JPH11130536A - Carbon material and its production - Google Patents

Carbon material and its production

Info

Publication number
JPH11130536A
JPH11130536A JP9290849A JP29084997A JPH11130536A JP H11130536 A JPH11130536 A JP H11130536A JP 9290849 A JP9290849 A JP 9290849A JP 29084997 A JP29084997 A JP 29084997A JP H11130536 A JPH11130536 A JP H11130536A
Authority
JP
Japan
Prior art keywords
carbon material
kneading
coal
producing
raw materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9290849A
Other languages
Japanese (ja)
Inventor
Junichi Akagami
順一 赤上
Hideo Shindo
英夫 進藤
Asao Otani
朝男 大谷
Junichi Ozaki
純一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP9290849A priority Critical patent/JPH11130536A/en
Publication of JPH11130536A publication Critical patent/JPH11130536A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a carbon material having small friction coefficient and suitable as a sliding component, by preparing the carbon material so as to have the ratio (fG) of the (002) peak area of the graphite component to the total area of all peaks shown in an X-ray diffraction pattern. SOLUTION: This carbon material is prepared by adjusting the FG-value to 8% or larger and can be produced by adopting processes comprising (A) compounding raw materials, (B) heating and kneading (incorporation), (C) molding, (D) calcining and (E) graphitization. It is especially preferable to conduct heat kneading at <=280 deg.C and calcining in the presence of any antioxidant measure at the same time and extremely preferable to add the selection of kinds of raw materials in combination with the above-mentioned measure. Wrapping the object to be calcined with paper or metal foil is suitable as an anti-oxidant measure. Coal pitch or coal tar is appropriate to a binder in the raw materials and artificial graphite, coal coke or petroleum coke is appropriate to aggregate in the raw materials.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炭素材に関し、詳し
くは摺動部材に好適な特殊炭素材に関する。
The present invention relates to a carbon material, and more particularly to a special carbon material suitable for a sliding member.

【0002】[0002]

【従来の技術】炭素材料の特性の一つに自己潤滑性があ
り、この特性を利用して軸受けや真空ポンプ用ブレード
などの摺動部材に炭素材が用いられている。摺動部材と
は、相手材と接触し、摺動する材料・部品を言い、この
ときに電流が流れている物も含む。炭素材料は電気伝導
性をある程度制御できるため、上記摺動部品の特別な型
として、電刷子にも用いられる。
2. Description of the Related Art One of the characteristics of carbon materials is self-lubricating properties. Utilizing this characteristic, carbon materials are used for sliding members such as bearings and vacuum pump blades. The sliding member refers to a material or part that slides in contact with a counterpart material, and includes a material that is flowing a current at this time. Since carbon materials can control the electrical conductivity to some extent, they are also used in electric brushes as a special type of the above-mentioned sliding parts.

【0003】これらの摺動部材としては摩擦係数が重要
な特性の一つである。この摩擦係数は、黒鉛化度が大き
い程、小さくなることは経験的に分っているが、定量的
には明確にされていない。黒鉛化度は一般的に、稲垣道
夫「炭素材料実験技術I」(炭素材料学会編、55ペー
ジ、科学技術社発行、1978年)に示されている方法で、
黒鉛結晶のCo(002又は004)およびLc(00
2又は004)で判断されている。また、S.Otaniらに
よるCarbon13,335巻(1975)に示されるように、X線回折
プロファイルを黒鉛成分(以下G成分)と乱層構造成分
(以下T成分)及び不定形炭素成分(以下A成分)に分
離する方法も提案されている。しかしながら、これらの
方法においても、摩擦係数と黒鉛化度の関係は明確にさ
れておらず、結果として、特殊炭素材として好適な、摩
擦係数の小さいものを歩留まりよく製造する方法は知ら
れていない。
[0003] The friction coefficient is one of the important characteristics of these sliding members. It has been empirically found that this friction coefficient decreases as the degree of graphitization increases, but it has not been clarified quantitatively. The degree of graphitization is generally determined by the method described in Michio Inagaki, “Experimental Technology for Carbon Materials I” (edited by the Society of Carbon Materials, p. 55, published by Science and Technology Corporation, 1978).
Graphite crystals of Co (002 or 004) and Lc (00
2 or 004). Further, as shown in Carbon 13, Vol. 335 (1975) by S. Otani et al., The X-ray diffraction profiles were determined for the graphite component (hereinafter referred to as G component), the turbostratic component (hereinafter referred to as T component), and the amorphous carbon component (hereinafter referred to as A). Component) has also been proposed. However, even in these methods, the relationship between the friction coefficient and the degree of graphitization has not been clarified, and as a result, there is no known method of producing a material having a small friction coefficient, which is suitable as a special carbon material, with a high yield. .

