JPH11135118A - Positive active material for nonaqueous secondary battery and its manufacture - Google Patents

Positive active material for nonaqueous secondary battery and its manufacture

Info

Publication number
JPH11135118A
JPH11135118A JP9259268A JP25926897A JPH11135118A JP H11135118 A JPH11135118 A JP H11135118A JP 9259268 A JP9259268 A JP 9259268A JP 25926897 A JP25926897 A JP 25926897A JP H11135118 A JPH11135118 A JP H11135118A
Authority
JP
Japan
Prior art keywords
nickel
active material
positive electrode
electrode active
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9259268A
Other languages
Japanese (ja)
Other versions
JP3575582B2 (en
Inventor
Yuichi Ito
有一 伊藤
Yukio Hiraoka
幸雄 平岡
Akinobu Iikawa
明伸 飯川
Susumu Nishisako
将 西佐古
Choju Nagata
長寿 永田
Hikoichi Harikae
彦一 張替
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP25926897A priority Critical patent/JP3575582B2/en
Publication of JPH11135118A publication Critical patent/JPH11135118A/en
Application granted granted Critical
Publication of JP3575582B2 publication Critical patent/JP3575582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the capacity and cycle characteristic of a lithium nickel composite oxide, and to provide a manufacturing method with less quality dispersion even in a industrial scale manufacture. SOLUTION: The mixed powder of a lithium compound and a compound mainly comprising a transition metal is molded, the molded body is placed on a porous body 5 in a reaction vessel 7 placed on a supporting table 10 of a baking furnace 8 with an electric heater to form a molded body filling layer 6, an oxidizing gas such as air is forced to flow at a constant or higher superficial velocity through a gas pipe 3 to which an air pump 1 for compressing gas, a flow control device 2, and a pre-heater 4 are connected, and gas passing through the filling layer 6 is exhausted from an exhaust opening 9. Thereby, even if amount of baking treatment product is large, a lithium composite oxide active material with uniform quality and superior battery characteristics can be manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電
池、特にリチウム二次電池に用いる正極活物質、その原
料およびそれらの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material used for a non-aqueous electrolyte secondary battery, particularly a lithium secondary battery, a raw material thereof, and a method for producing the same.

【0002】[0002]

【従来の技術】現在リチウム二次電池の正極活物質とし
てはLiCoO2 が使用されている。容量120〜14
0mAh/g、サイクル特性(寿命)は約500サイク
ルである。エレクトロニクス機器の高性能化、小型化、
コードレス化が進み駆動電源としての電池も小型化・軽
量化が要求されている。その方策として正極活物質とし
てLiNiO2 への代替が考えられている。LiNiO
2 は容量が高いが寿命が短いという問題がある。改良の
方法としてNi以外の元素を添加することが試みられて
いるが、効果が十分ではない。また粒子径の最適化、活
物質の造粒、緻密化も提案されているが、これも十分な
効果が得られていない。LiNiO2 は寿命以外にも問
題があり、特に製造規模を大きくするにつれ、あるいは
ロット毎に、さらに同一ロット内においてさえも異なる
部分間で特性がばらつき安定した特性のものを製造する
ことが困難である。
2. Description of the Related Art At present, LiCoO 2 is used as a positive electrode active material of a lithium secondary battery. Capacity 120-14
0 mAh / g, and the cycle characteristics (life) are about 500 cycles. Higher performance, smaller size of electronic equipment,
With the progress of cordless technology, miniaturization and weight reduction of batteries as driving power sources are also required. As a countermeasure, replacement with LiNiO 2 as a positive electrode active material is considered. LiNiO
2 has a problem that the capacity is high but the life is short. Attempts have been made to add elements other than Ni as an improvement method, but the effect is not sufficient. Further, optimization of particle size, granulation of active material, and densification have also been proposed, but these have not been able to provide a sufficient effect. LiNiO 2 has a problem other than life, and it is difficult to manufacture a product having stable characteristics, particularly, as the manufacturing scale is increased, or between lots and even between different parts even within the same lot. is there.

【0003】リチウム複合酸化物を少量合成する場合は
酸素ガスまたは空気を供給する通常の焼成炉内で均質な
ものが得られるが、生産性を高めるために処理量を増大
して合成したものを正極活物質として用いた電池では充
放電特性が低下したり特性偏差値が大きいなどの問題が
あったので、工業的な製造規模で焼成処理量を多くしな
がらも、全体を均質に反応させるために強制通気するこ
とが特開平5−62678号により提案されている。
In the case of synthesizing a small amount of lithium composite oxide, a homogeneous one can be obtained in a normal sintering furnace for supplying oxygen gas or air. The battery used as the positive electrode active material had problems such as poor charge / discharge characteristics and large characteristic deviation values. Japanese Patent Application Laid-Open No. 5-62678 proposes forced ventilation.

【0004】すなわち提案の方法は焼成炉内で上記リチ
ウム複合酸化物を合成するに際し、所定の温度に加熱し
た空気もしくは酸素、または酸素と窒素の混合ガスを混
合粉体層中に強制通気させながら焼成するものであっ
て、電気ヒーターを配置した焼成炉に混合粉体を収納す
る反応容器を置き、その底部に混合粉体が落下しないセ
ラミック製多孔板が配置され、炉外に設けたエアーポン
プから圧縮空気がこれを予熱する熱交換機を経て反応容
器底部に送りこまれ混合粉体層中に強制通気されるよう
になっている。しかしながら、この方法ではむしろバラ
ツキを増加させてしまう。
That is, in the proposed method, when synthesizing the lithium composite oxide in a firing furnace, air or oxygen heated to a predetermined temperature or a mixed gas of oxygen and nitrogen is forcibly passed through the mixed powder layer. An air pump provided outside the furnace, in which a reaction vessel for storing the mixed powder is placed in a firing furnace provided with an electric heater, and a ceramic perforated plate on which the mixed powder does not fall is disposed at the bottom thereof. Compressed air is sent to the bottom of the reaction vessel through a heat exchanger for preheating the compressed air, and is forcibly aerated into the mixed powder layer. However, this method rather increases the variation.

【0005】[0005]

【発明が解決しようとする課題】異種元素を含んだLi
NiO2 である組成式Lia Nibcd のリチウム
ニッケル複合酸化物の容量とサイクル特性とを改善する
とともに、工業的規模の製造においても、バラツキのな
い製造方法を提供する。
SUMMARY OF THE INVENTION Li containing a different element
As well as improving the capacity and cycle characteristics of the composition formula is NiO 2 Li a Ni b M lithium nickel composite oxide of the c O d, even in the production of industrial scale, provides no variation manufacturing method.

【0006】[0006]

【課題を解決するための手段】容量とサイクル特性を改
良するために活物質としての粒子構造に着目し、メディ
アン径(D50)と比表面積径(DS )との比R=D50
S の適切な範囲を求めた。このRを制御して特性の優
れた活物質を得るために、原料である水酸化ニッケルま
たは水酸化ニッケル主体の共沈物の粉体特性の適正な範
囲と製造条件を求め焼成方法も改良した。また特に規模
拡大時にバラツキをなくす焼成方法とした。すなわち、
リチウム複合酸化物は非水電解液二次電池用正極活物質
として用いられているが、粉末であるが故に、形態が主
として結晶粒子からなる一次粒子であるかあるいは一次
粒子の集合した二次粒子であるかにかかわらず、その粉
体特性は電池特性に対して影響を与えている。
In order to improve the capacity and cycle characteristics, attention is paid to the particle structure as an active material, and the ratio R = D 50 / of the median diameter (D 50 ) to the specific surface area diameter (D S ).
It was determined an appropriate range of D S. In order to obtain an active material having excellent characteristics by controlling R, the proper range of powder characteristics of nickel hydroxide or a coprecipitate mainly composed of nickel hydroxide and production conditions were determined, and the firing method was also improved. . In addition, a sintering method that eliminates variations particularly when the scale is enlarged is adopted. That is,
Lithium composite oxide is used as a positive electrode active material for non-aqueous electrolyte secondary batteries.Because it is a powder, it is a primary particle mainly composed of crystalline particles or a secondary particle in which primary particles are aggregated. , The powder properties have an effect on the battery properties.

【0007】粒子径が与える影響としては、例えば径が
大きくなるにつれて初期容量は低下するがサイクル特性
は改善されること、比表面積が与える影響としては、例
えば比表面積が大きくなるにつれて初期容量は高くなる
がサイクル特性は低下するというように、サイクル特性
と高い初期容量とを兼ね備えることは困難であって、粒
子径と化学成分を調整することにより特性を改良する提
案が知られているが十分に満足できるものではなかっ
た。本発明者らは粉体特性としてメディアン径が適切な
範囲であり、かつ比表面積径とメディアン径との比が適
切な範囲になるようにすれば、初期容量が高く、かつサ
イクル特性が良好なリチウム複合酸化物活物質が得られ
ることを見いだしたのである。
The effect of the particle diameter is, for example, that the initial capacity decreases as the diameter increases, but the cycle characteristics are improved. The effect of the specific surface area, for example, is that the initial capacity increases as the specific surface area increases. However, it is difficult to combine cycle characteristics and high initial capacity, such that the cycle characteristics are reduced, and proposals to improve the characteristics by adjusting the particle size and the chemical component are known, but sufficiently. It was not satisfactory. The present inventors have found that the median diameter is in an appropriate range as the powder characteristics, and that the ratio between the specific surface area diameter and the median diameter is in an appropriate range, so that the initial capacity is high and the cycle characteristics are good. They found that a lithium composite oxide active material could be obtained.

【0008】活物質の粉体特性Rが実際にどのようにし
て容量とサイクル特性に影響するのかは不明である。粒
子外観が二次粒であっても単結晶(一次粒)的であって
も効果があり、表面の原子レベルでの構造によるものと
推測する。容量の数値は高い程、エネルギーとして多く
保有できることを示す。LiNiO2 の理論容量は28
0mAh/g程であるが、現在使用されているLiCo
2 が同等の理論値でありながら、130〜140mA
h/gしか利用できないでいるため、LiNiO2 とし
て実際の容量が150mAh/g以上を利用できる容量
の目標値とした。また、サイクル特性として重要なこと
は15サイクル以前の初期の容量低下が大きなものはそ
の後の容量が回復できず、結果として寿命が短くなるこ
とである。
It is unclear how the powder characteristics R of the active material actually affect the capacity and cycle characteristics. The effect is irrespective of whether the particle appearance is a secondary grain or a single crystal (primary grain), and is presumed to be due to the structure of the surface at the atomic level. The higher the capacity value, the more energy can be stored. The theoretical capacity of LiNiO 2 is 28
0 mAh / g, but LiCo currently used
130 to 140 mA while O 2 is equivalent theoretical value
Since only h / g can be used, the actual capacity of LiNiO 2 was set to a target value of 150 mAh / g or more. What is important as the cycle characteristics is that if the initial capacity decrease before the 15th cycle is large, the capacity after that cannot be recovered, resulting in a shorter life.

【0009】15サイクル後のサイクル低下量は多くの
試行錯誤の結果、初期容量の12%以下にすることが望
ましいと判断し、本発明実施例での容量は150〜20
5mAh/gの間であるので低下量は18mAh/g以
下とすることが望ましい。電池特性の評価方法は後述す
る。Rは主に原料の粉体特性、焼成条件、特に通気条件
と温度に依存する。原料の粉体特性はその製造方法(p
H、温度、投入条件)によって制御される。焼成方法と
しては成形体の充填層に強制通気させることによって焼
成中の原料の反応を十分に行うとともに、充填層全体が
均一でバラツキの少ない焼成がなされ、その結果として
活物質の粉体特性がバラツキの少ないものとなる。
As a result of many trials and errors, it has been determined that the amount of cycle reduction after 15 cycles is desirably 12% or less of the initial capacity, and the capacity in the embodiment of the present invention is 150 to 20%.
Since it is between 5 mAh / g, the amount of reduction is desirably 18 mAh / g or less. A method for evaluating battery characteristics will be described later. R mainly depends on the powder characteristics of the raw material and the firing conditions, particularly the aeration conditions and temperature. The powder characteristics of the raw material are determined by the production method (p.
H, temperature, and charging conditions). As a firing method, the raw material during the firing is sufficiently reacted by forcibly passing air through the filling layer of the molded body, and the entire filling layer is fired uniformly and with little variation. As a result, the powder characteristics of the active material are reduced. It has less variation.

