JPH1112672A - Aluminum alloy with high toughness and high heat resistance, and its manufacture - Google Patents

Aluminum alloy with high toughness and high heat resistance, and its manufacture

Info

Publication number
JPH1112672A
JPH1112672A JP10115109A JP11510998A JPH1112672A JP H1112672 A JPH1112672 A JP H1112672A JP 10115109 A JP10115109 A JP 10115109A JP 11510998 A JP11510998 A JP 11510998A JP H1112672 A JPH1112672 A JP H1112672A
Authority
JP
Japan
Prior art keywords
aluminum
aluminum alloy
toughness
intermetallic compound
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10115109A
Other languages
Japanese (ja)
Other versions
JP3792045B2 (en
Inventor
Manabu Hashikura
学 橋倉
Hisao Hattori
久雄 服部
Toshihiko Kaji
俊彦 鍛冶
由重 ▲高▼ノ
Yoshie Kouno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Sumitomo Electric Industries Ltd
Original Assignee
Research Development Corp of Japan
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Sumitomo Electric Industries Ltd filed Critical Research Development Corp of Japan
Priority to JP11510998A priority Critical patent/JP3792045B2/en
Publication of JPH1112672A publication Critical patent/JPH1112672A/en
Application granted granted Critical
Publication of JP3792045B2 publication Critical patent/JP3792045B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy, capable of industrial production and combining toughness higher than heretofore with heat resistance also higher than heretofore, and its manufacture. SOLUTION: The metallic structure, after heating treatment for an aluminum (Al)-base supersaturated solid solution in which a transition metal element and a rare earth element are allowed to enter into solid solution, is a modulated structure in which an intermetallic compound 1 is precipitated into network state in a matrix composed of aluminum(Al) 2. The intermetallic compound 1 precipitated in the aluminum(Al) matrix is in a network state of 10 to 500 nm width (δ), and the spacing (λ) between nets of the network is regulated to 10 to 100 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は強靱性が要求され
る部品や構造材料に適用可能な、高い靱性を有し、かつ
耐熱性に優れたアルミニウム合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy having high toughness and excellent heat resistance, applicable to parts and structural materials requiring toughness.

【0002】[0002]

【従来の技術】超急冷により作製される非晶質、過飽和
固溶体、微細結晶質を含む合金を出発原料とした高強度
のアルミニウム合金については、これまで多くの研究が
なされてきた。例えば、特公平6-21326号公報において
は、一般式;AlaMbXc(ただしM:Cr,Mn,Fe,Co,Ni,
Cu,Zr,Ti,Mg,Siから選ばれた少なくとも1種の元
素、X:Y,La,Ce,Sm,Nd,Nb,Mm(ミッシュメタル)
から選ばれた少なくとも1種の元素、a,b,cは原子%
で、a:50〜95、b:0.5〜35、c:0.5〜25からなる3元
合金を急冷凝固することにより、引張強度853〜1010MPa
(87〜103kgf/mm2)、降伏強度804〜941MPa(82〜96kgf/mm
2)の非晶質または非晶質と微細結晶質の複合体が得られ
ている。
2. Description of the Related Art Many studies have been made on high-strength aluminum alloys starting from alloys containing amorphous, supersaturated solid solutions, and fine crystalline materials produced by ultra-quenching. For example, in Japanese Patent Publication No. Hei 6-21326, a general formula: Al a M b X c (where M: Cr, Mn, Fe, Co, Ni,
At least one element selected from Cu, Zr, Ti, Mg, and Si, X: Y, La, Ce, Sm, Nd, Nb, Mm (Misch metal)
At least one element selected from the group consisting of a, b, and c is atomic%
The ternary alloy consisting of a: 50 to 95, b: 0.5 to 35, and c: 0.5 to 25 is rapidly solidified to obtain a tensile strength of 853 to 1010 MPa.
(87~103kgf / mm 2), yield strength 804~941MPa (82~96kgf / mm
2 ) An amorphous or an amorphous and fine crystalline composite is obtained.

【0003】しかし、従来のAl結晶質合金に比べて2倍
以上の引張強さを有するが、たとえばシャルピー衝撃値
は従来のアルミニウム溶製材に比べて約5分の1にも満
たないほど低い。
[0003] However, although it has twice or more the tensile strength as compared with the conventional Al crystalline alloy, the Charpy impact value is, for example, lower than about 1/5 of the conventional aluminum ingot.

【0004】また、特開平5-1346号公報においては、一
般式:AlaMbLnc又はAlaMbXdLnc(ただし、M:Co,Ni,Cu
から選ばれた少なくとも1種の元素、Ln:Y、希土類元
素、Mmから選ばれた少なくとも1種の元素、X:V,Mn,F
e,Mo,Ti,Zrから選ばれた少なくとも1種の元素)で示
される組成を有する合金系を急冷凝固することにより、
引張強度875〜945MPa(89.2〜96.3kgf/mm2)、引張試験時
の伸び1.7〜2.9%の機械的特性が得られている。
In Japanese Patent Application Laid-Open No. 5-1346, the general formula: Al a M b L n c or Al a M b X d L n c (where M: Co, Ni, Cu
At least one element selected from the group consisting of: Ln: Y, a rare earth element, at least one element selected from Mm; X: V, Mn, F
e, Mo, Ti, at least one element selected from Zr) by rapidly solidifying an alloy system having a composition represented by
Mechanical properties such as a tensile strength of 875 to 945 MPa (89.2 to 96.3 kgf / mm 2 ) and an elongation of 1.7 to 2.9% during a tensile test are obtained.

【0005】その金属組織は平均結晶粒径が0.1〜80μm
であって、そのマトリックス(他の相を包み込んでいる
母体相を称す。以下同じ)はAl又はAlの過飽和固溶体で
あり、金属間化合物の安定相若しくは準安定相からなる
粒径10〜500nmの粒子が前記マトリックス中に分布す
る。
The metal structure has an average crystal grain size of 0.1 to 80 μm.
The matrix (referred to as a parent phase enclosing another phase; the same applies hereinafter) is Al or a supersaturated solid solution of Al, and has a particle size of 10 to 500 nm comprising a stable phase or a metastable phase of an intermetallic compound. Particles are distributed in the matrix.

