JPH11131355A - Production of spunbonded nonwoven fabric and apparatus therefor - Google Patents

Production of spunbonded nonwoven fabric and apparatus therefor

Info

Publication number
JPH11131355A
JPH11131355A JP9294444A JP29444497A JPH11131355A JP H11131355 A JPH11131355 A JP H11131355A JP 9294444 A JP9294444 A JP 9294444A JP 29444497 A JP29444497 A JP 29444497A JP H11131355 A JPH11131355 A JP H11131355A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
rectangular
filament group
corona
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9294444A
Other languages
Japanese (ja)
Other versions
JP3819129B2 (en
Inventor
Katsuji Hikasa
勝次 日笠
Mitsuji Nakakita
満次 中北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP29444497A priority Critical patent/JP3819129B2/en
Publication of JPH11131355A publication Critical patent/JPH11131355A/en
Application granted granted Critical
Publication of JP3819129B2 publication Critical patent/JP3819129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide both an apparatus for producing a spunbonded nonwoven fabric by which the uniform dispensability can be ensured without deteriorating the productivity when producing the spunbonded nonwoven fabric composed of a fine denier and many filaments and a method for producing the nonwoven fabric. SOLUTION: (1) This apparatus for producing a spunbonded nonwoven fabric comprises a rectangular spinning nozzle 1 having a width corresponding to the production width of the nonwoven fabric, a rectangular air sucker 5 having a rectangular inlet capable of directly introducing filament group 2 extruded from the spinning nozzle 1, a rectangular channel 6 installed connectedly to the rectangular air sucker 5 in order and a rectangular channel device 7 for corona electrical charging. (2) The method for producing the spunbonded nonwoven fabric comprises charging the filament group 2 at >=0.01 mA/cm<2> corona discharge current density per unit area with the rectangular device 7 for corona electrical charging when producing the spunbonded nonwoven fabric.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はスパンボンド不織布
の製造装置および製造方法に関し、さらに詳しくは高度
に均一に分散された細デニールフィラメントからなる不
織布を経済的に製造することができ、不織布の分散均一
性が要求される分野、例えば、紙オムツの材料として特
に立体ギャザーやトップシート等、医療用防護服、マス
ク、フィルター等の材料として特に有用なスパンボンド
不織布の製造装置およびスパンボンド不織布の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for producing a spunbonded nonwoven fabric, and more particularly to a method for economically producing a nonwoven fabric composed of highly uniformly dispersed fine denier filaments. In fields where uniformity is required, for example, a spunbonded nonwoven fabric manufacturing apparatus and a spunbonded nonwoven fabric manufacturing device which are particularly useful as a material for disposable diapers, particularly as a material for medical protective clothing, masks, filters, etc., such as three-dimensional gathers and top sheets. About the method.

【0002】[0002]

【従来の技術】一般に、スパンボンド不織布は、熱可塑
性樹脂を溶融紡出後、直ちにロールまたは高速気流で牽
引して繊維とし、この繊維群を静電気または空気流の流
れを利用して開繊・分散してウェブに形成し、これを熱
圧着して製造されている。繊維群に静電気を与える方法
としては、摩擦帯電法が一般的であるが、フィラメント
の繊度(デニール)が小さくなるとフィラメントの慣性
力が小さくなり衝突板に衝突する力も小さくなって帯電
量が減少する。また、フィラメントの細デニール化は一
般的に紡口ホール当たりの吐出量を少なくして行うた
め、生産量を確保する経済的な運転にはフィラメント数
の大幅な増加が必要となる。しかし、フィラメント数の
増加により衝突板に直接接触しないフィラメントが増加
し、摩擦帯電の不均一性をもたらすという欠点があっ
た。このため、均一なフィラメント群の開繊と分散を確
保しつつ細デニールのフィラメントを用いて不織布を経
済的に製造することは困難であった。
2. Description of the Related Art In general, spunbonded nonwoven fabrics are melted and spun out of a thermoplastic resin, and are immediately drawn into a fiber by a roll or a high-speed airflow. It is manufactured by dispersing and forming into a web, and thermocompression bonding. As a method of applying static electricity to the fiber group, a triboelectric charging method is generally used. However, when the fineness (denier) of the filament decreases, the inertia force of the filament decreases, the force colliding with the collision plate decreases, and the charge amount decreases. . In addition, since fine denier of the filament is generally performed with a small discharge amount per spinning hole, a large increase in the number of filaments is necessary for economical operation for securing a production amount. However, an increase in the number of filaments causes an increase in the number of filaments that do not directly contact the collision plate, resulting in non-uniform triboelectric charging. For this reason, it has been difficult to economically produce a nonwoven fabric using fine denier filaments while ensuring uniform opening and dispersion of filament groups.

【0003】また、繊維群に静電気を与える方法とし
て、特公昭54−28509号公報にはコロナ放電によ
る方法が開示されている。この方法はフィラメント群を
ターゲット板に衝突させてコロナ荷電中に扇形に広げな
がら帯電させる方法である。しかし、細デニールで慣性
力の小さいフィラメントは、帯電したフィラメントがタ
ーゲット板に吸着され易く、特に扇形に広がった両端で
著しくなり、また経時的にターゲット板に汚れが蓄積し
てくるとフィラメントのターゲット板上での走行安定性
が著しく損なわれ、堆積捕集されるウェブの開繊・分散
性が悪化する等の問題があった。さらにターゲット板に
衝突させるフィラメント群単位でのコロナ帯電による静
電気的な干渉が存在するため、フィラメント群間の均一
な重なり堆積が阻害され、分散の均一性が損なわれると
いう問題もあった。このような問題は慣性力の弱い細デ
ニールのフィラメントほど顕著である。
As a method of applying static electricity to a fiber group, Japanese Patent Publication No. 54-28509 discloses a method using corona discharge. In this method, a group of filaments is charged while collapsing a target plate and spreading in a fan shape during corona charging. However, fine denier and low inertia filaments tend to adsorb charged filaments to the target plate, especially at the fan-shaped spread ends, and when dirt accumulates on the target plate over time, the filament target There have been problems such as the running stability on the plate being significantly impaired, and the spread / dispersibility of the web collected and collected being deteriorated. Furthermore, since there is electrostatic interference due to corona charging in a unit of filament group that collides with the target plate, there is a problem that uniform overlapping and deposition between the filament groups is inhibited, and uniformity of dispersion is impaired. Such a problem is more remarkable in a fine denier filament having a low inertia force.

【0004】また特表平7−505687号公報にもコ
ロナ放電による方法が開示されている。しかし、この方
法では、多数のフィラメント、例えば1000本/1m
幅を超えると、フィラメント群を均一に開繊させるのに
十分な帯電量の付与が困難となり、帯電量を増やすため
にコロナ電圧を上げていくと、互い違いにコロナ電極が
配置されているため、上流側での帯電が下流側での帯電
に対して干渉し、捕集面に堆積するフィラメント群に斑
を生じさせてしまう等の問題があった。また運転経時に
コロナ放電電極に対向している金属面に汚れが蓄積し、
その汚れとフィラメント群が接触することによりフィラ
メント群の走行が不安定になって均一な捕集面への堆積
が阻害されるという問題も生じ、さらにフィラメント群
の通路に突出して配置されている放電電極ピンにフィラ
メント群が引っかかり分散不良等のトラブルが発生し易
いという生産上の大きな問題があった。特に3000本
/1m幅を超えるフィラメント群を高度に帯電させて均
一開繊・分散の不織布を経済的に生産するには不適であ
った。
[0004] Japanese Patent Publication No. 7-505687 also discloses a method using corona discharge. However, in this method, a large number of filaments, for example, 1000 filaments / m
If the width is exceeded, it is difficult to impart a charge amount sufficient to uniformly open the filament group, and as the corona voltage is increased to increase the charge amount, the corona electrodes are alternately arranged. There has been such a problem that the charging on the upstream side interferes with the charging on the downstream side, thereby causing spots on the filament group deposited on the collecting surface. In addition, dirt accumulates on the metal surface facing the corona discharge electrode during operation,
The contact between the dirt and the filament group causes a problem that the running of the filament group becomes unstable, and the deposition on the uniform collecting surface is hindered. There was a large problem in production that the filament group was caught on the electrode pins and troubles such as poor dispersion were likely to occur. In particular, it was not suitable for economically producing a nonwoven fabric with uniform opening and dispersion by highly charging a filament group exceeding 3000 filaments / m width.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解決し、細デニール・多フィラメントから
なるスパンボンド不織布を製造するに当たり、生産性を
損なうことなく、フィラメントの均一分散性を確保する
ことができるスパンボンド不織布の製造装置および製造
方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and, in producing a spunbonded nonwoven fabric composed of fine denier and multifilaments, does not impair productivity and reduces the uniform dispersion of filaments. It is intended to provide a production apparatus and a production method for a spunbonded nonwoven fabric which can ensure the above.

