluoro (alkyl vinyl ether).

【0022】上記イオン交換膜は、フィブリル状、繊維
状、または不織布状のフルオロカーボン重合体で補強す
ることもできる。ピラー粒子を含有するイオン交換膜を
製造する方法としては、種々の方法が採用できる。例え
ば、上記ホスホン酸型官能基を有するフルオロカーボン
重合体とピラー粒子の混合物を加熱押出成形してフィル
ム状の成形体を得た後、無機酸の水溶液等でホスホン酸
型官能基を加水分解する方法が挙げられる。
The ion exchange membrane may be reinforced with a fibril-like, fibrous or non-woven fabric fluorocarbon polymer. Various methods can be adopted as a method for producing an ion exchange membrane containing pillar particles. For example, a method in which a mixture of the fluorocarbon polymer having the phosphonic acid type functional group and the pillar particles is extrusion-molded to obtain a film-shaped molded body, and then the phosphonic acid type functional group is hydrolyzed with an aqueous solution of an inorganic acid or the like. Is mentioned.

【0023】また別の方法としては、上記ホスホン酸型
官能基を有するフルオロカーボン重合体の溶液または分
散液にピラー粒子を分散させた分散液から溶媒を蒸発さ
せてフィルム状の成形体を得た後、無機酸の水溶液等で
ホスホン酸型官能基を加水分解する方法が挙げられる。
As another method, a solvent is evaporated from a dispersion in which pillar particles are dispersed in a solution or dispersion of the fluorocarbon polymer having a phosphonic acid type functional group to obtain a film-shaped molded body. And a method of hydrolyzing a phosphonic acid-type functional group with an aqueous solution of an inorganic acid.

【0024】さらに別の方法としては、上記ホスホン酸
型官能基を有するフルオロカーボン重合体を無機酸の水
溶液等で処理し、ホスホン酸型官能基を加水分解して得
られたホスホン酸基を有するフルオロカーボン重合体
を、溶媒に溶かした溶液にピラー粒子を分散させた分散
液から溶媒を蒸発させてフィルム状の成形体を得る方法
が挙げられる。
As still another method, a fluorocarbon polymer having a phosphonic acid group obtained by treating the above fluorocarbon polymer having a phosphonic acid type functional group with an aqueous solution of an inorganic acid or the like and hydrolyzing the phosphonic acid type functional group can be used. There is a method in which a solvent is evaporated from a dispersion in which pillar particles are dispersed in a solution in which a polymer is dissolved in a solvent to obtain a film-shaped molded body.

【0025】上記のようにして得られたイオン交換膜は
膜内全体にほぼ均一にピラー粒子を含有している。しか
し、本発明においてピラー粒子は必ずしも膜内全体に均
一に存在する必要はなく、膜の厚さ方向に垂直な方向に
沿ってピラー粒子を層状に存在せしめた、いわゆるピラ
ー粒子含有層として存在してもよい。このようなイオン
交換膜の例としては、片側にピラー粒子含有層を有する
膜、ピラー粒子を含有しないイオン交換膜2枚でピラー
粒子含有層を挟んだ3層構造の複層膜、ピラー粒子を含
有するイオン交換膜とピラー粒子を含有しないイオン交
換膜との複層膜等がある。
The ion exchange membrane obtained as described above contains pillar particles almost uniformly throughout the membrane. However, in the present invention, the pillar particles do not necessarily need to exist uniformly in the entire film, but exist as a so-called pillar particle-containing layer in which pillar particles are present in a layer along a direction perpendicular to the thickness direction of the film. You may. Examples of such an ion exchange membrane include a membrane having a pillar particle-containing layer on one side, a multilayer film having a three-layer structure in which a pillar particle-containing layer is sandwiched between two ion exchange membranes not containing pillar particles, and a pillar particle. There is a multi-layer membrane of an ion exchange membrane containing the ion exchange membrane and an ion exchange membrane not containing the pillar particles.