【0010】すなわち本発明は第1に、反応槽にアルカ
リと金属塩の水溶液とを連続的または間けつ的に供給
し、pHを6.5〜11の範囲、かつ90℃以下の温度
で反応させながら反応物を含む液からなるスラリーを連
続的または一部を間けつ的に反応槽外に取り出す工程
と、スラリー中の固形反応物と液とを分離してケーキ状
またはペースト状とする工程と洗浄によって不要分を除
去する工程を経て、ニッケルの水酸化物またはニッケル
と他の元素との共沈物を得ることを特徴とする非水二次
電池用正極活物質用原料の製造方法;第2に、ニッケル
水酸化物またはニッケルと他の元素の共沈物であってそ
の結晶相がα相及びまたはβ相の水酸化ニッケルであ
り、タップ密度が0.6〜1.4g/ccである非水二
次電池用正極活物質用原料物質;第3に、反応槽にアル
カリと金属塩の水溶液とを連続的または間けつ的に供給
し、pHを6.5〜11の範囲、かつ90℃以下の温度
で反応させながら反応物を含む液からなるスラリーを連
続的または一部を間けつ的に反応槽外に取り出す工程
と、スラリー中の固形反応物と液とを分離してケーキ状
またはペースト状とする工程と洗浄によって不要分を除
去する工程を経て得られる結晶相がα相及び又はβ相の
水酸化ニッケルを含み、タップ密度が0.6〜1.4g
/ccであるニッケル水酸化物またはニッケルと他の元
素の共沈物からなることを特徴とする非水二次電池用正
極活物質用原料物質;第4に、リチウム化合物と遷移金
属を主体とする化合物との混合粉末またはリチウム化合
物と遷移金属を主体とする化合物との共沈物または前記
混合粉末と前記共沈物との混合物またはリチウムと遷移
金属とを主体とする共沈物を成形し成形体を焼成する方
法であって、成形体からなる充填層間に酸化性ガスを通
気させることを特徴とする正極活物質の製造方法;第5
に、充填層内の雰囲気が加圧された状態で強制通気焼成
することを特徴とする前記第4記載の正極活物質の製造
方法;第6に、充填反応容器の少なくとも内部接触部が
金属ニッケル、高ニッケル合金、ニッケルを主体とする
化合物またはこれら三者のうち二つ以上のものの組み合
わせか、表面に酸化皮膜を形成した金属ニッケル、高ニ
ッケル合金、金属ニッケルか高ニッケル合金とニッケル
を主体とする化合物とからなる複合材であることを特徴
とする前記第5または6記載の正極活物質の製造方法;
第7に、Lia Nibcd で示されるような化学組
成(但し0.95≦a≦1.05、b+c=1、0<c
<0.4、d≒2、MはCo、Mn、Fe、V、Ti、
Al、Sn、Zn、Cu、In、Ga、Si、Ge、S
b、B、P、K、Na、Mg、Ca、Ba、Sr、W、
Mo、Nb、Ta、Y、ランタニド元素のうちから選択
される1種以上の元素である。)を有し、メディアン径
が5〜30μmの範囲であり、かつメディアン径の比表
面積径に対する比・R=D50/DS が1.5〜6である
ことを特徴とする非水二次電池用正極活物質;第8に、
初期容量が150mAh/g以上であり、15サイクル
後の容量低下が18mAh/g以下であることを特徴と
する前記第7記載の非水二次電池用正極活物質;第9
に、ニッケル水酸化物またはニッケルと他の元素との共
沈物であってその結晶相がα相またはβ相またはα相と
β相との混合相の水酸化ニッケルであり、かつそのタッ
プ密度が0.6〜1.4g/ccである粉末状原料物質
をリチウム化合物粉末と混合して得た混合粉末を成形
し、得られた成形体を反応容器内に充填して充填層をつ
くり、該充填層に酸化ガスを通気させて焼成し、焼成物
を砕解して、Lia Nibcd で示されるような化
学組成(但し0.95≦a≦1.05、b+c=1、0
<c<0.4、d≒2、MはCo、Mn、Fe、V、T
i、Al、Sn、Zn、Cu、In、Ga、Si、G
e、Sb、B、P、K、Na、Mg、Ca、Ba、S
r、W、Mo、Nb、Ta、Y、ランタニド元素のうち
から選択される1種以上の元素である。)を有し、メデ
ィアン径が5〜30μmの範囲であり、かつメディアン
径の比表面積径に対する比・R=D50/DS が1.5〜
6である粉末物質を得ることを特徴とする非水二次電池
用正極活物質の製造方法;第10に、前記粉末物質を用
いた非水二次電池の初期容量が150mAh/g以上で
あり、15サイクル後の容量低下が18mAh/g以下
であることを特徴とする前記第9記載の非水二次電池用
正極活物質の製造方法;第11に、前記粉末状原料物質
は、反応槽にアルカリと金属塩の水溶液とを連続的また
は間けつ的に供給し、pHを6.5〜11の範囲、かつ
90℃以下の温度で反応させながら反応物を含む液から
なるスラリーを連続的または一部を間けつ的に反応槽外
に取り出す工程と、スラリー中の固形反応物と液とを分
離してケーキ状またはペースト状とする工程と洗浄によ
って不要分を除去する工程を経て、ニッケルの水酸化物
またはニッケルと他の元素との共沈物として得ることを
特徴とする前記第9または10記載の非水二次電池用正
極活物質の製造方法;第12に、前記焼成を充填層内の
雰囲気が加圧された状態で強制通気焼成することにより
行うことを特徴とする前記第9〜11のいずれかに記載
の正極活物質の製造方法;第13に、前記充填反応容器
の少なくとも内部接触部が金属ニッケル、高ニッケル合
金、ニッケルを主体とする化合物またはこれら三者のう
ち二つ以上のものの組み合わせか、表面に酸化皮膜を形
成した金属ニッケル、高ニッケル合金、金属ニッケルか
高ニッケル合金とニッケルを主体とする化合物とからな
る複合材であることを特徴とする前記第9〜12のいず
れかに記載の正極活物質の製造方法を提供するものであ
る。
That is, in the present invention, first, an alkali and an aqueous solution of a metal salt are continuously or intermittently supplied to a reaction vessel, and the reaction is carried out at a pH in the range of 6.5 to 11 and a temperature of 90 ° C. or lower. A step of continuously or partly taking out a slurry composed of a liquid containing a reactant outside the reaction tank while separating, and a step of separating a solid reactant and a liquid in the slurry into a cake or paste. And a step of removing unnecessary components by washing to obtain a hydroxide of nickel or a coprecipitate of nickel and another element, a method for producing a raw material for a positive electrode active material for a non-aqueous secondary battery; Second, nickel hydroxide or a coprecipitate of nickel and other elements, the crystal phase of which is α-phase and / or β-phase nickel hydroxide, having a tap density of 0.6 to 1.4 g / cc. Raw material for positive electrode active material for non-aqueous secondary batteries Thirdly, an alkali and an aqueous solution of a metal salt are continuously or intermittently supplied to the reaction vessel, and the reactants are reacted at a pH in the range of 6.5 to 11 and a temperature of 90 ° C. or lower. A step of continuously or partly taking out the slurry comprising the liquid out of the reaction tank, a step of separating the solid reactant and the liquid in the slurry into a cake or paste, and unnecessary washing by washing. The crystal phase obtained through the step of removing contains nickel hydroxide of α phase and / or β phase, and has a tap density of 0.6 to 1.4 g.
/ Cc of nickel hydroxide or a co-precipitate of nickel and other elements; a raw material for a positive electrode active material for a non-aqueous secondary battery; fourthly, a lithium compound and a transition metal. To form a coprecipitate of a mixed powder with a compound or a lithium compound and a compound mainly containing a transition metal or a mixture of the mixed powder and the above coprecipitate or a coprecipitate mainly containing lithium and a transition metal. A method for producing a positive electrode active material, comprising: sintering a molded body, wherein an oxidizing gas is passed between filled layers formed of the molded body;
6. The method for producing a positive electrode active material according to the fourth aspect, wherein the atmosphere in the packed bed is pressurized while the atmosphere is pressurized; , A high nickel alloy, a compound mainly composed of nickel or a combination of two or more of these three, or a metal nickel having an oxide film formed on the surface, a high nickel alloy, a metal nickel or a high nickel alloy and nickel as a main component 7. The method for producing a positive electrode active material according to the fifth or sixth aspect, wherein the method is a composite material comprising:
Seventh, a chemical composition represented by Li a Ni b M C O d (where 0.95 ≦ a ≦ 1.05, b + c = 1, 0 <c
<0.4, d ≒ 2, M is Co, Mn, Fe, V, Ti,
Al, Sn, Zn, Cu, In, Ga, Si, Ge, S
b, B, P, K, Na, Mg, Ca, Ba, Sr, W,
At least one element selected from Mo, Nb, Ta, Y, and lanthanide elements. ) Has a range median diameter of 5 to 30 [mu] m, and a non-aqueous secondary to specific · R = D 50 / D S for the specific surface area diameter of the median diameter is characterized by a 1.5-6 Eighth, a positive electrode active material for a battery;
9. The positive electrode active material for a non-aqueous secondary battery according to the above item 7, wherein the initial capacity is 150 mAh / g or more, and the capacity decrease after 15 cycles is 18 mAh / g or less;
A nickel hydroxide or a coprecipitate of nickel and another element, the crystal phase of which is α-phase or β-phase or a mixed phase of α- and β-phase nickel hydroxide, and its tap density Is mixed with a lithium compound powder to form a mixed powder, and the obtained molded body is filled in a reaction vessel to form a packed layer. and calcined by bubbling an oxidizing gas into the packed bed, and disintegration, the fired product, Li a Ni b M c O chemical composition as shown by d (where 0.95 ≦ a ≦ 1.05, b + c = 1,0
<C <0.4, d ≒ 2, M is Co, Mn, Fe, V, T
i, Al, Sn, Zn, Cu, In, Ga, Si, G
e, Sb, B, P, K, Na, Mg, Ca, Ba, S
At least one element selected from r, W, Mo, Nb, Ta, Y, and lanthanide elements. ) Has a median diameter is in the range of 5 to 30 [mu] m, and the ratio · R = D 50 / D S for the specific surface area diameter of median diameter 1.5
6. A method for producing a positive electrode active material for a non-aqueous secondary battery, which comprises obtaining a powdered material which is No. 6; 10. The method for producing a positive electrode active material for a non-aqueous secondary battery according to the ninth aspect, wherein the capacity decrease after 15 cycles is 18 mAh / g or less; The slurry comprising the liquid containing the reactants is continuously supplied while reacting the alkali and the aqueous solution of the metal salt continuously or intermittently at a pH of 6.5 to 11 and at a temperature of 90 ° C. or lower. Or a step of removing a part of the slurry intermittently from the reaction tank, a step of separating a solid reactant and a liquid in the slurry into a cake or paste, and a step of removing unnecessary components by washing, and With hydroxide or nickel The method for producing a positive electrode active material for a non-aqueous secondary battery according to the ninth or tenth aspect, wherein the calcination is performed as a coprecipitate with the element of The method for producing a positive electrode active material according to any one of the ninth to eleventh aspects, wherein the method is performed by forcibly aerated calcination in a heated state. High nickel alloy, nickel-based compound or combination of two or more of these three, or metal nickel with high surface oxide film, high nickel alloy, metal nickel or high nickel alloy and nickel as main component 13. A method for producing a positive electrode active material according to any one of the ninth to twelfth aspects, wherein the method is a composite material comprising a compound.

【0011】[0011]

【発明の実施の形態】本発明における水酸化ニッケルの
製造は、ニッケル塩の水溶液とアルカリ水溶液とを同一
の反応槽に連続的または間けつ的に供給し、このときに
pHを6.5〜11の間の一定の値に固定できるようア
ルカリ水溶液の供給量を調整する。反応温度も90℃以
下の一定温度となるように加温調節する。必要に応じて
ニッケル塩水溶液および/またはアルカリ水溶液を予め
加温してもよい。ニッケル塩としては硝酸塩、硫酸塩、
塩化物が使用でき、アルカリはNaOH、KOH、Li
OH、NH4 OHが使用できる。反応としては反応式N
2++2OH- →Ni(OH)2 のように水酸化物が析
出し、副生成物としてアルカリイオンと酸とによる塩が
生成するが、水溶性であるため、ニッケル水酸化物のよ
うに析出しない。
BEST MODE FOR CARRYING OUT THE INVENTION In the production of nickel hydroxide according to the present invention, an aqueous solution of a nickel salt and an aqueous alkaline solution are continuously or intermittently supplied to the same reaction vessel, and at this time, the pH is adjusted to 6.5 to 6.5. The supply amount of the aqueous alkali solution is adjusted so as to be able to be fixed to a constant value between 11. The reaction temperature is adjusted so as to be a constant temperature of 90 ° C. or lower. If necessary, the nickel salt aqueous solution and / or the alkaline aqueous solution may be heated in advance. Nickel salts include nitrates, sulfates,
Chloride can be used, alkali is NaOH, KOH, Li
OH and NH 4 OH can be used. The reaction is reaction formula N
Hydroxide precipitates like i 2+ + 2OH → Ni (OH) 2 , and as a by-product, a salt is formed by an alkali ion and an acid. However, since it is water-soluble, it is like nickel hydroxide. Does not precipitate.