【0006】[0006]

【課題を解決するための手段】本発明者らは、生産性を
損なうことなく、均一に分散した細デニールのフィラメ
ントからなるスパンボンド不織布をいかにして製造する
かについて鋭意研究した結果、本発明に到達したもので
ある。すなわち、本願で特許請求される発明は以下のと
おりである。 (1)不織布の製造幅に相当する幅を有する矩形紡口
と、該紡口から押し出されるフィラメント群をそのまま
導入することができる矩形入口を有する矩形エアーサッ
カーと、該矩形エアーサッカーに順に連設された矩形チ
ャンネルおよび矩形コロナ帯電用チャンネル装置とを備
えたことを特徴とするスパンボンド不織布の製造装置。 (2)前記矩形コロナ帯電用チャンネル装置は、複数の
コロナ放電用針状電極を有する複数のユニットと、該複
数のユニットとフィラメント群を介して対向するターゲ
ット電極板とを有し、上記複数のコロナ放電用針状電極
は0.5〜5本/cm2 の密度で配置され、かつ上記複
数のユニットがユニット毎に絶縁体で隔離されているこ
とを特徴とする(1)記載のスパンボンド不織布の製造
装置。 (3)スパンボンド不織布を製造するに際し、矩形コロ
ナ帯電用チャンネル装置を用いてフィラメント群に単位
面積当たり0.01mA/cm2 以上のコロナ放電電流
密度で帯電させることを特徴とするスパンボンド不織布
の製造方法。
Means for Solving the Problems The present inventors have conducted intensive studies on how to produce a spunbonded nonwoven fabric composed of finely dispersed fine denier filaments without impairing the productivity. Is reached. That is, the invention claimed in the present application is as follows. (1) A rectangular spinner having a width corresponding to the manufacturing width of the nonwoven fabric, a rectangular air sucker having a rectangular inlet through which a filament group extruded from the spinner can be introduced as it is, and sequentially connected to the rectangular air sucker. An apparatus for producing a spunbonded nonwoven fabric, comprising a rectangular channel and a rectangular corona charging channel device. (2) The rectangular corona charging channel device includes a plurality of units having a plurality of corona discharge needle-shaped electrodes, and a target electrode plate facing the plurality of units via a filament group. The spun bond according to (1), wherein the corona discharge needle-like electrodes are arranged at a density of 0.5 to 5 / cm 2 , and the plurality of units are separated by an insulator for each unit. Non-woven fabric manufacturing equipment. (3) A spunbonded nonwoven fabric characterized in that a filament group is charged at a corona discharge current density of 0.01 mA / cm 2 or more per unit area using a rectangular corona charging channel device when producing the spunbonded nonwoven fabric. Production method.

【0007】[0007]

【発明の実施の形態】以下に本発明を図面によりさらに
詳細に説明する。ただし、本発明はこれに限定されるも
のではない。図1は、本発明の一実施例を示すスパンボ
ンド不織布の製造装置の説明図である。この装置は、不
織布の製造幅に相当する幅を有する矩形紡口1と、該紡
口から押し出されたフィラメント群2が導入される矩形
エアーサッカー5と、該矩形エアーサッカー5に間隙を
設けることなく順に連設された矩形チャンネル6および
矩形コロナ帯電用チャンネル装置7とから構成される。
上記矩形エアーサッカー5の上部には、随伴流吸引装置
4が設けられており、該随伴流吸引装置4は、図2に示
すように、フィラメント群2を随伴流とともに吸引して
矩形エアサッカー5に導入するためのパンチングプレー
ト12、13、導入ガイド14および下部ガイド15が
設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the drawings. However, the present invention is not limited to this. FIG. 1 is an explanatory view of an apparatus for producing a spunbonded nonwoven fabric showing one embodiment of the present invention. This apparatus has a rectangular spinner 1 having a width corresponding to the manufacturing width of a nonwoven fabric, a rectangular air sucker 5 into which a filament group 2 extruded from the spinner is introduced, and a gap provided in the rectangular air sucker 5. And a rectangular channel 6 and a rectangular corona charging channel device 7 which are arranged in series.
On the upper part of the rectangular air sucker 5, there is provided an accompanying flow suction device 4, which sucks the filament group 2 together with the accompanying flow, as shown in FIG. There are provided punching plates 12 and 13, an introduction guide 14 and a lower guide 15 for introducing the liquid into the apparatus.

【0008】このような構成において、矩形紡口1から
押し出されたフィラメント群2は、そのままの状態で随
伴流吸引装置4に吸引されて矩形エアサッカー6に導入
され、矩形チャンネル6を経て矩形コロナ帯電用チャン
ネル装置7に送られ、ここでコロナ放電により帯電さ
れ、捕集面8上に堆積されてウエブ9を形成する。
In such a configuration, the filament group 2 extruded from the rectangular spinneret 1 is sucked as it is by the accompanying flow suction device 4 and introduced into the rectangular air sucker 6, and passes through the rectangular channel 6 to the rectangular corona. It is sent to the charging channel device 7, where it is charged by corona discharge and deposited on the collecting surface 8 to form a web 9.

【0009】本発明において、矩形コロナ帯電用チャン
ネル装置7は、矩形チャンネル6と直結していることが
重要である。フィラメント群2にはフィラメントを牽引
するための空気流による張力が作用しており、この状態
でコロナ放電処理を行うためである。これにより、コロ
ナ放電処理で帯電したフィラメント群が後述するターゲ
ット電極板21に接触するのを防止し、コロナ帯電用チ
ャンネル装置7内でのフィラメント群2の走行を安定さ
せ、フィラメント群2の開繊を損なうことなく、捕集面
8に供給することができる。矩形コロナ帯電用チャンネ
ル装置7と矩形チャンネル6との間に隙間があると、フ
ィラメント群を牽引するための空気流の一部がこの隙間
から吹き出し、その流れにフィラメント群が随伴してチ
ャンネル内にフィラメント群が詰るなどのトラブルが生
じやすくなる。
In the present invention, it is important that the rectangular corona charging channel device 7 is directly connected to the rectangular channel 6. The tension due to the air flow for pulling the filaments acts on the filament group 2, and the corona discharge treatment is performed in this state. This prevents the filament group charged by the corona discharge treatment from coming into contact with a target electrode plate 21 described later, stabilizes the running of the filament group 2 in the corona charging channel device 7, and opens the filament group 2. Can be supplied to the collection surface 8 without impairment. If there is a gap between the rectangular corona charging channel device 7 and the rectangular channel 6, a part of the air flow for pulling the filament group blows out from the gap, and the filament group accompanies the flow into the channel. Troubles such as clogging of filament groups are likely to occur.

【0010】図3は、矩形コロナ帯電用チャンネル装置
7の断面説明図である。この装置7は、複数の孔26を
有する絶縁ブロック19と、該絶縁ブロック19に組み
込まれる複数の針電極ユニット30と、該絶縁ブロック
19および針電極ユニット30に対向して設けられたタ
ーゲット電極板21を備えている。上記針電極ユニット
30は、複数のコロナ放電用針電極16および複数のエ
ア吹き出しノズル18を有する針電極座17と、針電極
ホルダー20と、該針電極座17と針電極ホルダー20
との間に形成されたエア供給室24とからなり、ターゲ
ット電極板21は、ターゲット電極ホルダー22に取り
付けられてターゲット電極支持枠23により固定され
る。
FIG. 3 is an explanatory sectional view of the rectangular corona charging channel device 7. The device 7 includes an insulating block 19 having a plurality of holes 26, a plurality of needle electrode units 30 incorporated in the insulating block 19, and a target electrode plate provided to face the insulating block 19 and the needle electrode unit 30. 21. The needle electrode unit 30 includes a needle electrode seat 17 having a plurality of corona discharge needle electrodes 16 and a plurality of air blowing nozzles 18, a needle electrode holder 20, the needle electrode seat 17 and the needle electrode holder 20.
The target electrode plate 21 is attached to a target electrode holder 22 and fixed by a target electrode support frame 23.