【0004】[0004]

【発明が解決しようとする課題】本発明らは摩擦係数と
黒鉛化度の関係を明確にし、黒鉛化度を制御する方法を
見いだすことにより本発明を完成するに至った。本発明
は、摩擦係数の小さい、摺動部材として好適な炭素材及
び前記炭素材を歩留まりよく製造する方法を提供するも
のである。
The present invention has completed the present invention by clarifying the relationship between the coefficient of friction and the degree of graphitization and finding a method for controlling the degree of graphitization. The present invention provides a carbon material having a small coefficient of friction and suitable as a sliding member, and a method for producing the carbon material with high yield.

【0005】[0005]

【課題を解決するための手段】すなわち本発明は、X線
(002)回折線で現われた黒鉛成分ピークの面積が全
体ピーク面積の8%以上(fG≧8%)である炭素材に
関する。また本発明は、原料の配合工程、加熱混練(捏
和)工程、成形工程、焼成工程及び黒鉛化工程を含む炭
素材の製造法において、得られる炭素材のX線(00
2)回折線で現われた黒鉛成分ピークの面積が全体ピー
ク面積の8%以上(fG≧8%)に調製することを特徴
とする炭素材の製造法に関する。
That is, the present invention relates to a carbon material in which the area of a graphite component peak represented by an X-ray (002) diffraction line is 8% or more (f G ≧ 8%) of the entire peak area. Further, the present invention provides a method for producing a carbon material including a raw material blending step, a heating kneading (kneading) step, a forming step, a firing step, and a graphitizing step.
2) The present invention relates to a method for producing a carbon material, wherein the area of a graphite component peak appearing in a diffraction line is adjusted to 8% or more (f G ≧ 8%) of the entire peak area.

【0006】また本発明は、加熱混練(捏和)工程を温
度280℃以下で行う前記炭素材の製造法に関する。ま
た本発明は、焼成工程を酸化防止雰囲気下で行う前記炭
素材の製造法に関する。また本発明は、酸化防止雰囲気
下の形成が、被焼成体を紙又は金属箔で包むことによる
前記炭素材の製造法に関する。さらに本発明は、原材料
として、石炭系のピッチ及び石炭系のタールから選択さ
れるバインダーと、人造黒鉛、石炭系コークス及び石油
系コークスから選択される骨材を用いる前記炭素材の製
造法に関する。
The present invention also relates to a method for producing the carbon material, wherein the heating and kneading (kneading) step is performed at a temperature of 280 ° C. or lower. The present invention also relates to a method for producing the carbon material, wherein the firing step is performed in an antioxidant atmosphere. Further, the present invention relates to a method for producing the carbon material, wherein the object to be fired is wrapped in a paper or a metal foil in an antioxidant atmosphere. Furthermore, the present invention relates to a method for producing the carbon material using a binder selected from coal-based pitch and coal-based tar and an aggregate selected from artificial graphite, coal-based coke and petroleum-based coke as raw materials.

【0007】[0007]

【発明の実施の形態】本発明の炭素材は、X線(00
2)回折線で現われた黒鉛成分ピーク(fG)の面積が
全体ピーク面積の8%以上(fG≧8%)である。ここ
で、fGは、前記のS.Otaniらの方法における黒鉛化度を
示す指標であり、X線(002)回折線で現われた黒鉛
成分(G成分)の面積強度を全体の面積強度で除した値
(以下fGと記す)である。本発明者らは、この値と炭
素材の摩擦係数(以下μと記す)との間に密接な関係が
あることを見いだした。すなわち、fGが8%未満では
Gの増加に伴ないμが減少し、fG=8%でμ≒0.3
となり、fGが8%を超えるとほぼ一定の値となること
が分った。従って、摺動部品等に好適なμの小さい炭素
材を得るためにはfG≧8%に調製すればよいことがわ
かった。
BEST MODE FOR CARRYING OUT THE INVENTION The carbon material of the present invention is an X-ray (00
2) The area of the graphite component peak (f G ) that appears in the diffraction line is 8% or more (f G ≧ 8%) of the entire peak area. Here, f G is an index indicating the degree of graphitization in the above-mentioned method of S. Otani et al., And the area intensity of the graphite component (G component) appearing on the X-ray (002) diffraction line is expressed by the total area intensity. (Hereinafter referred to as f G ). The present inventors have found that there is a close relationship between this value and the friction coefficient of the carbon material (hereinafter referred to as μ). That procedure, as no mu is decreased to increase the f G is f G is less than 8%, f G = 8% by mu ≒ 0.3
It was found that when f G exceeds 8%, the value becomes almost constant. Therefore, in order to obtain a carbon material having a small μ suitable for a sliding part or the like, it was found that f G ≧ 8% should be adjusted.