【0012】反応をpH6.5〜11の間で行うのは第
1に、粉体特性を制御するためであり、第2に結晶相を
α相およびまたはβ相に制御するためである。温度は9
0℃以下とする理由は副次的な化合物の生成を防ぐため
である。またpH6.5未満では未反応のNi塩が多く
生産効率が低いからである。このような条件下で共沈で
きる元素はニッケル塩水溶液と混合した液で反応槽に供
給することが望ましい。反応によって生成する水酸化物
と塩の水溶液はスラリー状となり、このスラリーを反応
槽の上部または下部から連続的または間けつ的に取り出
し、遠心脱水機によって固液分離し、精製水によって不
要な塩類を洗浄除去して水酸化物のケーキまたはペース
トを得る。ケーキまたはペーストを乾燥し砕解して水酸
化物の粉末を得る。
The reason why the reaction is carried out at a pH of 6.5 to 11 is firstly to control the powder characteristics, and secondly to control the crystal phase to α phase and / or β phase. Temperature 9
The reason for setting the temperature to 0 ° C. or lower is to prevent the formation of secondary compounds. If the pH is lower than 6.5, the amount of unreacted Ni salt is large and the production efficiency is low. It is desirable that the element that can be coprecipitated under such conditions be supplied to the reaction tank as a liquid mixed with an aqueous nickel salt solution. The aqueous solution of hydroxide and salt generated by the reaction becomes a slurry, and the slurry is continuously or intermittently taken out from the upper or lower part of the reaction tank, separated into solid and liquid by a centrifugal dehydrator, and purified water is used to remove unnecessary salts. To obtain a hydroxide cake or paste. The cake or paste is dried and crushed to obtain the hydroxide powder.

【0013】この粉末をリチウム化合物、好ましくは水
酸化リチウムと混合し、成形体とした後に焼成する。焼
成後は成形体とほぼ同様な形状の緻密な焼結体が得られ
る。図1は本発明の実施例に用いられた上向き送風型焼
成炉を示す模式断面図である。すなわち電気ヒーターを
配置し、かつ熱電対により温度制御ができる焼成炉8に
は、支持台10上に成形体を収容する反応容器7があ
り、内部下側に多孔体5が設けられている。通気を圧縮
するエアーポンプ1、流量調節器2を連結する送気配管
3の途中には空気等の酸化性ガスを予熱するための予熱
ヒーター4が設けてある。
This powder is mixed with a lithium compound, preferably lithium hydroxide, formed into a compact, and then fired. After firing, a dense sintered body having substantially the same shape as the molded body is obtained. FIG. 1 is a schematic cross-sectional view showing an upward blowing type firing furnace used in an embodiment of the present invention. That is, a baking furnace 8 in which an electric heater is arranged and whose temperature can be controlled by a thermocouple includes a reaction vessel 7 for accommodating a molded body on a support base 10, and a porous body 5 is provided on the lower side inside. A preheater 4 for preheating an oxidizing gas such as air is provided in the middle of an air supply pipe 3 connecting the air pump 1 for compressing the ventilation and the flow controller 2.

【0014】高圧ボンベから酸素等を取り出す場合には
エアーポンプ1を用いないで減圧弁を使用する。多孔体
5の上には混合粉体成形体が充填されており、この充填
層6を通過したガスは換気口9を通って大気中に放出さ
れる。ここで予熱ヒーター以降の送気配管が接粉部と同
様の材料であれば汚染元素の問題はなくなる。なお、焼
成炉8を水冷された金属ケースに収納するようにすれば
雰囲気の制御を厳密に行なうことができる。例えば初期
に真空にした後に雰囲気ガスの装入が可能であり、雰囲
気を加圧できる他、雰囲気漏出を抑制できるので必要に
応じて一定の組成比のガスが使用できる等である。焼成
は600℃以上で行うが一次粒子を5μm以上とするた
めには800℃以上の温度で行うことが望ましい。
When removing oxygen or the like from the high-pressure cylinder, a pressure reducing valve is used without using the air pump 1. The mixed powder compact is filled on the porous body 5, and the gas that has passed through the filled layer 6 is discharged into the atmosphere through the ventilation port 9. Here, if the air supply pipe after the preheating heater is made of the same material as the powder contact portion, the problem of the contaminant element is eliminated. If the firing furnace 8 is housed in a water-cooled metal case, the atmosphere can be strictly controlled. For example, an atmosphere gas can be charged after an initial vacuum is applied, the atmosphere can be pressurized, and the atmosphere can be prevented from leaking, so that a gas having a constant composition ratio can be used as necessary. The sintering is performed at 600 ° C. or higher, but is desirably performed at a temperature of 800 ° C. or higher to make the primary particles 5 μm or more.

【0015】本発明で製造される水酸化物を用いれば、
一次粒であっても二次粒であってもRが適切な範囲であ
れば電池特性が高くなる。さらなる特徴は焼結体が緻密
であっても、一次粒子の粒径が制御されかつ粒界が弱い
ため、焼結体を砕解して容易に必要な粒度の一次粒子が
得られる(活物質としての粒度分布は1〜100μmが
適しているとされるがメディアン径としては5〜30μ
mが適している)。またタップ密度が0.6g/ccよ
りも低ければ、メディアン径が5μm以上とならず、
1.4g/ccを超えると一次粒子が成長し過ぎてフラ
ックス法と同様の粉砕が必要となり、粒子内にクラック
が生じやすくサイクル特性が低下する。
If the hydroxide produced in the present invention is used,
Regardless of whether the particles are primary particles or secondary particles, the battery characteristics are improved if R is in an appropriate range. A further feature is that, even if the sintered body is dense, the primary particles are controlled in size and the grain boundaries are weak, so that the sintered body can be crushed to easily obtain the required primary particles (active material). It is considered that the particle size distribution of 1 to 100 μm is suitable, but the median diameter is 5 to 30 μm.
m is suitable). If the tap density is lower than 0.6 g / cc, the median diameter does not become 5 μm or more,
If it exceeds 1.4 g / cc, the primary particles grow too much, and the same pulverization as in the flux method is required. Cracks are easily generated in the particles and cycle characteristics are deteriorated.

【0016】本発明は原料となる粉体を酸化性ガスを通
気しながら焼成する製造方法において、原料粉体を成形
することによって密度を高め、その成形体の充填層内を
ある一定値以上の流速で通気するようにしたため、焼成
量が多くなった場合でも、反応容器全体の反応が均質か
つ十分に行なわれ、その結果電池特性に優れたリチウム
複合酸化物活物質が得られる。原料としてはLiの酸化
物、水酸化物、硝酸リチウムなどの無機酸塩、酢酸リチ
ウムなどの有機酸塩が使用できる。Ni等の遷移金属化
合物としては同様に酸化物、水酸化物、硝酸塩などの無
機酸塩、クエン酸塩などの有機酸塩が使用でき、当然共
析沈澱法または同様手法において生成する化合物も焼成
できる。Niの化合物としては水酸化物が特に好まし
い。Ni以外の遷移金属およびその他の元素Mの化合物
としては、同様に酸化物、水酸化物、硝酸塩などの無機
酸塩、クエン酸塩などの有機酸塩が使用できる。ここに
Mは、Co、Mn、Fe、V、Ti、Al、Sn、Z
n、Cu、In、Ga、Si、Ge、Sb、B、P、
K、Na、Mg、Ca、Ba、Sr、W、Mo、Nb、
Ta、Y、ランタニド元素のうちから選択される1種以
上の元素である。Lia Nibcd はLiNiO2
の固溶体であり、本質的な結晶構造はLiNiO2 と同
様である。したがって、aは0.95〜1.05であ
り、dはほぼ2である。Mは結晶構造に固溶させること
によりサイクルに伴う結晶構造の劣化を防止する。した
がってb+c=1である。Mは添加するので当然0<c
となる。Mは元素の種類によって固溶量の限度がある
が、0.4≦cとなった場合には結晶構造が変化し、活
物質としての特性が低下してしまう。混合は攪拌機付混
合機(アトライター、自由型混合機、コンクリートミキ
サー)、回転容器式(ポットミル、V型混合機)が使用
できるが他の型式の機械であってもよい。
According to the present invention, there is provided a method for producing a raw material powder, wherein the density is increased by molding the raw material powder while passing an oxidizing gas therethrough. Since the air is aerated at a flow rate, the reaction in the entire reaction vessel is performed uniformly and sufficiently even when the amount of baking increases, and as a result, a lithium composite oxide active material having excellent battery characteristics can be obtained. As the raw material, an inorganic acid salt such as an oxide, a hydroxide, and lithium nitrate of Li, and an organic acid salt such as lithium acetate can be used. Similarly, oxides, hydroxides, inorganic acid salts such as nitrates, and organic acid salts such as citrates can be used as the transition metal compound such as Ni. Naturally, the compounds formed by the eutectoid precipitation method or the similar method are also calcined. it can. A hydroxide is particularly preferred as the Ni compound. Similarly, as the compound of the transition metal other than Ni and the other element M, inorganic acid salts such as oxides, hydroxides and nitrates, and organic acid salts such as citrate can be used. Where M is Co, Mn, Fe, V, Ti, Al, Sn, Z
n, Cu, In, Ga, Si, Ge, Sb, B, P,
K, Na, Mg, Ca, Ba, Sr, W, Mo, Nb,
At least one element selected from Ta, Y, and lanthanide elements. Li a Ni b M c O d is LiNiO 2
Is a solid solution, and the essential crystal structure is the same as that of LiNiO 2 . Therefore, a is 0.95 to 1.05 and d is approximately 2. M forms a solid solution in the crystal structure to prevent the crystal structure from deteriorating due to the cycle. Therefore, b + c = 1. Since M is added, naturally 0 <c
Becomes M has a limit of the amount of solid solution depending on the type of element. However, when 0.4 ≦ c, the crystal structure changes, and the characteristics as an active material deteriorate. For mixing, a mixer equipped with a stirrer (attritor, free-type mixer, concrete mixer) or a rotary vessel type (pot mill, V-type mixer) can be used, but other types of machines may be used.

【0017】成形には以下の方法が使用できるが、形状
によっては他の方法でもよい。(A)プレス(一軸プレ
ス、打錠機、静水圧プレス、振動プレス)、(B)ロー
ルブリケッター、(C)押出機、(D)転動造粒機。成
形体の形状は球、レンズ、棒状、板状、麺状が一般的な
技術で製造可能であるが、その他の形状でもよい。寸法
としては断面の一辺または径が1mm以上20mm以下
が適している。大きな成形体に貫通孔を設けてもよい。
焼成中に強制通気で吹き飛んだりしない密度にすること
も重要であり、相対密度として40%以上が望ましい。
実施例で述べられているように、電池容量の評価では一
般に空塔速度の増大に従って評価が向上するが、通気流
速が低過ぎては初期容量が低く、また容量のバラツキが
大きいためである。酸化性ガスとしては酸素、空気、酸
素と窒素の混合ガス、窒素酸化物ガス等が使用できる。
The following method can be used for molding, but other methods may be used depending on the shape. (A) Press (uniaxial press, tablet press, isostatic press, vibratory press), (B) roll briquetter, (C) extruder, (D) rolling granulator. The shape of the molded body may be a sphere, a lens, a rod, a plate, or a noodle, which can be manufactured by a general technique, but may be another shape. A suitable dimension is one side or cross section of 1 mm or more and 20 mm or less in diameter. You may provide a through-hole in a large molded object.
It is also important to make the density not blown off by forced ventilation during firing, and a relative density of 40% or more is desirable.
As described in the examples, in the evaluation of the battery capacity, the evaluation generally improves as the superficial velocity increases, but if the ventilation flow rate is too low, the initial capacity is low, and the variation in the capacity is large. As the oxidizing gas, oxygen, air, a mixed gas of oxygen and nitrogen, a nitrogen oxide gas, or the like can be used.