【0011】上記矩形エアーサッカー5および矩形チャ
ンネル6を通過したフィラメント群は、矩形コロナ帯電
用チャンネル装置7に導入されて絶縁ブロック19とタ
ーゲット電極板21で形成される間隙を通過する。この
通過の際にフィラメント群はコロナ放電用針電極16と
ターゲット電極板21によるコロナ放電により帯電す
る。エア供給室24と連通したエア吹き出しノズル18
からは、フィラメント群に高度な帯電を与えるための空
気流がコロナ放電用針電極16に沿って吹き出される。
空気流の供給量はフィラメント群の走行安定性を害さな
い範囲で任意に選定される。
The filament group that has passed through the rectangular air sucker 5 and the rectangular channel 6 is introduced into the rectangular corona charging channel device 7 and passes through the gap formed by the insulating block 19 and the target electrode plate 21. During this passage, the filament group is charged by corona discharge by the corona discharge needle electrode 16 and the target electrode plate 21. Air blowing nozzle 18 communicating with air supply chamber 24
Thereafter, an air flow for giving a high degree of electrification to the filament group is blown out along the corona discharge needle electrode 16.
The supply amount of the air flow is arbitrarily selected within a range that does not impair the running stability of the filament group.

【0012】本発明において、針電極ユニット30は複
数設置されるが、異常放電等の影響を最小限にするた
め、各ユニット毎に絶縁体で隔離するのが好ましい。例
えば、一つのユニットが異常放電等で電圧降下した場
合、ユニット間が絶縁されていないとユニット間で放電
が発生し、フィラメント群を処理するための安定なコロ
ナ放電が害される場合がある。
In the present invention, a plurality of needle electrode units 30 are provided, but it is preferable to isolate each unit with an insulator in order to minimize the influence of abnormal discharge and the like. For example, when a voltage drop occurs in one unit due to abnormal discharge or the like, if the units are not insulated, a discharge occurs between the units, which may hinder stable corona discharge for processing the filament group.

【0013】絶縁ブロック19の一例を図4および図5
に、また針電極ユニット30の一例を図6に示した。絶
縁ブロック19のターゲット電極板21と対向する面に
は、図4に示すように、コロナ放電用針電極16の数と
同じ数の孔26が設けられ、また絶縁ブロック19の内
部は、図5に示すように、複数の絶縁仕切板25で仕切
られている。針電極ユニット30は、該絶縁仕切板25
で仕切られた絶縁ブロック19の各室にそれぞれ組み込
まれて絶縁、隔離される。また針電極ユニット30のコ
ロナ放電用針電極16は、図3に示すように、絶縁ブロ
ック19の孔26にそれぞれ挿入されてそれぞれの先端
がターゲット電極板21と対向する。針電極ユニット3
0のユニット数は、製造する不織布の幅、紡糸安定性、
コロナ放電条件、フィラメント群のコロナ帯電の難易性
等から任意に選定することができる。
An example of the insulating block 19 is shown in FIGS.
FIG. 6 shows an example of the needle electrode unit 30. As shown in FIG. 4, the same number of holes 26 as the number of corona discharge needle electrodes 16 are provided on the surface of the insulating block 19 facing the target electrode plate 21, and the inside of the insulating block 19 is formed as shown in FIG. As shown in the figure, the partition is divided by a plurality of insulating partition plates 25. The needle electrode unit 30 includes the insulating partition plate 25.
The insulating block 19 is separated into and separated from each other to be insulated and isolated. As shown in FIG. 3, the corona discharge needle electrodes 16 of the needle electrode unit 30 are inserted into the holes 26 of the insulating block 19, respectively, and the respective tips face the target electrode plate 21. Needle electrode unit 3
The number of units of 0 is the width of the nonwoven fabric to be manufactured, spinning stability,
It can be arbitrarily selected from corona discharge conditions, difficulty of corona charging of the filament group, and the like.

【0014】針電極ユニット30のコロナ放電用針電極
16は、フィラメント群の均一な開繊・分散性の点か
ら、規則的に配置するのが好ましい。例えば、針電極1
6の配置がフィラメント群の幅方向に不規則な場合は、
フィラメント群のコロナ帯電が不均一になり、開繊・分
散性を損ない、不織布に筋状の分散不良部を発生するこ
とがある。またコロナ放電電界の不均一性につながり、
針電極16とターゲット電極板21の間で火花放電が発
生し易くなり、安定な運転が困難となる場合がある。針
電極16の配置は、規則性が維持されれば、例えば千鳥
状、格子状などいずれの配置でもよい。
The corona discharge needle electrodes 16 of the needle electrode unit 30 are preferably arranged regularly from the viewpoint of uniform opening and dispersion of the filament group. For example, needle electrode 1
6 is irregular in the width direction of the filament group,
In some cases, corona charging of the filament group becomes non-uniform, impairing the spread and dispersibility, and streak-like poorly dispersed portions may be generated in the nonwoven fabric. It also leads to non-uniformity of the corona discharge electric field,
Spark discharge is likely to occur between the needle electrode 16 and the target electrode plate 21, and stable operation may be difficult. As long as regularity is maintained, the arrangement of the needle electrodes 16 may be any arrangement such as a staggered shape or a lattice shape.

【0015】ここで、規則的な配置とは、例えばフィラ
メント群の走行方向に平行な針の並びを「列」、これと
直行する方向すなわち幅方向の針の並びを「段」とした
とき、基本的には各列は各列で、各段は各段で針の間隔
が等しいことをいう。但し、各段の針の間隔は同じで
も、段毎の間隔に差があってもよい。すなわち、上段側
と下段側で針の植え込み密度を変えてもよい。この場合
は列内の針間隔が不均一であっても、これと同じ針配置
で各列が幅方向に並んでいるのが好ましい。単純な格子
状の場合、各列が相似形となるが、例えば千鳥配置で針
間隔を変化させた場合など単純に列同士の相似を比較で
きないが、この場合は複数列での相似形となっているの
でその単位での規則的な配置をいう。
Here, the regular arrangement means that, for example, when the arrangement of needles parallel to the running direction of the filament group is "row" and the arrangement of needles in the direction perpendicular to this direction, that is, in the width direction is "stage", Basically, each row means each row, and each row means that the interval between the needles is equal in each row. However, the intervals between the needles in each stage may be the same, or the intervals between the stages may differ. That is, the implantation density of the needle may be changed between the upper side and the lower side. In this case, even if the needle intervals in the rows are not uniform, it is preferable that the rows are arranged in the width direction with the same needle arrangement. In the case of a simple lattice, each row has a similar shape.However, for example, when the stylus arrangement is used to change the needle spacing, it is not possible to simply compare the similarity between the rows. Means a regular arrangement in that unit.

【0016】コロナ放電用針電極16の配置および数
は、フィラメント群の素材によるコロナ帯電の難易性、
フィラメント群のフィラメント数、コロナ放電条件など
により任意に選定することができるが、針電極16の配
置密度は0.5〜5本/cm2が好ましい。配置密度が
0.5本/cm2 未満では高度に開繊、分散した不織布
を得るのに必要なフィラメント群の帯電ができず、また
フィラメント群を帯電するために必要なコロナ放電電流
の針一本当たりの負担が増加して針電極の寿命が短くな
る場合がある。また配置密度が5本/cm2 を超えると
針電極ユニット30を絶縁隔離する絶縁仕切板25の存
在によりチャンネル全体での規則性が阻害され、コロナ
放電電界の均一性が損なわれる場合がある。
The arrangement and number of the corona discharge needle electrodes 16 are determined by the difficulty of corona charging by the material of the filament group,
Although it can be arbitrarily selected depending on the number of filaments in the filament group, corona discharge conditions, and the like, the arrangement density of the needle electrodes 16 is preferably 0.5 to 5 filaments / cm 2 . When the arrangement density is less than 0.5 filaments / cm 2 , the filament group required for obtaining a highly spread and dispersed nonwoven fabric cannot be charged, and the corona discharge current required for charging the filament group can be reduced. In some cases, the load per unit is increased and the life of the needle electrode is shortened. If the arrangement density exceeds 5 lines / cm 2 , the regularity of the entire channel may be impaired due to the presence of the insulating partition plate 25 for insulating and isolating the needle electrode unit 30, and the uniformity of the corona discharge electric field may be impaired.