【0008】ここで、前記S.Otaniらの方法に基づく本
発明のfGの求め方について詳述する。図1(a)に炭
素材のX線(002)回折図形の1例を示す。図1
(a)において、プロファイル1は実際の測定データで
あり、これに対して前述の「炭素材料実験技術I」に記
載される学振法に従ってバックグラウンド補正を行うこ
とによりプロファイル2が得られる。S.Otaniらの方法
においては、2θが26.1°のピークが乱層構造に相
当するものであり、2θが26.4°のピークが黒鉛構
造に相当するものとしている。そして、プロファイル2
はこれらが共存する複合ピークである。従って、これを
前記補正を基に、各構造に分割すると、図(b)及び
(c)に示すように、左右対称の波形になるように乱層
成分3と黒鉛成分4が分割される。そして前記黒鉛成分
4の面積強度と、全体の面積強度、すなわち乱層成分3
と黒鉛成分4の合計の面積強度との比を求めてfGとす
る。ここで、X線回折は、前述の「炭素材料実験技術
I」に記載されるように、測定対象となる炭素材の粉末
について測定される。
[0008] Here will be described in detail how to obtain the f G of the present invention based on the S.Otani's method. FIG. 1A shows an example of an X-ray (002) diffraction pattern of a carbon material. FIG.
In (a), profile 1 is actual measurement data, and profile 2 is obtained by performing background correction on this in accordance with the Gakushin method described in the above-mentioned “Carbon Materials Experimental Technique I”. In the method of S. Otani et al., The peak at 2θ of 26.1 ° corresponds to the turbostratic structure, and the peak at 2θ of 26.4 ° corresponds to the graphite structure. And profile 2
Are composite peaks in which these coexist. Therefore, when this is divided into the respective structures based on the above correction, the turbostratic component 3 and the graphite component 4 are divided so as to have a symmetrical waveform as shown in FIGS. Then, the area intensity of the graphite component 4 and the entire area intensity, that is, the turbostratic component 3
And f G seeking the ratio of the integrated intensity of the sum of graphite components 4 and. Here, the X-ray diffraction is measured for the powder of the carbon material to be measured, as described in the above-mentioned “Carbon Material Experimental Technique I”.

【0009】本発明の炭素材の調製は、前記X線(00
2)回折線で現われた黒鉛成分ピークの面積が全体ピー
ク面積の8%以上(fG≧8%)となるように調製すれ
ばよいが、そのためにはいくつかの方法がある。本発明
の炭素材の製造方法は全体の工程としては、一般的な方
法、すなわち、原料の配合工程、加熱混練(捏和)工
程、成形工程、焼成工程及び黒鉛化工程を含む方法を採
用することができる。
[0009] The carbon material of the present invention is prepared by the X-ray (00
2) It may be prepared so that the area of the graphite component peak appearing on the diffraction line is at least 8% (f G ≧ 8%) of the entire peak area, and there are several methods for this. The method for producing a carbon material of the present invention employs a general method, that is, a method including a compounding step of raw materials, a heating and kneading (kneading) step, a forming step, a firing step, and a graphitizing step. be able to.

【0010】原料の配合工程は、ピッチ等のバインダー
とコークス等の骨材を配合する工程である。配合は骨材
/バインダーの重量比で7/3〜5/5とされることが
好ましい。ここで骨材は、あらかじめ、ジェットミル、
ピンミル、インパクトタイプ粉砕機、ロッドミル、ボー
ルミル等を用いて、平均粒子径5〜30μmに粉砕され
ていることが好ましい。本発明の炭素材を製造するため
の1つの方法として、この原材料の種類を選択する方法
がある。原材料は、バインダーとしては、石炭系のピッ
チ、石炭系のタールが好ましい。石油系のものでは本発
明の上記特性の炭素材を製造しにくい。また、骨材とし
ては、人造黒鉛、石炭系コークス及び石油系コークス
(フリュードコークス、デイレイドコークス)が好まし
い。天然黒鉛は黒鉛化後の製品の比重が小さく、本発明
の炭素材を製造しにくい。
[0010] The raw material blending step is a step of blending a binder such as pitch and an aggregate such as coke. It is preferable that the mixing ratio is 7/3 to 5/5 in terms of the weight ratio of aggregate / binder. Aggregate here, beforehand, jet mill,
It is preferable that the particles are pulverized to an average particle diameter of 5 to 30 μm using a pin mill, impact type pulverizer, rod mill, ball mill or the like. One method for producing the carbon material of the present invention is to select the type of the raw material. As the raw material, coal-based pitch and coal-based tar are preferable as the binder. In the case of petroleum-based materials, it is difficult to produce the carbon material of the present invention having the above characteristics. As the aggregate, artificial graphite, coal-based coke, and petroleum-based coke (fluid coke, delayed coke) are preferable. Natural graphite has a low specific gravity after graphitization, making it difficult to produce the carbon material of the present invention.

【0011】原料を配合した後、加熱混練する(捏和と
もいう)。本発明の炭素材を製造するための方法とし
て、この工程を280℃以下に保って行うことが好まし
く、加熱混練時間を少なくする面からは230℃以上と
することがより好ましい。加熱混練の温度が280℃を
超えたものはfGが8%未満となる傾向にある。この工
程は、双腕式ミキサ、リボンミキサ等のバッチ式ニー
ダ、パドル式、スクリュー式等の連続式ニーダなどを用
いて行うことができる。バッチ式ニーダの場合の加熱時
間としては、2時間〜24時間行うことが好ましく、連
続式ニーダの場合は、3秒〜30分程度でよい。
After mixing the raw materials, they are kneaded by heating (also called kneading). As a method for producing the carbon material of the present invention, this step is preferably performed at 280 ° C. or lower, and more preferably 230 ° C. or higher from the viewpoint of reducing the heating and kneading time. When the temperature of the heat kneading exceeds 280 ° C., the f G tends to be less than 8%. This step can be performed using a batch-type kneader such as a double-arm mixer or a ribbon mixer, or a continuous-type kneader such as a paddle type or a screw type. In the case of a batch type kneader, the heating time is preferably 2 hours to 24 hours, and in the case of a continuous type kneader, it may be about 3 seconds to 30 minutes.

【0012】冷却後、ジェットミル、ピンミル、インパ
クトタイプ粉砕機、ロッドミル、ボールミル等を用いて
粉砕することが好ましく、平均粒子径20〜30μmに
粉砕することがより好ましい。粉砕された原料は、つい
で成形される。成型方法には特に制限はなく、型につめ
一軸プレスにより成型する方法、押出成形、ラバープレ
ス(CIP)等をとることができる。
After cooling, it is preferable to pulverize using a jet mill, a pin mill, an impact type pulverizer, a rod mill, a ball mill or the like, and more preferable to pulverize to an average particle diameter of 20 to 30 μm. The pulverized raw material is then formed. There is no particular limitation on the molding method, and it is possible to employ a method in which the material is filled into a mold and molded by a uniaxial press, extrusion molding, rubber press (CIP), or the like.

【0013】ついで、焼成工程を行う。本発明の炭素材
を製造する方法として、この焼成工程を酸化防止雰囲気
下で行う方法がある。酸化するような条件、例えば焼成
炉内雰囲気中に、酸素・炭酸ガス・水蒸気などの炭素を
酸化させるガス体が存在する場合、fG<8%となりや
すく、本発明の炭素材は得られ難い。酸化防止雰囲気下
を形成する方法としては、非酸素雰囲気、たとえば、窒
素ガス、ヘリウムガス、アルゴンガス等のガス雰囲気
下、真空下等が挙げられるが、簡易で効果の高い方法と
して、焼成炉内雰囲気が酵化性気体であっても、被焼成
体に雰囲気気体が直接触れない様に、被焼成体を紙又は
金属箔で包む方法が好ましい。ここで、包むものは焼成
初期に形が残る物であることが必要であり、ビニール等
の有機物系のものは焼成初期に熔けるか又は焼失してし
まい、効果がない。
Next, a firing step is performed. As a method for producing the carbon material of the present invention, there is a method in which this firing step is performed in an antioxidant atmosphere. In the case of oxidizing conditions, for example, when a gas that oxidizes carbon such as oxygen, carbon dioxide, and water vapor is present in the atmosphere in the firing furnace, f G <8% is likely to occur, and it is difficult to obtain the carbon material of the present invention. . Examples of a method for forming the atmosphere under an antioxidant atmosphere include a non-oxygen atmosphere, for example, under a gas atmosphere such as nitrogen gas, helium gas, and argon gas, under vacuum, and the like. Even if the atmosphere is an enzymatic gas, a method of wrapping the object to be fired with paper or metal foil so that the atmosphere gas does not directly touch the object to be fired is preferable. Here, it is necessary that the material to be wrapped has a shape that remains in the initial stage of firing, and an organic material such as vinyl is melted or burnt out in the initial stage of firing and has no effect.