【0018】なお炉の構造としては送気配管およびまた
は換気口が複数であってもよい。上部の配管が水平また
は斜めであってもよい(上向き送風での換気口、下向き
送風での送気配管を示す)。下部の配管(上向き送風で
の送気配管、下向き送風での換気口)を炉の下部から垂
直または斜めに設けてもよい。送気管の先端に散気口を
設けたり、換気口に集気口を設けてもよい。加圧するに
は換気口に圧力逃がし弁を設けてもよい。また、上記焼
成に用いられる容器をニッケル材料とすることによって
電池特性の低下の原因となる異物混入を防止することに
よって、電池特性の優れた活物質が得られる。ニッケル
材は少なくとも反応容器の内面の成形体と接する部分に
用いるが通気管に使用することも可能である。ニッケル
材とは主に金属ニッケル、高ニッケル合金、ニッケル酸
化物およびこれらの複合材を示し、ニッケル酸化物は複
合酸化物である場合も含まれる。これらの複合部材の表
面に酸化皮膜を形成したものを用いる場合も含まれる。
必要ならば焼成が二段階以上および二度以上の焼成であ
る場合も含み、通気ガスは循環使用する場合も含まれ
る。
The furnace may have a plurality of air supply pipes and / or vents. The upper piping may be horizontal or diagonal (showing ventilation vents for upward air flow, air supply piping for downward air flow). Lower pipes (pipe for up-flow, ventilation port for down-flow) may be provided vertically or obliquely from the lower part of the furnace. An air diffuser may be provided at the end of the air supply pipe, or an air collector may be provided at the vent. To increase the pressure, a pressure relief valve may be provided at the ventilation port. In addition, by using a nickel material for the container used for the baking, it is possible to prevent the contamination of foreign substances which may cause a decrease in battery characteristics, thereby obtaining an active material having excellent battery characteristics. The nickel material is used at least for a portion of the inner surface of the reaction vessel which is in contact with the molded body, but may be used for a vent pipe. The nickel material mainly indicates nickel metal, a high nickel alloy, a nickel oxide and a composite material thereof, and the nickel oxide includes a case where the nickel oxide is a composite oxide. The case where an oxide film is formed on the surface of these composite members is also included.
If necessary, the calcination may be carried out in two or more stages and two or more calcinations, and the ventilation gas may be circulated.

【0019】また、前述のメディアン径(D50)はレー
ザー散乱法によって測定した重量積算分布曲線の50%
に相当する径とした。比表面積径(DS )は気体の吸着
を利用して比表面積を求めるいわゆるBET法によって
測定した比表面積S(m2 /g)と、ピクノメーターに
よって測定した比重ρ(g/cm3 )とからDS =6/
ρ・Sなる式によって計算した。D50とSは原料の充填
特性、粒径と製法、特に温度と空塔速度によって制御さ
れる。D50が5μmより小さいか、あるいは30μmよ
り大きいときは正極合剤の充填密度または合剤形成後の
表面性のいずれかが満足すべきものとならない。したが
ってD50は5μm〜30μmであることが好ましい。ま
たRについては通常は1に近い値を示すがRが1.5よ
り小さいと初期容量が小さくなると共に、15サイクル
後の容量低下が大きい。一方、Rが6より大きくなる
と、初期容量は高いが15サイクル後の容量低下が著し
く増大する。したがってRは1.5以上6以下であるこ
とが好ましい。この他にSEM写真により粒子の外観を
観察し1次粒、2次粒を判別した。
The median diameter (D 50 ) is 50% of the weight integrated distribution curve measured by the laser scattering method.
. The specific surface area diameter (D s ) is determined by the specific surface area S (m 2 / g) measured by the so-called BET method for determining the specific surface area using gas adsorption, and the specific gravity ρ (g / cm 3 ) measured by a pycnometer. From D S = 6 /
It was calculated by the equation ρ · S. D 50 and S-fill properties of the raw materials, particle size and process, in particular controlled by the temperature and the superficial velocity. D 50 Do 5μm smaller, or when 30μm larger is not a satisfactory one of the surface resistance after packing density or mixture formation of the positive electrode mixture is. Therefore, D 50 is preferably 5 μm to 30 μm. R usually shows a value close to 1, but if R is smaller than 1.5, the initial capacity becomes small and the capacity decrease after 15 cycles is large. On the other hand, when R is larger than 6, the initial capacity is high, but the capacity decrease after 15 cycles increases significantly. Therefore, R is preferably 1.5 or more and 6 or less. In addition, the appearance of the particles was observed by SEM photograph, and primary particles and secondary particles were discriminated.

【0020】LiNiO2 の場合には遷移金属化合物と
して水酸化ニッケルを原料として用いることおよび結晶
相はβ相が望ましいとの提案がなされている。α相、α
相主体、α相とβ相の混相原料を使用して電池特性が優
れたものになるとの提案はない。β相であっても粉体特
性、タップ密度の範囲の指定および活物質のRについて
は提案されていない。また、その粉体特性のうちで充填
性に影響するタップ密度を1.4より低い密度とすべき
であることについては提案はない。本発明では成形体を
焼成焼結する工程を経て活物質の粉体特性を制御するた
めタップ密度は重大な影響を与える。活物質粉末を78
重量%、導電材として黒鉛粉末を15重量%、フッ素樹
脂粉末を結着剤として7重量%を混合した後、成形して
正極合剤とした。
It has been proposed that in the case of LiNiO 2 , nickel hydroxide is used as a transition metal compound as a raw material and that a β phase is desirable as a crystal phase. α phase, α
There is no suggestion that the battery characteristics will be improved by using a phase-based, α-phase and β-phase mixed phase raw material. Even for the β phase, no proposal has been made on powder characteristics, designation of a range of tap density, or R of the active material. In addition, there is no proposal that the tap density, which influences the filling property, should be a density lower than 1.4 among the powder properties. In the present invention, since the powder properties of the active material are controlled through the step of firing and sintering the compact, the tap density has a significant effect. 78 of active material powder
After mixing 15% by weight of graphite powder as a conductive material and 7% by weight of a fluororesin powder as a binder, the mixture was molded to form a positive electrode mixture.

【0021】試験用電池の作成 得られた正極合剤を電池に組み込んで電池容量を評価す
るために試験用コイン形電池を作成した。図4は試験用
電池として作成されたコイン電池を示す模式断面図であ
る。コインの直径は20mmφである。図4において1
1はステンレスケース、13は同材料の封口板、12は
ポリプロピレン製ガスケット、14は金属リチウムを用
いた負極、15は正極合剤をプレス成形した正極、16
は微孔性のポリプロピレンセパレーターである。なお、
電解液は炭酸プロピレンと炭酸ジエチルを1対1の体積
比で混合した溶媒に電解質としてLiPF6 を1mol/l
濃度で溶解させたものを用いた。充放電は20℃の温度
で行なった。電流は2mAとし、充電終了電圧を4.3
V、放電終了電圧を2.7Vで充放電サイクル試験を行
った。電池特性の良否は活物質1gあたりの初期の容量
と15サイクル後の劣化量(低下量)で比較した。
Preparation of Test Battery A coin cell battery for test was prepared in order to evaluate the battery capacity by incorporating the obtained positive electrode mixture into the battery. FIG. 4 is a schematic sectional view showing a coin battery prepared as a test battery. The diameter of the coin is 20 mmφ. In FIG.
1 is a stainless steel case, 13 is a sealing plate of the same material, 12 is a polypropylene gasket, 14 is a negative electrode using metallic lithium, 15 is a positive electrode obtained by press-molding a positive electrode mixture, 16
Is a microporous polypropylene separator. In addition,
The electrolyte was a solvent in which propylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 and LiPF 6 was used as an electrolyte in an amount of 1 mol / l.
The one dissolved at a concentration was used. Charge and discharge were performed at a temperature of 20 ° C. The current is 2 mA and the charge end voltage is 4.3
V and a discharge end voltage of 2.7 V, a charge / discharge cycle test was performed. The quality of the battery was compared between the initial capacity per 1 g of the active material and the amount of deterioration (amount of deterioration) after 15 cycles.

【0022】[0022]

【実施例1】1.5モル/lの硝酸ニッケルと20%N
aOH液とによって水酸化ニッケルを合成した。すなわ
ち硝酸ニッケルを3lビーカーに0.2l/minの速
度で投入し、同時にNaOHをビーカーに供給してビー
カー内の液を60RPMで攪拌しながら反応を行わせ
た。この際NaOHは常にpHを測定して±0.1変動
に応じて自動的にポンプを作動、停止させて注入した。
この場合はNaOHは連続的には供給されず間けつ的に
供給される。定比で注入できるようにして連続的に供給
することも可能である。スラリーをオーバーフローによ
って回収し、ブフナーロートによってろ過、洗浄した後
に120℃で10時間乾燥した。乾燥物は乳鉢で解砕し
てから100メッシュの篩でふるった。タップ密度は5
0mlシリンダーに15gを入れ、1000回タップし
て求めた。水酸化ニッケル合成時のpH別、温度別のタ
ップ密度の測定値を図5に示す。
Example 1 1.5 mol / l nickel nitrate and 20% N
Nickel hydroxide was synthesized with the aOH solution. That is, nickel nitrate was charged into a 3 l beaker at a rate of 0.2 l / min, and simultaneously, NaOH was supplied to the beaker, and the reaction was carried out while stirring the liquid in the beaker at 60 RPM. At this time, NaOH was constantly measured for pH, and the pump was automatically operated and stopped according to ± 0.1 fluctuation to be injected.
In this case, NaOH is not supplied continuously but is supplied intermittently. It is also possible to supply continuously at a constant ratio. The slurry was collected by overflow, filtered and washed with a Buchner funnel, and then dried at 120 ° C. for 10 hours. The dried product was crushed in a mortar and sieved with a 100-mesh sieve. Tap density is 5
15 g was placed in a 0 ml cylinder and tapped 1,000 times. FIG. 5 shows the measured values of tap density for each pH and each temperature during the synthesis of nickel hydroxide.

【0023】次に、LiNi1-x Cox 2 の合成試験
を行った。すなわち、水酸化ニッケルと2μmの水酸化
コバルトと15μmの水酸化リチウムとを原子数でN
i:Co:Li=0.8:0.2:1.0の比率で混合
して圧力500kg/cm2 で径5mmの球形に成形
し、酸素気流中で870℃で15時間焼成した。球形に
成形しφ5cm、20cm高さのニッケル容器に充填
し、空塔速度5m/minで酸素を通気させて焼成し
た。焼成物を10分間乳鉢で砕解し、得られたものの粒
度と比表面積を求めRを算出した。結果を表1に示す。
なお、粒子の外観をSEM写真により観察した。また、
結晶相はXRDによって判定した。原料の水酸化物では
合成条件によって異なったが、焼成物の場合はすべて単
相でLiNiO2 同様のプロフィールとなった。本発明
のものは全て初期容量が170〜190mAh/g、1
5サイクル後の容量低下率が5〜7%であったが、本発
明外のもの(比較例と表示)は2種類とも初期容量10
0mAh/g未満で容量低下率が15〜18%であっ
た。
Next, a synthesis test of LiNi 1-x Co x O 2 was performed. That is, nickel hydroxide, 2 μm cobalt hydroxide and 15 μm lithium hydroxide are converted into N
i: Co: Li was mixed at a ratio of 0.8: 0.2: 1.0, formed into a spherical shape having a diameter of 5 mm at a pressure of 500 kg / cm 2 , and fired at 870 ° C. for 15 hours in an oxygen stream. It was formed into a spherical shape, filled into a nickel container having a diameter of 5 cm and a height of 20 cm, and fired by passing oxygen at a superficial velocity of 5 m / min. The fired product was pulverized in a mortar for 10 minutes, and the particle size and specific surface area of the obtained product were determined to calculate R. Table 1 shows the results.
The appearance of the particles was observed with a SEM photograph. Also,
The crystal phase was determined by XRD. Although the raw material hydroxides differed depending on the synthesis conditions, all of the fired products had a single-phase profile similar to that of LiNiO 2 . All of those of the present invention have an initial capacity of 170 to 190 mAh / g, 1
Although the capacity reduction rate after 5 cycles was 5 to 7%, the ones outside the present invention (shown as Comparative Examples) had an initial capacity of 10 for both types.
At less than 0 mAh / g, the capacity reduction rate was 15 to 18%.

【0024】[0024]

【表1】 [Table 1]

【0025】次いで同じ水酸化物を用い図1に示すよう
な焼成炉を用いて酸素気流中で920℃で10時間焼成
試験を行った。焼成物のXRDは全て単相でLiNiO
2 と同様のプロフィールとなった。試験結果を表2に示
す。本発明の合成条件のものは初期容量は150〜18
0mAh/g、15サイクル後の容量低下割合が4〜6
%であったが、本発明の合成条件外のもの(表では比較
例と表示)では初期容量が100mAh/g、15サイ
クル後の容量低下割合は12〜14%であった。
Next, using the same hydroxide, a firing test was performed at 920 ° C. for 10 hours in an oxygen stream using a firing furnace as shown in FIG. XRD of fired product is all single phase and LiNiO
It became the same profile as 2 . Table 2 shows the test results. Under the synthesis conditions of the present invention, the initial capacity is 150 to 18
0 mAh / g, the rate of capacity reduction after 15 cycles is 4 to 6
%, The initial capacity was 100 mAh / g and the rate of capacity reduction after 15 cycles was 12 to 14% for the ones outside the synthesis conditions of the present invention (shown as Comparative Example in the table).

【0026】[0026]

【表2】 [Table 2]

【0027】次に、50℃,pH9で合成したもの、5
0℃,pH11で合成したもの、20℃,pH10で合
成したものを用いて各々を酸素気流中で820℃で24
時間焼成した。結果を表3に示す。
Next, those synthesized at 50 ° C. and pH 9
Using those synthesized at 0 ° C. and pH 11 and those synthesized at 20 ° C. and pH 10, each was subjected to 24 hours at 820 ° C. in an oxygen stream.
Fired for hours. Table 3 shows the results.