【0017】またコロナ放電用針電極16は、上記した
ように、絶縁ブロック19の孔26に挿入された状態で
その先端がターゲット電極板21と対向するが、安定な
生産性の観点から、該針電極16の先端は絶縁ブロック
19の表面より内側にあるのが好ましい。針電極の先端
が絶縁ブロック19の表面より外側に突出していると、
フィラメント群の走行時に針電極に接触して引っかか
り、フィラメント群の詰まりが発生し易くなる。本発明
において、絶縁ブロック19の表面から針電極の先端ま
での距離(図3のd)は、0.1mm〜1mmが好まし
い。この距離dが0.1mm未満ではフィラメント群が
該先端部に引っかかり易くなり、1mmを超えるとコロ
ナ放電の広がりが阻害されることがある。
As described above, the tip of the corona discharge needle electrode 16 faces the target electrode plate 21 in a state of being inserted into the hole 26 of the insulating block 19, but from the viewpoint of stable productivity, the tip is opposed to the target electrode plate 21. The tip of the needle electrode 16 is preferably located inside the surface of the insulating block 19. If the tip of the needle electrode projects outside the surface of the insulating block 19,
When the filament group travels, it comes into contact with the needle electrode and is caught, so that the filament group is easily clogged. In the present invention, the distance (d in FIG. 3) from the surface of the insulating block 19 to the tip of the needle electrode is preferably 0.1 mm to 1 mm. If the distance d is less than 0.1 mm, the filament group is likely to be caught on the tip, and if it exceeds 1 mm, the spread of corona discharge may be hindered.

【0018】また本発明において、矩形コロナ帯電用チ
ャンネル装置7の絶縁ブロック19とターゲット電極板
21の間隙距離(図3のc)は、フィラメント群の均一
な開繊、分散性の点から、矩形チャンネル6の間隙距離
(図3のb)と同じかまたは3倍以下でかつ全体に均一
であることが好ましい。コロナ帯電用チャンネル装置7
の間隙距離cが全体に均一である場合は、コロナ放電電
界の均一性が得られ、フィラメント群のコロナ放電処理
の安定性を高めることができる。またコロナ帯電用チャ
ンネル装置7の間隙距離cが矩形チャンネル6の間隙距
離bより狭い場合には、流路抵抗が増加して矩形エアー
サッカー5および矩形チャンネル6を通過してくる牽引
用の空気流が逆流し、フィラメント群の安定走行が阻害
され、安定なコロナ帯電処理が困難となる場合がある。
In the present invention, the gap distance (c in FIG. 3) between the insulating block 19 of the rectangular corona charging channel device 7 and the target electrode plate 21 is rectangular in view of uniform filament opening and dispersibility. It is preferable that the gap distance of the channel 6 (FIG. 3b) is equal to or less than three times and uniform throughout. Corona charging channel device 7
When the gap distance c is uniform over the entire surface, uniformity of the corona discharge electric field can be obtained, and the stability of the corona discharge treatment of the filament group can be increased. When the gap distance c of the corona charging channel device 7 is smaller than the gap distance b of the rectangular channel 6, the flow path resistance increases, and the towing air flow passing through the rectangular air football 5 and the rectangular channel 6. May flow backward, hindering stable running of the filament group, and making stable corona charging treatment difficult.

【0019】また間隙cが増加するにしたがってコロナ
帯電用チャンネル装置7から捕集面8に排出される空気
流の勢いが弱くなり、捕集面8へのフィラメント群の安
定した堆積が損なわれ易くなる。該間隙距離cが間隙距
離bの3倍を超えると、コロナ帯電用チャンネル装置7
内でのフィラメント群の張力が低下し、コロナ放電処理
で帯電したフィラメント群がターゲット電極板21に静
電気的に接触し易くなり、接触によるフィラメント群の
失速、帯電電荷の一部消失等が発生し、フィラメント群
の均一開繊・分散が損なわれ易くなる。また間隙距離c
を増加させると、電界強度を同じにするためにコロナ電
圧を増加させなければならず、切れたフィラメントがコ
ロナ電界中を通過するなどして電界を乱したときなど
に、異常コロナ放電や火花放電が発生し易くなる。この
点からも間隙距離cは間隙距離bの3倍以下とするのが
好ましい。矩形チャンネル6の間隙距離bは、通常4〜
10mmでフィラメント群の全幅をカバーする幅で均一
な間隙とされ、また矩形コロナ帯電用チャンネル装置7
の間隙距離cは、通常4〜30mmで矩形チャンネル6
とほぼ同じ幅の均一な間隙とされる。
Further, as the gap c increases, the momentum of the air flow discharged from the corona charging channel device 7 to the collecting surface 8 becomes weaker, and the stable accumulation of filaments on the collecting surface 8 is easily damaged. Become. When the gap distance c exceeds three times the gap distance b, the corona charging channel device 7
The tension of the filament group in the inside decreases, the filament group charged by the corona discharge treatment easily comes into electrostatic contact with the target electrode plate 21, and the stall of the filament group due to the contact, partial disappearance of the charged charge, and the like occur. In addition, uniform opening / dispersion of the filament group is easily damaged. The gap distance c
In order to make the electric field strength the same, the corona voltage must be increased, and abnormal corona discharge or spark discharge occurs when a broken filament disturbs the electric field by passing through the corona electric field. Is more likely to occur. From this point as well, it is preferable that the gap distance c is not more than three times the gap distance b. The gap distance b of the rectangular channel 6 is usually 4 to
A uniform gap having a width of 10 mm covering the entire width of the filament group, and a rectangular corona charging channel device 7
Is usually 4 to 30 mm and the rectangular channel 6
And a uniform gap having substantially the same width as

【0020】また針電極ユニット30におけるフィラメ
ント群走行方向の針電極の植え込み領域(図3のe)は
50〜300mmであるのが好ましい。この領域eが5
0mm未満では従来の摩擦帯電方式での帯電レベルとな
り、また300mmを超えるとコロナ放電処理により帯
電したフィラメント群がターゲット電極板21に静電気
的に接触し易くなり帯電電荷の一部を消失したり、接触
抵抗によりフィラメント群の安定走行が阻害され、結果
的に均一高度な開繊・分散が確保できなくなる場合があ
る。
The implantation area (FIG. 3e) of the needle electrode in the needle electrode unit 30 in the filament group running direction is preferably 50 to 300 mm. This area e is 5
When the distance is less than 0 mm, the charge level becomes that of a conventional frictional charging method. When the distance exceeds 300 mm, the filament group charged by corona discharge treatment easily comes into electrostatic contact with the target electrode plate 21 and a part of the charged charge disappears. The stable running of the filament group is hindered by the contact resistance, and as a result, uniform high-level opening and dispersion may not be secured.

【0021】さらに本発明において、針電極ユニット3
0は、ユニット毎に個別にコロナ電流、電圧の調整が可
能な電源、具体的には電源の接続コネクターおよびエア
供給室との接続コネクターを備えていることが、放電状
態を微細に管理し、生産効率を向上させる点から好まし
い。例えば、矩形エアーサッカー5に入る前にフィラメ
ント群の一部が切れた場合、一台の電源では、該フィラ
メント群がコロナ帯電用チャンネル装置7に導入される
と、コロナ放電の異常放電が発生し、不織布製造幅全域
にわたってフィラメント群への帯電が阻害され、開繊、
分散性が低下することになる。これを防止するために
は、各針電極ユニット30毎に電源を設置して異常放電
の発生を該当ユニットのみにするのが好ましい。またユ
ニット毎に電源を設置することにより、不織布幅方向で
の開繊、分散の均一性を確保するための調整が必要にな
った場合に、ユニット毎にコロナ放電条件を設定できる
ので有利である。
Further, in the present invention, the needle electrode unit 3
0, a power supply capable of individually adjusting corona current and voltage for each unit, specifically, having a connector for connecting a power supply and a connector for connecting to an air supply chamber, finely manages a discharge state, It is preferable from the viewpoint of improving production efficiency. For example, if a part of the filament group is cut before entering the rectangular air soccer 5, if the filament group is introduced into the corona charging channel device 7 with one power supply, an abnormal discharge of corona discharge occurs. , Charging to the filament group is inhibited over the entire nonwoven fabric manufacturing width,
Dispersibility will be reduced. In order to prevent this, it is preferable to provide a power supply for each needle electrode unit 30 and to cause abnormal discharge only to the corresponding unit. In addition, by installing a power supply for each unit, it is advantageous that the corona discharge conditions can be set for each unit when it is necessary to open the nonwoven fabric in the width direction of the nonwoven fabric and to adjust the uniformity of dispersion. .

