JPH1112698A - Bias material for magnetic marker, magnetic marker, and manufacture of bias material for magnetic marker - Google Patents
Bias material for magnetic marker, magnetic marker, and manufacture of bias material for magnetic markerInfo
- Publication number
- JPH1112698A JPH1112698A JP10087936A JP8793698A JPH1112698A JP H1112698 A JPH1112698 A JP H1112698A JP 10087936 A JP10087936 A JP 10087936A JP 8793698 A JP8793698 A JP 8793698A JP H1112698 A JPH1112698 A JP H1112698A
- Authority
- JP
- Japan
- Prior art keywords
- bias material
- magnetic
- magnetic marker
- bias
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 169
- 239000003550 marker Substances 0.000 title claims abstract description 77
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims abstract description 65
- 239000002184 metal Substances 0.000 claims abstract description 64
- 239000011159 matrix material Substances 0.000 claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 37
- 239000007787 solid Substances 0.000 claims abstract description 11
- 230000005415 magnetization Effects 0.000 claims description 31
- 238000010438 heat treatment Methods 0.000 claims description 30
- 239000000843 powder Substances 0.000 claims description 16
- 150000002484 inorganic compounds Chemical class 0.000 claims description 11
- 229910010272 inorganic material Inorganic materials 0.000 claims description 11
- 239000002923 metal particle Substances 0.000 claims description 9
- 150000002739 metals Chemical class 0.000 claims description 9
- 238000005245 sintering Methods 0.000 claims description 6
- 238000007596 consolidation process Methods 0.000 claims description 5
- 238000010791 quenching Methods 0.000 claims description 4
- 230000000171 quenching effect Effects 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 25
- 230000004907 flux Effects 0.000 description 17
- 230000005381 magnetic domain Effects 0.000 description 9
- 238000005096 rolling process Methods 0.000 description 9
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 238000005097 cold rolling Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000005347 demagnetization Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000009689 gas atomisation Methods 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 229910017110 Fe—Cr—Co Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 239000005300 metallic glass Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000009718 spray deposition Methods 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 238000009692 water atomization Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910017061 Fe Co Inorganic materials 0.000 description 1
- 229910002549 Fe–Cu Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910003296 Ni-Mo Inorganic materials 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Burglar Alarm Systems (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、マーカとなる磁歪
振動する金属片(以下磁歪素子と呼ぶ)にバイアス磁界
を印加する磁気マーカ用バイアス材および磁気マーカな
らびに磁気マーカ用バイアス材の製造法に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic marker bias material for applying a bias magnetic field to a magnetostrictive metal piece (hereinafter referred to as a magnetostrictive element) serving as a marker, a magnetic marker, and a method of manufacturing the magnetic marker bias material. Things.
【0002】[0002]
【従来の技術】盗難防止や物品の流れ、あるいは物品の
種類を把握する等の目的で、磁気的なラベルを付与し、
そのラベルをマーカとして検出する電子監視システムが
提案されている。その中で、磁歪材料をマーカとして用
いたシステムがある。例えば、特開平8−60312号
には、アモルファス磁歪材をマーカとして使用する技術
が提案されており、特定の非晶質金属製の磁歪素子を交
番磁場中で共鳴振動させることによって、磁界を変化さ
せ、ピックアップコイルにより検出するシステムが開示
されている。2. Description of the Related Art A magnetic label is provided for the purpose of preventing theft, grasping the flow of goods, or grasping the kind of goods.
An electronic monitoring system that detects the label as a marker has been proposed. Among them, there is a system using a magnetostrictive material as a marker. For example, Japanese Patent Application Laid-Open No. 8-60312 proposes a technique using an amorphous magnetostrictive material as a marker. A magnetic field is changed by causing a specific amorphous metal magnetostrictive element to resonate and vibrate in an alternating magnetic field. A system for detecting by a pickup coil is disclosed.
【0003】また、WO96/32518号や特開平8
−87237号には、磁歪材料に一定の予備磁界(バイ
アス磁界)を印加しておき、この状態で磁歪材料に固有
の共振周波数の交番磁界を印加し、磁歪材料が機械的共
振を行うようにしたシステムも提案されている。このよ
うなバイアス材として半硬質磁性材を用い、マーカとな
る磁歪素子にバイアス磁界を印加する方式によれば、バ
イアス材料を消磁することによって、マーカを取り外す
ことなく不活性化することができる。したがって、物品
にマーカを挿入あるいは貼付しておけば、例えば物品の
代金が支払われる際に、物品に付与された磁気マーカを
不活性化することで、正当に購入された物品と、不当に
持ち出そうとされた活性な磁気マーカを付与される物品
とを識別できるのである。[0003] Also, WO96 / 32518 and
In -87237, a constant preliminary magnetic field (bias magnetic field) is applied to the magnetostrictive material, and in this state, an alternating magnetic field having a specific resonance frequency is applied to the magnetostrictive material so that the magnetostrictive material performs mechanical resonance. Some systems have been proposed. According to a method in which a semi-hard magnetic material is used as such a bias material and a bias magnetic field is applied to the magnetostrictive element serving as a marker, the marker can be deactivated without removing the marker by demagnetizing the bias material. Therefore, if a marker is inserted or affixed to an article, for example, when the price of the article is paid, by deactivating the magnetic marker attached to the article, it can be illegally taken out of the article that has been legally purchased. It is possible to identify the article to which the activated magnetic marker is given.
【0004】このような電子監視システムにおいては、
マーカとして用いられる磁歪材料も重要であるが、磁歪
材料にバイアス磁界を印加するバイアス材料の選択も重
要である。バイアス材料としては、磁歪材料によって減
磁されないように、磁歪材料に比べて高い保磁力を有す
る必要があり、また磁化と消磁が行なえるような材料が
求められる。このような、磁化と消磁が可能な材料とし
ては、Fe−25wt%Cr−10wt%Co等に代表
されるFe−Cr−Co系半硬質磁性材料が知られてお
り、リードリレー等に使用されている。In such an electronic monitoring system,
Although the magnetostrictive material used as a marker is important, selection of a bias material for applying a bias magnetic field to the magnetostrictive material is also important. The bias material must have a higher coercive force than the magnetostrictive material so as not to be demagnetized by the magnetostrictive material, and a material capable of performing magnetization and demagnetization is required. As such a material capable of magnetization and demagnetization, an Fe-Cr-Co-based semi-hard magnetic material represented by Fe-25wt% Cr-10wt% Co is known, and is used for a reed relay or the like. ing.
【0005】バイアス材料としてもFe−Cr−Co系
合金が利用されているが、Fe−Cr−Co系合金は、
Coを多量に含むため高価であり、保磁力が7200A
/mと高く、また残留磁束密度Brが1.1T程度であ
って、印加磁場8000A/mにおける磁束密度(飽和
磁束密度B8000)と残留磁束密度Brの比で表され
る角形比Br/B8000が0.8程度とさほど高くな
い材料である。[0005] An Fe-Cr-Co alloy is also used as a bias material.
It is expensive because it contains a large amount of Co, and its coercive force is 7200 A
/ M, the residual magnetic flux density Br is about 1.1T, and the squareness ratio Br / B8000 represented by the ratio of the magnetic flux density (saturated magnetic flux density B8000) to the residual magnetic flux density Br at an applied magnetic field of 8000 A / m is It is a material that is not so high as about 0.8.
【0006】上述したように、バイアス材料は磁化と消
磁をなされる材料であって、保磁力が高すぎると消磁が
十分に行いにくいという問題がある。消磁が十分に行わ
れないと電子監視システムの誤動作につながり好ましく
ない。As described above, the bias material is a material that is magnetized and demagnetized. If the coercive force is too high, there is a problem that it is difficult to sufficiently demagnetize the material. Unsatisfactory degaussing leads to malfunction of the electronic monitoring system, which is not preferable.
【0007】同様にB−H曲線における角形比および磁
化急峻性が悪いと、磁化状態と消磁状態の境界が明瞭で
なくなるため、これも誤動作の原因になる。本発明で言
う磁化急峻性とは、バイアス材を磁化あるいは消磁する
際に、磁化状態が急激に変わる特性を指し、磁化急峻性
に優れた材料においては、B−H曲線が矩形に近いもの
となる。[0007] Similarly, if the squareness ratio and the steepness of magnetization in the BH curve are poor, the boundary between the magnetized state and the demagnetized state is not clear, which also causes a malfunction. The magnetization steepness referred to in the present invention refers to a characteristic in which the magnetization state changes abruptly when the bias material is magnetized or demagnetized. In a material having excellent magnetization steepness, a material having a BH curve close to a rectangle is considered. Become.
【0008】本発明における磁化急峻性の優劣の判断を
以下に述べる。一般に半硬質磁性材料は、その保磁力の
5倍の磁場を印加した際に飽和磁化量に達すると言われ
ている。そこで、この磁化量をB(5Hc)と呼ぶこと
にする。更に、保磁力の1.5倍の磁場を印加した際の
磁化量をB(1.5Hc)とし、これらの比、すなわ
ち、B(1.5Hc)/B(5Hc)が0.8を越える
ものを磁化急峻性に優れた材料とした。The determination of the superiority of the magnetization steepness in the present invention will be described below. It is generally said that a semi-hard magnetic material reaches a saturation magnetization when a magnetic field five times its coercive force is applied. Therefore, this amount of magnetization will be referred to as B (5Hc). Further, the amount of magnetization when a magnetic field 1.5 times the coercive force is applied is defined as B (1.5Hc), and the ratio thereof, that is, B (1.5Hc) / B (5Hc) exceeds 0.8. The material was made of a material having excellent magnetization steepness.
【0009】残留磁束密度はできるだけ高いことが磁歪
素子にバイアス磁界を印加するのに都合が良いが、Fe
−Cr−Co系合金では、純鉄の2.1Tよりも大きく
低下している。磁歪素子に印加されるバイアス磁界の大
きさは残留磁束密度とバイアス材の断面積とに比例す
る。また、残留磁束密度が小さいと、バイアス材の断面
積を大きくする必要が生じるため、磁気マーカの小型化
に不都合である。It is convenient for applying a bias magnetic field to the magnetostrictive element that the residual magnetic flux density is as high as possible.
In the case of the -Cr-Co alloy, the value is significantly lower than that of pure iron of 2.1T. The magnitude of the bias magnetic field applied to the magnetostrictive element is proportional to the residual magnetic flux density and the cross-sectional area of the bias material. If the residual magnetic flux density is small, it is necessary to increase the cross-sectional area of the bias material, which is inconvenient for downsizing the magnetic marker.
【0010】本発明の目的は、上述した問題点に鑑み、
磁気マーカ用のバイアス材として優れた磁気特性を有
し、且つ安価な材料を提供することである。また、この
バイアス材を用いた磁気マーカを提供することであり、
バイアス材の有効な製造法を提供することである。[0010] The object of the present invention is to solve the above problems,
An object of the present invention is to provide an inexpensive material having excellent magnetic properties as a bias material for a magnetic marker. Another object of the present invention is to provide a magnetic marker using the bias material.
It is to provide an effective method of manufacturing a bias material.
【0011】[0011]
【課題を解決するための手段】本発明者は、高い残留磁
束密度と磁気マーカ用バイアス材として要求される保磁
力を有し、B−H曲線における高い角形比および優れた
磁化急峻性を実現できる安価な材料を検討した結果、F
e−Cu族系材料に到達した。The present inventor has a high residual magnetic flux density and a coercive force required as a bias material for a magnetic marker, and realizes a high squareness ratio in a BH curve and excellent magnetization steepness. As a result of examining inexpensive materials that can be
The e-Cu group material has been reached.
【0012】すなわち、本発明はFeを主体とするマト
リックスにCu族非磁性金属の1種または複数種が分散
した組織を有する磁気マーカ用バイアス材である。本発
明において、Feを主体とするとは、FeがC、Si、
Mn、P、S、Al、N、Oといった微量成分およびF
eに固溶する添加元素を含有することをさす。また、本
発明において、Cu族非磁性金属は、Feを主体とする
マトリックスに対して固溶度が非常に小さいため、マト
リックスに微量に固溶するものを除いては、単体で存在
するが、微量成分を含むことは言うまでもない。また、
本発明において、分散とは、原子レベルでの分散ではな
く、材料中で相を形成して存在することをさす。That is, the present invention is a bias material for a magnetic marker having a structure in which one or more kinds of Cu group nonmagnetic metals are dispersed in a matrix mainly composed of Fe. In the present invention, Fe is mainly used when Fe is C, Si,
Minor components such as Mn, P, S, Al, N, O and F
e) contains additional elements that are dissolved in e. Further, in the present invention, since the Cu group nonmagnetic metal has a very low solid solubility in a matrix mainly composed of Fe, except for those that are dissolved in a trace amount in the matrix, they exist alone, Needless to say, it contains trace components. Also,
In the present invention, “dispersion” does not mean dispersion at the atomic level, but means that a phase is formed in a material.
【0013】また、Feを主体とするマトリックスにC
u族非磁性金属の1種または複数種および非磁性無機化
合物が分散した組織を有する磁気マーカ用バイアス材で
ある。The matrix mainly composed of Fe contains C
A bias material for a magnetic marker having a structure in which one or more kinds of u-group nonmagnetic metals and a nonmagnetic inorganic compound are dispersed.
【0014】本発明において、非磁性無機化合物とし
て、好ましくは金属炭化物を分散させる。In the present invention, a metal carbide is preferably dispersed as the nonmagnetic inorganic compound.
【0015】本発明において、Cu族非磁性金属とし
て、好ましくは重量比率で3〜35%のCuを含有させ
る。In the present invention, the Cu group nonmagnetic metal preferably contains 3 to 35% by weight of Cu.
【0016】保磁力が小さすぎると、バイアス材の磁化
状態が不安定となるため、より好ましいCu量の下限と
しては重量比率で5%以上を含有させる。また、保磁力
が大きすぎると、バイアス材を消磁しにくくなるため、
より好ましいCu量の上限は重量比率で25%以下であ
る。更に好ましいCu量の範囲は重量比率で8〜18%
である。If the coercive force is too small, the magnetization state of the bias material becomes unstable. Therefore, the lower limit of the Cu content is more preferably 5% by weight or more. Also, if the coercive force is too large, it becomes difficult to demagnetize the bias material,
A more preferable upper limit of the amount of Cu is 25% or less by weight. A more preferable range of the amount of Cu is 8 to 18% by weight.
It is.
【0017】本発明の磁気マーカ用バイアス材は塑性加
工により、平板化もしくは線状化される。The bias material for a magnetic marker of the present invention is flattened or linearized by plastic working.
【0018】本発明のバイアス材において、Cu族非磁
性金属は塑性加工により展伸される。In the bias material of the present invention, the Cu group non-magnetic metal is expanded by plastic working.
【0019】本発明のバイアス材は、展伸したCu族非
磁性金属により、磁気異方性を有する。The biasing material of the present invention has magnetic anisotropy due to the expanded Cu non-magnetic metal.
【0020】本発明のバイアス材は、塑性加工後の熱処
理により、磁化急峻性を高めることができる。The bias material of the present invention can enhance the sharpness of magnetization by heat treatment after plastic working.
【0021】本発明のバイアス材は、磁気異方性を活か
すため、展伸したCu族非磁性金属と平行に切り出され
る。The bias material of the present invention is cut out in parallel with the spread Cu group non-magnetic metal in order to utilize the magnetic anisotropy.
【0022】本発明の磁気マーカ用バイアス材は、Fe
を主体とするマトリックスにCu族非磁性金属の1種ま
たは複数種を常温の平衡状態における固溶限以上含有さ
せた溶製材を素材とし、塑性加工により平板化もしくは
線状化して得ることができる。The bias material for a magnetic marker of the present invention is made of Fe
Can be obtained by plasticizing and flattening or linearizing a molten material in which one or more Cu group non-magnetic metals are contained in a matrix mainly composed of at least the solid solubility limit at room temperature in an equilibrium state. .
【0023】あるいは本発明の磁気マーカ用バイアス材
は、混合粉を圧密もしくは焼結により結合させた素材
を、塑性加工により平板化もしくは線状化して得ること
ができる。溶製法においては、熱間加工時にCu族非磁
性金属がマトリックス粒界に凝集し、割れの原因となる
ことがあるが、粉末を用いる方法では、Cu族非磁性金
属のマトリックス粒界への凝集を防ぐことができ、好ま
しい。Alternatively, the bias material for a magnetic marker of the present invention can be obtained by flattening or linearizing a material obtained by binding a mixed powder by consolidation or sintering by plastic working. In the smelting method, the Cu group non-magnetic metal aggregates at the matrix grain boundaries during hot working and may cause cracking. However, in the method using powder, the Cu group non-magnetic metal aggregates at the matrix grain boundaries. Can be prevented, which is preferable.
【0024】あるいは本発明の磁気マーカ用バイアス材
は、Feを主体とするマトリックスに、Cu族非磁性金
属の1種または複数種を常温の平衡状態における固溶限
以上含有させた金属粒子を結合させた素材を、塑性加工
により平板化もしくは線状化して得ることができる。こ
のような金属粒子を用いる方法は、混合粉を素材とする
方法に比べて、Cu族非磁性金属を微細に分散すること
ができるため有効である。Alternatively, the bias material for a magnetic marker of the present invention is characterized in that metal particles containing one or more Cu group nonmagnetic metals in a matrix mainly composed of Fe or more in a state of equilibrium at room temperature in a solid solution limit or more are combined. The obtained material can be obtained by flattening or linearizing by plastic working. The method of using such metal particles is more effective than the method of using a mixed powder as a material because the Cu group nonmagnetic metal can be finely dispersed.
【0025】本発明において、金属粒子を結合させるに
は、圧密もしくは焼結もしくは半凝固状態で積層する等
の方法が採用できる。具体的には、ガスアトマイズ、水
アトマイズといったアトマイズ法で金属粉末を得た後、
熱間静水圧プレス(以下HIPと呼ぶ)によって圧密す
る方法、あるいはスプレーフォーミングによる積層が好
ましい。ここで言う積層とは、一旦溶解した材料を半凝
固状態にして噴霧し、粒子を積み重ねて凝固させていく
ことをさす。In the present invention, for bonding metal particles, a method such as consolidation, sintering, or lamination in a semi-solid state can be adopted. Specifically, after obtaining a metal powder by an atomizing method such as gas atomizing and water atomizing,
A method of compacting by hot isostatic pressing (hereinafter referred to as HIP) or lamination by spray forming is preferable. The term “stacking” as used herein refers to spraying a melted material into a semi-solid state, and stacking and solidifying particles.
【0026】量産性向上のためには、素材を大きくする
ことが有効である。したがって塑性加工の初期には、熱
間加工が有効となる。具体的には、鍛伸や熱間圧延が採
用できる。To improve mass productivity, it is effective to increase the material. Therefore, at the beginning of the plastic working, hot working is effective. Specifically, forging or hot rolling can be employed.
【0027】バイアス材の磁化急峻性を高めるために
は、磁気異方性を持たせることが有効である。分散した
Cu族非磁性金属を一方向に展伸させるため、塑性加工
の後期には冷間加工を用いることが好ましい。具体的に
は、冷間での引き抜きや冷間圧延が採用できる。In order to increase the steepness of magnetization of the bias material, it is effective to have magnetic anisotropy. In order to spread the dispersed Cu group non-magnetic metal in one direction, it is preferable to use cold working in the latter stage of plastic working. Specifically, cold drawing or cold rolling can be employed.
【0028】更に磁化急峻性を高めるためには、冷間加
工の後に熱処理(以下急峻化熱処理と呼ぶ)を施すこと
が好ましい。マトリックスの磁区の回転を妨げる主たる
要素は、非磁性領域である分散したCu族非磁性金属お
よび非磁性無機化合物と、塑性加工により加えられたマ
トリックスの歪である。急峻化熱処理によってマトリッ
クスの歪取りがなされるため、マトリックスの磁区の回
転が容易となる。したがって磁区の回転を妨げる主要素
をCu族非磁性金属および非磁性無機化合物に限定する
ことができ、磁化急峻性を高めることができるのであ
る。In order to further increase the magnetization steepness, it is preferable to perform a heat treatment (hereinafter referred to as a steepening heat treatment) after the cold working. The main factors that hinder the rotation of the magnetic domains of the matrix are the dispersed non-magnetic regions of the Cu group non-magnetic metal and the non-magnetic inorganic compound, and the strain of the matrix applied by plastic working. Since the strain is removed from the matrix by the steepening heat treatment, the rotation of the magnetic domain of the matrix becomes easy. Therefore, the main element that hinders the rotation of the magnetic domain can be limited to the Cu group non-magnetic metal and the non-magnetic inorganic compound, and the magnetization steepness can be enhanced.
【0029】急峻化熱処理の温度は、400〜700℃
が好ましい。熱処理温度が低すぎると、マトリックスの
歪を十分に除去することができない。したがってより好
ましい熱処理温度は450℃以上である。熱処理温度が
高すぎると、Cu族非磁性金属が粗大化してしまい、マ
トリックスの磁区回転を妨げる効果が十分に得られなく
なる恐れがある。したがってより好ましい熱処理温度は
650℃以下である。The temperature of the steepening heat treatment is 400 to 700 ° C.
Is preferred. If the heat treatment temperature is too low, the strain of the matrix cannot be sufficiently removed. Therefore, a more preferable heat treatment temperature is 450 ° C. or higher. If the heat treatment temperature is too high, the Cu group nonmagnetic metal may be coarsened, and the effect of preventing magnetic domain rotation of the matrix may not be sufficiently obtained. Therefore, a more preferable heat treatment temperature is 650 ° C. or less.
【0030】また、急峻化熱処理の時間は、2〜120
分が好ましい。熱処理時間が短すぎると、マトリックス
の歪を十分に除去することができない。したがってより
好ましい熱処理時間は3分以上である。熱処理時間が長
すぎると、Cu族非磁性金属が粗大化してしまい、マト
リックスの磁区回転を妨げる効果が十分に得られなくな
る恐れがある。また、生産性の点からも、熱処理時間は
できるかぎり短くすることが好ましい。したがってより
好ましい熱処理時間は60分以下である。The time for the heat treatment for steepening is 2 to 120.
Minutes are preferred. If the heat treatment time is too short, the matrix strain cannot be sufficiently removed. Therefore, a more preferable heat treatment time is 3 minutes or more. If the heat treatment time is too long, the Cu group non-magnetic metal may be coarsened, and the effect of preventing magnetic domain rotation of the matrix may not be sufficiently obtained. Also, from the viewpoint of productivity, it is preferable that the heat treatment time is as short as possible. Therefore, a more preferable heat treatment time is 60 minutes or less.
【0031】磁気マーカを小型化するため、磁歪素子お
よびバイアス材は、平板状もしくは線状であることが好
ましい。In order to reduce the size of the magnetic marker, the magnetostrictive element and the bias material are preferably flat or linear.
【0032】本発明は、Feを主体とするマトリックス
に、重量比率で8〜18%の遊離したCu族非磁性金属
相が展伸して筋状に分散した組織を有する薄板材の長手
方向に平行に、すなわち、筋状組織に平行に切り出され
た磁気マーカ用バイアス材である。The present invention is directed to a longitudinal direction of a thin plate material having a structure in which 8 to 18% by weight of a free Cu group non-magnetic metal phase is spread and dispersed in a streak form in a matrix mainly composed of Fe. This is a bias member for a magnetic marker cut out in parallel, that is, in parallel with the muscular tissue.
【0033】本発明の磁気マーカ用バイアス材におい
て、保磁力の1.5倍の磁場をバイアス材の長手方向に
印加した際の磁化量B(1.5Hc)と保磁力の5倍の
磁場を印加した際の磁化量B(5Hc)との比、すなわ
ち、B(1.5Hc)/B(5Hc)は0.8を越え
る。In the bias material for a magnetic marker of the present invention, when a magnetic field 1.5 times the coercive force is applied in the longitudinal direction of the bias material, the magnetization amount B (1.5 Hc) and the magnetic field 5 times the coercive force are generated. The ratio with the amount of magnetization B (5Hc) when applied, that is, B (1.5Hc) / B (5Hc) exceeds 0.8.
【0034】本発明の磁気マーカ用バイアス材は、磁歪
素子と組み合わせることで磁気マーカとして利用するこ
とができる。The bias material for a magnetic marker of the present invention can be used as a magnetic marker by combining it with a magnetostrictive element.
【0035】磁気マーカを小型化するため、磁歪素子お
よびバイアス材は、平板状もしくは線状であることが好
ましい。In order to reduce the size of the magnetic marker, the magnetostrictive element and the bias material are preferably flat or linear.
【0036】[0036]
【発明の実施の形態】本発明の重要な特徴の一つは、上
述したようにFeを主体とするマトリックスにCu族の
非磁性金属を分散させた材料をバイアス磁界印加用の材
料として選択したことにある。DESCRIPTION OF THE PREFERRED EMBODIMENTS One of the important features of the present invention is that, as described above, a material in which a Cu-based nonmagnetic metal is dispersed in a matrix mainly composed of Fe is selected as a material for applying a bias magnetic field. It is in.
【0037】Feを主体とするマトリックスに対し、C
u族の元素すなわちAu、Ag、Cuは、ほとんど固溶
せず、Feを主体とするマトリックスとCu族元素が遊
離した組織となる。ここで言う遊離とは、Feを主体と
する相とCu族の相とが2相に分離した状態を指す。材
料が磁化される際に、磁性を持ったマトリックスの磁区
の回転を、分散して存在する非磁性のCu族元素が妨げ
るため、保磁力が増大し、したがって半硬質磁性を持た
せることができる。For a matrix mainly composed of Fe, C
The u-group elements, ie, Au, Ag, and Cu, hardly form a solid solution, and have a structure in which the matrix mainly composed of Fe and the Cu-group elements are released. The term “relaxation” as used herein refers to a state in which a phase mainly composed of Fe and a Cu group phase are separated into two phases. When the material is magnetized, the non-magnetic Cu group elements present in a dispersed manner prevent the rotation of the magnetic domains of the magnetic matrix, so that the coercive force increases, and therefore semi-hard magnetism can be imparted. .
【0038】Cu族非磁性金属としては、Au、Ag、
Cuのうち、いずれの元素を用いても、あるいは複数種
を用いても有効であると思われるが、CuはCu族のう
ち最も安価に入手することが可能であるので、Cuを利
用するのが好ましい。Cu族金属はバイアス材中に分散
させて非磁性領域を形成させるものであるため、重量で
はなく体積が重要となる。したがって同等の効果を得る
にはAuやAgを用いる場合に比べてCuは少なくて済
むことからも、Cuの利用が有効である。As the Cu group nonmagnetic metal, Au, Ag,
It is considered that any of the elements or the use of a plurality of kinds of Cu is effective. However, since Cu can be obtained at the lowest cost among the Cu group, Cu should be used. Is preferred. Since the Cu group metal is dispersed in the bias material to form a non-magnetic region, volume, not weight, is important. Therefore, in order to obtain the same effect, the use of Cu is effective because Cu is smaller than in the case of using Au or Ag.
【0039】本発明において、好ましくはCuを重量比
率で3〜35%含有させる。より好ましいCu量は、重
量比率で5〜25%である。更に好ましいCu量は、重
量比率で8〜18%である。In the present invention, Cu is preferably contained by 3 to 35% by weight. A more preferable Cu content is 5 to 25% by weight. A more preferable Cu content is 8 to 18% by weight.
【0040】バイアス材の保磁力が小さすぎると、バイ
アス材の磁化状態が不安定となる。例えば正当に物品が
購入され、物品に付与されたバイアス材を一旦消磁した
後に、磁石を近づけられて再びバイアス材が磁化してし
まい、警報が作動してしまうという可能性がある。した
がって、本発明においてCu量は、重量比率で3%以上
が望ましい。角形比Br/B8000が0.9を越える
よう、より好ましいCu量は、重量比率で5%以上であ
る。保磁力Hc≧1600[A/m]を達成できるよ
う、更に好ましいCu量は、重量比率で8%以上であ
る。If the coercive force of the bias material is too small, the magnetization state of the bias material becomes unstable. For example, there is a possibility that after an article is properly purchased and the biasing material applied to the article is once demagnetized, the magnet is approached and the biasing material is magnetized again, so that an alarm is activated. Therefore, in the present invention, the Cu content is desirably 3% or more by weight. More preferably, the Cu content is 5% or more by weight so that the squareness ratio Br / B8000 exceeds 0.9. In order to achieve coercive force Hc ≧ 1600 [A / m], the more preferable amount of Cu is 8% or more by weight.
【0041】一方、保磁力が大きすぎるとバイアス材が
消磁しにくくなり、消磁する際に装置からの距離を大き
くすることができないため、例えばレジにおいて消磁を
行う場合、手間がかかり、混雑を招く恐れがある。ま
た、バイアス材が十分消磁されずに警報を作動させてし
まう恐れもある。また、Cu量を多くすることにより、
残留磁束密度が低下しすぎてバイアス材としての性能が
低下する場合がある。したがって、本発明においてCu
量は、重量比率で35%以下が望ましい。角形比Br/
B8000が0.8を下回らないよう、より好ましいC
u量は、重量比率で25%以下である。残留磁束密度が
1.3[T]を下回らないよう、更に好ましいCu量
は、重量比率で18%以下である。On the other hand, if the coercive force is too large, the bias material is difficult to demagnetize, and the distance from the apparatus cannot be increased when demagnetizing. For example, when performing demagnetization at a cash register, it takes time and congestion. There is fear. Further, there is a possibility that the alarm is activated without the bias material being sufficiently demagnetized. Also, by increasing the amount of Cu,
In some cases, the residual magnetic flux density is too low, and the performance as a bias material is lowered. Therefore, in the present invention, Cu
The amount is desirably 35% or less by weight. Squareness ratio Br /
More preferable C so that B8000 does not fall below 0.8.
The u amount is not more than 25% by weight. A more preferable amount of Cu is 18% or less by weight so that the residual magnetic flux density does not fall below 1.3 [T].
【0042】本発明のバイアス材では、Feを主体とす
るマトリックスにCu族非磁性金属を分散させることに
より、マトリックスの高い飽和磁束密度をそのまま利用
することができるという利点がある。そして分散させる
Cu族の量によって、保磁力を調整することが可能であ
る。The bias material of the present invention has an advantage that the high saturation magnetic flux density of the matrix can be utilized as it is by dispersing the Cu group non-magnetic metal in the matrix mainly composed of Fe. The coercive force can be adjusted by the amount of the Cu group to be dispersed.
【0043】またCu族非磁性金属の他に、非磁性無機
化合物を分散させることで、保磁力を増大させることが
できるため、所望の保磁力に調整することが容易とな
る。本発明で言う非磁性無機化合物とは、例えばMnS
のような金属硫化物、あるいはAl2O3のような金属酸
化物、また、MoC、NbCと言った金属炭化物といっ
たものが挙げられる。炭素はFeを主体とするマトリッ
クスに溶け込み、マトリックスの保磁力を増大させ、ま
た、他の金属元素と結びつき炭化物を形成することか
ら、金属炭化物は特に有効である。もちろん前記以外の
非磁性無機化合物であっても良いことは言うまでもな
い。Further, by dispersing a non-magnetic inorganic compound in addition to the Cu group non-magnetic metal, the coercive force can be increased, so that the desired coercive force can be easily adjusted. The non-magnetic inorganic compound referred to in the present invention is, for example, MnS
And metal oxides such as Al 2 O 3 and metal carbides such as MoC and NbC. Metal carbides are particularly effective because carbon dissolves in a matrix mainly composed of Fe, increases the coercive force of the matrix, and forms carbides with other metal elements. It goes without saying that a nonmagnetic inorganic compound other than the above may be used.
【0044】次に挙げるような元素を、保磁力調整のた
め添加することができる。加工性が低下しないよう、以
下に示す範囲で添加することが好ましい。 C≦1%、Si≦5%、Mn≦6%、Co≦10%、C
r≦10%、Ta≦5%、W≦5%、Mo≦5%、Ti
≦5%、V≦5%、Nb≦5%、P≦0.04%、S≦
0.03%、Mg≦5%、Ca≦5%、Al≦5%、O
≦0.5%、N≦0.5%、B≦1%、Y≦0.5%、
希土類元素≦0.15%、Pd≦3%、Pt≦3%、Z
r≦0.5%、The following elements can be added for adjusting the coercive force. It is preferable to add in the range shown below so that the processability does not decrease. C ≦ 1%, Si ≦ 5%, Mn ≦ 6%, Co ≦ 10%, C
r ≦ 10%, Ta ≦ 5%, W ≦ 5%, Mo ≦ 5%, Ti
≦ 5%, V ≦ 5%, Nb ≦ 5%, P ≦ 0.04%, S ≦
0.03%, Mg ≦ 5%, Ca ≦ 5%, Al ≦ 5%, O
≦ 0.5%, N ≦ 0.5%, B ≦ 1%, Y ≦ 0.5%,
Rare earth element ≦ 0.15%, Pd ≦ 3%, Pt ≦ 3%, Z
r ≦ 0.5%,
【0045】保磁力の調整に有効な結晶粒内に微細に析
出する炭化物を生成する元素として、特に有効であるも
のはMo、Ta、W、Nb、V等である。ただし、添加
量が多くなると加工性が低下する。また角形比や磁化急
峻性が悪くなり、バイアス材として要求される特性が劣
化する。したがって、添加量は上記の範囲にすることが
望ましい。Mo, Ta, W, Nb, V, etc., which are particularly effective as elements which form carbides which are finely precipitated in crystal grains which are effective in adjusting the coercive force, are provided. However, when the amount of addition increases, the processability decreases. Further, the squareness ratio and the steepness of magnetization are deteriorated, and the characteristics required as a bias material are deteriorated. Therefore, it is desirable that the amount of addition be in the above range.
【0046】Cu族を分散させた材料に塑性加工を加え
ると、組織に異方性が生じ、したがって磁気異方性が生
じることとなる。すなわち、マトリックスに分散するC
u族が圧延もしくは引き抜きといった塑性加工によって
展伸されることで、長手方向に伸びた非磁性領域が分散
した組織が得られる。バイアス材が磁化あるいは消磁さ
れる際には、この非磁性領域が磁区の回転を妨げ、した
がって長手方向が磁化容易方向となる。When plastic working is applied to a material in which the Cu group is dispersed, an anisotropy is generated in the structure, and thus a magnetic anisotropy is generated. That is, the C dispersed in the matrix
By extending the u-group by plastic working such as rolling or drawing, a structure in which non-magnetic regions extending in the longitudinal direction are dispersed is obtained. When the bias material is magnetized or demagnetized, the non-magnetic region prevents rotation of the magnetic domain, and thus the longitudinal direction becomes the direction of easy magnetization.
【0047】バイアス材の組織を図1に示す。ミクロ組
織を走査式電子顕微鏡で観察した結果を(A)に、その
模式図を(B)に示した。模式図に示したようにFeを
主体とするマトリックス1にCu族非磁性金属2が圧延
方向に展伸した形態で分散している。また、非磁性無機
化合物3も観察される。X線分析によって、背景の黒く
見える部分はSi、Mn等を含むFeを主体とするマト
リックスであり、筋状や点状の白く見える部分はCuで
あり、黒い球状のものは金属炭化物であることを確認し
た。FIG. 1 shows the structure of the bias material. The results obtained by observing the microstructure with a scanning electron microscope are shown in (A), and the schematic diagram is shown in (B). As shown in the schematic diagram, a Cu group non-magnetic metal 2 is dispersed in a matrix 1 mainly composed of Fe so as to extend in a rolling direction. Further, a non-magnetic inorganic compound 3 is also observed. According to the X-ray analysis, the black portion in the background is a matrix mainly composed of Fe containing Si, Mn, etc., the streak-like or dot-like white portion is Cu, and the black spherical portion is metal carbide. It was confirmed.
【0048】磁気異方性を持たせるために行う平板化も
しくは線状化の方法は、圧延加工あるいは引き抜き加工
が有効であるが、形状の精度、経済性等の理由から熱間
圧延、冷間圧延を用いるのが望ましい。また、本発明の
磁気マーカバイアス材は平板形状のみならず、丸や角あ
るいは異形状断面を有する線状でも使用できることは言
うまでもない。As a method of flattening or linearizing to have magnetic anisotropy, rolling or drawing is effective, but hot rolling, cold rolling or cold rolling is preferred for reasons of shape accuracy, economy and the like. It is desirable to use rolling. Also, it goes without saying that the magnetic marker bias material of the present invention can be used not only in a flat plate shape but also in a linear shape having a round, angular or irregular shaped cross section.
【0049】上述した磁気異方性を有効に活用するた
め、本発明のバイアス材は展伸したCu族である非磁性
領域に平行に切り出し、長手方向に磁化するのが好まし
い。圧延もしくは引き抜きの長手方向に非磁性領域が筋
状に分散しているため、垂直方向に比して、平行方向が
より磁化しやすい方向となっている。これをバイアス材
の長手方向として切り出し、この方向に磁化して磁気マ
ーカ用のバイアス材として用いるのが好ましい。このこ
とより、バイアス材は磁歪素子に対し長手方向に磁場を
印加する。一方の磁歪素子には幅方向に磁区を揃えるよ
うな熱処理を施しておくのが好ましい。バイアス材を近
接させることで、保磁力が小さい磁歪素子の磁区は容易
に回転し、したがって、その長さで決まる固有の周波数
の交番磁界にさらされた際に、機械的に共振する。In order to effectively utilize the above-described magnetic anisotropy, it is preferable that the bias material of the present invention is cut in parallel with the extended non-magnetic region of the Cu group and magnetized in the longitudinal direction. Since the nonmagnetic regions are dispersed in a streak shape in the longitudinal direction of the rolling or drawing, the parallel direction is more easily magnetized than the perpendicular direction. This is preferably cut out as the longitudinal direction of the bias material, magnetized in this direction, and used as a bias material for a magnetic marker. Thus, the bias material applies a magnetic field to the magnetostrictive element in the longitudinal direction. Preferably, one of the magnetostrictive elements is subjected to a heat treatment so as to align magnetic domains in the width direction. By bringing the bias material close to each other, the magnetic domain of the magnetostrictive element having a small coercive force easily rotates, and therefore mechanically resonates when exposed to an alternating magnetic field having a unique frequency determined by its length.
【0050】本発明において、溶製材による工程にてバ
イアス材料を作製する方法が、最も安価に材料を得る方
法であると思われる。溶湯を鋳型に鋳込む方法、薄板に
直接連続鋳造する方法などが挙げられる。連続鋳造法は
材料中の偏析を抑えることができ、好ましい。得られた
溶製材の素材に、圧延もしくは引き抜き等の加工を加え
ることによって、長手方向に非磁性領域が筋状に分散し
た組織を得ることができる。In the present invention, it is considered that the method of producing a bias material in a process using an ingot material is a method of obtaining the material at the lowest cost. A method of casting a molten metal into a mold, a method of continuously casting a thin plate directly, and the like can be given. The continuous casting method is preferable because segregation in the material can be suppressed. By applying processing such as rolling or drawing to the obtained ingot material, it is possible to obtain a structure in which non-magnetic regions are dispersed in a streak shape in the longitudinal direction.
【0051】上記のような組織および磁気的挙動は、溶
製材のみではなく粉末冶金材でも得ることができる。粉
末の組み合わせは、様々に考えられるが、Feを主体と
する金属粒子と、Cu族非磁性金属粒子またはCu族非
磁性金属を含有する粒子を用いるのが好ましい。これら
の合金粉を、圧密、焼結等によって結合させた素材に対
し、圧延もしくは引き抜き等の加工を加えることによっ
て、長手方向に非磁性領域が筋状に分散した組織を得る
ことができる。The above structure and magnetic behavior can be obtained not only by ingots but also by powder metallurgy materials. Although various combinations of powders can be considered, it is preferable to use metal particles mainly composed of Fe and Cu group nonmagnetic metal particles or particles containing Cu group nonmagnetic metal. By applying a process such as rolling or drawing to a material obtained by binding these alloy powders by consolidation, sintering, or the like, a structure in which nonmagnetic regions are dispersed in a streak shape in the longitudinal direction can be obtained.
【0052】また、粉末を用いる方法によれば、Cu族
非金属元素の分散の度合いを調節することが容易にな
る。したがって保磁力の調整が容易となり、更に溶製法
と比較し、少ないCu量で、要求される保磁力を得るこ
ともできる。Further, according to the method using powder, it is easy to adjust the degree of dispersion of the Cu group nonmetallic element. Therefore, the adjustment of the coercive force is facilitated, and the required coercive force can be obtained with a smaller amount of Cu as compared with the melting method.
【0053】また、溶製法による場合では、マトリック
ス粒界にCu族非金属元素が集中して析出するため、熱
間における加工時に割れを生じることがあるが、粉末を
用いる方法ではこの割れを防ぐことができる。In the case of the melting method, since the Cu group non-metal element is concentrated and precipitated at the matrix grain boundaries, cracks may occur during hot working. However, the method using powder prevents such cracks. be able to.
【0054】あるいはFeを主体とするマトリックス中
にCu族非磁性金属を常温の平衡状態における固溶限以
上含有させた粉末を用いても得ることができる。まず、
Feを主体とするマトリックス中にCu族非磁性金属を
常温の平衡状態における固溶限以上含有させた溶湯を、
ガスアトマイズ、水アトマイズと呼ばれる急冷法によっ
て得た粉末をHIPに代表される圧密加圧焼結により素
材とする方法、あるいはスプレーフォーミング法に代表
される金属溶湯を半凝固状態で堆積させる方法などで塑
性加工に供する素材を得る。そして得られた素材に圧延
もしくは引き抜き等の加工を加えることによって、長手
方向に非磁性領域が筋状に分散した組織を得ることがで
きる。混合粉を用いる場合に比して、Cu族非磁性金属
を微細に分散できるという利点がある。Alternatively, it can also be obtained by using a powder in which a Cu group non-magnetic metal is contained in a matrix mainly composed of Fe at or above the solid solubility limit in an equilibrium state at room temperature. First,
A molten metal containing a Cu group non-magnetic metal in a matrix mainly composed of Fe at or above the solid solubility limit in an equilibrium state at room temperature,
The powder obtained by the quenching method called gas atomization or water atomization is used as a material by consolidation and pressure sintering typified by HIP, or a method of depositing a molten metal in a semi-solid state typified by spray forming, etc. Obtain the material to be processed. By applying a process such as rolling or drawing to the obtained material, a structure in which nonmagnetic regions are dispersed in a streak shape in the longitudinal direction can be obtained. There is an advantage that the Cu group nonmagnetic metal can be finely dispersed as compared with the case of using the mixed powder.
【0055】上述のようにして得られた塑性加工後の材
料には、マトリックス中に多くの歪が入っている。適当
な熱処理を施して、この歪を取ってやることで、更に磁
化急峻性を高めることができる。急峻化熱処理の前後の
磁気特性測定結果を図2に示す。左に示した熱処理前の
ものは曲線がなだらかであるのに対し、右に示した熱処
理後のものは矩形に近い形を呈している。磁化急峻性を
表わすB(1.5Hc)/B(5Hc)は熱処理前は
0.8程度であるのに対し、熱処理後は0.9程度まで
向上できた。このように、飽和磁束密度や保磁力に大き
な影響を与えることなく、磁化急峻性のみを大幅に向上
することができる。また、この急峻化熱処理は、バイア
ス材を切り出す工程の前で行っても、後で行っても、効
果に大きな差はないが、生産性の観点から、連続で熱処
理を行えるよう、切り出し工程の前に行うのが好まし
い。The plastically processed material obtained as described above contains many strains in the matrix. By applying an appropriate heat treatment to remove the distortion, the magnetization steepness can be further increased. FIG. 2 shows the results of measuring the magnetic properties before and after the steepening heat treatment. The curve before the heat treatment shown on the left has a gentle curve, whereas the curve after the heat treatment shown on the right has a shape close to a rectangle. B (1.5Hc) / B (5Hc) representing the magnetization steepness was about 0.8 before the heat treatment, but was improved to about 0.9 after the heat treatment. As described above, it is possible to significantly improve only the magnetization steepness without greatly affecting the saturation magnetic flux density and the coercive force. Also, this steepening heat treatment may be performed before or after the step of cutting out the bias material, but there is no significant difference in the effect. However, from the viewpoint of productivity, the heat treatment is performed so that the heat treatment can be performed continuously. It is preferably performed before.
【0056】以上、上述したようにして、展伸して筋状
に分散したCu族非磁性金属相に平行に切り出された薄
板状の磁気マーカ用バイアス材を得ることができる。As described above, it is possible to obtain a thin plate-like magnetic marker bias material cut in parallel with the Cu group nonmagnetic metal phase which has been spread and dispersed in a streak shape.
【0057】展伸して筋状に分散したCu族非磁性金属
相に平行に切り出し、急峻化熱処理を施すことによっ
て、B(1.5Hc)/B(5Hc)≧0.8のバイア
ス材が得られる。特に重量比率で8〜18%のCuを含
むものでは、B(1.5Hc)/B(5Hc)≧0.9
を容易に実現できる。磁化急峻性以外の、角形性、保磁
力等の磁気特性、熱間および冷間での加工性等、種々の
観点からも、最も好ましいCu量は、重量比率で8〜1
8%である。By cutting out in parallel to the Cu group non-magnetic metal phase which has been spread and dispersed in a streak shape, and subjected to a steepening heat treatment, a bias material of B (1.5Hc) / B (5Hc) ≧ 0.8 is obtained. can get. In particular, those containing 8 to 18% of Cu by weight are B (1.5Hc) / B (5Hc) ≧ 0.9.
Can be easily realized. From various viewpoints such as magnetic properties such as squareness and coercive force, hot and cold workability other than the magnetization steepness, the most preferable Cu amount is 8 to 1 in weight ratio.
8%.
【0058】本発明において、磁歪素子とバイアス材と
を組み合わせることで磁気マーカとすることができる。
磁歪素子の材料としては、例えばFe−Co系、Fe−
Ni−Mo系の非晶質金属材料などが知られている。こ
れらの材料からなる磁歪素子は、バイアス材によって3
00〜800A/m程度に予備磁化された状態で、磁歪
素子の長さによって決定される共振周波数の交番磁界に
よって、機械的に共振する。例えばこの共振周波数を日
常用いられている50〜60kHzに設定する場合、磁
歪素子の長さは20〜50mm程度にできる。In the present invention, a magnetic marker can be obtained by combining a magnetostrictive element and a bias material.
As the material of the magnetostrictive element, for example, Fe-Co based, Fe-
Ni-Mo based amorphous metal materials and the like are known. Magnetostrictive elements made of these materials can be 3
In a state where the magnetism is preliminarily magnetized to about 100 to 800 A / m, it resonates mechanically by an alternating magnetic field having a resonance frequency determined by the length of the magnetostrictive element. For example, when the resonance frequency is set to 50 to 60 kHz, which is commonly used, the length of the magnetostrictive element can be set to about 20 to 50 mm.
【0059】バイアス材が磁歪素子に印加する磁界の大
きさは、バイアス材の残留磁束密度とバイアス材の断面
積およびバイアス材と磁歪素子との距離によって決定す
る。本発明のバイアス材は残留磁束密度が高いため、磁
歪素子に対しバイアス磁界を印加する際、断面積を小さ
くとることができるため、磁気マーカの小型化にも有効
である。The magnitude of the magnetic field applied to the magnetostrictive element by the bias member is determined by the residual magnetic flux density of the bias member, the sectional area of the bias member, and the distance between the bias member and the magnetostrictive element. Since the bias material of the present invention has a high residual magnetic flux density, the cross-sectional area can be reduced when a bias magnetic field is applied to the magnetostrictive element, which is also effective for reducing the size of the magnetic marker.
【0060】バイアス材の形状に合わせ、磁歪素子も平
板状もしくは線状であることが好ましい。小型化、薄型
化できることから、バイアス材、磁歪素子とも平板状と
するのがより好ましい。According to the shape of the bias material, the magnetostrictive element is also preferably flat or linear. It is more preferable that both the bias material and the magnetostrictive element are formed in a flat plate shape because the size and thickness can be reduced.
【0061】[0061]
【実施例】本発明のバイアス材No.1〜16は以下の
ような工程で溶製法にて製造した。溶解炉にて所望の組
成に調整した後、造塊し、溶製材の素材を得た。鋼塊を
鍛伸した際に割れが生じるものもあったが、割れのない
部分を熱間圧延による塑性加工にて板厚5mmまで加工
した。この後、軟化焼鈍と冷間圧延による塑性加工を繰
返して平板化し、板厚50μmの薄板材を得た。比較例
31も同様に製造した。DETAILED DESCRIPTION OF THE INVENTION Nos. 1 to 16 were produced by a melting method in the following steps. After being adjusted to a desired composition in a melting furnace, ingots were formed to obtain a raw material for melting. Some of the ingots were cracked when forged, but the portions without cracks were processed to a thickness of 5 mm by plastic working by hot rolling. Thereafter, plastic working by soft annealing and cold rolling was repeated to flatten the plate, and a thin plate having a thickness of 50 μm was obtained. Comparative Example 31 was similarly manufactured.
【0062】また本発明のバイアス材No.51〜66
は以下のような工程で粉末法にて製造した。先ず、溶解
炉にて所望の組成に調整した後、種々の急冷法のうち、
ガスアトマイズ法にて球状の粉末を得た。この金属粉末
をX線分析を行い、Cu族非磁性金属がFeを主体とす
るマトリックスに対して常温の平衡状態における固溶限
以上含有されていることを確認した。次に分級して得た
−16メッシュの粉末を、幅100mm、厚さ40m
m、長さ200mmの軟鋼製のHIP缶に充填し加熱脱
気した後、温度950℃、圧力1500atmのHIP
で1時間かけて焼結し、素材を得た。焼結後の容器をそ
のまま熱間圧延にて塑性加工した後、容器を研削により
除去した。続いて850℃で1時間の軟化焼鈍を施した
後、熱間圧延にて板厚5mmまで塑性加工した。この
後、軟化焼鈍と冷間圧延による塑性加工を繰返して平板
化し、板厚50μmの薄板材を得た。比較例81も同様
に製造した。Further, the bias material No. 51-66
Was manufactured by the powder process in the following steps. First, after adjusting to the desired composition in the melting furnace, among various quenching methods,
A spherical powder was obtained by a gas atomizing method. X-ray analysis of this metal powder confirmed that the Cu group nonmagnetic metal was contained in the matrix mainly composed of Fe at or above the solid solubility limit in an equilibrium state at room temperature. Next, the -16 mesh powder obtained by classification was used for a width of 100 mm and a thickness of 40 m.
m, a HIP can made of mild steel having a length of 200 mm, heated and degassed, and then heated at a temperature of 950 ° C. and a pressure of 1500 atm.
For 1 hour to obtain a material. After sintering, the container was directly subjected to plastic working by hot rolling, and then the container was removed by grinding. Subsequently, after softening annealing at 850 ° C. for 1 hour, plastic working was performed to a thickness of 5 mm by hot rolling. Thereafter, plastic working by soft annealing and cold rolling was repeated to flatten the plate, and a thin plate having a thickness of 50 μm was obtained. Comparative Example 81 was manufactured similarly.
【0063】表1に本発明で製造したバイアス材の組成
を示す。Table 1 shows the composition of the bias material manufactured according to the present invention.
【0064】[0064]
【表1】 [Table 1]
【0065】上述の工程により得られた薄板材より、展
伸したCuと平行になるよう圧延方向に平行に切り出
し、磁気マーカ用バイアス材の磁気特性測定用試験片と
した。続いて400〜700℃で30分間の急峻化熱処
理を施した後、磁気特性を測定した。表2に磁気特性測
定結果を示す。From the thin plate material obtained in the above-mentioned step, a test piece for measuring the magnetic properties of a bias material for a magnetic marker was cut out parallel to the rolling direction so as to be parallel to the expanded Cu. Subsequently, after performing a steepening heat treatment at 400 to 700 ° C. for 30 minutes, the magnetic characteristics were measured. Table 2 shows the measurement results of the magnetic properties.
【0066】[0066]
【表2】 [Table 2]
【0067】表2に示すように本発明のバイアス材N
o.1〜16およびNo.51〜66は、Cu量によっ
て保磁力と残留磁束密度と、B−H曲線における角形比
および急峻性を調整できることがわかる。Cu3〜35
%で、Hc=800〜6550A/m、角型比がBr/
B8000≧0.8、B(1.5Hc)/B(5Hc)
≧0.8のバイアス材を得ることができる。As shown in Table 2, the bias material N of the present invention
o. Nos. 1 to 16 and Nos. It can be seen that in Nos. 51 to 66, the coercive force, residual magnetic flux density, squareness ratio and steepness in the BH curve can be adjusted by the amount of Cu. Cu3 to 35
%, Hc = 800 to 6550 A / m, and the squareness ratio is Br /
B8000 ≧ 0.8, B (1.5Hc) / B (5Hc)
A bias material of ≧ 0.8 can be obtained.
【0068】本発明のバイアス材のミクロ組織を走査型
電子顕微鏡を用いて観察した。本発明の化学組成を有す
るバイアス材のミクロ組織は、Feを主体とするマトリ
ックスにCu族非磁性金属が分散した組織を有してお
り、たとえばバイアス材No.7のように炭化物生成元
素を添加したものでは、非磁性無機化合物のうちMoC
を確認することができた。ミクロ組織の一例を図3に示
す。(A)は溶製法にて作製したバイアス材No.11
のミクロ組織であり、(B)は粉末法にて作製したバイ
アス材No.60のミクロ組織である。いずれも、黒っ
ぽく見えるFeを主体とするマトリックスに、Cuが白
い筋状もしくは点状に分散している。写真の横方向が、
バイアス材の長手方向である。筋状のCuが横方向に展
伸しており、冷間圧延の長手方向に一致していることか
ら、磁気異方性を有していることが分かる。The microstructure of the bias material of the present invention was observed using a scanning electron microscope. The microstructure of the bias material having the chemical composition of the present invention has a structure in which a Cu group nonmagnetic metal is dispersed in a matrix mainly composed of Fe. In the case where a carbide-forming element is added as shown in FIG.
Could be confirmed. One example of the microstructure is shown in FIG. (A) is a bias material No. produced by a melting method. 11
(B) is a microstructure of Bias Material No. produced by a powder method. 60 microstructures. In each case, Cu is dispersed in the form of white stripes or dots in a matrix mainly composed of Fe that looks dark. The horizontal direction of the photo is
This is the longitudinal direction of the bias material. Since the streak-like Cu extends in the lateral direction and coincides with the longitudinal direction of the cold rolling, it can be seen that it has magnetic anisotropy.
【0069】実際に、磁気マーカ用バイアス材の磁気特
性測定用試験片を、冷間圧延材の幅方向、すなわち、展
伸したCuに垂直に切り出した場合と、冷間圧延材の長
手方向、すなわち、展伸したCuに平行に切り出した場
合とを比較した。飽和磁束密度や保磁力には有意差は認
められないが、磁化急峻性は平行に切り出したものの方
が圧倒的に優れており、B(1.5Hc)/B(5H
c)は、例えば本発明のバイアス材No.9では、垂直
材で0.19に対し、平行材では0.92であった。Actually, the test piece for measuring the magnetic properties of the magnetic marker bias material was cut out in the width direction of the cold-rolled material, that is, perpendicularly to the expanded Cu, and in the longitudinal direction of the cold-rolled material. That is, a comparison was made with the case of cutting out in parallel with the expanded Cu. Although there is no significant difference in the saturation magnetic flux density or the coercive force, the magnetization steepness is overwhelmingly superior when cut out in parallel, and B (1.5Hc) / B (5H
c) is, for example, the bias material No. of the present invention. In the case of No. 9, the ratio was 0.19 in the vertical member and 0.92 in the parallel member.
【0070】本発明のバイアス材を磁歪素子と呼ばれる
磁歪振動する金属片とを組み合わせて磁気マーカとし
た。図4に本発明の磁気マーカの一例を表わす模式図を
示す。磁化したバイアス材4を樹脂ではさみ込んだパッ
ク5を磁歪素子6に図4に示すように近接させ、ケース
7に入れて磁気マーカとする。この磁気マーカは物品に
挿入あるいは貼り付けて使用するものである。The bias material of the present invention was combined with a magnetostrictive vibrating metal piece called a magnetostrictive element to form a magnetic marker. FIG. 4 is a schematic diagram showing an example of the magnetic marker of the present invention. A pack 5 in which a magnetized bias material 4 is sandwiched between resins is brought close to a magnetostrictive element 6 as shown in FIG. This magnetic marker is used by being inserted or pasted into an article.
【0071】[0071]
【発明の効果】本発明は、Fe−Cu族系の材料を使用
することにより、磁気マーカ用のバイアス材として十分
な保磁力と高い残留磁束密度、B−H曲線における高い
角形比および急峻性を得ることができ、またCo等の高
価な原材料を使用する必要がなく安価なものとなる。し
たがって、特に製品とともに消費されるようなマーカに
対しては、コストを低減する上でも有効である。According to the present invention, by using a Fe-Cu group material, a sufficient coercive force and a high residual magnetic flux density as a bias material for a magnetic marker, a high squareness ratio and a steepness in a BH curve are obtained. Can be obtained, and there is no need to use expensive raw materials such as Co. Therefore, it is effective in reducing the cost particularly for a marker that is consumed together with the product.
【図1】本発明の磁気マーカバイアス材の磁気特性測定
結果を示す図である。FIG. 1 is a view showing a result of measuring magnetic properties of a magnetic marker bias material of the present invention.
【図2】本発明の磁気マーカバイアス材の顕微鏡金属ミ
クロ組織写真および模式図である。FIG. 2 is a micrograph of a metal microstructure of a magnetic marker bias material of the present invention and a schematic diagram thereof.
【図3】本発明の磁気マーカバイアス材の顕微鏡金属ミ
クロ組織写真である。FIG. 3 is a microscopic metal microstructure photograph of the magnetic marker bias material of the present invention.
【図4】本発明の磁気マーカバイアス材を組み込んだ磁
気マーカの構造の一例を示す図である。FIG. 4 is a diagram showing an example of the structure of a magnetic marker incorporating the magnetic marker bias material of the present invention.
1 Feを主体とするマトリックス、2 Cu族非磁性
金属、3 非磁性無機化合物、4 磁気マーカバイアス
材、5 パック、6 磁歪素子、7 ケース1 Matrix mainly composed of Fe, 2 Cu group nonmagnetic metal, 3 Nonmagnetic inorganic compound, 4 Magnetic marker bias material, 5 pack, 6 Magnetostrictive element, 7 case
Claims (22)
非磁性金属の1種または複数種が分散した組織を有する
ことを特徴とする磁気マーカ用バイアス材。1. A bias material for a magnetic marker, wherein the bias material has a structure in which one or more Cu group nonmagnetic metals are dispersed in a matrix mainly composed of Fe.
非磁性金属の1種または複数種および非磁性無機化合物
が分散した組織を有することを特徴とする磁気マーカ用
バイアス材。2. A bias material for a magnetic marker, characterized in that it has a structure in which one or more kinds of Cu group nonmagnetic metals and a nonmagnetic inorganic compound are dispersed in a matrix mainly composed of Fe.
ことを特徴とする請求項2に記載の磁気マーカ用バイア
ス材。3. The bias material for a magnetic marker according to claim 2, wherein the nonmagnetic inorganic compound is a metal carbide.
〜35%のCuを含有することを特徴とする請求項1乃
至3のいずれかに記載の磁気マーカ用バイアス材。4. A Cu group nonmagnetic metal having a weight ratio of 3
The bias material for a magnetic marker according to any one of claims 1 to 3, wherein the bias material contains up to 35% of Cu.
されたことを特徴とする請求項1乃至4のいずれかに記
載の磁気マーカ用バイアス材。5. The bias material for a magnetic marker according to claim 1, wherein the bias material is flattened or linearized by plastic working.
であることを特徴とする請求項1乃至5のいずれかに記
載の磁気マーカ用バイアス材。6. The bias material for a magnetic marker according to claim 1, wherein the Cu group non-magnetic metal is expanded.
を有することを特徴とする請求項1乃至6のいずれかに
記載の磁気マーカ用バイアス材。7. The bias material for a magnetic marker according to claim 1, wherein the bias material has magnetic anisotropy due to the Cu group non-magnetic metal.
峻性を高められたことを特徴とする請求項1乃至7のい
ずれかに記載の磁気マーカ用バイアス材。8. The bias material for a magnetic marker according to claim 1, wherein the sharpness of magnetization is increased by heat treatment after the plastic working.
切り出されたことを特徴とする請求項1乃至8のいずれ
かに記載の磁気マーカ用バイアス材。9. The bias material for a magnetic marker according to claim 1, wherein the bias material is cut in parallel with the extended Cu group nonmagnetic metal.
項1乃至9のいずれかに記載の磁気マーカ用バイアス
材。10. The bias material for a magnetic marker according to claim 1, wherein the bias material is made of an ingot.
せた素材を用い、平板化もしくは線状化してなることを
特徴とする請求項1乃至9のいずれかに記載の磁気マー
カ用バイアス材。11. The bias material for a magnetic marker according to claim 1, wherein the bias material is flattened or linearized using a material obtained by binding powder by consolidation or sintering.
u族非磁性金属の1種または複数種を常温の平衡状態に
おける固溶限以上含有させた金属粒子を用い、平板化も
しくは線状化してなることを特徴とする請求項1乃至9
のいずれかに記載の磁気マーカ用バイアス材。12. A matrix mainly composed of Fe contains C
10. The method according to claim 1, wherein metal particles containing one or more of the u-group nonmagnetic metals in a state of equilibrium at room temperature or higher are used, and are flattened or linearized.
The bias material for a magnetic marker according to any one of the above.
れた金属粉末であることを特徴とする請求項12に記載
の磁気マーカ用バイアス材。13. The bias material for a magnetic marker according to claim 12, wherein the metal particles are metal powder obtained by a quenching method.
量比率で8〜18%の遊離したCu族非磁性金属の1種
または複数種の相が筋状に分散した組織を有する薄板材
であって、前記組織は該薄板材の長手方向に筋状である
ことを特徴とする磁気マーカ用バイアス材。14. A sheet material having a structure in which one or more phases of a free Cu group nonmagnetic metal in a matrix mainly composed of Fe and containing 8 to 18% by weight of a free phase are dispersed in a streak shape. A bias material for a magnetic marker, wherein the tissue is streaked in a longitudinal direction of the thin plate material.
の長手方向に印加した際の磁化量B(1.5Hc)と保
磁力の5倍の磁場を印加した際の磁化量B(5Hc)と
の比、すなわち、B(1.5Hc)/B(5Hc)が
0.8を越えることを特徴とする請求項14に記載の磁
気マーカ用バイアス材。15. A magnetization amount B (1.5 Hc) when a magnetic field 1.5 times the coercive force is applied in the longitudinal direction of the thin plate, and a magnetization amount B when a magnetic field 5 times the coercive force is applied. The bias material for a magnetic marker according to claim 14, wherein the ratio to (5Hc), that is, B (1.5Hc) / B (5Hc) exceeds 0.8.
イアス磁界を印加するバイアス材を組み合わせた磁気マ
ーカであって、前記バイアス材として請求項1乃至15
のいずれかに記載のバイアス材を用いることを特徴とす
る磁気マーカ。16. A magnetic marker comprising a combination of a metal piece that performs magnetostrictive vibration and a bias material that applies a bias magnetic field to the metal piece, wherein the bias material is used as the bias material.
A magnetic marker using the bias material according to any one of the above.
あることを特徴とする請求項14に記載の磁気マーカ。17. The magnetic marker according to claim 14, wherein the metal piece is flat or linear.
u族非磁性金属の1種または複数種を常温の平衡状態に
おける固溶限以上含有させた溶製材を、熱間および冷間
での塑性加工により、平板化もしくは線状化することを
特徴とする磁気マーカ用バイアス材の製造法。18. A matrix mainly composed of Fe contains C
The method comprises flattening or linearizing, by hot and cold plastic working, an ingot containing one or more kinds of u-group nonmagnetic metals at or above the solid solubility limit in an equilibrium state at room temperature. Of manufacturing bias material for magnetic markers.
u族非磁性金属の1種または複数種を常温の平衡状態に
おける固溶限以上含有させた金属粒子を用い、平板化も
しくは線状化することを特徴とする磁気マーカ用バイア
ス材の製造法。19. A matrix mainly composed of Fe contains C
A method for producing a bias material for a magnetic marker, comprising flattening or linearizing a metal particle containing one or more kinds of u-group nonmagnetic metals in a state of equilibrium at room temperature or higher in a solid solubility limit.
れた金属粉末であることを特徴とする請求項19に記載
の磁気マーカ用バイアス材の製造法。20. The method according to claim 19, wherein the metal particles are metal powder obtained by a quenching method.
した後、磁化急峻性を高める熱処理を加えることを特徴
とする磁気マーカ用バイアス材の製造法。21. A method for manufacturing a bias material for a magnetic marker, comprising applying a heat treatment for increasing the steepness of magnetization after flattening or linearizing by plastic working.
0℃であることを特徴とする請求項21に記載の磁気マ
ーカ用バイアス材の製造法。22. The heat treatment has a holding temperature of 400 to 70.
The method for producing a bias material for a magnetic marker according to claim 21, wherein the temperature is 0 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10087936A JP2983012B2 (en) | 1997-04-30 | 1998-03-17 | Bias material for magnetic marker, magnetic marker, and method of manufacturing bias material for magnetic marker |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11225997 | 1997-04-30 | ||
JP9-112259 | 1997-04-30 | ||
JP10087936A JP2983012B2 (en) | 1997-04-30 | 1998-03-17 | Bias material for magnetic marker, magnetic marker, and method of manufacturing bias material for magnetic marker |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1112698A true JPH1112698A (en) | 1999-01-19 |
JP2983012B2 JP2983012B2 (en) | 1999-11-29 |
Family
ID=26429168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10087936A Expired - Lifetime JP2983012B2 (en) | 1997-04-30 | 1998-03-17 | Bias material for magnetic marker, magnetic marker, and method of manufacturing bias material for magnetic marker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2983012B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008274399A (en) * | 2007-03-30 | 2008-11-13 | Hitachi Metals Ltd | Semi-hard magnetic material, bias material for magnetic marker, magnetic marker and production method of bias material for magnetic marker |
WO2015111455A1 (en) * | 2014-01-21 | 2015-07-30 | 株式会社オートネットワーク技術研究所 | Cu-Fe BASE ALLOY WIRE FOR CONNECTOR PIN, AND CONNECTOR |
JP2019525998A (en) * | 2017-02-06 | 2019-09-12 | エムティーエー カンパニー リミテッドMTA Co., LTD. | High thermal conductivity iron-copper alloy and method for producing the same |
JP2021063297A (en) * | 2020-12-17 | 2021-04-22 | エムティーエー カンパニー リミテッドMTA Co., LTD. | Iron-copper alloy having high thermal conductivity and method for producing the same |
-
1998
- 1998-03-17 JP JP10087936A patent/JP2983012B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008274399A (en) * | 2007-03-30 | 2008-11-13 | Hitachi Metals Ltd | Semi-hard magnetic material, bias material for magnetic marker, magnetic marker and production method of bias material for magnetic marker |
US7771546B2 (en) | 2007-03-30 | 2010-08-10 | Hitachi Metals, Ltd. | Semi-hard magnetic material, bias material for magnetic marker, magnetic marker and production method of bias material for magnetic marker |
WO2015111455A1 (en) * | 2014-01-21 | 2015-07-30 | 株式会社オートネットワーク技術研究所 | Cu-Fe BASE ALLOY WIRE FOR CONNECTOR PIN, AND CONNECTOR |
JP2019525998A (en) * | 2017-02-06 | 2019-09-12 | エムティーエー カンパニー リミテッドMTA Co., LTD. | High thermal conductivity iron-copper alloy and method for producing the same |
JP2021063297A (en) * | 2020-12-17 | 2021-04-22 | エムティーエー カンパニー リミテッドMTA Co., LTD. | Iron-copper alloy having high thermal conductivity and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2983012B2 (en) | 1999-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8846136B2 (en) | Production method of rare earth magnet | |
EP0133758B1 (en) | Iron-rare earth-boron permanent magnets by hot working | |
US7431070B2 (en) | Rare earth magnet alloy ingot, manufacturing method for the same, R-T-B type magnet alloy ingot, R-T-B type magnet, R-T-B type bonded magnet, R-T-B type exchange spring magnet alloy ingot, R-T-B type exchange spring magnet, and R-T-B type exchange spring bonded magnet | |
JPH0617546B2 (en) | Permanent magnet fabrication from crystalline rare earth-transition metal-boron alloy with very low coercive force | |
EP1479787B1 (en) | Sinter magnet made from rare earth-iron-boron alloy powder for magnet | |
US5009706A (en) | Rare-earth antisotropic powders and magnets and their manufacturing processes | |
JP2013021015A (en) | Rare earth nano composite magnet and manufacturing method thereof | |
JP2983012B2 (en) | Bias material for magnetic marker, magnetic marker, and method of manufacturing bias material for magnetic marker | |
WO1998018141A1 (en) | Sheet magnet having microcrystalline structure and method of manufacturing the same, and method of manufacturing isotropic permanent magnet powder | |
EP2410067A1 (en) | Rare earth permanent magnet and method for producing same | |
US6001194A (en) | Bias material, magnetic marker and method of producing the bias material | |
WO2003020993A1 (en) | Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-t-b type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet | |
JPH04504486A (en) | Method and apparatus for producing polycrystalline flakes of magnetic material with strong directionality | |
WO2000016346A1 (en) | Production method for semirigid magnetic material and semirigid material and magnetic marker using it | |
JP3293129B2 (en) | Method for producing semi-hard magnetic material, semi-hard magnetic material, and magnetic marker using the same | |
JPH11172381A (en) | Bias material for magnetic marker and magnetic marker | |
JPH11176624A (en) | Bias material for magnetic marker, magnetic marker, and manufacture of magnetic marker bias material | |
US4966633A (en) | Coercivity in hot worked iron-neodymium boron type permanent magnets | |
JPH0935977A (en) | Manufacture of anisotropic sintered magnet | |
JP3427765B2 (en) | Rare earth-Fe-Co-B based magnet powder, method for producing the same, and bonded magnet using the powder | |
JP3105929B2 (en) | Magnetostrictive material | |
JPH02138706A (en) | Anisotropic permanent magnet | |
JPH05152119A (en) | Hot-worked rare earth element-iron-carbon magnet | |
JPH03267346A (en) | Alloying of low level additive to heat treated nd-fe-b magnet | |
JPH02101710A (en) | Permanent magnet and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070924 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080924 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090924 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090924 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100924 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100924 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110924 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110924 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120924 Year of fee payment: 13 |