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【実施例2】NiとCoとを共沈させた水酸化物を使用
した。すなわち水酸化リチウムをNiとCoを原子数で
0.8と0.2の割合で共沈させた合量に対してLiを
原子数で1:1の比となるように混合し、実施例1と同
様に成形し、成形体を50cm高さに充填して20m/
minの空塔速度の酸素を通気させて825℃で15時
間焼成した。結果を表4に示す。
Example 2 A hydroxide in which Ni and Co were coprecipitated was used. That is, lithium hydroxide was mixed at a ratio of 1: 1 by atomic number with respect to the total amount of coprecipitated Ni and Co at a ratio of 0.8 and 0.2 by atomic number. Molded in the same manner as in No. 1 and filled the molded body to a height of 50 cm and 20 m /
The mixture was calcined at 825 ° C. for 15 hours while passing oxygen at a superficial velocity of min. Table 4 shows the results.

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【実施例3】実施例1で合成した水酸化ニッケル(50
℃、pH9、タップ密度1.03g/cc)を用い、C
oと他の元素の水酸化物を混合時に添加した。充填高さ
を7cmとして1m/minの空塔速度の酸素通気し、
850℃で20時間焼成した。成形体は径5mm×高さ
15mmの円柱状に1ton/cm2 の圧力で金型成形
した。この場合に離型剤兼添加元素となるようにBN
(窒化硼素)をLi:Ni+M:B=1.03:1:
0.01の原子数比となるように添加した。
Example 3 Nickel hydroxide synthesized in Example 1 (50
° C, pH 9, tap density 1.03 g / cc)
o and hydroxides of other elements were added during mixing. With a filling height of 7 cm, oxygen is introduced at a superficial velocity of 1 m / min,
It was baked at 850 ° C. for 20 hours. The molded body was molded into a cylindrical shape having a diameter of 5 mm and a height of 15 mm at a pressure of 1 ton / cm 2 . In this case, BN is used as a release agent and an additive element.
(Boron nitride): Li: Ni + M: B = 1.03: 1:
It was added so that the atomic ratio was 0.01.

【0032】[0032]

【表5】 [Table 5]

【0033】[0033]

【実施例4】Ni/Co比が原子数で0.85/0.1
5であるような共沈水酸化物を用いLiとNi+Coと
の原子数比が1/1となるように水酸化リチウムを秤量
して混合した。次いで混合粉を打錠機にて直径5mmの
近似球形に成形し、φ50×750mm高さに充填して
焼成した。焼成を700℃で15時間とし、通気条件は
表に示す範囲で影響を検討した。700℃台での焼成で
は焼成物のメディアン径は原料で共沈水酸化物のメディ
アン径によってほぼ決まり水酸化物のメディアン径の8
0〜95%となる。反応容器内の各部における焼成物の
メディアン径と比表面積の分布は全体の平均値に対して
±6%以内であったため、焼成物全体をまとめて砕解し
てから、サンプリングしてメディアン径、比表面積、初
期容量、15サイクル後の容量低下量を測定した。
Embodiment 4 Ni / Co ratio is 0.85 / 0.1 in atomic number.
Lithium hydroxide was weighed and mixed using a coprecipitated hydroxide as in Example 5 so that the atomic ratio of Li to Ni + Co was 1/1. Next, the mixed powder was formed into an approximate spherical shape having a diameter of 5 mm by a tableting machine, filled into a height of φ50 × 750 mm, and fired. The baking was performed at 700 ° C. for 15 hours, and the influence of the ventilation conditions was examined within the range shown in the table. In the case of firing at a temperature of 700 ° C., the median diameter of the fired product is substantially determined by the median diameter of the coprecipitated hydroxide in the raw material, and is 8 times the median diameter of the hydroxide.
0 to 95%. Since the distribution of the median diameter and specific surface area of the fired product in each part in the reaction vessel was within ± 6% of the average value of the whole, the whole fired product was collectively pulverized, sampled, and the median diameter, The specific surface area, the initial capacity, and the amount of capacity decrease after 15 cycles were measured.

【0034】3種の水酸化物のメディアン径、タップ密
度は以下に示す条件で合成して制御した。 メディアン径 タップ密度 pH 温度 α:β その他 (μm) (g/cc) 22.5 1.12 8.5 80 3:7 − 7 0.81 9.5 70 1:9 − 35 1.36 7.5 60 6:4 アンモニア1%添加
The median diameter and tap density of the three hydroxides were synthesized and controlled under the following conditions. Median diameter Tap density pH temperature α: β Other (μm) (g / cc) 22.5 1.12 8.5 80 3: 7 −7 0.81 9.5 70 1: 9 −35 1.36 7.5 60 6: 4 Add 1% ammonia

【0035】[0035]

【表6】 [Table 6]

【0036】[0036]

【表7】 [Table 7]

【0037】[0037]

【表8】 [Table 8]

【0038】上記いずれの場合であっても、焼成、砕解
後の粉末粒子は二次粒子であり、一次粒子の大きさは
0.2μm程であって、本来比表面積としては6m2
gとなるが実際には0.09m2 /g程度となり、メデ
イアン径は二次粒子の平均径を示すことになる。表6〜
表8に見られるように空塔速度が低い場合は反応が十分
に進行せずに未反応のLi化合物が残り、液状となって
表面を覆い粒界を塞ぐため、BET法による測定におけ
るガスの吸着が妨げられるものと考えられる。空塔速度
を0.5m/min以上に高めることによって反応が進
行し、未反応物は減少し、初期容量、サイクル特性とも
に改善される。一方空塔速度を高くし過ぎれば二次粒子
間か粒子内での焼結が進みマイクロクラックが生成し、
破面で電解液が分解されるためにサイクル特性が低下す
る。したがって、空塔速度は250m/minを越えな
いようにすることが好ましい。比表面積が一次粒子の大
きさに対応しない他の理由としては、一次粒子は顕微鏡
観察で粒界が確認できるが、粒間の焼結が強固なため、
BET法による測定の際、ガスが吸着しないことも考え
られ、極微量のLi化合物が粒界を塞ぐことも否定でき
ない。
In any of the above cases, the powder particles after firing and pulverization are secondary particles, the size of the primary particles is about 0.2 μm, and the specific surface area is originally 6 m 2 /
g, but is actually about 0.09 m 2 / g, and the median diameter indicates the average diameter of the secondary particles. Table 6-
As can be seen from Table 8, when the superficial velocity is low, the reaction does not proceed sufficiently and the unreacted Li compound remains and becomes liquid, covering the surface and closing the grain boundaries. It is believed that adsorption is hindered. By increasing the superficial velocity to 0.5 m / min or more, the reaction proceeds, unreacted substances are reduced, and both initial capacity and cycle characteristics are improved. On the other hand, if the superficial superficial velocity is too high, sintering between secondary particles or within the particles will proceed and microcracks will be generated,
Since the electrolytic solution is decomposed at the fracture surface, the cycle characteristics deteriorate. Therefore, it is preferable that the superficial velocity does not exceed 250 m / min. Another reason that the specific surface area does not correspond to the size of the primary particles is that the primary particles can confirm the grain boundaries by microscopic observation, but the sintering between the particles is strong,
In the measurement by the BET method, it is considered that no gas is adsorbed, and it cannot be denied that an extremely small amount of the Li compound blocks the grain boundary.

【0039】[0039]

【実施例5】タップ密度1.15g/ccα相とβ相の
比率がほぼ1:1の水酸化ニッケルと四三酸化コバルト
(Co34 )と水酸化リチウム(LiOH)を用い、
Ni:Co:Liの原子数比が0.75:0.25:1
となるように秤量し、IPA(イソプロピルアルコー
ル)を加えアルミナポットに入れて30分間水冷却しな
がら混合した。IPAをろ過、加熱蒸発させてから直径
4mm長さ6mmの円柱状に打錠機で成形した。次いで
成形体を反応容器に入れ925℃×15時間焼成した。
反応容器の各部における焼成物のメディアン径と比表面
積の分布は全体の平均値に対し±4%以内であったの
で、焼成物全体をまとめて砕解してからメディアン径、
比表面積、初期容量および15サイクル後の容量低下を
測定する試料を得るためサンプリングした。焼成物のメ
ディアン径は種々の試行をくりかえした後に成形時の圧
力を変えることによって制御した。焼成物のメデイアン
径15μm級(成形圧力700kg/cm2 、成形密度
1.4g/c.c.)、5μm級(成形圧力150kg
/cm2 、成形密度1.2g/c.c.)および25μ
m級(成形圧力1.6トン/cm2 、成形密度2.3g
/c.c.)測定結果を表9および表10に示す。
Example 5 Tap density 1.15 g / cc Nickel hydroxide, cobalt tetroxide (Co 3 O 4 ), and lithium hydroxide (LiOH) having a ratio of α phase and β phase of about 1: 1 were used.
The atomic ratio of Ni: Co: Li is 0.75: 0.25: 1
, IPA (isopropyl alcohol) was added, and the mixture was placed in an alumina pot and mixed with water cooling for 30 minutes. The IPA was filtered, heated and evaporated, and then formed into a column having a diameter of 4 mm and a length of 6 mm using a tableting machine. Next, the compact was put into a reaction vessel and calcined at 925 ° C. for 15 hours.
The distribution of the median diameter and specific surface area of the calcined product in each part of the reaction vessel was within ± 4% of the average value of the whole, so that the whole calcined product was crushed together, and then the median diameter,
Sampling was performed to obtain a sample for measuring the specific surface area, the initial capacity, and the capacity decrease after 15 cycles. The median diameter of the fired product was controlled by changing the pressure during molding after repeating various trials. Median diameter of fired product: 15 μm class (molding pressure: 700 kg / cm 2 , molding density: 1.4 g / cc), 5 μm class: molding pressure: 150 kg
/ Cm 2 , molding density 1.2 g / c. c. ) And 25μ
m class (molding pressure 1.6 ton / cm 2 , molding density 2.3 g)
/ C. c. Table 9 and Table 10 show the measurement results.

【0040】[0040]

【表9】 [Table 9]

【0041】[0041]

【表10】 [Table 10]

【0042】本実施例において、焼成物のメディアン径
が15μm級で空塔速度250m/minの場合を除き
外観は一次粒子的であり、したがって比表面積径はメデ
ィアン径とほぼ同じとなり、Rは1に近い値となるはず
であったが、実際にはRの2.1〜4.9が適正な範囲
となった。このことの正確な理由は不明である。
In this embodiment, the appearance is primary particle-like except for the case where the median diameter of the calcined product is 15 μm class and the superficial velocity is 250 m / min. Therefore, the specific surface area is almost the same as the median diameter, and R is 1 , But in practice, R of 2.1 to 4.9 was an appropriate range. The exact reason for this is unknown.

【0043】[0043]

【実施例6】原子数比がNi:Co:Al:Mg:Li
=0.90:0.08:0.05:0.01:1となる
ように各元素の水酸化物を混合し、成形圧力500kg
/cm2 、6×6×15mmの直方体を成形し、830
℃×24時間酸素を流しながら焼成した。Ni水酸化物
のタップ密度は1.27g/cc、α相とβ相の比は
7:3でCo水酸化物のタップ密度は0.95g/cc
であった。 条件1 条件2 充填層高さ 約350mm 約50mm *径50 空塔速度 4m/min 0.2m/min 活物質 メディアン径 5.2 0.7 外観 2次 2次 R 3.46 3.81 初期容量 159 172 15サイクル後の容量低下 6 9
Embodiment 6 The atomic ratio is Ni: Co: Al: Mg: Li.
= 0.90: 0.08: 0.05: 0.01: 1, and the hydroxide of each element was mixed, and the molding pressure was 500 kg.
/ Cm 2 , 6 × 6 × 15 mm rectangular shape, 830
Calcination was performed while flowing oxygen at 24 ° C. for 24 hours. The tap density of Ni hydroxide is 1.27 g / cc, the ratio of α phase to β phase is 7: 3, and the tap density of Co hydroxide is 0.95 g / cc.
Met. Condition 1 Condition 2 Packed bed height about 350 mm about 50 mm * Diameter 50 Superficial velocity 4 m / min 0.2 m / min Active material median diameter 5.2 0.7 Appearance Secondary Secondary R 3.46 3.81 Initial capacity 159 172 Capacity decrease after 15 cycles 6 9

【0044】[0044]

【実施例7】原子数比がNi:Co=0.8:0.2の
タップ密度0.76、α相とβ相の比が4:6の共沈水
酸化物とB2 3 ・Al2 3 組成の酸化物と水酸化リ
チウムによって、Ni+Co:B+Al:Li=0.9
7:0.03:1となるように混合した後に成形し、7
kg/cm2 の圧力、3m/minの空塔速度で酸素を
通気させて850℃×24時間焼成したところ、メデイ
アン径11.7μm、比表面積径2.72μmすなわち
R=4.3で、初期容量が168mAh/g.15サイ
クル後の低下量が3の活物質が得られた。
EXAMPLE 7 A coprecipitated hydroxide having a tap density of 0.76 with an atomic ratio of Ni: Co = 0.8: 0.2 and a ratio of α phase to β phase of 4: 6 and B 2 O 3 .Al Ni + Co: B + Al: Li = 0.9 by the oxide of 2 O 3 composition and lithium hydroxide.
7: 0.03: 1 and then molded.
When calcination was performed at 850 ° C. for 24 hours by passing oxygen at a pressure of kg / cm 2 and a superficial velocity of 3 m / min, the median diameter was 11.7 μm, the specific surface area was 2.72 μm, that is, R = 4.3. When the capacity is 168 mAh / g. An active material having a decrease of 3 after 15 cycles was obtained.