【0006】[0006]

【発明が解決しようとする課題】特開平5-1346号公報に
示された過飽和固溶体をマトリックスとするナノメート
ル(nm)の単位の微細な金属間化合物粒子が分散している
合金の場合は、微細に分散された金属間化合物粒子が、
熱を加えることによって肥大化するために、ある温度以
上では靭性が著しく低下してしまう。
In the case of an alloy in which fine intermetallic compound particles in units of nanometers (nm) having a supersaturated solid solution as a matrix disclosed in Japanese Patent Application Laid-Open No. 5-1346 are dispersed, Finely dispersed intermetallic compound particles,
Since heat causes enlargement, the toughness is significantly reduced at a certain temperature or higher.

【0007】従って、特公平6-21326号公報及び特開平5
-1346号公報に示された両者は、ともに信頼性の要求さ
れる機械部品や自動車部品の材料として、そのアルミニ
ウム合金を使用することは困難であるという問題があっ
た。
[0007] Accordingly, Japanese Patent Publication No. 6-21326 and
No. 1346 has a problem that it is difficult to use the aluminum alloy as a material for a mechanical part or an automobile part which requires reliability.

【0008】上記課題を克服するために、本発明はアル
ミニウム合金のナノメートル(nm)の単位の微細組織と、
その機械的特性について評価検討を行った。これまでの
過飽和固溶体に加熱処理を施した場合、析出した金属間
化合物とAlマトリックスとの間に明確な結晶粒界が存在
し、塑性変形時に転位の固着がその場所に集中し高靭性
化を妨げる。
To overcome the above problems, the present invention provides a nanostructure (nm) of an aluminum alloy,
The mechanical properties were evaluated and examined. When a conventional supersaturated solid solution is subjected to a heat treatment, a clear crystal grain boundary exists between the precipitated intermetallic compound and the Al matrix, and dislocation fixation is concentrated at that location during plastic deformation to increase toughness. Hinder.

【0009】そこで、転位の固着が集中しないように、
金属間化合物とAlマトリックスの間に明確な境界が存在
しない変調組織(modulated structure:規則的な濃度
のゆらぎを反映した金属組織で、変調構造とも称され
る。)を使用することを考えた。
Therefore, in order to prevent dislocation fixation from being concentrated,
We considered using a modulated structure (a metal structure that reflects regular fluctuations in concentration, also referred to as a modulated structure) in which there is no clear boundary between the intermetallic compound and the Al matrix.

【0010】しかし、析出過程では高靭性を発現するも
のの、更に進行し完全に析出すると靭性は著しく低下す
る。それは完全析出により、Alマトリックスと析出物と
の間に明確な境界(結晶粒界)が形成され、塑性変形時に
転位がその場所に集中するためである。
[0010] However, although high toughness is exhibited in the precipitation process, the toughness is remarkably reduced when it proceeds further and is completely precipitated. This is because a complete boundary forms a clear boundary (grain boundary) between the Al matrix and the precipitate, and dislocations are concentrated at that location during plastic deformation.

【0011】本発明の目的は上記のような課題を解決
し、工業的に生産可能な従来よりも高い靱性と耐熱性を
兼ね備えたアルミニウム合金とその製造方法を提供する
ことである。
An object of the present invention is to solve the above-mentioned problems and to provide an aluminum alloy having both higher toughness and higher heat resistance than the conventional one, which can be industrially produced, and a method for producing the same.

【0012】[0012]

【課題を解決するための手段】そこで析出過程を遅くさ
せるためにAlマトリックス中で拡散が遅い高融点金属元
素を構成元素の一つとして選択することによって、遷移
金属元素と希土類元素が固溶したAl基過飽和固溶体を加
熱処理した金属組織において、耐熱性に優れた変調組織
を初めて得ることができた。この変調組織は、金属間化
合物がAlマトリックスへ網目状に析出しており、その析
出した金属間化合物が10〜500nmの幅の網目状であっ
て、網目状の網と網との間隔が10〜100nmである。
In order to slow down the precipitation process, the transition metal element and the rare earth element were dissolved in solid by selecting a refractory metal element that diffuses slowly in the Al matrix as one of the constituent elements. For a metal structure obtained by heat-treating an Al-based supersaturated solid solution, a modulated structure having excellent heat resistance was obtained for the first time. In this modulated structure, the intermetallic compound is precipitated in a mesh on the Al matrix, and the deposited intermetallic compound is a mesh having a width of 10 to 500 nm, and the distance between the meshes is 10 to 500 nm. 100100 nm.

【0013】上記の範囲以外の網の幅と間隔では強度若
しくは靭性が大きく低下する。幅、間隔が共に10nmより
小さい場合は強度は十分であるが延性に乏しく、幅、間
隔がそれぞれ500nm、100nmより大きい場合は延性、強度
が共に大きく低下する。また、幅、間隔のどちらか一方
が前記の条件を満たさない場合も延性、強度が共に低下
する。
[0013] If the width and spacing of the mesh are out of the above range, the strength or toughness is greatly reduced. When the width and the interval are both smaller than 10 nm, the strength is sufficient but the ductility is poor. When the width and the interval are larger than 500 nm and 100 nm, both the ductility and the strength are greatly reduced. Also, when either one of the width and the interval does not satisfy the above conditions, both the ductility and the strength are reduced.

【0014】この変調組織は、金属間化合物の析出過程
でのスピノーダル分解、あるいは該析出過程での初期の
核生成等によって形成されると考えられる。この網目状
組織ではAlマトリックスと析出物の境界部分が整合し、
アルミニウム及び金属間化合物の構成元素の濃度が境界
をはさんで連続的に変化している。これは析出過程が核
発生を必要とせず、濃度揺らぎが大きくなっていくため
潜伏期を持たず、かつAlマトリックスと完全な整合性を
保ちながら分解するためである。従って、Alマトリック
スと析出物との間に明確な境界(結晶粒界)は存在しない
ので塑性変形時の転位の固着が一カ所に集中しにくいた
め高靭性を発現する。
This modulated structure is considered to be formed by spinodal decomposition during the precipitation process of the intermetallic compound, or by initial nucleation during the precipitation process. In this network, the boundary between the Al matrix and the precipitate is aligned,
The concentrations of the constituent elements of aluminum and the intermetallic compound change continuously across the boundary. This is because the precipitation process does not require nucleation, does not have a latent period due to an increase in concentration fluctuation, and decomposes while maintaining perfect consistency with the Al matrix. Therefore, since there is no clear boundary (crystal grain boundary) between the Al matrix and the precipitate, the fixation of dislocations during plastic deformation hardly concentrates in one place, thereby exhibiting high toughness.

【0015】また、変調組織を形成するための金属元素
を組み合わせるに当たり重要な点は、 (イ) Alマトリックスに過飽和固溶すること。 (ロ) 2相分離すること。 の2点である。前者は原子半径がAlに近いものを選択
し、後者は、前者の元素と全く固溶かつ金属間化合物を
形成し合わない元素の組み合わせを選択した。
Important points when combining metal elements for forming a modulated structure are: (a) supersaturated solid solution in an Al matrix. (B) Two-phase separation. There are two points. For the former, a combination of elements having an atomic radius close to that of Al was selected, and for the latter, a combination of elements which did not form a solid solution with the former element and formed an intermetallic compound was selected.

【0016】また、XとZの間の二元状態図が二相分離型
であって、遷移金属元素と希土類元素を含む液相アルミ
ニウム(Al)合金を102〜105K/secの冷却速度で急冷凝固
して得られる過飽和固溶体組織のアルミニウム合金を、
昇温速度が1.5K/sec以上、温度が473K以上で加熱処理す
る。また、急冷凝固の手段をガスアトマイズ法若しくは
水アトマイズ法で、前記加熱処理の後、熱間塑性加工特
に粉末鍛造を施す。
A binary phase diagram between X and Z is a two-phase separation type, and a liquid phase aluminum (Al) alloy containing a transition metal element and a rare earth element is cooled at a cooling rate of 10 2 to 10 5 K / sec. An aluminum alloy having a supersaturated solid solution structure obtained by rapid solidification at a high speed,
Heat treatment is performed at a heating rate of 1.5 K / sec or more and a temperature of 473 K or more. Further, the rapid solidification means is a gas atomizing method or a water atomizing method. After the heat treatment, hot plastic working, especially powder forging is performed.

【0017】[0017]

【発明の実施の形態】本発明の高靭性高耐熱性アルミニ
ウム合金は、一般式;AlaXbZc(XはTi,V,Cr,Mo,W,N
b,Ta,Zrから選ばれた少なくとも1種の元素、ZはY,L
a,Ce,Sm,Nd,Mm(ミッシュメタル)から選ばれた少な
くとも1種、a,b,cは原子%でa:90〜99,b:0.5〜
5,c:0.5〜5)で表わされる合金組成を有し、急冷凝固
することによりAlマトリックスに高融点金属元素Xとこ
れと分離する元素Zが強制固溶した過飽和固溶体を形成
する。
BEST MODE FOR CARRYING OUT THE INVENTION The high toughness and high heat resistant aluminum alloy of the present invention has a general formula: Al a X b Z c (X is Ti, V, Cr, Mo, W, N
at least one element selected from b, Ta, Zr, Z is Y, L
a, Ce, Sm, Nd, Mm (Misch metal), at least one selected from the group consisting of a, b, and c in atomic%: a: 90 to 99, b: 0.5 to
5, c: 0.5 to 5) The alloy has a composition represented by 0.5 to 5), and is rapidly solidified to form a supersaturated solid solution in which the refractory metal element X and the element Z to be separated therefrom are forcibly dissolved in an Al matrix.

【0018】なお、急冷凝固して過飽和固溶体を作製す
る際の冷却速度は工業レベルで量産可能な102〜105K/se
cが有効である。この過飽和固溶体を、加熱処理するこ
とでナノメートル単位の変調組織が得られる。
The cooling rate for rapid solidification to produce a supersaturated solid solution is 10 2 to 10 5 K / se which can be mass-produced on an industrial level.
c is valid. By subjecting this supersaturated solid solution to heat treatment, a modulated structure in the order of nanometers can be obtained.

【0019】次に本発明において、上記各元素の原子%
の成分範囲を限定した理由を説明する。まず、Xの成分
が前述の範囲より多い場合、Alマトリックス中にAl-X系
の金属間化合物が初晶として晶出する。この初晶は冷却
速度を速くすると強制固溶し消失するが、前述の冷却速
度より遅い場合では初晶が晶出してしまい、靭性は著し
く低下してしまう。
Next, in the present invention, the atomic% of each of the above elements
The reason why the range of the component is limited will be described. First, when the component of X is more than the above range, an Al-X intermetallic compound is crystallized as a primary crystal in the Al matrix. When the cooling rate is increased, the primary crystals are forcibly dissolved and disappear, but when the cooling rate is lower than the above, the primary crystals are crystallized, and the toughness is remarkably reduced.

【0020】一方、Xの成分が前述の範囲より少ない場
合、Alマトリックス中にXの成分は固溶するが加熱処理
によりAl-X系の金属間化合物として析出し変調組織の形
成を妨げる。従って靭性が著しく低下する。
On the other hand, when the component of X is less than the above range, the component of X is dissolved in the Al matrix but precipitates as an Al-X intermetallic compound by the heat treatment to prevent formation of a modulated structure. Therefore, the toughness is significantly reduced.

【0021】次に、Zの成分が前述の範囲より多い場
合、Alマトリックス中にAl-Z系のアモルファス相が出現
し変調組織の形成を妨げる。また、加熱処理することに
より脆いAl-Z系の金属間化合物が多量に微細析出し、靭
性は著しく低下してしまう。
Next, when the Z component is larger than the above range, an Al-Z based amorphous phase appears in the Al matrix, which prevents the formation of a modulated structure. In addition, a large amount of brittle Al-Z based intermetallic compound is finely precipitated by the heat treatment, and the toughness is significantly reduced.

【0022】一方、Zの成分が前述の範囲より少ない場
合、そのZの成分はAlマトリックス中に固溶するもの
の、Al-Z系の金属間化合物よりもAl-X系の金属間化合物
が析出し易いので、加熱処理によりAl-X系が析出してし
まい、その析出により変調組織の形成が妨げられる。従
ってアルミニウム合金の靭性が著しく低下する。
On the other hand, when the Z component is less than the above range, the Z component dissolves in the Al matrix, but the Al-X intermetallic compound precipitates more than the Al-Z intermetallic compound. The Al-X system precipitates due to the heat treatment, which prevents the formation of a modulated structure. Therefore, the toughness of the aluminum alloy is significantly reduced.

【0023】さらに本発明ではAlの過飽和固溶体マトリ
ックスを有する急冷凝固したアルミニウム合金に、473K
以上の温度に1.5K/sec以上の昇温速度で加熱処理するこ
とを特徴とする前記の高靱性高耐熱性アルミニウム合金
の製造方法を提供する。
Further, the present invention relates to a method of adding 473K to a rapidly solidified aluminum alloy having a supersaturated solid solution matrix of Al.
The present invention provides a method for producing the high toughness and high heat resistant aluminum alloy, wherein the heat treatment is performed at the above temperature at a heating rate of 1.5 K / sec or more.

【0024】出発材料として上記の過飽和固溶体の急冷
凝固したアルミニウム合金を用い、473K以上の温度に1.
5K/sec以上の昇温速度で加熱熱処理することによって変
調組織が得られ、高靱性が得られるようになる。一方、
473K未満では過飽和固溶体からの析出が不十分であり、
その結果、高強度であるが低延性で、靭性に乏しいアル
ミニウム合金となる。また、1.5K/sec未満の昇温速度で
加熱処理すると、アルミニウム合金の金属組織が肥大し
て靭性が乏しい結果を招く。
Using a rapidly solidified aluminum alloy of the above-mentioned supersaturated solid solution as a starting material, the temperature was raised to a temperature of 473K or higher.
By performing heat treatment at a heating rate of 5 K / sec or more, a modulated structure can be obtained, and high toughness can be obtained. on the other hand,
If less than 473K, precipitation from the supersaturated solid solution is insufficient,
The result is an aluminum alloy with high strength but low ductility and poor toughness. In addition, when the heat treatment is performed at a heating rate of less than 1.5 K / sec, the metal structure of the aluminum alloy is enlarged, resulting in poor toughness.

【0025】[0025]

【実施例】本発明の実施例を比較例と共に説明し、本発
明の効果を明らかにする。 (実施例1〜15) 表1(表2も同じ)に示す合金組成を有
したアルミニウム合金をアーク熔解炉で溶解しボタン状
インゴット(1grの鋳塊)を作製した後、単ロール式液体
急冷装置を用いて、このインゴットをリボン状試料とし
た。なお、表1(表2も同じ)のNo.の列の番号1〜15は、
それぞれ実施例1〜15で、16〜20は比較例である。
EXAMPLES Examples of the present invention will be described together with comparative examples to clarify the effects of the present invention. (Examples 1 to 15) An aluminum alloy having an alloy composition shown in Table 1 (same in Table 2) was melted in an arc melting furnace to produce a button-shaped ingot (1 gr ingot), and then a single-roll liquid quenching was performed. This ingot was used as a ribbon sample using an apparatus. Note that the numbers 1 to 15 in the column of No. in Table 1 (Table 2 is the same)
In each of Examples 1 to 15, 16 to 20 are comparative examples.

【0026】上記リボン状試料の作製には、2000rpmで
回転している銅製ロールの直上0.5mmの位置に、先端が
直径0.5mmの細孔の石英製ノズルを設置し、石英ノズル
中に入れたインゴットを高周波加熱炉で溶解し、液相ア
ルミニウム合金を得た。その液相アルミニウム合金を噴
射圧78kPa(7.95×10-3kgf/mm2)で噴射してリボン状試
料を得た。なお、このときの液相アルミニウム合金の凝
固時の冷却速度は103〜105K/secである。
For the preparation of the ribbon-shaped sample, a quartz nozzle having a tip with a diameter of 0.5 mm was installed at a position of 0.5 mm immediately above a copper roll rotating at 2000 rpm, and was placed in the quartz nozzle. The ingot was melted in a high-frequency heating furnace to obtain a liquid phase aluminum alloy. The liquid phase aluminum alloy was injected at an injection pressure of 78 kPa (7.95 × 10 −3 kgf / mm 2 ) to obtain a ribbon-shaped sample. The cooling rate during solidification of the liquid phase aluminum alloy at this time is 10 3 to 10 5 K / sec.

【0027】これらのリボン状試料を表1に示す条件で
熱処理した。熱処理済みのリボン状試料について、イン
ストロン引張試験機による引張試験を行った結果を表2
に、実施例1の変調組織を図1の分解能SEM(Scanning El
ectron Microscope)写真で示す。なお、他の実施例に
ついても、図1と同じような変調組織のSEM写真を得てい
る。
These ribbon samples were heat-treated under the conditions shown in Table 1. Table 2 shows the results of tensile tests performed on the heat-treated ribbon samples using an Instron tensile tester.
Next, the modulated tissue of Example 1 was compared with the resolution SEM (Scanning El
ectron Microscope). In the other examples, SEM photographs of the modulation structure similar to those in FIG. 1 were obtained.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】図1の黒い部分がAlであり、湾曲した帯状
の白い部分と写真右下の霧状の白い部分は、析出した金
属間化合物である。ここで、「Alマトリックス中に金属
間化合物が網目状に析出した変調組織」は、図中の黒い
部分のAlと湾曲した帯状の白い部分の金属間化合物から
形成される部分であり、「網目状の網」に相当する部分
は湾曲した帯状の白い部分の金属間化合物である。
In FIG. 1, the black portion is Al, and the curved white band portion and the mist-like white portion at the lower right of the photograph are the precipitated intermetallic compounds. Here, the “modulated structure in which the intermetallic compound is precipitated in a network in the Al matrix” is a portion formed from Al in the black portion and the intermetallic compound in the curved white portion in the figure. The portion corresponding to the "shape net" is the intermetallic compound in the white portion of the curved strip.

【0031】図1の一部を拡大した組織の模式図を図2に
示す。黒い部分2はAlであり、湾曲した帯状の白い部分1
は金属間化合物である。「網と網との間隔に相当する金
属間化合物の析出物間隔λ」は、図中のλの部分であ
り、実際観察した組織写真を基に交線法(観察視野の組
織写真に直交する縦と横の直線を引き、各組織の直線上
の長さの平均を求める。)で算出した。一方、「網目状
の幅δ」は、図中のδの部分である。各合金組成に対し
ての析出物間隔λと網目状の幅δは表2、表4に示す。
FIG. 2 is a schematic diagram of a tissue in which a part of FIG. 1 is enlarged. The black part 2 is Al and the curved white part 1
Is an intermetallic compound. The “intermetallic compound precipitation interval λ corresponding to the interval between the nets” is the portion of λ in the figure, and is based on the cross-section method based on the actually observed micrograph (perpendicular to the micrograph of the observation visual field). Vertical and horizontal straight lines are drawn, and the average length of each tissue on the straight line is calculated.) On the other hand, the “mesh-like width δ” is the portion of δ in the figure. Tables 2 and 4 show the precipitate spacing λ and the mesh-like width δ for each alloy composition.

【0032】次に、この網目状に金属間化合物が析出し
た変調組織を形成させるための合金系の選択に当たり、
前述したように、XとZの間の二元状態図が二相分離型で
ある組み合わせであることが重要である。
Next, in selecting an alloy system for forming a modulated structure in which intermetallic compounds are precipitated in a network,
As mentioned above, it is important that the binary phase diagram between X and Z is a combination that is of the two-phase separation type.

【0033】図3に、公知のCe-Mo二元系合金の状態図
(Dr.William G.Moffatt.著「The HANDBOOK of BINA
RY PHASE DIAGRAMS」 GENIUM PUBLISHING CORPORAT
ION 1976年刊。なお、図中の温度表示℃と本発明の温
度表示Kとは、K=℃+273.16であることは衆知のことで
ある。)を用いて説明する。この状態図中で低温側では
γ-CeとMoに分離する。表1〜表4に示した合金系は、一
般式AlaXbZcのXとZの間はこのように分離する組み合わ
せを選択した。
FIG. 3 is a phase diagram of a known Ce-Mo binary alloy (The HANDBOOK of BINA by Dr. William G. Moffatt.).
RY PHASE DIAGRAMS '' GENIUM PUBLISHING CORPORAT
Published in ION 1976. It is well known that the temperature display ° C in the figure and the temperature display K of the present invention are K = ° C + 273.16. ). In this state diagram, γ-Ce and Mo are separated on the low temperature side. In the alloy systems shown in Tables 1 to 4, a combination was selected so that X and Z in the general formula Al a X b Z c were separated in this manner.

【0034】加熱して変調組織を得るためには出発原料
は過飽和固溶体が望ましい。過飽和固溶体を作製するに
は液相アルミニウム合金から凝固させるときの冷却速度
が重要であり、工業レベルで使用できる105K/sec以下の
冷却速度で過飽和固溶体が得られる合金組成にしなけれ
ばならない。
In order to obtain a modulated structure by heating, the starting material is desirably a supersaturated solid solution. To produce a supersaturated solid solution, the cooling rate when solidifying from a liquid phase aluminum alloy is important, and the alloy composition must be such that a supersaturated solid solution can be obtained at a cooling rate of 10 5 K / sec or less that can be used on an industrial level.

【0035】図4、5に比較例17、18の組織のSEM写真を
示す。Alマトリックスへの固溶限が狭い第2元素Xの添加
量が多量の比較例17の場合、図4に示すようにAlマトリ
ックス中に金属間化合物が球状初晶3として出現する。
4 and 5 show SEM photographs of the structures of Comparative Examples 17 and 18. In the case of Comparative Example 17 in which the addition amount of the second element X having a narrow solid solubility limit to the Al matrix is large, the intermetallic compound appears as a spherical primary crystal 3 in the Al matrix as shown in FIG.

【0036】一方、Zの添加量が多量である比較例18の
場合、図5に示すようにアモルファス相中に微細な球状
初晶4が出現した組織になる。どちらの場合も、実施例
と比較して、引張り・伸びが著しく低下し靭性に乏しく
なる。
On the other hand, in the case of Comparative Example 18 in which the amount of Z added is large, the structure is such that fine spherical primary crystals 4 appear in the amorphous phase as shown in FIG. In both cases, the tensile strength and elongation are significantly reduced and the toughness is poor as compared with the examples.

【0037】次に、加熱処理して変調組織を形成させる
ための合金組成の選択に当たり、XとZの添加量が重要
となる。図6、7に比較例19、20の組織のSEM写真を示
す。Xの添加量が多量の比較例19の場合、図6に示すよう
にAlマトリックス中に金属間化合物が球状初晶3として
出現する。
Next, in selecting an alloy composition for forming a modulated structure by heat treatment, the amounts of X and Z added are important. 6 and 7 show SEM photographs of the structures of Comparative Examples 19 and 20. In the case of Comparative Example 19 where the amount of X added is large, the intermetallic compound appears as spherical primary crystals 3 in the Al matrix as shown in FIG.

【0038】一方、Zの添加量が多量の比較例20の場
合、図7に示すように球状初晶4とともに球状の微細析出
物5が多量に出現する。これは、急冷凝固時にAl-Z系で
アモルファス相が存在し、これに結晶化温度以上の温度
で熱処理を施したためである。どちらの場合も、実施例
と比較して、引張り・伸びが著しく低下し靭性に乏しく
なる。
On the other hand, in the case of Comparative Example 20 in which a large amount of Z was added, a large amount of spherical fine precipitates 5 appeared together with the spherical primary crystals 4 as shown in FIG. This is because an Al-Z amorphous phase was present during rapid solidification and was subjected to a heat treatment at a temperature higher than the crystallization temperature. In both cases, the tensile strength and elongation are significantly reduced and the toughness is poor as compared with the examples.

【0039】次に、表1中の実施例1について荷重25gで
のマイクロビッカース硬度(mHV)の熱処理温度依存性を
測定した。熱処理時間は5分である。その結果、図8に示
すように、本発明のアルミニウム合金は、熱処理温度の
上昇による硬度の低下が少なく、耐熱性に非常に優れて
いる。なお、実施例1以外の実施例についても、図8と同
様な耐熱性に優れた熱処理温度依存性を得ていることを
確認した。
Next, to measure the heat treatment temperature dependence of the micro-Vickers hardness (mH V) under a load of 25g for Example 1 in Table 1. The heat treatment time is 5 minutes. As a result, as shown in FIG. 8, the aluminum alloy of the present invention has a small decrease in hardness due to an increase in the heat treatment temperature, and is extremely excellent in heat resistance. In addition, it was confirmed that in Examples other than Example 1, the heat treatment temperature dependency excellent in heat resistance similar to that in FIG. 8 was obtained.

【0040】(実施例21〜26) ガスアトマイズ装置に
より表3(表4も同じ)に示す合金組成を有したアルミニウ
ム合金粉末を作製した。なお、表3(表4も同じ)のNo.の
列の番号21〜26はそれぞれ実施例21〜26で、27、28は比
較例である。噴霧は、穴の直径が2mmのノズルから落下
させた液相アルミニウム合金に、9.8MPa(100kgf/cm2)に
加圧した窒素ガスを衝突させることによって行なった。
なお、ガスアトマイズに替えて、水アトマイズによって
も、同様に行える。
Examples 21 to 26 Aluminum alloy powders having the alloy compositions shown in Table 3 (also in Table 4) were produced using a gas atomizing apparatus. The numbers 21 to 26 in the columns of No. in Table 3 (also in Table 4) are Examples 21 to 26, respectively, and 27 and 28 are comparative examples. Spraying was performed by impinging a nitrogen gas pressurized to 9.8 MPa (100 kgf / cm 2 ) on a liquid phase aluminum alloy dropped from a nozzle having a hole diameter of 2 mm.
It should be noted that water atomization can be similarly performed instead of gas atomization.

【0041】また、上記と同じ噴霧条件で2014Al合金(J
IS H 4000による組成)の粉末を作製し、その組成のデ
ンドライトアーム(樹状晶)間隔の測定から実際の液相
アルミニウム合金の凝固時の冷却速度を見積もった。そ
れによれば、粒径が65μmのAl合金粉末が得られる時、
液相アルミニウム合金の凝固時の冷却速度は2×104K/se
cであった。
Further, under the same spray conditions as above, the 2014 Al alloy (J
A powder having the composition of IS H 4000) was prepared, and the cooling rate during solidification of the actual liquid phase aluminum alloy was estimated from the measurement of the dendrite arm (dendritic crystal) interval of the composition. According to that, when an Al alloy powder with a particle size of 65 μm is obtained,
Cooling rate during solidification of liquid phase aluminum alloy is 2 × 10 4 K / se
c.

【0042】次に、上記のガスアトマイズ装置で作製し
た各Al合金粉末を、粉末粒径65μm未満に篩で分けた。
その粉末粒径65μm未満の粉末をプレス成形した後、そ
の成形体を誘導加熱炉で急速に加熱し、そして面圧883M
Pa(9t/cm2)で粉末鍛造を行った。各プレス成形体の加熱
条件の到達温度と昇温速度、及びその製造条件により得
られた鍛造材の室温における機械的性質および金属組織
を調べた。その結果を表3、4に示す。
Next, each Al alloy powder produced by the above-mentioned gas atomizing apparatus was sieved to a powder particle size of less than 65 μm.
After press-molding the powder having a particle size of less than 65 μm, the compact is rapidly heated in an induction heating furnace, and a contact pressure of 883 M
Powder forging was performed at Pa (9 t / cm 2 ). The attained temperature and heating rate of the heating conditions of each press-formed body, and the mechanical properties and metal structure at room temperature of the forged material obtained under the manufacturing conditions were examined. Tables 3 and 4 show the results.

【0043】機械的性質では、実施例1〜15と同様にイ
ンストロン引張試験機による引張試験を行い、各粉末鍛
造体の引張り強度(UTS)と伸びを測定した。シャルピ
ー試験機(JIS B 7722)を用いて、各粉末鍛造体(ただ
し、切り欠き部は設定せず。)のシャルピー衝撃値(J/c
m2)も測定してその結果を表4に示した。表4に示すよう
に、実施例による粉末鍛造体は、比較例のものに比べ
て、高い引張り強度と伸びとを兼ね備え、さらにシャル
ピー衝撃値も高いこと、及び実施例による粉末鍛造体
が、リボン材と同様の組織と機械的性質が得られたこと
が理解される。
For mechanical properties, a tensile test was performed using an Instron tensile tester in the same manner as in Examples 1 to 15, and the tensile strength (UTS) and elongation of each forged powder were measured. Using a Charpy tester (JIS B 7722), the Charpy impact value (J / c) of each powder forged body (however, notch is not set)
m 2 ) was also measured and the results are shown in Table 4. As shown in Table 4, the powder forged body according to the example has both high tensile strength and elongation and a high Charpy impact value as compared with the comparative example, and the powder forged body according to the example has a ribbon. It is understood that the same structure and mechanical properties as the material were obtained.

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【表4】 [Table 4]

【0046】[0046]

【発明の効果】Al基過飽和固溶体の加熱処理後の金属組
織が、金属間化合物のAlマトリックスへの析出が網目状
の変調組織であるAl合金は、優れた靱性と耐熱性を兼ね
備えたAl合金を提供することができる。
According to the present invention, an Al alloy in which the metal structure after heat treatment of an Al-based supersaturated solid solution is a modulated structure in which precipitation of an intermetallic compound in an Al matrix is a network-like structure is an Al alloy having both excellent toughness and heat resistance. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】金属間化合物が網目状に析出した変調組織を示
すSEM写真の図である。
FIG. 1 is an SEM photograph showing a modulated structure in which an intermetallic compound is precipitated in a network.

【図2】変調組織を模式的に示した図である。FIG. 2 is a diagram schematically showing a modulated tissue.

【図3】Ce-Mo二元系の状態図である。FIG. 3 is a phase diagram of a Ce-Mo binary system.

【図4】比較例17のSEM写真の図である。FIG. 4 is an SEM photograph of Comparative Example 17.

【図5】比較例18のSEM写真の図である。FIG. 5 is a SEM photograph of Comparative Example 18.

【図6】比較例19のSEM写真の図である。6 is an SEM photograph of Comparative Example 19. FIG.

【図7】比較例20のSEM写真の図である。FIG. 7 is a SEM photograph of Comparative Example 20.

【図8】マイクロビッカース硬度値と熱処理温度との関
係を示す図である。
FIG. 8 is a diagram showing a relationship between a micro Vickers hardness value and a heat treatment temperature.

【符号の説明】[Explanation of symbols]

1:金属間化合物 2:アルミニウム 3、4:球状初晶 5:微細析出物 1: Intermetallic compound 2: Aluminum 3, 4: Spherical primary crystal 5: Fine precipitate

フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 630 C22F 1/00 630B 650 650A 681 681 683 683 687 687 691 691B 691A 692 692A (72)発明者 鍛冶 俊彦 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 (72)発明者 ▲高▼ノ 由重 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内Continuation of the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 630 C22F 1/00 630B 650 650A 681 681 683 683 683 687 687 691 691B 691A 692 692A (72) Inventor Toshihiko Kaji Itamiichi, Hyogo 1-1-1, Kita, Sumitomo Electric Industries, Ltd., Itami Works (72) Inventor ▲ Taka ▼ Yuji, 1-1-1, Koyokita, Itami-shi, Hyogo Sumitomo Electric Industries, Ltd., Itami Works

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 遷移金属元素と希土類元素を含むアルミ
ニウム(Al)合金の金属組織において、金属間化合物がア
ルミニウム(Al)マトリックスへ網目状に析出した変調組
織であることを特徴とする高靭性高耐熱性アルミニウム
合金。
1. A metal structure of an aluminum (Al) alloy containing a transition metal element and a rare earth element, wherein the intermetallic compound has a modulated structure in which the intermetallic compound is precipitated in a network in an aluminum (Al) matrix. Heat resistant aluminum alloy.
【請求項2】 前記アルミニウム(Al)合金の金属組織
が、アルミニウム(Al)基過飽和固溶体を加熱処理した変
調組織であることを特徴とする請求項1記載の高靭性高
耐熱性アルミニウム合金。
2. The high toughness and high heat-resistant aluminum alloy according to claim 1, wherein the metal structure of the aluminum (Al) alloy is a modulated structure obtained by heat-treating an aluminum (Al) -based supersaturated solid solution.
【請求項3】 前記アルミニウム(Al)マトリックスに析
出した金属間化合物が10〜500nmの幅の網目状であっ
て、該網目状の網と網との間隔が10〜100nmである金属
組織を有することを特徴とする請求項1又は請求項2記
載の高靭性高耐熱性アルミニウム合金。
3. The intermetallic compound deposited on the aluminum (Al) matrix has a mesh structure having a width of 10 to 500 nm, and a distance between the mesh networks is 10 to 100 nm. The high toughness and high heat-resistant aluminum alloy according to claim 1 or 2, wherein:
【請求項4】 前記アルミニウム(Al)合金の組成が、一
般式AlaXbZcで表され、該一般式のXは元素チタン(Ti)、
バナジウム(V)、クロム(Cr)、モリブデン(Mo)、タング
ステン(W)、ニオブ(Nb)、タンタル(Ta)若しくはジルコ
ニウム(Zr)から選ばれる少なくとも1種、Zは元素イッ
トリウム(Y)、ランタン(La)、セリウム(Ce)、サマリウ
ム(Sm)、ネオジウム(Nd)若しくはミッシュメタル(Mm)か
ら選ばれた少なくとも1種、a,b,cは原子%を示し、a
は90〜99原子%、bは0.5〜5原子%、cは0.5〜5原子%で
構成されたことを特徴とする請求項1〜3のいずれか1
項に記載の高靭性高耐熱性アルミニウム合金。
4. The composition of the aluminum (Al) alloy is represented by a general formula Al a X b Z c , wherein X is the element titanium (Ti),
At least one selected from vanadium (V), chromium (Cr), molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta) or zirconium (Zr); Z is the element yttrium (Y), lanthanum (La), cerium (Ce), samarium (Sm), neodymium (Nd) or misch metal (Mm), wherein a, b, and c represent atomic%;
4. The method according to claim 1, wherein 90 to 99 atomic%, b is 0.5 to 5 atomic%, and c is 0.5 to 5 atomic%.
High-toughness and high heat-resistant aluminum alloy according to the item.
【請求項5】 前記XとZの間の組み合わせの二元状態図
が二相分離型である請求項4記載の高靭性高耐熱性アル
ミニウム合金。
5. The high toughness and high heat-resistant aluminum alloy according to claim 4, wherein the binary phase diagram of the combination between X and Z is a two-phase separation type.
【請求項6】 遷移金属元素と希土類元素を含む液相ア
ルミニウム(Al)合金を102〜105K/secの冷却速度で急冷
凝固し、該急冷凝固されたアルミニウム(Al)基過飽和固
溶体を、昇温速度が1.5K/sec以上、温度が473K以上で加
熱処理する請求項1〜5のいずれか1項に記載の高靭性
高耐熱性アルミニウム合金の製造方法。
6. A liquid-phase aluminum (Al) alloy containing a transition metal element and a rare earth element is rapidly solidified at a cooling rate of 10 2 to 10 5 K / sec, and the rapidly solidified aluminum (Al) -based supersaturated solid solution is obtained. The method for producing a high toughness and high heat resistant aluminum alloy according to any one of claims 1 to 5, wherein the heat treatment is performed at a temperature rising rate of 1.5K / sec or more and a temperature of 473K or more.
【請求項7】 前記急冷凝固の手段がガスアトマイズ法
若しくは水アトマイズ法であり、前記加熱処理の後、熱
間塑性加工を施すことを特徴とする請求項6記載の高靭
性高耐熱性アルミニウム合金の製造方法。
7. The high toughness and high heat-resistant aluminum alloy according to claim 6, wherein said means for rapid solidification is a gas atomization method or a water atomization method, and hot plastic working is performed after said heat treatment. Production method.
【請求項8】 前記熱間塑性加工は粉末鍛造である請求
項7記載の高靭性高耐熱性アルミニウム合金の製造方
法。
8. The method according to claim 7, wherein the hot plastic working is powder forging.
JP11510998A 1997-04-30 1998-04-24 High toughness and heat resistant aluminum alloy and method for producing the same Expired - Fee Related JP3792045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11510998A JP3792045B2 (en) 1997-04-30 1998-04-24 High toughness and heat resistant aluminum alloy and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-112003 1997-04-30
JP11200397 1997-04-30
JP11510998A JP3792045B2 (en) 1997-04-30 1998-04-24 High toughness and heat resistant aluminum alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1112672A true JPH1112672A (en) 1999-01-19
JP3792045B2 JP3792045B2 (en) 2006-06-28

Family

ID=26451271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11510998A Expired - Fee Related JP3792045B2 (en) 1997-04-30 1998-04-24 High toughness and heat resistant aluminum alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP3792045B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008537763A (en) * 2005-03-23 2008-09-25 クイ,ヒンウィン Metal composite material and method of forming the same
JP6101389B1 (en) * 2016-02-03 2017-03-22 有限会社 ナプラ Junction
KR20200065390A (en) * 2018-11-30 2020-06-09 한국생산기술연구원 A method for manufacuring high strength aluminium alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008537763A (en) * 2005-03-23 2008-09-25 クイ,ヒンウィン Metal composite material and method of forming the same
JP6101389B1 (en) * 2016-02-03 2017-03-22 有限会社 ナプラ Junction
JP2017136640A (en) * 2016-02-03 2017-08-10 有限会社 ナプラ Junction
KR20200065390A (en) * 2018-11-30 2020-06-09 한국생산기술연구원 A method for manufacuring high strength aluminium alloy

Also Published As

Publication number Publication date
JP3792045B2 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
US6149737A (en) High strength high-toughness aluminum alloy and method of preparing the same
He et al. Stability, phase transformation and deformation behavior of Ti-base metallic glass and composites
Mattern et al. Microstructure and thermal behavior of two-phase amorphous Ni–Nb–Y alloy
JP2511526B2 (en) High strength magnesium base alloy
US5846351A (en) TiAl-based intermetallic compound alloys and processes for preparing the same
JP2911267B2 (en) High strength amorphous magnesium alloy and method for producing the same
Louzguine et al. Electronegativity of the constituent rare-earth metals as a factor stabilizing the supercooled liquid region in Al-based metallic glasses
WO2006054822A1 (en) Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase
JP2005528530A (en) Nanophase precipitation strengthened Al alloy processed via amorphous state
Inoue et al. High elevated-temperature strength of Al-based nanoquasicrystalline alloys
US6918973B2 (en) Alloy and method of producing the same
EP1640466A1 (en) Magnesium alloy and production process thereof
JP2005113235A (en) High strength magnesium alloy, and its production method
JP2749761B2 (en) Powder forging method for high yield strength and high toughness aluminum alloy powder
JPH07238336A (en) High strength aluminum-base alloy
Li et al. Influence of Ag replacement on supercooled liquid region and icosahedral phase precipitation of Zr65Al7. 5Ni10Cu17. 5-xAgx (x= 0–17.5 at%) glassy alloys
US6231808B1 (en) Tough and heat resisting aluminum alloy
JPH1112672A (en) Aluminum alloy with high toughness and high heat resistance, and its manufacture
JPH0748646A (en) High strength magnesium base alloy and production thereof
US4395464A (en) Copper base alloys made using rapidly solidified powders and method
JP3229500B2 (en) High-strength metal material and method for manufacturing the same
JPH06316740A (en) High strength magnesium-base alloy and its production
JP2005113234A (en) High strength magnesium alloy, and its production method
Caron et al. Effects of composition, processing, and structure on properties of nonferrous alloys
JP3303682B2 (en) Superplastic aluminum alloy and method for producing the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350