【0026】このような複層膜は、ピラー粒子を含有す
るイオン交換膜とピラー粒子を含有しないイオン交換膜
をそれぞれ別々にフィルム状に成形し、好ましくは12
0〜230℃、0.5〜30kg/cm2 にてホットプ
レス法等により密着、積層させることにより製造でき
る。
Such a multilayer membrane is formed by separately forming an ion exchange membrane containing pillar particles and an ion exchange membrane not containing pillar particles into a film.
It can be manufactured by closely contacting and laminating at 0 to 230 ° C. and 0.5 to 30 kg / cm 2 by a hot press method or the like.

【0027】また、ピラー粒子を含有しないイオン交換
膜の片面に、塗布法、スプレー法または印刷法等により
ピラー粒子を含有するイオン交換膜層を形成した後、必
要ならばさらにもう一層のピラー粒子を含有しないイオ
ン交換膜をピラー粒子含有層を挟むように積層させ、ホ
ットプレス法等により密着させることにより製造でき
る。
After forming an ion-exchange membrane layer containing pillar particles on one side of the ion-exchange membrane containing no pillar particles by a coating method, a spraying method, a printing method or the like, if necessary, further forming another pillar particle. Can be produced by laminating ion-exchange membranes containing no particles so as to sandwich the pillar particle-containing layer and bringing them into close contact by a hot press method or the like.

【0028】本発明の電気化学素子が、例えば固体高分
子電解質燃料電池である場合は、通常の既知の方法にし
たがってイオン交換膜の表面にガス拡散電極が接合さ
れ、次いでカーボンペーパー等の集電体が取り付けられ
る。この電極および集電体を表面に有するイオン交換膜
は、燃料ガス(水素ガス等)または酸化剤ガス(酸素ガ
スまたは空気等)の通路となる溝が形成された一対の導
電性の室枠に挟み込まれることにより、燃料電池として
組み立てられる。
When the electrochemical device of the present invention is, for example, a solid polymer electrolyte fuel cell, a gas diffusion electrode is bonded to the surface of the ion exchange membrane according to a generally known method, and then a current collector such as carbon paper is collected. The body is attached. The ion exchange membrane having the electrodes and the current collector on its surface is formed on a pair of conductive chamber frames in which grooves serving as passages for a fuel gas (eg, hydrogen gas) or an oxidizing gas (eg, oxygen gas or air) are formed. By being sandwiched, it is assembled as a fuel cell.

【0029】上記固体高分子電解質型燃料電池で使用さ
れるガス拡散電極は、特に限定されない。例えば、白金
担持カーボンブラック粉末をPTFEなどの撥水性樹脂
結着材で保持させた多孔質シートが使用でき、該多孔質
シートはホスホン酸基を有するパーフルオロカーボン重
合体やその重合体で被覆された微粒子を含んでもよい。
この多孔質シートはガス拡散電極としてホットプレス法
等により固体高分子型電解質である上記イオン交換膜に
接合される。
The gas diffusion electrode used in the solid polymer electrolyte fuel cell is not particularly limited. For example, a porous sheet in which platinum-supported carbon black powder is held by a water-repellent resin binder such as PTFE can be used, and the porous sheet is coated with a perfluorocarbon polymer having a phosphonic acid group or the polymer. It may contain fine particles.
This porous sheet is bonded to the ion exchange membrane as a solid polymer electrolyte by a hot press method or the like as a gas diffusion electrode.