【0045】[0045]

【実施例8】Li原料としての水酸化リチウム(LiO
H・H2 O)と遷移金属原料としてのNi/Co比が原
子数比で85/15であるような共沈水酸化物(タップ
密度0.96g/cc、α相とβ相の比が3:7)とを
用いてLiとNi+Coとの原子数比が1対1となるよ
うに秤量して混合した。次いで混合粉を打錠機にて直径
5mmの近似球形に成形し、前述焼成炉の金属ニッケル
製反応容器内に設けた酸化ニッケル製多孔体上に約2kg
充填し、その充填成形体の高さは7.5cmとなった。焼
成は図1に示す上向き送風型焼成炉を用いて750℃で
10時間行なった。送風量は断面積×速度(空塔速度)
にて算出した風量(l/min)を流し、空塔速度の影
響を検討した。ガスは酸素を送気しながら焼成した。焼
成後、図3の斜視図に示すように、成形体充填層のサン
プリング位置A、EおよびIからサンプリングし、これ
を150メッシュパスの粒径に砕解し、その粉末を活物
質として電池特性を評価した。その結果を表11に示し
た。
Example 8 Lithium hydroxide (LiO
H.H 2 O) and a coprecipitated hydroxide having a Ni / Co ratio of 85/15 in atomic number ratio as a transition metal raw material (tap density 0.96 g / cc, ratio of α phase to β phase of 3 : 7), and weighed and mixed such that the atomic ratio of Li to Ni + Co was 1: 1. Next, the mixed powder was formed into an approximately spherical shape having a diameter of 5 mm by a tableting machine, and about 2 kg was placed on a porous body made of nickel oxide provided in a reaction vessel made of metal nickel of the above-mentioned firing furnace.
After filling, the height of the filled molded product was 7.5 cm. The firing was performed at 750 ° C. for 10 hours using the upward blowing type firing furnace shown in FIG. Ventilation volume is cross-sectional area x velocity (superficial velocity)
The flow rate (l / min) calculated in was flowed, and the influence of the superficial velocity was examined. The gas was fired while supplying oxygen. After firing, as shown in the perspective view of FIG. 3, sampling was performed from sampling points A, E, and I of the molded body packed layer, and this was crushed to a particle size of 150 mesh pass, and the powder was used as an active material to obtain a battery characteristic. Was evaluated. The results are shown in Table 11.

【0046】[0046]

【表11】 [Table 11]

【0047】各サンプル集団内での初期容量の差は0.
5m/min以上では平均値に対して±4〜7%内であ
った。0.3m/minでも改良効果はあるが特性は十
分ではないので0.5m/min以上が必要である。焼
成後の成形体充填高さは約5cmとなったが、上面の高
低差は5mm以内であり、成形体は焼成後も球状であっ
た。換気口の真下の上面に偏流による凹部が形成される
等の異常は見られなかった。ニッケル容器の表面は黒味
がかったが、剥離、付着は生じなかった。粉末X線回折
によっても各部で異物や二次相の検出はなく、ニッケル
容器の側面と成形体との隙間はGの位置で最大2mmで
あった。
The difference between the initial volumes within each sample population is 0,1.
At 5 m / min or more, the average value was within ± 4 to 7%. Even at 0.3 m / min, there is an improvement effect, but the characteristics are not sufficient, so that 0.5 m / min or more is required. The filling height of the compact after firing was about 5 cm, but the height difference on the upper surface was within 5 mm, and the compact was still spherical after firing. No abnormalities such as the formation of a concave portion due to drift on the upper surface immediately below the ventilation port were observed. The surface of the nickel container was blackish, but no peeling or adhesion occurred. No foreign matter or secondary phase was detected in each part by powder X-ray diffraction, and the gap between the side surface of the nickel container and the compact was 2 mm at the G position at the maximum.

【0048】[0048]

【実施例9】焼成雰囲気を加圧下で行えるようにするた
め加圧容器内に焼成装置を設置し、真空ポンプで大気を
排気した後に酸素ガスを供給し、所定の内圧を設定し、
反応容器、成形体およびその充填条件など他の条件は実
施例1と同じにした。平均空塔速度は5m/minとな
るように元圧を内圧よりも高めて供給した。この場合の
速度は加圧通気の実測速度ではなく、流量調節器での流
量(l/min)を容器断面積で除したものであり、通
気は循環させず放出した。焼成温度750℃、10時間
の条件で炉内圧力(ゲージ圧力kg/cm2 )を0.5
〜15kg/cm2 で焼成されたサンプルを使用して、
コイン電池で電池容量を評価した結果を表12に示す。
Embodiment 9 In order to enable the firing atmosphere to be performed under pressure, a firing apparatus is installed in a pressurized container, and after evacuating the atmosphere with a vacuum pump, oxygen gas is supplied and a predetermined internal pressure is set.
Other conditions such as the reaction vessel, the molded body and the filling conditions thereof were the same as in Example 1. The source pressure was supplied while the source pressure was higher than the internal pressure so that the average superficial velocity was 5 m / min. The velocity in this case is not the actually measured velocity of the pressurized ventilation, but the flow rate (l / min) in the flow rate controller divided by the cross-sectional area of the vessel, and the ventilation was discharged without circulation. The furnace pressure (gauge pressure kg / cm 2 ) was set to 0.5 at a firing temperature of 750 ° C. for 10 hours.
Use calcined samples ~15kg / cm 2,
Table 12 shows the results of evaluating the battery capacity using a coin battery.

【0049】[0049]

【表12】 [Table 12]

【0050】次に、焼成温度900℃、10時間の条件
で同様の試験を行った結果を表13に示す。
Next, the results of the same test performed at a firing temperature of 900 ° C. for 10 hours are shown in Table 13.

【0051】[0051]

【表13】 [Table 13]

【0052】加圧を行う焼成であっても焼成後の状態は
実施例1の場合と同じであった。ニッケル容器表面は完
全に黒皮となったが剥離、亀裂などは生じなかった。各
サンプル集団内での初期容量の差は±4〜6%内であっ
た。
The state after firing was the same as in Example 1 even in the case of firing under pressure. The surface of the nickel container was completely blackened, but no peeling or cracking occurred. Initial volume differences within each sample population were within ± 4-6%.

【0053】[0053]

【実施例10】以上の実施例8、9では成形体充填層上
部のサンプルのサイクル特性が低い傾向にある。改良の
ため、図2に示すように、焼成炉8の上部から送気し、
充填層6、多孔体5を通過させて炉外へ放出させた。焼
成炉炉体はガス漏れがないように継目などをシールして
使用し、加圧の場合は実施例9の場合と同じく加圧容器
内に設置した。焼成温度720℃で10時間保持の場
合、および焼成温度875℃で10時間保持の場合につ
いて初期容量等試験結果を表14に示す。
Embodiment 10 In the above embodiments 8 and 9, the cycle characteristics of the sample on the upper part of the compacted layer tend to be low. For improvement, as shown in FIG.
After passing through the packed layer 6 and the porous body 5, it was discharged outside the furnace. The sintering furnace body was used by sealing seams and the like so as to prevent gas leakage. In the case of pressurization, the furnace body was placed in a pressurized container as in the case of Example 9. Table 14 shows the test results of the initial capacity and the like in the case of holding at the firing temperature of 720 ° C. for 10 hours and in the case of holding at the firing temperature of 875 ° C. for 10 hours.

【0054】[0054]

【表14】 [Table 14]

【0055】[0055]

【実施例11】リチウム二次電池の正極材料としてリチ
ウムを含むNiとCoの複合酸化物が用いられている
が、Co以外の元素を添加組み合わせた場合、例えば水
酸化ニッケルとオキシ水酸化マンガン、水酸化ニッケル
と水酸化マグネシウム、水酸化ニッケルと四三酸化コバ
ルトと酸化硼素との組み合わせについて、表15に示す
ように、焼成温度、時間、炉内圧力、空塔速度を特定し
て成形体を焼成したサンプルを用いてコイン電池による
初期容量および15サイクル後の容量低下を測定し結果
を表15に示す。
Embodiment 11 Although a composite oxide of Ni and Co containing lithium is used as a positive electrode material of a lithium secondary battery, when an element other than Co is added and combined, for example, nickel hydroxide and manganese oxyhydroxide, For the combinations of nickel hydroxide and magnesium hydroxide, nickel hydroxide, cobalt tetroxide, and boron oxide, as shown in Table 15, the sintering temperature, time, furnace pressure, and superficial velocity were specified to form a molded body. Using the fired sample, the initial capacity of the coin battery and the capacity decrease after 15 cycles were measured, and the results are shown in Table 15.

【0056】[0056]

【表15】 [Table 15]

【0057】[0057]

【実施例12】実施例8〜11において焼成される成形
体の寸法は直径5mmの球形であったが、成形体の形状
を例えばロールブリケッターによる幅5×長20×厚1
mmの小板片あるいは押出成形された径4mmの麺状材
について同様の試験を行った。組成、装置は実施例1と
同じで平均空塔速度を3m/minとし、750℃、7
時間保持の条件で焼成した。焼成試料を用いて電池を作
製し、初期容量および15サイクル後の容量低下につい
て測定を行った。結果を表16に示した。
Embodiment 12 In Examples 8 to 11, the size of the molded body fired was spherical with a diameter of 5 mm, but the shape of the molded body was, for example, 5 × 20 × 1 by a roll briquetter.
A similar test was performed on small plate pieces of 4 mm or noodle-like materials having a diameter of 4 mm formed by extrusion. The composition and apparatus were the same as in Example 1, the average superficial velocity was 3 m / min,
It was fired under the condition of keeping time. A battery was prepared using the fired sample, and the initial capacity and the capacity decrease after 15 cycles were measured. The results are shown in Table 16.

【0058】[0058]

【表16】 [Table 16]

【0059】[0059]

【実施例13】遷移金属がNi主成分の場合には通気ガ
ス成分は酸素が適しているが、化学成分的に酸素以外の
成分が含まれていてもよい場合もある。そこでNiとC
oとを70/30のモル比で共沈させた水酸化物を用
い、LiOH・H2 O粉末と混合し、直径10×厚5m
mの成形体をプレスで成形し、700℃、15時間焼成
した。なお通気はエアーポンプで空気を10m/min
で通気した。焼成試料を用いて電池を作製し、初期容量
および15サイクル後の容量低下について測定を行っ
た。結果を表17に示す。
Embodiment 13 In the case where the transition metal is mainly composed of Ni, oxygen is suitable as the ventilation gas component, but there may be cases where components other than oxygen are included as chemical components. So Ni and C
Using a hydroxide obtained by coprecipitating o with a molar ratio of 70/30, mixing with LiOH · H 2 O powder, diameter 10 × thickness 5 m
m was molded by a press and baked at 700 ° C. for 15 hours. Ventilation is performed by an air pump at 10 m / min.
Ventilated. A battery was prepared using the fired sample, and the initial capacity and the capacity decrease after 15 cycles were measured. Table 17 shows the results.

【0060】[0060]

【表17】 [Table 17]

【0061】[0061]

【実施例14】実施例8と同様条件で充填容器を大きく
してバラツキの大小を確認した。 条件1 条件2 容器直径 1000mm 500mm 充填高さ 200mm 600mm 空塔速度 5m/min 25m/min サンプリング位置A 176−10 180−11 E 184−7 187−7 I 171−9 184−9 実施例8で得られた結果とほぼ同等の特性が容器内の位
置間でバラツキ少なく得られた。この結果から本法が焼
成規模拡大においても他法のようなバラツキを生じるこ
となく工業的に生産できることが明らかになった。
Example 14 The filling container was enlarged under the same conditions as in Example 8, and the size of the variation was confirmed. Condition 1 Condition 2 Container diameter 1000 mm 500 mm Fill height 200 mm 600 mm Superficial velocity 5 m / min 25 m / min Sampling position A 176-10 180-11 E 184-7 187-7 I 171-9 184-9 Obtained in Example 8 Characteristics almost equivalent to the obtained results were obtained with less variation between positions in the container. From this result, it was clarified that the present method can be industrially produced even when the sintering scale is increased without causing the variation unlike the other methods.