【0022】また、針電極16およびターゲット電極板
21は、実際の生産に際して容易に脱挿入して予備と交
換できるようにし、交換による装置停止損を軽減し生産
の効率化を図るのが好ましい。針電極16は長期間運転
での針寿命による交換や運転中の何らかの原因による損
傷での交換の必要性が生じる。またターゲット電極板2
1はコロナ放電により必然的に汚れが蓄積する(例えば
フィラメント群を牽引する空気流中に含まれる微粒子成
分をも帯電させて電気集塵機と同様な作用でターゲット
電極板に捕捉される)ため、定期的に除去する必要が生
じる。これらの問題に対して、例えば針電極座17をユ
ニット毎に固定用ボルトで固定し、これを簡単に交換が
できるようにすること、またターゲット電極板21を固
定用ストッパーを介してスライド式に簡単に外れるよう
に固定することにより、交換や清掃に際してエアーサッ
カー、矩形チャンネル、コロナ帯電用チャンネルを開放
しなくても容易に交換ができるので生産の効率化を図る
ことができる。なお、交換手段はこれらに限定されるも
のではない。
Further, it is preferable that the needle electrode 16 and the target electrode plate 21 are easily inserted and removed in actual production so that they can be replaced with spares, thereby reducing a stoppage loss due to the replacement and improving production efficiency. Needle electrode 16 needs to be replaced due to the needle life in long-term operation or replaced due to damage due to some cause during operation. The target electrode plate 2
In the case of No. 1, dirt is inevitably accumulated by corona discharge (for example, the fine particle component contained in the air flow pulling the filament group is also charged and captured by the target electrode plate by the same operation as the electrostatic precipitator). Need to be removed. To solve these problems, for example, the needle electrode seat 17 is fixed by a fixing bolt for each unit so that it can be easily replaced, and the target electrode plate 21 can be slid via a fixing stopper. By fixing it so that it can be easily detached, it is possible to easily replace the air sucker, the rectangular channel, and the corona charging channel without opening the same during replacement or cleaning, thereby improving production efficiency. Note that the exchange means is not limited to these.

【0023】本発明の不織布は、例えば、上述した製造
装置により矩形のコロナ帯電用チャンネル装置7を用い
て単位面積当たり0.01mA/cm2 以上のコロナ放
電電流密度でフィラメント群を帯電させることにより製
造することができる。コロナ放電電流密度が0.01m
A/cm2 未満では十分にフィラメント群の帯電が行え
ず目的とする高度に分散が均一な不織布の製造が困難な
場合がある。但し、フィラメント数を減少させてコロナ
放電処理して帯電させるなどの方法の場合には0.01
mA/cm2 未満でも分散が均一な不織布を得ることも
可能であり、これに限定されるものではない。コロナ放
電電流密度の上限はコロナ放電の不安定性により適宜決
定される。例えば印可電圧を上げて電流を増加させた場
合に切れたフィラメント糸がコロナ放電中のチャンネル
内を通過するなどの外乱で火花放電等を誘発し易くなる
が、このような現象が生じない範囲で、すなわち安定運
転範囲内となるようにコロナ放電電流密度の上限を決定
するのが好ましい。本発明において、針電極ユニットの
電源は、経済性、効率性、安全性等の点から、コロナ放
電電流が5〜70mAの範囲であるのが好ましい。
The nonwoven fabric of the present invention is obtained by, for example, charging a filament group at a corona discharge current density of 0.01 mA / cm 2 or more per unit area by using the rectangular corona charging channel device 7 by the above-described manufacturing apparatus. Can be manufactured. Corona discharge current density is 0.01m
If it is less than A / cm 2 , the filament group cannot be sufficiently charged, and it may be difficult to produce a target nonwoven fabric having a highly uniform dispersion. However, in the case of charging by corona discharge treatment while reducing the number of filaments, 0.01
It is also possible to obtain a non-woven fabric having a uniform dispersion at less than mA / cm 2 , and the present invention is not limited to this. The upper limit of the corona discharge current density is appropriately determined depending on the instability of the corona discharge. For example, when the applied voltage is increased and the current is increased, a broken filament yarn easily induces spark discharge or the like due to disturbance such as passing in a channel during corona discharge, but within a range where such a phenomenon does not occur. That is, it is preferable to determine the upper limit of the corona discharge current density so as to fall within the stable operation range. In the present invention, the power supply of the needle electrode unit preferably has a corona discharge current in the range of 5 to 70 mA in terms of economy, efficiency, safety, and the like.

【0024】本発明の不織布の製造装置および製造方法
によれば、従来の摩擦帯電法ではフィラメント群に対し
て十分に帯電が行えなかった細デニール・多フィラメン
ト、例えば、素材がポリプロピレンでデニールが1.5
d、フィラメント数が1m幅当たり3000本を超える
フィラメント群を、高度に開繊、分散するのに十分な静
電気を付与することができ、その結果、均一な分散性が
得られるため、従来と同じ目付の不織布と比べて強力お
よび耐水圧などに優れた不織布を提供することができ
る。また従来の摩擦帯電法に比べてフィラメント群に対
する帯電能力が高いので細デニールからなる不織布の生
産に限定されず、またフィラメントのポリマー素材に限
定されることもない。
According to the apparatus and method for producing a nonwoven fabric of the present invention, fine denier / multifilament, for example, whose material is polypropylene and whose denier is 1 cannot be sufficiently charged to the filament group by the conventional triboelectric charging method. .5
d. A filament group whose number of filaments exceeds 3000 per 1 m width can be provided with static electricity sufficient to highly open and disperse the filaments, and as a result, uniform dispersibility can be obtained. It is possible to provide a nonwoven fabric which is superior in strength and water pressure resistance as compared with a basis weight nonwoven fabric. Further, since the charging ability for the filament group is higher than that of the conventional triboelectric charging method, it is not limited to the production of a non-woven fabric made of fine denier, nor is it limited to the polymer material of the filament.

【0025】[0025]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらに限定されるものではない。な
お、本発明の実施には上述した図1〜図6に示した装置
を用いた。また実施例におけるフィラメント群の帯電量
および不織布の各評価は下記の方法で測定した。 (1)帯電量の測定 帯電され捕集面へ落下堆積していくフィラメント群の一
部をサンプリングして春日電機(株)製の「静電電荷量
計:KQ−431B」にて測定した。 (2)デニール:d[フィラメント9000m長のグラ
ム(重量)数で表示]不織布のデニールは、不織布の幅
方向をほぼ均等に5等分して、1cm角の試験片を5枚
サンプリングし、顕微鏡で各々の試験片について20本
ずつ繊維の直径を測定し、計100本の繊維径の平均値
を求め、繊維密度(ポリプロピレンの場合0.91g/
cm3 )からデニールを算出した(小数点第二位を四捨
五入)。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. The apparatus shown in FIGS. 1 to 6 was used for carrying out the present invention. In the examples, the charge amount of the filament group and each evaluation of the nonwoven fabric were measured by the following methods. (1) Measurement of Charge A part of the filament group that is charged and drops and accumulates on the collecting surface was sampled and measured with an “electrostatic charge meter: KQ-431B” manufactured by Kasuga Electric Co., Ltd. (2) Denier: d [expressed in grams (weight) of filament 9000 m long] Denier of the nonwoven fabric is obtained by equally dividing the width direction of the nonwoven fabric into five equal parts, sampling five 1 cm square test pieces, and using a microscope. In each of the test pieces, the fiber diameter was measured for each of 20 fibers, the average value of the fiber diameters of 100 fibers in total was determined, and the fiber density (0.91 g /
cm 3 ), denier was calculated (rounded to the second decimal place).

【0026】(3)5cm幅目付変動率 得られた不織布の両端10cmを除き、不織布の全幅を
クロスマシン方向(CD)に5cm刻みに、マシン方向
(MD)に1m長とした長方形の試験片をサンプリング
して個々の重量を測定した。また、不織布の両端10c
mを除き、任意の部位(CDをほぼ三等分する)でMD
1m幅×CD1m幅の試験片を3枚とり、MD5cm刻
みに、CD1m長とした長方形の試験片をサンプリング
して個々の重量を測定した。全ての試験片の重量測定結
果から、平均値(x)とバラツキ(R)を求めて次式で
算出した。 5cm幅目付変動率=(R/x)×100(小数点第一
位四捨五入)
(3) Fluctuation rate of 5 cm width A rectangular test piece having a total width of the nonwoven fabric of 5 cm in the cross machine direction (CD) and a length of 1 m in the machine direction (MD) except for 10 cm at both ends of the obtained nonwoven fabric. Was sampled and the individual weight was measured. Also, both ends 10c of the nonwoven fabric
MD at any site except CD
Three test pieces having a width of 1 m and a width of 1 m of CD were taken, and a rectangular test piece having a length of 1 m of CD was sampled at every 5 cm of MD to measure the weight of each piece. From the weight measurement results of all the test pieces, the average value (x) and the variation (R) were obtained and calculated by the following equation. 5cm width basis rate of change = (R / x) x 100 (rounded to the first decimal place)

【0027】(4)引張強さ 得られた不織布の両端10cmを除き、不織布から3c
m×約30cmの試験片を、不織布の幅20cm当たり
MDおよびCDでそれぞれ1枚採取する。この試験片を
定速伸長形引張試験機に把握長を10cmにして取付
け、30cm/分の引張速度で試験片が切断するまで荷
重を加える。試験片の最大荷重時の強さの平均値をMD
およびCDのそれぞれについて求めて次式により算出し
た。 引張強さ=(MD平均値+CD平均値)/2 [kgf
/3cm幅](小数点第二位四捨五入)
(4) Tensile strength Excluding 10 cm at both ends of the obtained non-woven fabric, 3 c
One test piece of mx about 30 cm is collected in each of MD and CD per 20 cm width of the nonwoven fabric. The test piece is attached to a constant-speed extension-type tensile tester with a gripping length of 10 cm, and a load is applied at a tensile speed of 30 cm / min until the test piece is cut. The average value of the strength of the test piece at the maximum load is MD
And CD were calculated by the following equation. Tensile strength = (average MD + average CD) / 2 [kgf
/ 3cm width] (rounded to the second decimal place)

【0028】(5)耐水性 耐水度 「繊維製品の防水性試験方法」JIS−L1092、
5.1.1A法(a)静水圧法に準じて試験を実施して
耐水度を求めた。但し、試験片のサンプリングは不織布
の両端10cmを除き、CD全幅×MD2m長から20
cm×20cmの面積毎に1枚の割合で行った。 耐水度変動率 前記の耐水度測定結果から、個々の耐水度のバラツキ
(R)を求めて、次式で算出した。 耐水度変動率=[R/耐水度]×100(小数点第一位
四捨五入)
(5) Water resistance Water resistance “Water resistance test method for textile products” JIS-L1092,
5.1.1A Method (a) A test was conducted according to the hydrostatic pressure method to determine the water resistance. However, the sampling of the test piece was 20 cm from the total CD width × MD2 m length except for 10 cm at both ends of the nonwoven fabric.
The measurement was performed at a rate of one sheet for each area of cm × 20 cm. Water Resistance Fluctuation Variation The variation (R) of each water resistance was obtained from the above-described water resistance measurement results, and was calculated by the following equation. Water resistance fluctuation rate = [R / water resistance] x 100 (rounded to one decimal place)

【0029】実施例1〜7および比較例1 ノズル数947個を有する30cm幅の矩形紡口と、そ
の幅のフィラメント群を導入して牽引する35cm幅の
矩形エアサッカーと、それに接続された同じ幅を有する
クリアランス(間隙距離b)7mmの矩形チャンネル
と、これと同じ幅を有する矩形コロナ帯電用チャンネル
装置(間隙距離c:7mm)とを取り付けた小型スパン
ボンド製造機により、ポリプロピレンを用いてフィラメ
ントのデニールが1.5dになる紡糸条件で、かつ表1
に示した矩形コロナ帯電用チャンネル装置の条件で、9
47本のフィラメント群を処理し、その時の帯電量を測
定した。
Examples 1 to 7 and Comparative Example 1 A 30 cm wide rectangular spout having 947 nozzles, a 35 cm wide rectangular air sucker for introducing and pulling a filament group of the same width, and the same connected thereto Filament using polypropylene by a small spunbond manufacturing machine equipped with a rectangular channel having a width (gap distance b) of 7 mm and a rectangular corona charging channel device (gap distance c: 7 mm) having the same width. Table 1 shows the spinning conditions under which the denier is 1.5 d.
Under the conditions of the rectangular corona charging channel device shown in FIG.
Forty-seven filament groups were processed, and the charge amount at that time was measured.

【0030】具体的には、針電極ユニットの針電極座の
幅32cmおよびターゲット電極板の幅34cmで一定
幅として、これらの長さを種々変え、さらに針配置密度
(針電極の配置は規則性を維持した)、針植込み長さ
(e)、クリアランスおよびコロナ電流密度を変化させ
た。コロナ放電用針電極の先端の位置は絶縁ブロック板
より内側に0.5mmとした。フィラメント群の帯電量
の測定結果を表1に示し、またコロナ電流密度と帯電量
の関係を図7に示した。なお、比較例1として従来の摩
擦帯電法によるフィラメント群の帯電量を同様に測定し
た。
More specifically, the width of the needle electrode seat of the needle electrode unit is 32 cm and the width of the target electrode plate is 34 cm. Was maintained), needle implantation length (e), clearance and corona current density were varied. The position of the tip of the corona discharge needle electrode was 0.5 mm inside the insulating block plate. The measurement results of the charge amount of the filament group are shown in Table 1, and the relationship between the corona current density and the charge amount is shown in FIG. As Comparative Example 1, the charge amount of the filament group by the conventional triboelectric charging method was measured in the same manner.

【0031】[0031]

【表1】 [Table 1]

【0032】表1および図7から、本発明の製造装置を
用いて細デニールのフィラメント群にコロナ電流密度
0.01mA/cm2 以上でフィラメント群を帯電させ
ることにより、従来の摩擦帯電法の場合と同等以上の帯
電量が確保できることがわかった。
From Table 1 and FIG. 7, it can be seen that the fine tri-denier filament group is charged at a corona current density of 0.01 mA / cm 2 or more by using the manufacturing apparatus of the present invention, whereby the conventional triboelectric charging method is used. It has been found that a charge amount equal to or higher than that of can be secured.

【0033】なお、矩形チャンネルと矩形コロナ帯電用
チャンネル装置の接続を切り離して隙間を形成させてフ
ィラメント群の走行状態を確認したが、フィラメント群
の一部が飛び出してチャンネル詰まりが発生した。ま
た、コロナ放電用針電極先端を絶縁ブロック板より0.
2mm外側に突出させてフィラメント群を走行させる
と、フィラメント群の一部が針電極に引っかかって著し
く分散品位が低下した。さらに、矩形コロナ帯電用チャ
ンネル装置のクリアランス(間隙距離c)を7mm未満
にするとチャンネル内を走行するフィラメント群の走行
状態が不安定になり、21mmを超えるクリアランスと
した場合には捕集面へ着地するフィラメント群の走行状
態が不安定になった。
The running state of the filament group was confirmed by disconnecting the rectangular channel and the rectangular corona charging channel device to form a gap. However, a part of the filament group jumped out and channel clogging occurred. In addition, the tip of the corona discharge needle electrode is set at 0.
When the filament group was caused to protrude outward by 2 mm, a part of the filament group was caught by the needle electrode, and the dispersion quality was significantly reduced. Further, when the clearance (gap distance c) of the rectangular corona charging channel device is set to less than 7 mm, the running state of the filament group running in the channel becomes unstable, and when the clearance exceeds 21 mm, the filament lands on the collecting surface. The running state of the running filament group became unstable.

【0034】実施例8〜11および比較例2 実施例1において、針状電極の針植え込み長さを120
mm、ターゲット電極板長さを140mm、クリアラン
スを8mmとして、針配置密度およびコロナ放電電流密
度を表2に示すように種々変化させた以外は実施例1と
同様の方法でフィラメント群の帯電量を測定し、その結
果を表1に示した。なお、比較例2として幅方向に不均
一な針配置の針電極ユニット(幅80mm長さ50mm
で針配置密度1本/cm2 の電極を4枚用いてこれをチ
ャンネル幅方向に上下交互に配置した)を用いてコロナ
帯電を実施して同様の測定を行った。
Examples 8 to 11 and Comparative Example 2 In Example 1, the needle implantation length of the needle electrode was set to 120
mm, the length of the target electrode plate was 140 mm, the clearance was 8 mm, and the charge amount of the filament group was changed in the same manner as in Example 1 except that the needle arrangement density and the corona discharge current density were variously changed as shown in Table 2. The measurement was performed, and the results are shown in Table 1. As Comparative Example 2, a needle electrode unit (80 mm wide and 50 mm long) having a non-uniform needle arrangement in the width direction was used.
, Four electrodes having a needle arrangement density of 1 / cm 2 were arranged alternately in the vertical direction in the channel width direction), and the same measurement was carried out.

【0035】[0035]

【表2】 [Table 2]

【0036】表2から、針電極が規則的に配置されてい
る実施例8〜11ではフィラメント群を高度に帯電させ
ることができるが、針電極が不規則に配置されている比
較例2では帯電量が低下し、ウエブに針電極境目で筋斑
が発生することがわかった。
From Table 2, it can be seen that in Examples 8 to 11 in which the needle electrodes are regularly arranged, the filament group can be highly charged, whereas in Comparative Example 2 in which the needle electrodes are irregularly arranged, the charging is performed. It was found that the amount decreased and streaks occurred at the boundary of the needle electrode on the web.

【0037】実施例12 実施例9において、針電極に沿って空気流をコロナ帯電
用チャンネル内に供給した以外は実施例9と同様の方法
でフィラメント群の帯電量を測定し、その結果を表3に
示したが、針電極に沿った空気流の供給により帯電量が
さらに増加することが分かった。ただし、空気供給量が
25Nm3 /hr以上ではフィラメントの走行が不安定
になった。
Example 12 In Example 9, the charge amount of the filament group was measured in the same manner as in Example 9 except that an air flow was supplied into the corona charging channel along the needle electrode. As shown in FIG. 3, it was found that the charge amount was further increased by the supply of the air flow along the needle electrode. However, when the air supply amount was 25 Nm 3 / hr or more, the running of the filament became unstable.

【0038】[0038]

【表3】 [Table 3]

【0039】実施例13〜16および比較例3 MFR38のポリプロピレンペレットを、ノズル孔経
0.35mm、ノズル数3,328個を有する1m幅溶
融紡糸スパンボンド製造機を用いて吐出量2.6kg/
分で溶融紡出し、デニールが1.8dになるように紡糸
温度とフィラメント群牽引用の空気流量の調整をおこな
い、針電極ユニット数を3ユニットとし、表4に示すコ
ロナ帯電用矩形チャンネル装置の条件でコロナ帯電処理
を行い、加熱したエンボスロールとフラットロールの間
を通過させ、幅1.2m、目付20g/m2 のポリプロ
ピレン不織布を製造した。比較のために、従来の摩擦帯
電による不織布も製造した(比較例3)。得られた不織
布を用いて、5cm幅目付変動率測定用試験片、引張強
さ測定用試験片および耐水度測定用試験片を調整し、不
織布の5cm幅目付変動率、引張強さ、耐水度および耐
水度変動率を測定し、その結果を表4に示した。なお、
吸引装置の上部で1.5m/秒の吸引流れになるような
条件で運転した。
Examples 13 to 16 and Comparative Example 3 An MFR38 polypropylene pellet was discharged at a discharge rate of 2.6 kg / m using a 1 m wide melt-spun spunbond production machine having a nozzle hole diameter of 0.35 mm and 3,328 nozzles.
The spinning temperature and the air flow rate for drawing the filament group were adjusted so that the denier became 1.8 d. The number of needle electrode units was set to 3, and the rectangular channel device for corona charging shown in Table 4 was used. Under the conditions, a corona charging treatment was performed, and the sheet was passed between a heated embossing roll and a flat roll to produce a polypropylene nonwoven fabric having a width of 1.2 m and a basis weight of 20 g / m 2 . For comparison, a nonwoven fabric by conventional triboelectric charging was also manufactured (Comparative Example 3). Using the obtained nonwoven fabric, a test piece for measuring a 5 cm width basis weight variation rate, a test piece for measuring a tensile strength and a test piece for measuring water resistance were adjusted, and the 5 cm width basis weight variation rate, tensile strength, and water resistance of the nonwoven fabric were adjusted. And the variation rate of water resistance was measured, and the results are shown in Table 4. In addition,
The operation was performed under the condition that a suction flow of 1.5 m / sec was obtained at the upper part of the suction device.

【0040】[0040]

【表4】 [Table 4]

【0041】表4から、本発明によれば、細デニールの
フィラメント群に対しても高度な帯電を与えることがで
きため、高度に均一に分散された、引張強度および耐水
性能に優れた不織布が得られることがわかった。これに
対し、従来の摩擦帯電法により得られた不織布は、分散
性が低く、また引張強度および耐水性能の劣るものであ
った。
From Table 4, it can be seen that, according to the present invention, a high degree of charge can be imparted even to a fine denier filament group, so that a highly uniformly dispersed nonwoven fabric excellent in tensile strength and water resistance can be obtained. It turned out to be obtained. On the other hand, the nonwoven fabric obtained by the conventional triboelectric charging method had low dispersibility and poor tensile strength and water resistance.

【0042】なお、針電極ユニット間の絶縁仕切板を取
り外したケース、および全幅に渡って一つの針電極ユニ
ットと一台のコロナ電源からなるコロナ帯電用チャンネ
ル装置を用いたケースで、チャンネル内に切れ糸の塊を
強制的に入れてコロナ放電異常を観察したが、前者で
は、コロナ異常放電の発生と同時に隣接する針電極ユニ
ットの間でアーク放電が発生して全ての電源がトリップ
した。また、後者の場合は、全幅に渡って分散不良を発
生させた。本実施例のように3ユニットとした場合に
は、コロナ異常放電はそのユニットのみで発生し、フィ
ラメント群の瞬間的分散不良に止めることができた。
The case where the insulating partition plate between the needle electrode units is removed, and the case where a corona charging channel device including one needle electrode unit and one corona power supply is used over the entire width, are provided in the channel. Corona discharge abnormality was observed by forcibly inserting a piece of broken thread, but in the former case, an arc discharge was generated between adjacent needle electrode units simultaneously with the occurrence of abnormal corona discharge, and all power supplies were tripped. In the latter case, poor dispersion occurred over the entire width. When three units were used as in this example, the corona abnormal discharge occurred only in that unit, and the instantaneous dispersion failure of the filament group could be stopped.

【0043】[0043]

【発明の効果】本発明のスパンボンド不織布の製造装置
および製造方法によれば、特に細デニールからなる高度
に分散が均一な不織布を経済的に製造することができ
る。従って、本発明により得られる不織布は、細デニー
ル・高分散化により、不織布の強度、耐水性能が向上す
るので、例えば、紙オムツの材料として特に立体ギャザ
ーとかトップシートなど、医療用防護服、マスク、フィ
ルター材料などに特に有用である。
According to the apparatus and method for producing a spunbonded nonwoven fabric of the present invention, a nonwoven fabric made of fine denier and having a highly uniform dispersion can be economically produced. Therefore, the nonwoven fabric obtained by the present invention has a fine denier and high dispersion, so that the strength and water resistance of the nonwoven fabric are improved.For example, as a material for a disposable diaper, especially a three-dimensional gather or a top sheet, medical protective clothing, masks Particularly useful as a filter material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すスパンボンド不織布の
製造装置の説明図。
FIG. 1 is an explanatory view of an apparatus for producing a spunbonded nonwoven fabric showing one embodiment of the present invention.

【図2】随伴流吸引装置の一例を示す断面図。FIG. 2 is a cross-sectional view showing an example of an accompanying flow suction device.

【図3】矩形コロナ帯電用チャンネル装置の一例を示す
断面図。
FIG. 3 is a sectional view showing an example of a rectangular corona charging channel device.

【図4】絶縁ブロックの一例を示す斜視図。FIG. 4 is a perspective view showing an example of an insulating block.

【図5】絶縁ブロックの一例を示す斜視図。FIG. 5 is a perspective view showing an example of an insulating block.

【図6】針電極ユニットの一例を示す斜視図。FIG. 6 is a perspective view showing an example of a needle electrode unit.

【図7】コロナ電流密度と帯電量の関係を示す図。FIG. 7 is a diagram showing a relationship between a corona current density and a charge amount.

【符号の説明】[Explanation of symbols]

1…矩形紡口、2…フィラメント群、4…随伴流吸引装
置、5…矩形エアサッカー、6…矩形チャンネル、7…
矩形コロナ帯電用チャンネル装置、8…捕集面、9…ウ
ェブ、12、13…パンチングプレート、14…導入ガ
イド、15…下部ガイド、16…コロナ放電用針電極、
17…針電極座、18…エアー吹き出しノズル、19…
絶縁ブロック、20…針電極ホルダー、21…ターゲッ
ト電極板、22…ターゲット電極ホルダー、23…ター
ゲット電極支持枠、24…エア供給室、25…絶縁仕切
板、26…孔、30…針電極ユニット。
DESCRIPTION OF SYMBOLS 1 ... Rectangular spinneret, 2 ... Filament group, 4 ... Associated flow suction device, 5 ... Rectangular air sucker, 6 ... Rectangular channel, 7 ...
Rectangular corona charging channel device, 8: collecting surface, 9: web, 12, 13: punching plate, 14: introduction guide, 15: lower guide, 16: needle electrode for corona discharge,
17 ... needle electrode seat, 18 ... air blowing nozzle, 19 ...
Insulating block, 20: needle electrode holder, 21: target electrode plate, 22: target electrode holder, 23: target electrode support frame, 24: air supply chamber, 25: insulating partition plate, 26: hole, 30: needle electrode unit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 不織布の製造幅に相当する幅を有する矩
形紡口と、該紡口から押し出されるフィラメント群をそ
のまま導入することができる矩形入口を有する矩形エア
ーサッカーと、該矩形エアーサッカーに順に連設された
矩形チャンネルおよび矩形コロナ帯電用チャンネル装置
とを備えたことを特徴とするスパンボンド不織布の製造
装置。
1. A rectangular spinner having a width corresponding to a manufacturing width of a nonwoven fabric, a rectangular air sucker having a rectangular inlet into which a filament group extruded from the spinner can be introduced as it is, and a rectangular air sucker in this order. An apparatus for producing a spunbonded nonwoven fabric, comprising: a continuous rectangular channel and a rectangular corona charging channel device.
【請求項2】 前記矩形コロナ帯電用チャンネル装置
は、複数のコロナ放電用針状電極を有する複数のユニッ
トと、該複数のユニットとフィラメント群を介して対向
するターゲット電極板とを有し、上記コロナ放電用針状
電極は0.5〜5本/cm2 の密度で配置され、かつ上
記複数のユニットがユニット毎に絶縁体で隔離されてい
ることを特徴とする請求項1に記載のスパンボンド不織
布の製造装置。
2. The rectangular corona charging channel device includes a plurality of units having a plurality of corona discharge needle-like electrodes, and a target electrode plate facing the plurality of units via a filament group. 2. The span according to claim 1, wherein the corona discharge needle-like electrodes are arranged at a density of 0.5 to 5 / cm 2 , and the plurality of units are separated by an insulator for each unit. Bonding nonwoven fabric manufacturing equipment.
【請求項3】 スパンボンド不織布を製造するに際し、
矩形コロナ帯電用チャンネル装置を用いて単位面積当た
り0.01mA/cm2 以上のコロナ放電電流密度でフ
ィラメント群に帯電させることを特徴とするスパンボン
ド不織布の製造方法。
3. In producing a spunbonded nonwoven fabric,
A method for producing a spunbond nonwoven fabric, wherein a filament group is charged with a corona discharge current density of 0.01 mA / cm 2 or more per unit area using a rectangular corona charging channel device.
JP29444497A 1997-10-27 1997-10-27 Spunbond nonwoven fabric manufacturing apparatus and manufacturing method Expired - Lifetime JP3819129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29444497A JP3819129B2 (en) 1997-10-27 1997-10-27 Spunbond nonwoven fabric manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29444497A JP3819129B2 (en) 1997-10-27 1997-10-27 Spunbond nonwoven fabric manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JPH11131355A true JPH11131355A (en) 1999-05-18
JP3819129B2 JP3819129B2 (en) 2006-09-06

Family

ID=17807864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29444497A Expired - Lifetime JP3819129B2 (en) 1997-10-27 1997-10-27 Spunbond nonwoven fabric manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP3819129B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2815646A1 (en) * 2000-10-20 2002-04-26 Rieter Perfojet Machine producing nonwoven, spunbonded material includes electrostatic device causing mutual repulsion between fibers, separating them uniformly
FR2815647A1 (en) * 2000-10-20 2002-04-26 Rieter Perfojet Machine producing nonwoven spunbonded fabric includes electrostatic separator mounted above base of diffuser passage
JP2003082571A (en) * 2001-09-12 2003-03-19 Asahi Kasei Corp Method of producing spun bonded nonwoven fabric
CN102296426A (en) * 2011-08-09 2011-12-28 温州朝隆纺织机械有限公司 Equipment used for producing double-compound spunbonded nonwoven fabric and manufacture method thereof
WO2014046094A1 (en) 2012-09-19 2014-03-27 旭化成株式会社 Separator, manufacturing method thereof, and lithium ion secondary cell
US9461290B2 (en) 2012-04-04 2016-10-04 Asahi Kasei Fibers Corporation Separator
WO2018070490A1 (en) 2016-10-14 2018-04-19 旭化成株式会社 Biodegradable nonwoven fabric

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008205B2 (en) 2000-10-20 2006-03-07 Rieter Perfojet Installation for producing a spunbonded fabric web whereof the diffuser is distant from the drawing slot device
FR2815647A1 (en) * 2000-10-20 2002-04-26 Rieter Perfojet Machine producing nonwoven spunbonded fabric includes electrostatic separator mounted above base of diffuser passage
WO2002034990A1 (en) * 2000-10-20 2002-05-02 Rieter Perfojet Installation for producing a spunbonded fabric web with filament diffuser and separation by electrostatic process
WO2002034991A1 (en) * 2000-10-20 2002-05-02 Rieter Perfojet Installation for producing a spunbonded fabric web whereof the diffuser is distant from the drawing slot device
US6979186B2 (en) 2000-10-20 2005-12-27 Reiter Perfojet Installation for producing a spunbonded fabric web with filament diffuser and separation by electrostatic process
FR2815646A1 (en) * 2000-10-20 2002-04-26 Rieter Perfojet Machine producing nonwoven, spunbonded material includes electrostatic device causing mutual repulsion between fibers, separating them uniformly
JP2003082571A (en) * 2001-09-12 2003-03-19 Asahi Kasei Corp Method of producing spun bonded nonwoven fabric
CN102296426A (en) * 2011-08-09 2011-12-28 温州朝隆纺织机械有限公司 Equipment used for producing double-compound spunbonded nonwoven fabric and manufacture method thereof
US9461290B2 (en) 2012-04-04 2016-10-04 Asahi Kasei Fibers Corporation Separator
WO2014046094A1 (en) 2012-09-19 2014-03-27 旭化成株式会社 Separator, manufacturing method thereof, and lithium ion secondary cell
US20150270522A1 (en) * 2012-09-19 2015-09-24 Asahi Kasei Kabushiki Kaisha Separator and Method of Preparing the Same, and Lithium Ion Secondary Battery
US10811658B2 (en) * 2012-09-19 2020-10-20 Asahi Kasei Kabushiki Kaisha Separator and method of preparing the same, and lithium ion secondary battery
WO2018070490A1 (en) 2016-10-14 2018-04-19 旭化成株式会社 Biodegradable nonwoven fabric

Also Published As

Publication number Publication date
JP3819129B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
US5397413A (en) Apparatus and method for producing a web of thermoplastic filaments
US3387326A (en) Apparatus for charging and spreading a web
EP3419577B1 (en) Nonwoven fabrics with additive enhancing barrier properties
JP3819129B2 (en) Spunbond nonwoven fabric manufacturing apparatus and manufacturing method
PL191426B1 (en) Device for opening and distributing a bundle of filaments when producing a nonwoven textile web
JP7359327B1 (en) Manufacturing method and device for electret melt-blown nonwoven fabric
JP3589549B2 (en) Polypropylene non-woven fabric
KR102241152B1 (en) Apparatus and method for manufacturing spunbonded non-woven fabric having distribution of uniform density and similar tensile strength in longitudinal direction and transverse direction
KR102165393B1 (en) Apparatus and method for manufacturing spunbonded non-woven fabric having distribution of uniform density and similar tensile strength in longitudinal direction and transverse direction in a large quantity
JPH10251959A (en) Production of spun-bonded non-woven fabric
JP2001207368A (en) Apparatus and method for producing nonwoven fabric of filament
JPH0892856A (en) Production of nonwoven fabric excellent in flexibility
KR100825066B1 (en) Preparation of long staple fiber non-woven fabric and apparatus
US20230135016A1 (en) Improved spunbond system and process
JPS62184171A (en) Method and apparatus for producing nonwoven web
JPS5947066B2 (en) Continuous filament feeding device
JPH05279948A (en) Production of melt blown fiber nonwoven fabric with modified cross section
JP3618895B2 (en) Manufacturing method of long fiber web
JP2009161889A (en) Manufacturing equipment of spunbond web
JPH1072759A (en) Production of spunbonded nonwoven fabric and opener
JPH0115615B2 (en)
JP3059273B2 (en) Manufacturing method of continuous filament web
JPH07324270A (en) Production of nonwoven web comprising continuous filament
JP2001303420A (en) Method for producing highly uniform nonwoven fabric and device therefor
JP4709445B2 (en) Method for producing spunbond nonwoven

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041019

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140623

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term