【0014】ここで用いる紙は焼成初期で炭素化し包み
の形状が変らないものであれば何でも良く、新聞紙、ク
ラフト紙、ダンボール紙等が挙げられる。包み方として
は隙間がない様に包むことが好ましい。また、金属とし
ては、焼成初期に熔けなければ良く、融点の高い銅箔・
スチール箔はもちろんのこと、アルミニウム箔の様な融
点が焼成最高温度よりも低いものでも良い。この場合
も、隙間がない様に包むことが好ましい。本発明におい
て、捏和工程で温度を280℃以下で処理し、かつ、さ
らに焼成工程で何らかの酸化防止策を施して製造する方
法が、歩留まりよく摩擦係数の低い炭素材が得られる効
果が高いので特に好ましく、さらに、原材料の種類を選
択することを組み合わせるのが極めて好ましい。
The paper used here may be any paper as long as it is carbonized in the early stage of firing and the shape of the package does not change, and examples thereof include newsprint, kraft paper, and cardboard paper. The wrapping method is preferably such that there is no gap. In addition, as the metal, it is sufficient that the metal does not melt in the early stage of sintering.
Not only steel foil but also aluminum foil whose melting point is lower than the maximum firing temperature may be used. Also in this case, it is preferable to wrap so that there is no gap. In the present invention, the method of processing at a temperature of 280 ° C. or less in the kneading step and further performing some antioxidant measures in the firing step has a high effect of obtaining a carbon material having a low coefficient of friction with a high yield. It is particularly preferred, and very particularly preferred to combine the selection of the type of raw materials.

【0015】焼成は、バッチ式の炉、連続式の炉等を用
いて、好ましくは700〜1000℃で昇温開始からの
総時間として半月〜1月間行うことができる。焼成後、
必要に応じてピッチ等を含浸し、再度上記焼成を行うこ
ともできる。焼成後、黒鉛化を行う。黒鉛化は、バッチ
式のアチソン炉や、誘導炉、連続式の等を用いて、24
00〜3000℃で行うことが好ましい。こうして本発
明の炭素材を製造することができる。得られる特殊炭素
材は必要に応じて機械加工、研磨され、各種摺動部材と
して用いられる。
The calcination can be carried out using a batch type furnace, a continuous type furnace, or the like, preferably at 700 to 1000 ° C. for a total time of from half a month to one month from the start of the temperature rise. After firing,
If necessary, pitch and the like can be impregnated, and the above-mentioned firing can be performed again. After firing, graphitization is performed. Graphitization is performed using a batch type Acheson furnace, induction furnace, continuous type, etc.
It is preferable to carry out at 00 to 3000 ° C. Thus, the carbon material of the present invention can be manufactured. The obtained special carbon material is machined and polished as necessary, and used as various sliding members.

【0016】以下、作用について説明する。炭素材中の
黒鉛成分の発生機構は次の通りである。炭素化初期段階
で炭素原子が六角網面を作り、次いでこれらが重縮合し
て平面巨大分子化し、さらにこれが何層も積み重なり黒
鉛結晶となる。従って黒鉛化度が低下するのは上記の機
構のいずれかで機構が進行しないことが原因であると言
える。本発明の製造法のうち、捏和温度が280℃以下
の場合は雰囲気中の酸素は脱水素反応を起こし、平面巨
大分子に重縮合するが、280℃を超えると、炭化初期
の重縮合の段階で、雰囲気中の酸素が六角網面分子に付
加反応して、平面の分子にならないため、互いに積み重
なりが構築されず、黒鉛結晶とならないと推定する。ま
た、同様に、本発明の製造法のうち、焼成工程において
何らかの酵化防止策を施した場合、付加反応する酸素等
の異原子がないため、炭素化の初期反応では平面巨大分
子となり、黒鉛結晶となると推定する。
Hereinafter, the operation will be described. The generation mechanism of the graphite component in the carbon material is as follows. At the initial stage of carbonization, carbon atoms form hexagonal mesh planes, which are then polycondensed to form a plane macromolecule, which is then stacked in layers to form graphite crystals. Therefore, it can be said that the reason why the degree of graphitization decreases is that the mechanism does not proceed in any of the above mechanisms. In the production method of the present invention, when the kneading temperature is 280 ° C. or lower, oxygen in the atmosphere causes a dehydrogenation reaction and polycondensates into planar macromolecules. At this stage, since oxygen in the atmosphere undergoes an addition reaction to hexagonal mesh plane molecules and does not become planar molecules, it is presumed that they do not build up on each other and do not become graphite crystals. Similarly, in the production method of the present invention, if any anti-enzyme measures are taken in the firing step, since there is no heteroatom such as oxygen that undergoes addition reaction, it becomes a plane macromolecule in the initial reaction of carbonization, and graphite Presumed to be crystals.

【0017】[0017]

【実施例】以下、本発明の実施例を示す。 実施例1 骨材としてピッチコークス(新日鐵化学(株)製、LPC
−A)及びカーボンブラック(ランプブラック)を、バ
インダーとして石炭系ピッチ(川崎製鉄(株)製PK−
E)及びコールタールを夫々25重量%ずつ使用し、A
240℃、B255℃、C270℃、D280℃で夫
々、双腕ニーダを用いて捏和し、次いで冷却後、ハンマ
ーミルで約30μmに粉砕し、600kg/cm2の圧力で一
軸プレスで圧粉体(300×150×110(mm))に
成形する。その後約900℃で10時間焼成し、約28
00℃で10時間黒鉛化してサンプルを得た。これらの
サンプルを下記に示す方法でfGを求めた所A:14
%、B15%、C12%、D10%となった。また、電
動機入力差法(直流モータの回転子にサンプルを押しつ
け、一定の回転数にするための電力を測定し、μを換算
する方法)で摩擦係数μを測定した所、A:0.20、
B:0.24、C:0.20、D:0.21であった。
Embodiments of the present invention will be described below. Example 1 Pitch coke as an aggregate (LPC manufactured by Nippon Steel Chemical Co., Ltd.)
-A) and carbon black (lamp black) as binders using coal-based pitch (PK- manufactured by Kawasaki Steel Corporation)
E) and 25% by weight of coal tar, respectively,
Kneading at 240 ° C, B255 ° C, C270 ° C, and D280 ° C, respectively, using a double-arm kneader, then cooling, pulverizing to about 30 μm with a hammer mill, and pressing with a uniaxial press at a pressure of 600 kg / cm 2. (300 × 150 × 110 (mm)). After that, it is baked at about 900 ° C. for 10 hours,
Graphitization was performed at 00 ° C. for 10 hours to obtain a sample. Where sought f G in a way that shows these samples the following A: 14
%, B15%, C12%, and D10%. Further, when the friction coefficient μ was measured by a motor input difference method (a method in which a sample was pressed against a rotor of a DC motor to measure the electric power for achieving a constant number of revolutions and converted μ), A: 0.20 ,
B: 0.24, C: 0.20, D: 0.21.

【0018】fGの測定法 X線回折装置はフィリップス社製PW−1700を用
い、電流20mA、電圧40KV、スリットは1/6°、
0.15mm、1/6°、銅陰極を用い、フィルターはニ
ッケルフィルターを使用し、カーボンの(002)回折
線をとった。この方法は前述の「炭素材料実験技術I」
に記載される学振法に準じている。得られた回折線図は
学振法に従い(002)回折線を補正し、低角側の
プロファイルがほぼ左右対称となる様に描き、次い
で、の補正プロファイルとのプロファイルの差を垂
直に降ろし、高角側のプロファイルとした。このとき
のプロファイルは左右対称となる。のプロファイルと
のプロファイルとの面積強度比をfGとした。
Measurement method of f G The X-ray diffractometer uses Philips PW-1700, current 20 mA, voltage 40 KV, slit 1/6 °,
A 0.15 mm, 1/6 °, copper cathode was used, and a nickel filter was used as a filter, and a (002) diffraction line of carbon was obtained. This method is based on the above-mentioned “Carbon Materials Experiment Technology I”.
According to the Gakushin method described in. The obtained diffraction diagram is obtained by correcting the diffraction line according to the Gakushin method (002) so that the profile on the low angle side is substantially symmetrical, and then the difference between the profile and the corrected profile is lowered vertically. The profile was on the high angle side. The profile at this time is symmetric. The area intensity ratio between the profile and the profile was defined as fG.

【0019】実施例2 実施例1のCと同一条件で得られた圧粉体をE:0.1
mm厚のアルミニウム箔で、F:同厚の銅箔で、G:同厚
のスチール箔で、H:新聞紙で、I:ボール紙で、隙間
なく包み約900℃で焼成し、次いで約2800℃で黒
鉛化して得られたサンプルのfGはE:18%、F:1
7%、G:15%、H:13%、I:13%であり、μ
はE:0.18、F:0.18、G:0.20、H:
0.16、I:0.19であった。
Example 2 A green compact obtained under the same conditions as in Example 1 was used.
mm thickness aluminum foil, F: copper foil of the same thickness, G: steel foil of the same thickness, H: newspaper, I: cardboard, wrapped tightly and fired at about 900 ° C., then about 2800 ° C. F G of the sample obtained by graphitization with E: 18%, F: 1
7%, G: 15%, H: 13%, I: 13%, μ
Are E: 0.18, F: 0.18, G: 0.20, H:
0.16, I: 0.19.

【0020】実施例3 実施例1と同一配合とし、290℃で捏和後、実施例4
のE、F、G、H、Iの各例と同一条件で焼成し、次い
で約2800℃で黒鉛化したサンプル、夫々J、K、
L、M、Nを得た。これらのfGはJ:14%、K:1
3%、L:10%、M:9%、N:9%となり、μはそ
れぞれ、0.20、0.22、0.24、0.26、
0.26となった。
Example 3 The same composition as in Example 1 was used, and after kneading at 290 ° C., Example 4
The samples fired under the same conditions as those of Examples E, F, G, H and I, and then graphitized at about 2800 ° C., J, K,
L, M and N were obtained. These f G are J: 14%, K: 1
3%, L: 10%, M: 9%, N: 9%, and μ is 0.20, 0.22, 0.24, 0.26,
It was 0.26.

【0021】実施例4 原材料として自家製人造黒鉛50%、石炭系バインダー
(川崎製鉄(株)製PK−E)50%を用いて280℃で
捏和し、冷却後約30μmに粉砕し、600kg/cm2の圧
力で成形した後、約900℃で焼成して得たサンプルP
のfGは18%であり、μは0.20であった。
Example 4 Kneaded at 280 ° C. using 50% of self-made artificial graphite and 50% of a coal-based binder (PK-E manufactured by Kawasaki Steel Corp.) as raw materials, pulverized to about 30 μm after cooling, and 600 kg / kg after molding at a pressure of cm 2, the sample P obtained by firing at about 900 ° C.
Had a f G of 18% and a μ of 0.20.

【0022】比較例1 実施例3で、圧粉体を酸化防止しないで約900℃で焼
成後、約2800℃で黒鉛化して得られたサンプルOの
Gは4%、μは0.40であった。
[0022] In Comparative Example 1 Example 3, after firing the green compact at about 900 ° C. without antioxidant, f G of the sample O obtained by graphitizing at about 2800 ° C. is 4%, mu is 0.40 Met.

【0023】比較例2 実施例1において、捏和温度を、Q:285℃、R:2
90℃、S:295℃、T:300℃に変更したとこ
ろ、これらのfGはQ:6%、R:5%、S:4%、
T:3%となり、μはそれぞれ、0.48、0.46、
0.51、0.58となった。
Comparative Example 2 In Example 1, the kneading temperature was changed to Q: 285 ° C., R: 2
When the temperature was changed to 90 ° C., S: 295 ° C., and T: 300 ° C., these f G were Q: 6%, R: 5%, S: 4%,
T: 3%, and μ are 0.48, 0.46,
0.51 and 0.58.

【0024】なお、以上の実験結果のfGと摩擦係数
(μ)の関係を示すグラフを図2として示す。
FIG. 2 is a graph showing the relationship between f G and the coefficient of friction (μ) based on the above experimental results.

【0025】[0025]

【発明の効果】本発明の炭素材は、摩擦係数が小さく、
摺動部材として好適である。また本発明の炭素材の製造
法によれば、摩擦係数が小さく、摺動部材として好適な
炭素材を、歩留まりよく製造することができる。
The carbon material of the present invention has a low coefficient of friction,
It is suitable as a sliding member. Further, according to the method for producing a carbon material of the present invention, a carbon material having a small coefficient of friction and suitable as a sliding member can be produced with high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】S.Otaniらの方法に基づく本発明のfGの求め方
を示すグラフである。
FIG. 1 is a graph showing how to determine f G of the present invention based on the method of S. Otani et al.

【図2】実施例の実験結果のfGと摩擦係数(μ)の関
係を示すグラフをである。
FIG. 2 is a graph showing the relationship between f G and the coefficient of friction (μ) of the experimental results of the example.

【符号の説明】[Explanation of symbols]

1…実際の測定プロファイル 2…バックグランド補正後のプロファイル 3…乱層成分 4…黒鉛成分 1: Actual measurement profile 2: Background corrected profile 3: Turbulent component 4: Graphite component

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 X線(002)回折線で現われた黒鉛成
分ピークの面積が全体ピーク面積の8%以上(fG≧8
%)である炭素材。
1. The area of a graphite component peak appearing on an X-ray (002) diffraction line is at least 8% of the entire peak area (f G ≧ 8).
%) Carbon material.
【請求項2】 原料の配合工程、加熱混練(捏和)工
程、成形工程、焼成工程及び黒鉛化工程を含む炭素材の
製造法において、得られる炭素材のX線(002)回折
線で現われた黒鉛成分ピークの面積を全体ピーク面積の
8%以上(fG≧8%)に調製することを特徴とする炭
素材の製造法。
2. An X-ray (002) diffraction line of a carbon material obtained in a method for producing a carbon material including a raw material blending step, a heating kneading (kneading) step, a forming step, a firing step, and a graphitizing step. A method for producing a carbon material, wherein the area of a graphite component peak is adjusted to 8% or more (f G ≧ 8%) of the entire peak area.
【請求項3】 加熱混練(捏和)工程を温度280℃以
下で行う請求項2記載の炭素材の製造法。
3. The method for producing a carbon material according to claim 2, wherein the heating kneading (kneading) step is performed at a temperature of 280 ° C. or lower.
【請求項4】 焼成工程を酸化防止雰囲気下で行う請求
項2又は3記載の炭素材の製造法。
4. The method for producing a carbon material according to claim 2, wherein the firing step is performed in an antioxidant atmosphere.
【請求項5】 酸化防止雰囲気下の形成が、被焼成体を
紙又は金属箔で包むことによる請求項4記載の炭素材の
製造法。
5. The method for producing a carbon material according to claim 4, wherein the formation in the antioxidant atmosphere is performed by wrapping the object to be fired with paper or metal foil.
【請求項6】 原材料として、石炭系のピッチ及び石炭
系のタールから選択されるバインダーと、人造黒鉛、石
炭系コークス及び石油系コークスから選択される骨材を
用いる請求項2、3又は4記載の炭素材の製造法。
6. A raw material comprising a binder selected from coal-based pitch and coal-based tar, and an aggregate selected from artificial graphite, coal-based coke, and petroleum-based coke. Production method of carbon material.
JP9290849A 1997-10-23 1997-10-23 Carbon material and its production Pending JPH11130536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9290849A JPH11130536A (en) 1997-10-23 1997-10-23 Carbon material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9290849A JPH11130536A (en) 1997-10-23 1997-10-23 Carbon material and its production

Publications (1)

Publication Number Publication Date
JPH11130536A true JPH11130536A (en) 1999-05-18

Family

ID=17761288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9290849A Pending JPH11130536A (en) 1997-10-23 1997-10-23 Carbon material and its production

Country Status (1)

Country Link
JP (1) JPH11130536A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127269A (en) * 2006-11-24 2008-06-05 Hitachi Appliances Inc Bearing
CN103771404A (en) * 2014-01-15 2014-05-07 湖南省长宇新型炭材料有限公司 Preparation method of graphite rod of oilless bearing
CN114736020A (en) * 2022-05-17 2022-07-12 平顶山市博翔碳素有限公司 Method for manufacturing graphite boat graphite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127269A (en) * 2006-11-24 2008-06-05 Hitachi Appliances Inc Bearing
CN103771404A (en) * 2014-01-15 2014-05-07 湖南省长宇新型炭材料有限公司 Preparation method of graphite rod of oilless bearing
CN114736020A (en) * 2022-05-17 2022-07-12 平顶山市博翔碳素有限公司 Method for manufacturing graphite boat graphite

Similar Documents

Publication Publication Date Title
JPS61161666A (en) Electrochemical battery separator plate, manufacture thereofand fuel battery
JP3765840B2 (en) Carbon material manufacturing method
JPH11130536A (en) Carbon material and its production
WO2021181905A1 (en) Method for producing impregnated pitch
JP2000007436A (en) Graphite material and its production
CN113658740B (en) Novel carbon composite material and preparation method of electrode paste
JP7167814B2 (en) Method for producing modified pitch
JPS5978914A (en) Manufacture of special carbonaceous material
JP3278190B2 (en) Method for producing isotropic high-density graphite material
JPH0764635B2 (en) Special carbon material composition
US9546113B2 (en) High porosity/low permeability graphite bodies and process for the production thereof
CN108675292A (en) The method that combination method prepares isotropic graphite material
JP7167815B2 (en) Raw coke production method
JPH0826827A (en) Electrically conductive reactional silicon carbide sintered compact, its production and use
JPH0764528B2 (en) Method for producing high-quality carbonaceous compact
JP4539147B2 (en) Method for producing graphite electrode for electric discharge machining
JP4208218B2 (en) Method for producing isotropic graphite material having high thermal expansion coefficient, graphite jig comprising the isotropic graphite material, and graphite substrate
JP2808807B2 (en) Production method of raw material powder for carbon material
JPH02296894A (en) Production of needle coke
JPH05170414A (en) Production of high density special carbonaceous material
JPH0948665A (en) Production of graphite material, its production and its heat generator
JPH08217433A (en) Production of powdery artificial graphite
JP2924061B2 (en) Production method of raw material powder for carbon material
JPS6245916B2 (en)
CN111362261A (en) Method for improving graphitization degree of electrode/joint