【0062】[0062]

【発明の効果】以上説明したように、本発明の方法によ
れば水酸化ニッケル粉末とリチウム化合物粉末との混合
物を成形、焼成してリチウム・ニッケル系複合酸化物正
極活物質とする際、原料としての水酸化ニッケルの粉体
特性と結晶構造を制御するために水酸化ニッケル合成時
のpH、温度、その他の工程要素を規制することによ
り、得られた焼結体において5〜30μmのメディアン
径およびRが1.5〜6の範囲であるような活物質粉末
が得られるので、電池特性例えば初期容量が高く、15
サイクル後の容量低下率が小さい正極活物質が得られ
る。また、原料粉体を成形することによって密度を高
め、その成形体充填層内を一定以上の流速で強制通気し
ながら焼成するので、焼成量が多くなった場合でも反応
容器全体の反応が均質で、しかも粉体の飛散や通気の偏
流がないので、電池特性に優れたリチウム複合酸化物活
物質を工業的規模で有利に合成することができる。
As described above, according to the method of the present invention, when a mixture of nickel hydroxide powder and lithium compound powder is formed and fired to obtain a lithium-nickel composite oxide positive electrode active material, By controlling the pH, temperature, and other process elements during the synthesis of nickel hydroxide in order to control the powder characteristics and crystal structure of nickel hydroxide as a component, the resulting sintered body has a median diameter of 5 to 30 μm. And an active material powder in which R is in the range of 1.5 to 6 is obtained.
A positive electrode active material having a small capacity reduction rate after cycling is obtained. In addition, since the density is increased by molding the raw material powder and firing is performed while forcing the inside of the molded body packed layer at a certain flow rate or more, even if the amount of firing increases, the reaction of the entire reaction vessel is uniform. In addition, since there is no scattering of powder and no drift of ventilation, a lithium composite oxide active material having excellent battery characteristics can be advantageously synthesized on an industrial scale.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に用いられた上向き送風型焼成
炉を示す模式断面図である。
FIG. 1 is a schematic cross-sectional view showing an upward blowing type firing furnace used in an example of the present invention.

【図2】本発明の実施例に用いられた下向き送風型焼成
炉を示す模式断面図である。
FIG. 2 is a schematic cross-sectional view showing a downward blow type firing furnace used in an example of the present invention.

【図3】本発明の実施例および比較例における焼成後の
サンプリング位置を示す斜視図である。
FIG. 3 is a perspective view showing sampling positions after firing in Examples and Comparative Examples of the present invention.

【図4】本発明の実施例および比較例において試験用電
池として作成されたコイン電池を示す模式断面図であ
る。
FIG. 4 is a schematic cross-sectional view showing a coin battery prepared as a test battery in Examples and Comparative Examples of the present invention.

【図5】硝酸ニッケルの水溶液とカセイソーダ液とによ
って水酸化ニッケルを合成する際、水酸化ニッケルのタ
ップ密度に及ぼす液温、pHの影響を示すグラフであ
る。
FIG. 5 is a graph showing the influence of liquid temperature and pH on the tap density of nickel hydroxide when synthesizing nickel hydroxide with an aqueous solution of nickel nitrate and caustic soda solution.

【符号の説明】[Explanation of symbols]

1 エアーポンプ 2 流量調節器 3 送気配管 4 予熱ヒーター 5 多孔体 6 成形体充填層 7 反応容器 8 焼成炉 9 換気口 10 支持台 11 ステンレスケース 12 ガスケット 13 封口板 14 負極 15 正極 16 セパレーター REFERENCE SIGNS LIST 1 air pump 2 flow rate controller 3 air supply pipe 4 preheater 5 porous body 6 molded body packed layer 7 reaction vessel 8 firing furnace 9 ventilation port 10 support base 11 stainless case 12 gasket 13 sealing plate 14 negative electrode 15 positive electrode 16 separator

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 10/40 H01M 10/40 Z (72)発明者 西佐古 将 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 (72)発明者 永田 長寿 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 (72)発明者 張替 彦一 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01M 10/40 H01M 10/40 Z (72) Inventor Masaru Nishisako 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. In-house (72) Inventor Nagata Nagashou 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Hikoichi Chokari 1-8-2, Marunouchi, Chiyoda-ku, Tokyo Dowa Mining stock In company

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 反応槽にアルカリと金属塩の水溶液とを
連続的または間けつ的に供給し、pHを6.5〜11の
範囲、かつ90℃以下の温度で反応させながら反応物を
含む液からなるスラリーを連続的または一部を間けつ的
に反応槽外に取り出す工程と、スラリー中の固形反応物
と液とを分離してケーキ状またはペースト状とする工程
と洗浄によって不要分を除去する工程を経て、ニッケル
の水酸化物またはニッケルと他の元素との共沈物を得る
ことを特徴とする非水二次電池用正極活物質用原料の製
造方法。
1. An alkali and an aqueous solution of a metal salt are continuously or intermittently supplied to a reaction vessel, and the reaction is carried out at a pH in the range of 6.5 to 11 and at a temperature of 90 ° C. or lower, and contains the reactants. Unnecessary components are removed by continuously or partially removing the slurry of the liquid from the reaction tank, separating the solid reactant and the liquid in the slurry into a cake or paste, and washing. A method for producing a raw material for a positive electrode active material for a non-aqueous secondary battery, wherein a hydroxide of nickel or a coprecipitate of nickel and another element is obtained through a removing step.
【請求項2】 ニッケル水酸化物またはニッケルと他の
元素の共沈物であってその結晶相がα相及びまたはβ相
の水酸化ニッケルであり、タップ密度が0.6〜1.4
g/ccである非水二次電池用正極活物質用原料物質。
2. A nickel hydroxide or a coprecipitate of nickel and another element, the crystal phase of which is α-phase and / or β-phase nickel hydroxide, and having a tap density of 0.6 to 1.4.
g / cc raw material for a positive electrode active material for a non-aqueous secondary battery.
【請求項3】 反応槽にアルカリと金属塩の水溶液とを
連続的または間けつ的に供給し、pHを6.5〜11の
範囲、かつ90℃以下の温度で反応させながら反応物を
含む液からなるスラリーを連続的または一部を間けつ的
に反応槽外に取り出す工程と、スラリー中の固形反応物
と液とを分離してケーキ状またはペースト状とする工程
と洗浄によって不要分を除去する工程を経て得られる結
晶相がα相及び又はβ相の水酸化ニッケルを含み、タッ
プ密度が0.6〜1.4g/ccであるニッケル水酸化
物またはニッケルと他の元素の共沈物からなることを特
徴とする非水二次電池用正極活物質用原料物質。
3. An alkali and an aqueous solution of a metal salt are continuously or intermittently supplied to a reaction vessel, and the reaction is carried out at a pH in the range of 6.5 to 11 and at a temperature of 90 ° C. or lower, and contains the reactants. Unnecessary components are removed by continuously or partially removing the slurry of the liquid from the reaction tank, separating the solid reactant and the liquid in the slurry into a cake or paste, and washing. The crystal phase obtained through the removing step contains nickel hydroxide of α phase and / or β phase, and has a tap density of 0.6 to 1.4 g / cc, and is a nickel hydroxide or nickel and coprecipitated with other elements. A raw material for a positive electrode active material for a non-aqueous secondary battery, comprising: a material.
【請求項4】 リチウム化合物と遷移金属を主体とする
化合物との混合粉末またはリチウム化合物と遷移金属を
主体とする化合物との共沈物または前記混合粉末と前記
共沈物との混合物またはリチウムと遷移金属とを主体と
する共沈物を成形し成形体を焼成する方法であって、成
形体からなる充填層間に酸化性ガスを通気させることを
特徴とする正極活物質の製造方法。
4. A mixed powder of a lithium compound and a compound mainly composed of a transition metal, a coprecipitate of a lithium compound and a compound mainly composed of a transition metal, or a mixture of the mixed powder and the coprecipitated substance or lithium. A method for producing a positive electrode active material, comprising forming a coprecipitate mainly composed of a transition metal and baking the formed body, wherein an oxidizing gas is passed between filled layers formed of the formed body.
【請求項5】 充填層内の雰囲気が加圧された状態で強
制通気焼成することを特徴とする請求項4記載の正極活
物質の製造方法。
5. The method for producing a positive electrode active material according to claim 4, wherein forced calcination is performed in a state where the atmosphere in the filling layer is pressurized.
【請求項6】 充填反応容器の少なくとも内部接触部が
金属ニッケル、高ニッケル合金、ニッケルを主体とする
化合物またはこれら三者のうち二つ以上のものの組み合
わせか、表面に酸化皮膜を形成した金属ニッケル、高ニ
ッケル合金、金属ニッケルか高ニッケル合金とニッケル
を主体とする化合物とからなる複合材であることを特徴
とする請求項5または6記載の正極活物質の製造方法。
6. A filled reaction vessel wherein at least the internal contact portion is metallic nickel, a high nickel alloy, a compound mainly composed of nickel, a combination of two or more of these three, or metallic nickel having an oxide film formed on the surface. 7. The method for producing a positive electrode active material according to claim 5, wherein the composite material is a high nickel alloy, a metallic nickel or a high nickel alloy and a compound mainly composed of nickel.
【請求項7】 Lia Nibcd で示されるような
化学組成(但し0.95≦a≦1.05、b+c=1、
0<c<0.4、d≒2、MはCo、Mn、Fe、V、
Ti、Al、Sn、Zn、Cu、In、Ga、Si、G
e、Sb、B、P、K、Na、Mg、Ca、Ba、S
r、W、Mo、Nb、Ta、Y、ランタニド元素のうち
から選択される1種以上の元素である。)を有し、メデ
ィアン径が5〜30μmの範囲であり、かつメディアン
径の比表面積径に対する比・R=D50/DS が1.5〜
6であることを特徴とする非水二次電池用正極活物質。
7. A chemical composition represented by Li a Ni b M C O d (where 0.95 ≦ a ≦ 1.05, b + c = 1,
0 <c <0.4, d ≒ 2, M is Co, Mn, Fe, V,
Ti, Al, Sn, Zn, Cu, In, Ga, Si, G
e, Sb, B, P, K, Na, Mg, Ca, Ba, S
At least one element selected from r, W, Mo, Nb, Ta, Y, and lanthanide elements. ) Has a median diameter is in the range of 5 to 30 [mu] m, and the ratio · R = D 50 / D S for the specific surface area diameter of median diameter 1.5
6. A positive electrode active material for a non-aqueous secondary battery, which is 6.
【請求項8】 初期容量が150mAh/g以上であ
り、15サイクル後の容量低下が18mAh/g以下で
あることを特徴とする請求項7記載の非水二次電池用正
極活物質。
8. The positive electrode active material for a non-aqueous secondary battery according to claim 7, wherein the initial capacity is 150 mAh / g or more, and the capacity decrease after 15 cycles is 18 mAh / g or less.
【請求項9】 ニッケル水酸化物またはニッケルと他の
元素との共沈物であってその結晶相がα相またはβ相ま
たはα相とβ相との混合相の水酸化ニッケルであり、か
つそのタップ密度が0.6〜1.4g/ccである粉末
状原料物質をリチウム化合物粉末と混合して得た混合粉
末を成形し、得られた成形体を反応容器内に充填して充
填層をつくり、該充填層に酸化ガスを通気させて焼成
し、焼成物を砕解して、Lia Nibcd で示され
るような化学組成(但し0.95≦a≦1.05、b+
c=1、0<c<0.4、d≒2、MはCo、Mn、F
e、V、Ti、Al、Sn、Zn、Cu、In、Ga、
Si、Ge、Sb、B、P、K、Na、Mg、Ca、B
a、Sr、W、Mo、Nb、Ta、Y、ランタニド元素
のうちから選択される1種以上の元素である。)を有
し、メディアン径が5〜30μmの範囲であり、かつメ
ディアン径の比表面積径に対する比・R=D50/DS
1.5〜6である粉末物質を得ることを特徴とする非水
二次電池用正極活物質の製造方法。
9. A nickel hydroxide or a coprecipitate of nickel and another element, the crystal phase of which is α-phase or β-phase or a mixed phase of α- and β-phase nickel hydroxide, and A powdered raw material having a tap density of 0.6 to 1.4 g / cc is mixed with a lithium compound powder to form a mixed powder, and the obtained molded body is filled in a reaction vessel to form a packed bed. the make, and fired by venting the oxidizing gas to the packed bed, and disintegration, the fired product, Li a Ni b M c O chemical composition as shown by d (where 0.95 ≦ a ≦ 1.05 , B +
c = 1, 0 <c <0.4, d ≒ 2, M is Co, Mn, F
e, V, Ti, Al, Sn, Zn, Cu, In, Ga,
Si, Ge, Sb, B, P, K, Na, Mg, Ca, B
a, Sr, W, Mo, Nb, Ta, Y, and at least one element selected from lanthanide elements. ) Has a median diameter is in the range of 5 to 30 [mu] m, and the ratio · R = D 50 / D S for the specific surface area diameter of the median diameter and wherein the obtaining a powder material is 1.5 to 6 A method for producing a positive electrode active material for a non-aqueous secondary battery.
【請求項10】 前記粉末物質を用いた非水二次電池の
初期容量が150mAh/g以上であり、15サイクル
後の容量低下が18mAh/g以下であることを特徴と
する請求項9記載の非水二次電池用正極活物質の製造方
法。
10. The non-aqueous secondary battery using the powdered substance has an initial capacity of 150 mAh / g or more, and a capacity decrease after 15 cycles is 18 mAh / g or less. A method for producing a positive electrode active material for a non-aqueous secondary battery.
【請求項11】 前記粉末状原料物質は、反応槽にアル
カリと金属塩の水溶液とを連続的または間けつ的に供給
し、pHを6.5〜11の範囲、かつ90℃以下の温度
で反応させながら反応物を含む液からなるスラリーを連
続的または一部を間けつ的に反応槽外に取り出す工程
と、スラリー中の固形反応物と液とを分離してケーキ状
またはペースト状とする工程と洗浄によって不要分を除
去する工程を経て、ニッケルの水酸化物またはニッケル
と他の元素との共沈物として得ることを特徴とする請求
項9または10記載の非水二次電池用正極活物質の製造
方法。
11. The powdery raw material is supplied to a reaction vessel continuously or intermittently with an aqueous solution of an alkali and a metal salt, and has a pH in the range of 6.5 to 11 and a temperature of 90 ° C. or lower. A step of continuously or partly taking out a slurry composed of a liquid containing a reactant outside the reaction tank while reacting, and separating a solid reactant and a liquid in the slurry into a cake or paste. The positive electrode for a non-aqueous secondary battery according to claim 9, wherein the positive electrode is obtained as a hydroxide of nickel or a coprecipitate of nickel and another element through a step of removing unnecessary parts by a step and washing. Active material manufacturing method.
【請求項12】 前記焼成を充填層内の雰囲気が加圧さ
れた状態で強制通気焼成することにより行うことを特徴
とする請求項9〜11のいずれかに記載の正極活物質の
製造方法。
12. The method for producing a positive electrode active material according to claim 9, wherein the baking is performed by forcible aeration baking in a state where the atmosphere in the packed layer is pressurized.
【請求項13】 前記充填反応容器の少なくとも内部接
触部が金属ニッケル、高ニッケル合金、ニッケルを主体
とする化合物またはこれら三者のうち二つ以上のものの
組み合わせか、表面に酸化皮膜を形成した金属ニッケ
ル、高ニッケル合金、金属ニッケルか高ニッケル合金と
ニッケルを主体とする化合物とからなる複合材であるこ
とを特徴とする請求項9〜12のいずれかに記載の正極
活物質の製造方法。
13. A method according to claim 1, wherein at least the internal contact portion of the filled reaction vessel is metallic nickel, a high nickel alloy, a compound mainly composed of nickel, a combination of two or more of these three, or a metal having an oxide film formed on the surface. The method for producing a positive electrode active material according to any one of claims 9 to 12, wherein the method is a composite material comprising nickel, a high nickel alloy, metallic nickel or a high nickel alloy and a compound mainly containing nickel.
JP25926897A 1996-09-12 1997-09-08 Positive active material for non-aqueous secondary battery and method for producing the same Expired - Fee Related JP3575582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25926897A JP3575582B2 (en) 1996-09-12 1997-09-08 Positive active material for non-aqueous secondary battery and method for producing the same