【0030】また、ガス拡散電極の別の製造方法として
は、イオン交換膜または集電体を形成するカーボンペー
パー等の両面または片面に、塗布法、スプレー法または
印刷法等により、白金担持カーボンと、ホスホン酸基ま
たはスルホン酸基を有するパーフルオロカーボン重合体
との混合物からなるガス拡散電極の層を形成し、これら
を好ましくは120〜350℃、2〜100kg/cm
2 にてホットプレスする方法があり、これにより表面に
ガス拡散電極層を有するイオン交換膜または集電体が製
造できる。ガス拡散電極層を有する集電体は、さらに該
ガス拡散電極層をイオン交換膜側に向けて、イオン交換
膜に接合される。
As another method of manufacturing the gas diffusion electrode, platinum-supported carbon is applied to both sides or one side of a carbon paper or the like forming an ion exchange membrane or a current collector by a coating method, a spraying method, a printing method, or the like. To form a layer of a gas diffusion electrode made of a mixture with a perfluorocarbon polymer having a phosphonic acid group or a sulfonic acid group, preferably at 120 to 350 ° C. and 2 to 100 kg / cm.
There is a method of hot pressing in 2 , whereby an ion exchange membrane or a current collector having a gas diffusion electrode layer on the surface can be manufactured. The current collector having the gas diffusion electrode layer is further joined to the ion exchange membrane with the gas diffusion electrode layer facing the ion exchange membrane.

【0031】また、本発明の電気化学素子が空気−亜鉛
電池等である場合は、従来より使用されているセパレー
タを本発明のイオン交換膜に置き換えることにより使用
できる。例えば、空気−亜鉛電池の場合は、ステンレス
鋼製の陰極(正極)容器の中に、1)空気孔から触媒層
へ酸素を拡散させるセルロース製の拡散紙、2)多孔質
PTFE等からなる撥水膜、3)活性炭、カーボンブラ
ック等の比表面積の大きい炭素材料または該炭素材料に
マンガン、コバルト等の触媒成分が担持されたものから
なる陰極触媒層、4)本発明のイオン交換膜よりなるセ
パレータの順に収容されることにより構成される。一
方、ステンレス製の陽極(負極)容器の中には、亜鉛粉
末、ゲル化剤および電解液からなる亜鉛陽極が収容され
る。そして、上記陰極容器および陽極容器をガスケット
を介して封口することにより、空気−亜鉛電池が形成さ
れる。
When the electrochemical element of the present invention is an air-zinc battery or the like, it can be used by replacing a conventionally used separator with the ion exchange membrane of the present invention. For example, in the case of an air-zinc battery, 1) a diffusion paper made of cellulose for diffusing oxygen from an air hole to the catalyst layer, and 2) a repellent material made of porous PTFE or the like in a cathode (positive electrode) container made of stainless steel. Water film; 3) a cathode catalyst layer comprising a carbon material having a large specific surface area such as activated carbon and carbon black; or a material in which a catalyst component such as manganese or cobalt is carried on the carbon material; 4) an ion exchange membrane of the present invention. It is constituted by being accommodated in the order of the separator. On the other hand, a stainless steel anode (negative electrode) container contains a zinc anode made of zinc powder, a gelling agent and an electrolytic solution. Then, the cathode container and the anode container are sealed via a gasket to form an air-zinc battery.

【0032】[0032]

【作用】本発明においては、ホスホン酸基を有するフル
オロカーボン重合体からなるイオン交換膜(以下、ホス
ホン酸型膜と称する)を用いることにより、燃料電池の
イオン交換膜における乾燥防止のための水分管理が容易
になる。この理由は明確ではないが、以下のように考え
られる。
In the present invention, the use of an ion exchange membrane comprising a fluorocarbon polymer having a phosphonic acid group (hereinafter, referred to as a phosphonic acid type membrane) enables water control for preventing drying in the ion exchange membrane of a fuel cell. Becomes easier. The reason for this is not clear, but is considered as follows.

【0033】従来より汎用されているスルホン酸基を有
するフルオロカーボン重合体からなるイオン交換膜(以
下、スルホン酸型膜と称する)のイオン交換基が1価で
あるのに対して、ホスホン酸型膜のイオン交換基は2価
である。そのためホスホン酸型膜ではイオン交換容量が
高いものを容易に得られる。イオン交換膜においては、
イオン交換容量が高いものほど含水率も高くなる。した
がって、イオン交換膜が乾燥しやすい条件下にあって
も、ホスホン酸型膜は、スルホン酸型膜よりも高い含水
率を保つことができ、膜抵抗の上昇を抑制できる。すな
わち、加湿ガスの供給が不充分になっても膜抵抗の変化
が小さいため、安定した出力電圧が得られると考えられ
る。
The ion exchange group of a conventional sulfonic acid group-containing fluorocarbon polymer having a sulfonic acid group (hereinafter referred to as sulfonic acid type membrane) has a monovalent ion exchange group, whereas the phosphonic acid type membrane has a monovalent ion exchange group. Is divalent. Therefore, a phosphonic acid type membrane having a high ion exchange capacity can be easily obtained. In ion exchange membranes,
The higher the ion exchange capacity, the higher the water content. Therefore, even under conditions in which the ion exchange membrane is easily dried, the phosphonic acid type membrane can maintain a higher water content than the sulfonic acid type membrane, and can suppress an increase in membrane resistance. That is, even if the supply of the humidifying gas is insufficient, the change in the film resistance is small, and thus it is considered that a stable output voltage can be obtained.

【0034】また本発明では、膜抵抗損の低減のために
イオン交換膜の膜厚を薄くしても電極間の短絡が発生せ
ず良好な電気化学素子が得られるが、その機構は以下の
ように考えられる。
In the present invention, a good electrochemical element can be obtained without causing a short circuit between electrodes even if the film thickness of the ion exchange membrane is reduced in order to reduce the membrane resistance loss. It is thought to be.

【0035】ピラー粒子を含有しないパーフルオロ系イ
オン交換膜は、温度や含水率の上昇により軟化するた
め、ホットプレス等の電極−膜接合体の成形圧力や、燃
料電池室枠や電池の陽極および陰極容器による締め付け
圧力により膜厚が減少する。またイオン交換膜表面に形
成したガス拡散電極やイオン交換膜の両側に接する電池
の陽極および陰極が膜に食い込み、最終的には電極の短
絡が生じる。
Since the perfluoro-based ion exchange membrane containing no pillar particles is softened by an increase in temperature or water content, the molding pressure of an electrode-membrane assembly such as a hot press, the anode of a fuel cell chamber frame or a cell, and the like. The film thickness is reduced by the clamping pressure by the cathode container. Further, the gas diffusion electrode formed on the surface of the ion exchange membrane and the anode and the cathode of the battery in contact with both sides of the ion exchange membrane bite into the membrane, and eventually the electrodes are short-circuited.

【0036】これに対し、本発明におけるイオン交換膜
は、非導電性のピラー粒子を含有するため、ホスホン酸
基を有するフルオロカーボン重合体が軟化しても該ピラ
ー粒子の粒径以下につぶれることはなく、電極の短絡を
防止できる。また、本発明におけるホスホン酸型膜は、
スルホン酸型膜より軟化しにくいため、これによっても
電極の短絡防止に効果的である。よって、電極の短絡に
よる不具合を起こすことなくイオン交換膜の厚さを薄く
でき、その結果膜抵抗損が低減され、電気化学素子の高
出力化が達成される。
On the other hand, since the ion exchange membrane of the present invention contains non-conductive pillar particles, even if the fluorocarbon polymer having a phosphonic acid group is softened, the ion exchange membrane will not be crushed below the particle size of the pillar particles. In addition, it is possible to prevent a short circuit of the electrode. Further, the phosphonic acid type membrane in the present invention,
Since it is harder to soften than the sulfonic acid type membrane, this is also effective for preventing short circuit of the electrode. Therefore, the thickness of the ion exchange membrane can be reduced without causing a problem due to the short circuit of the electrode, and as a result, the membrane resistance loss is reduced, and a high output of the electrochemical element is achieved.

【0037】[0037]

【実施例】以下に本発明を実施例(例1、例3)および
比較例(例2、例4、例5)により詳細に説明するが、
本発明はこれらに限定されない。
The present invention will be described in more detail with reference to Examples (Examples 1 and 3) and Comparative Examples (Examples 2, 4 and 5).
The present invention is not limited to these.

【0038】[例1] CF2 =CF2 とCF2 =CFOCF2 CF(CF3
O(CF22 PO3 (CH32 との共重合体からなるイオン交換容量2.
1ミリ当量/g乾燥樹脂の共重合体粒子を、1Nの塩酸
と1Nの酢酸との混合水溶液中で加水分解を行い、水洗
後、1N塩酸中に浸漬した。次にこの粒子を水洗し、6
0℃で1時間乾燥し、共重合体粒子を得た。
Example 1 CF 2 = CF 2 and CF 2 = CFOCF 2 CF (CF 3 )
O (CF 2) 2 PO 3 (CH 3) Ion exchange capacity 2 comprising a copolymer of 2.
The copolymer particles of 1 meq / g dry resin were hydrolyzed in a mixed aqueous solution of 1N hydrochloric acid and 1N acetic acid, washed with water, and immersed in 1N hydrochloric acid. The particles are then washed with water,
After drying at 0 ° C. for 1 hour, copolymer particles were obtained.

【0039】上記共重合体粒子と、粒径5μmのチタニ
ア粒子の混合物を用いて溶融キャスト法により厚さ8μ
mの燃料電池用イオン交換膜を得た。このイオン交換膜
は膜全体に均一に30体積%のチタニアを含有してい
た。
Using a mixture of the above copolymer particles and titania particles having a particle size of 5 μm, a thickness of 8 μm was obtained by a melt casting method.
m of an ion exchange membrane for a fuel cell was obtained. This ion exchange membrane contained 30% by volume of titania uniformly throughout the membrane.

【0040】このイオン交換膜の両面に、Ptを担持し
たカーボンブラック60重量部とPTFE40重量部と
からなる厚さ約150μmのガス拡散電極(Pt担持量
0.5mg/cm2 )をホットプレス法により接合し
た。
A gas diffusion electrode (Pt carrying amount: 0.5 mg / cm 2 ) having a thickness of about 150 μm and comprising 60 parts by weight of Pt-supported carbon black and 40 parts by weight of PTFE was hot-pressed on both surfaces of the ion exchange membrane. And joined.

【0041】この電極−膜接合体を電池性能測定用セル
に組み込んで、セル温度80℃で、陽極および陰極にそ
れぞれ加湿した水素と空気を供給し、電流密度0.5A
/cm2 で放電試験を行った。端子電圧は0.69Vで
あった。
This electrode-membrane assembly was assembled in a cell for measuring battery performance, and humidified hydrogen and air were supplied to the anode and the cathode at a cell temperature of 80 ° C., and a current density of 0.5 A
/ Cm 2 was subjected to a discharge test. The terminal voltage was 0.69V.

【0042】[例2]例1においてチタニア粒子を混合
しなかったこと以外は、例1と同様にして電極−膜接合
体を得た。この電極−膜接合体を電池性能測定用セルに
組み込んで、例1と同様に放電試験を行ったが、開放起
電力がきわめて低く、電圧を取り出すことができなかっ
た。電極−膜接合体を調べたところ、接合体内部での電
極の短絡が発生していた。
Example 2 An electrode-membrane assembly was obtained in the same manner as in Example 1, except that the titania particles were not mixed. This electrode-membrane assembly was assembled in a cell for measuring battery performance and subjected to a discharge test in the same manner as in Example 1. However, the open electromotive force was extremely low, and no voltage could be taken out. When the electrode-membrane assembly was examined, a short circuit of the electrode occurred inside the assembly.

【0043】[例3] CF2 =CF2 とCF2 =CFOCF2 CF(CF3
O(CF22 PO3 (CH32 とCF2 =CFOC37 との共重合体か
らなるイオン交換容量2.0ミリ当量/g乾燥樹脂の共
重合体80体積%と、平均粒径10μmのシリカ粒子2
0体積%の混合物を230℃で押出製膜し、厚さ20μ
mのフィルムを得た。
Example 3 CF 2 = CF 2 and CF 2 = CFOCF 2 CF (CF 3 )
Ion exchange capacity 2.0 meq / g of a copolymer of O (CF 2 ) 2 PO 3 (CH 3 ) 2 and CF 2 CFCFOC 3 F 7 / g 80% by volume of a dry resin copolymer and an average Silica particles 2 having a particle size of 10 μm
A mixture of 0% by volume was extruded at 230 ° C. to a thickness of 20 μm.
m was obtained.

【0044】上記フィルムを、1Nの塩酸と1Nの酢酸
との混合水溶液中で加水分解を行い、水洗後、1N塩酸
中に浸漬した。次いで水洗し、その四辺を専用治具で拘
束した後、60℃で1時間乾燥し、燃料電池用イオン交
換膜を得た。このイオン交換膜の両面に、例1と同様に
してガス拡散電極を接合した。
The above film was hydrolyzed in a mixed aqueous solution of 1N hydrochloric acid and 1N acetic acid, washed with water, and immersed in 1N hydrochloric acid. Next, the substrate was washed with water, and its four sides were restrained by special jigs, and then dried at 60 ° C. for 1 hour to obtain an ion exchange membrane for a fuel cell. Gas diffusion electrodes were bonded to both surfaces of the ion exchange membrane in the same manner as in Example 1.

【0045】この電極−膜接合体を電池性能測定用セル
に組み込んで、セル温度60℃で、アノードおよびカソ
ードにそれぞれ乾燥した水素と空気を供給し、無加湿で
電流密度0.5A/cm2 にて連続放電試験を行った。
初期の端子電圧は0.65Vであり、1000時間後の
端子電圧の低下は約5%であった。
This electrode-membrane assembly was assembled in a cell for measuring battery performance, and dried hydrogen and air were supplied to the anode and the cathode at a cell temperature of 60 ° C., respectively, and the current density was 0.5 A / cm 2 without humidification. A continuous discharge test was performed.
The initial terminal voltage was 0.65 V, and the decrease in terminal voltage after 1000 hours was about 5%.

【0046】[例4] CF2 =CF2 とCF2 =CFOCF2 CF(CF3
O(CF2 2 SO2 Fとの共重合体からなるイオン交換容量1.0ミリ当量
/g乾燥樹脂の共重合体80体積%と、平均粒径10μ
mのシリカ粒子20体積%の混合物を220℃で押出製
膜し、厚さ20μmのフィルムを得た。上記フィルム
を、ジメチルスルホキシド30重量%と水酸化カリウム
15重量%の混合水溶液中で加水分解を行った後、例3
と同様に処理した。
Example 4 CF 2 = CF 2 and CF 2 = CFOCF 2 CF (CF 3 )
An ion exchange capacity of 1.0 meq / g of a copolymer with O (CF 2 ) 2 SO 2 F / 80 volume% of a copolymer of dry resin, and an average particle size of 10 μm
A mixture of 20% by volume of silica particles was extruded at 220 ° C. to obtain a film having a thickness of 20 μm. The above film was hydrolyzed in a mixed aqueous solution of dimethyl sulfoxide 30% by weight and potassium hydroxide 15% by weight.
The same treatment was performed.

【0047】次いで例3と同様にして電極−膜接合体を
得た後、この電極−膜接合体を電池性能測定用セルに組
み込み、例3と同じ条件で連続放電試験を行った。初期
の端子電圧は0.66Vであり例3よりもわずかに高い
電圧を示したが、1000時間後の端子電圧の低下は約
10%であった。
Next, after obtaining an electrode-membrane assembly in the same manner as in Example 3, the electrode-membrane assembly was assembled into a cell for measuring battery performance, and a continuous discharge test was performed under the same conditions as in Example 3. The initial terminal voltage was 0.66 V, which was slightly higher than that of Example 3, but the terminal voltage after 1000 hours decreased by about 10%.

【0048】[例5]例3において、シリカ粒子を使用
しなかった以外は例3と同様にして、厚さ20μmのイ
オン交換膜を得た。このイオン交換膜を例3と同様にし
て加水分解および後処理を行った。
Example 5 An ion exchange membrane having a thickness of 20 μm was obtained in the same manner as in Example 3 except that silica particles were not used. This ion exchange membrane was subjected to hydrolysis and post-treatment in the same manner as in Example 3.

【0049】次いで例3と同様にして電極−膜接合体を
得た後、この電極−膜接合体を電池性能測定用セルに組
み込み、例3と同じ条件で連続放電試験を行った。初期
の端子電圧は0.65Vであったが、約800時間経過
した後に端子電圧が急激に低下し、0.5A/cm2
の放電が不可能となった。電極−膜接合体を調べたとこ
ろ、接合体内部での電極の短絡が発生していた。
Next, after an electrode-membrane assembly was obtained in the same manner as in Example 3, the electrode-membrane assembly was assembled in a cell for measuring battery performance, and a continuous discharge test was performed under the same conditions as in Example 3. The initial terminal voltage was 0.65 V, but after a lapse of about 800 hours, the terminal voltage suddenly dropped, and discharge at 0.5 A / cm 2 was impossible. When the electrode-membrane assembly was examined, a short circuit of the electrode occurred inside the assembly.

【0050】[0050]

【発明の効果】本発明の電気化学素子は、イオン交換膜
が軟化し、膜内を電極が貫通することにより発生する短
絡を効果的に防止できるので、イオン交換膜の厚みを小
さくできる。また、膜中の含水率を高い状態に保持で
き、膜の伝導度を向上させうるため、膜厚が薄いことと
相まって膜抵抗損をきわめて小さくでき、電気化学素子
の一層の高出力化を達成できる。
According to the electrochemical device of the present invention, the thickness of the ion exchange membrane can be reduced because the ion exchange membrane is softened and a short circuit caused by an electrode penetrating the membrane can be effectively prevented. In addition, since the water content in the film can be kept high and the conductivity of the film can be improved, the film resistance loss can be extremely reduced in combination with the thin film thickness, and a higher output of the electrochemical device has been achieved. it can.

【0051】さらに、イオン交換膜の含水率が高く保た
れることにより、膜の乾燥が防止でき、固体高分子電解
質型燃料電池においては、イオン交換膜の含水率が外界
の湿度の変化の影響を受けにくく、燃料電池の運転操作
が容易になる。
Further, by keeping the water content of the ion exchange membrane high, drying of the membrane can be prevented. In the case of the solid polymer electrolyte fuel cell, the water content of the ion exchange membrane is affected by the change of the humidity in the external environment. And operation of the fuel cell is facilitated.

フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 12/08 H01M 12/08 K (72)発明者 下平 哲司 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内Continuation of the front page (51) Int.Cl. 6 Identification symbol FI H01M 12/08 H01M 12/08 K (72) Inventor Tetsuji Shimohira 1150 Hazawacho, Kanagawa-ku, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Inside Asahi Glass Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ホスホン酸基を有するフルオロカーボン重
合体からなるイオン交換膜の一側面に陽極を、他側面に
陰極を接触して配置した電気化学素子であって、上記イ
オン交換膜が非導電性のピラー粒子を含有することを特
徴とする電気化学素子。
1. An electrochemical device comprising an ion-exchange membrane comprising a fluorocarbon polymer having a phosphonic acid group, wherein an anode is disposed on one side of the ion-exchange membrane and a cathode is disposed on the other side thereof. An electrochemical device comprising: pillar particles of
【請求項2】イオン交換膜中に非導電性のピラー粒子を
5〜50体積%含有し、非導電性のピラー粒子の粒径が
イオン交換膜の厚さの10〜90%である請求項1記載
の電気化学素子。
2. The ion exchange membrane contains 5 to 50% by volume of non-conductive pillar particles, and the particle diameter of the non-conductive pillar particles is 10 to 90% of the thickness of the ion exchange membrane. 2. The electrochemical device according to 1.
【請求項3】陽極および陰極がガス拡散電極であり、か
つ電気化学素子が燃料電池である請求項1または2記載
の電気化学素子。
3. The electrochemical device according to claim 1, wherein the anode and the cathode are gas diffusion electrodes, and the electrochemical device is a fuel cell.
JP9297514A 1997-10-29 1997-10-29 Electrochemical element Pending JPH11135135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9297514A JPH11135135A (en) 1997-10-29 1997-10-29 Electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9297514A JPH11135135A (en) 1997-10-29 1997-10-29 Electrochemical element

Publications (1)

Publication Number Publication Date
JPH11135135A true JPH11135135A (en) 1999-05-21

Family

ID=17847511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9297514A Pending JPH11135135A (en) 1997-10-29 1997-10-29 Electrochemical element

Country Status (1)

Country Link
JP (1) JPH11135135A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486728B1 (en) * 2002-12-12 2005-05-03 삼성에스디아이 주식회사 Nanocomposite electrolyte membrane and fuel cell employing the same
US7172829B2 (en) 2002-10-10 2007-02-06 Matsushita Electric Industrial Co., Ltd. Fuel cell and process for the production of same
CN1331264C (en) * 2002-03-25 2007-08-08 松下电器产业株式会社 Electrolyte membrane-electrode assembly for fuel cell and manufacturing method thereof
KR100925846B1 (en) * 2000-05-19 2009-11-06 우니베르지테트 슈트트가르트 인스티투트 퓌어 헤마쉐 페어파렌스테히닉 Polymers and polymer membranes covalently cross-linked by sulfinate alkylation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925846B1 (en) * 2000-05-19 2009-11-06 우니베르지테트 슈트트가르트 인스티투트 퓌어 헤마쉐 페어파렌스테히닉 Polymers and polymer membranes covalently cross-linked by sulfinate alkylation
CN1331264C (en) * 2002-03-25 2007-08-08 松下电器产业株式会社 Electrolyte membrane-electrode assembly for fuel cell and manufacturing method thereof
US7172829B2 (en) 2002-10-10 2007-02-06 Matsushita Electric Industrial Co., Ltd. Fuel cell and process for the production of same
KR100486728B1 (en) * 2002-12-12 2005-05-03 삼성에스디아이 주식회사 Nanocomposite electrolyte membrane and fuel cell employing the same

Similar Documents

Publication Publication Date Title
KR101135479B1 (en) A polymer electrolyte membrane for fuel cell, a method for preparing the same, and a fuel cell system comprising the same
US6416898B1 (en) Fuel cell comprising an inorganic glass layer
EP1944819B1 (en) Method for producing membrane electrode assembly for solid polymer fuel cell
US5919583A (en) Membranes containing inorganic fillers and membrane and electrode assemblies and electrochemical cells employing same
JP5010823B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
Fu et al. Synthesis and characterization of sulfonated polysulfone membranes for direct methanol fuel cells
JP3342726B2 (en) Solid polymer electrolyte fuel cell and method of manufacturing the same
WO2005088749A1 (en) Membrane electrode assembly, method for producing the same, and solid state polymer fuel cell
JPH11288727A (en) Solid high polymer fuel cell film/electrode junction body
KR20070100693A (en) Membrane and membrane electrode assembly with adhesion promotion layer
JP2012069536A (en) Polymer electrolyte film for direct oxidation type fuel cell, manufacturing method therefor, and direct oxidation type fuel cell system including the same
US9868804B1 (en) Perfluorosulfonic acid nanofibers
JP2000106202A (en) Fuel cell
KR20070019868A (en) Polymer electrolyte membrane for fuel cell, membrane-electrode assembly comprising the same, fuel cell system comprising the same, and method for preparing the same
JP4090108B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
JP3382654B2 (en) Solid polymer electrolyte fuel cell
JPH1131515A (en) High molecular electrolyte film-gas diffusion electrode body and its manufacture
AU727997B2 (en) Electrolysis of alkali metal halide brines using oxygen cathode systems
JP2003068330A (en) Solid polymer fuel cell
JPH11135136A (en) Solid poly electrolyte type fuel cell
JPH09219206A (en) Electrochemical element
JP2003346839A (en) Composite membrane
JP2000195527A (en) Fuel cell
US9631105B2 (en) PPS electrode reinforcing material/crack mitigant
JPH11135135A (en) Electrochemical element