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP26360296 1996-09-12
JP8-263602 1996-09-12
JP9-209697 1997-07-18
JP20969797 1997-07-18
JP9-247652 1997-08-28
JP24765297 1997-08-28
JP25926897A JP3575582B2 (en) 1996-09-12 1997-09-08 Positive active material for non-aqueous secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11135118A true JPH11135118A (en) 1999-05-21
JP3575582B2 JP3575582B2 (en) 2004-10-13

Family

ID=27476470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25926897A Expired - Fee Related JP3575582B2 (en) 1996-09-12 1997-09-08 Positive active material for non-aqueous secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3575582B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357513A (en) * 1999-06-14 2000-12-26 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacture
JP2002249320A (en) * 2001-02-16 2002-09-06 Tanaka Chemical Corp High-density nickel hydroxide particle containing aluminum and method for producing the same
JPWO2003044881A1 (en) * 2001-11-22 2005-03-24 株式会社ユアサコーポレーション Positive electrode active material for lithium secondary battery and lithium secondary battery
CN100394639C (en) * 2000-04-04 2008-06-11 索尼株式会社 Non-aqueous electrolyte secondary battery
JP2009084104A (en) * 2007-09-28 2009-04-23 Vale Inco Japan Ltd Method for coating nickel oxide particles
JP2009536437A (en) * 2006-05-10 2009-10-08 エルジー・ケム・リミテッド Method for preparing high performance lithium secondary battery material
JP2015056382A (en) * 2013-09-13 2015-03-23 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2015197978A (en) * 2014-03-31 2015-11-09 日産自動車株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2015197979A (en) * 2014-03-31 2015-11-09 日産自動車株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and production method therefor
US9412996B2 (en) 2005-04-13 2016-08-09 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9416024B2 (en) 2005-04-13 2016-08-16 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US9590243B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
JP2017162790A (en) * 2016-03-03 2017-09-14 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
JP2019099406A (en) * 2017-11-30 2019-06-24 住友金属鉱山株式会社 Production method of lithium-nickel composite oxide and production method of nonaqueous electrolyte secondary battery
JP2019175698A (en) * 2018-03-28 2019-10-10 住友金属鉱山株式会社 Manufacturing method for positive electrode active material for non-aqueous electrolyte secondary battery, molded body, assembly, and manufacturing method for non-aqueous electrolyte secondary battery
CN110416601A (en) * 2019-08-07 2019-11-05 哈尔滨师范大学 A kind of preparation method of sode cell bath surface metal oxide layer
WO2020137440A1 (en) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Lithium-containing complex oxide production method
WO2021085114A1 (en) 2019-10-31 2021-05-06 パナソニックIpマネジメント株式会社 Method for producing lithium transition metal composite oxide
WO2021153400A1 (en) * 2020-01-30 2021-08-05 パナソニックIpマネジメント株式会社 Method for producing lithium transition metal complex oxide
WO2022065096A1 (en) * 2020-09-25 2022-03-31 三洋電機株式会社 Method for producing lithium-nickel complex oxide
EP4036063A4 (en) * 2019-09-27 2022-11-23 Panasonic Intellectual Property Management Co., Ltd. Method for producing lithium-nickel complex oxide

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357513A (en) * 1999-06-14 2000-12-26 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacture
JP4581157B2 (en) * 1999-06-14 2010-11-17 パナソニック株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
CN100394639C (en) * 2000-04-04 2008-06-11 索尼株式会社 Non-aqueous electrolyte secondary battery
JP4683741B2 (en) * 2001-02-16 2011-05-18 株式会社田中化学研究所 High density aluminum-containing nickel hydroxide particles and method for producing the same
JP2002249320A (en) * 2001-02-16 2002-09-06 Tanaka Chemical Corp High-density nickel hydroxide particle containing aluminum and method for producing the same
JPWO2003044881A1 (en) * 2001-11-22 2005-03-24 株式会社ユアサコーポレーション Positive electrode active material for lithium secondary battery and lithium secondary battery
JP4956883B2 (en) * 2001-11-22 2012-06-20 株式会社Gsユアサ Positive electrode active material for lithium secondary battery and lithium secondary battery
US9590235B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9412996B2 (en) 2005-04-13 2016-08-09 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9416024B2 (en) 2005-04-13 2016-08-16 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US9590243B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
JP2009536437A (en) * 2006-05-10 2009-10-08 エルジー・ケム・リミテッド Method for preparing high performance lithium secondary battery material
JP2009084104A (en) * 2007-09-28 2009-04-23 Vale Inco Japan Ltd Method for coating nickel oxide particles
JP2015056382A (en) * 2013-09-13 2015-03-23 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2015197978A (en) * 2014-03-31 2015-11-09 日産自動車株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2015197979A (en) * 2014-03-31 2015-11-09 日産自動車株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and production method therefor
JP2017162790A (en) * 2016-03-03 2017-09-14 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
JP2019099406A (en) * 2017-11-30 2019-06-24 住友金属鉱山株式会社 Production method of lithium-nickel composite oxide and production method of nonaqueous electrolyte secondary battery
JP2019175698A (en) * 2018-03-28 2019-10-10 住友金属鉱山株式会社 Manufacturing method for positive electrode active material for non-aqueous electrolyte secondary battery, molded body, assembly, and manufacturing method for non-aqueous electrolyte secondary battery
WO2020137440A1 (en) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Lithium-containing complex oxide production method
CN113195415A (en) * 2018-12-28 2021-07-30 松下知识产权经营株式会社 Method for producing lithium-containing composite oxide
JPWO2020137440A1 (en) * 2018-12-28 2021-11-11 パナソニックIpマネジメント株式会社 Method for Producing Lithium-Containing Composite Oxide
CN113195415B (en) * 2018-12-28 2023-08-29 松下知识产权经营株式会社 Method for producing lithium-containing composite oxide
CN110416601A (en) * 2019-08-07 2019-11-05 哈尔滨师范大学 A kind of preparation method of sode cell bath surface metal oxide layer
EP4036063A4 (en) * 2019-09-27 2022-11-23 Panasonic Intellectual Property Management Co., Ltd. Method for producing lithium-nickel complex oxide
WO2021085114A1 (en) 2019-10-31 2021-05-06 パナソニックIpマネジメント株式会社 Method for producing lithium transition metal composite oxide
EP4052876A4 (en) * 2019-10-31 2022-12-28 Panasonic Intellectual Property Management Co., Ltd. Method for producing lithium transition metal composite oxide
WO2021153400A1 (en) * 2020-01-30 2021-08-05 パナソニックIpマネジメント株式会社 Method for producing lithium transition metal complex oxide
CN115003644A (en) * 2020-01-30 2022-09-02 松下知识产权经营株式会社 Method for producing lithium transition metal composite oxide
EP4098636A4 (en) * 2020-01-30 2023-08-09 Panasonic Intellectual Property Management Co., Ltd. Method for producing lithium transition metal complex oxide
WO2022065096A1 (en) * 2020-09-25 2022-03-31 三洋電機株式会社 Method for producing lithium-nickel complex oxide

Also Published As

Publication number Publication date
JP3575582B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
JP3575582B2 (en) Positive active material for non-aqueous secondary battery and method for producing the same
KR101206128B1 (en) Solid State Synthesis of Lithium-Nickel-Cobalt-Manganese Mixed Metal Oxides for Use in Lithium Ion Battery Cathode Material
US6794036B2 (en) Active material of positive electrode for non-aqueous electrolyte secondary battery and method for preparing the same and non-aqueous electrolyte secondary battery using the same
US20170033358A1 (en) Organic compounds and methods of making organic compounds
EP3341991B1 (en) High tap density lithium positive electrode active material, intermediate and process of preparation
EP2833445B1 (en) Positive electrode active material particle powder and method for producing same, and non-aqueous electrolyte secondary battery
US6077496A (en) Positive electrode active material for nonaqueous secondary cells and a process for producing said active material
EP2492243A1 (en) Nickel-cobalt-manganese compound particle powder and method for producing same, lithium composite oxide particle powder and method for producing same, and nonaqueous electrolyte secondary battery
JP5021892B2 (en) Precursor for positive electrode material of lithium ion secondary battery, method for producing the same, and method for producing positive electrode material using the same
WO1997019023A1 (en) Lithium-nickel composite oxide, process for preparing the same, and positive active material for secondary battery
JP2007091573A (en) Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same, and application of the multiple oxide
JP2001076724A (en) Positive electrode material for lithium battery and its manufacture
JP2006089364A (en) Nickel hydroxide particle containing aluminum and its manufacturing method
CN110444756B (en) Lithium ion battery anode material prepared by high-temperature reaction device, preparation method and application
JP7444534B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and molded article
JP7338133B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH10310433A (en) Production of nickel hydroxide, nickel oxide and positive electrode active material for lithium secondary cell
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JP3315910B2 (en) Positive active material for lithium secondary battery and secondary battery using the same
JP2019175701A (en) Manufacturing method for positive electrode active material for non-aqueous electrolyte secondary battery, molded body, assembly, and manufacturing method for non-aqueous electrolyte secondary battery
JP6936909B1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using it
JP7417675B1 (en) Metal composite hydroxide particles, method for producing metal composite compound, and method for producing positive electrode active material for lithium secondary batteries
WO2021153400A1 (en) Method for producing lithium transition metal complex oxide
KR100488226B1 (en) Positive electrode active material for nonaqueous secondary cells and a process for producing said active material
JP7332124B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, molding, assembly, and method for producing non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040305

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees