JPH1112648A - Steel excellent in buckling resistance and fire resistance - Google Patents

Steel excellent in buckling resistance and fire resistance

Info

Publication number
JPH1112648A
JPH1112648A JP17021897A JP17021897A JPH1112648A JP H1112648 A JPH1112648 A JP H1112648A JP 17021897 A JP17021897 A JP 17021897A JP 17021897 A JP17021897 A JP 17021897A JP H1112648 A JPH1112648 A JP H1112648A
Authority
JP
Japan
Prior art keywords
steel
resistance
buckling
cooling
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17021897A
Other languages
Japanese (ja)
Inventor
Shinichi Suzuki
伸一 鈴木
Shigeru Endo
茂 遠藤
Nobuyuki Ishikawa
信行 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP17021897A priority Critical patent/JPH1112648A/en
Publication of JPH1112648A publication Critical patent/JPH1112648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the steel which is difficult to generate the local buckling even in the case of large width/thickness or without a stiffener against large compression load to be exerted during a large earthquake, and excellent in fire resistance by hot rolling the steel of the prescribed composition, and cooling it in an accelerated manner from the prescribed temperature range to be determined by the composition of the steel at the prescribed speed to realize two- phase structure of ferrite + bainite or martensite. SOLUTION: The steel containing, by weight, 0.03-0.25% C, 0.5-2.0 Mn, and 0.05-0.70 Mo, and as necessary, 0.01-1.0% Si, 0.05-0.50% Cu, Ni and Cr, respectively, and one or more kinds of 0.005-0.10% Nb, V and Ti, respectively, is hot rolled. Then, the steel is cooled from the temperature range of (Ar3 +40)-(Ar3 -80) deg.C at the cooling speed of >=2 deg.C/second. The transformation point is obtained from the formula: Ar3 ( deg.C)=910-310C(%)-80Mn(%)-20Cu(%)-15Cr(%)-55Ni(%)-80Mo(%).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は土木建築分野におけ
る各種建造物に利用される鋼部材に係り、特に地震時の
耐座屈特性、および耐火性に優れた鋼部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel member used for various buildings in the field of civil engineering and construction, and more particularly to a steel member excellent in buckling resistance and fire resistance during an earthquake.

【0002】[0002]

【従来の技術】鉄骨建築物の柱、梁や橋脚等では箱形断
面やH型断面の鋼部材が多く用いられているが、これら
の部材は熱間圧延鋼板を素材として、溶接または冷間成
形によって製造されているものが多い。これらの鋼部材
に使用される鋼材には、地震時のエネルギー吸収の観点
から優れた塑性変形能を有することが要求されており、
特開昭55−119152号公報、特開昭63−223
123号公報、特開平1−1156422号公報、特開
平3−115524号公報等では、降伏比を低下させる
ことにより一様延び特性を向上させた鋼材が提案されて
いる。またJIS・G3136の建築構造用圧延鋼材に
おいても降伏比を80%以下とすることが規定されてい
るように、耐震性向上に関する鋼材面からの対応として
は、低降伏比による塑性変形能の向上が中心となってい
る。
2. Description of the Related Art Steel members having a box-shaped section or an H-shaped section are often used for columns, beams, piers, etc. of steel buildings. Many are manufactured by molding. Steel materials used for these steel members are required to have excellent plastic deformability from the viewpoint of energy absorption during earthquakes,
JP-A-55-119152, JP-A-63-223
No. 123, Japanese Patent Application Laid-Open No. 1-1156422, Japanese Patent Application Laid-Open No. 3-115524, and the like propose a steel material in which the yield ratio is reduced to improve uniform elongation characteristics. In addition, as stipulated in JIS G3136 for rolled steel for building structures that the yield ratio is set to 80% or less, the response from the steel surface to the improvement of seismic resistance is to improve the plastic deformability by the low yield ratio. Is the center.

【0003】また、大規模な地震ではこれらの鋼部材に
大きな引張圧縮の繰返し荷重が加わり局部座屈を起こす
場合があり、また、座屈した場所から亀裂が発生し座屈
後の引張変形により脆性破壊を生じ建築物の崩壊など大
きな被害がもたらされることもある。このような局部座
屈に対しても、鋼材の低降伏比化が有効であることは、
豊田、他著「鉄骨溶接構造体の変形能に及ぼす鋼材変形
特性の影響」溶接学会論文集、Vol.8,No.1,
p112(1990)に示されている。
[0003] Further, in a large-scale earthquake, a large load of repeated tensile and compressive loads may be applied to these steel members, causing local buckling. In addition, cracks may be generated from the buckled places, and tensile deformation after buckling may occur. It can cause brittle fracture and cause serious damage such as collapse of buildings. Even for such local buckling, it is effective to reduce the yield ratio of steel material.
Toyoda, et al., "Effects of Steel Deformation Characteristics on Deformability of Steel Welded Structures," Proc. Of the Japan Welding Society, Vol. 8, No. 1,
p112 (1990).

【0004】しかし近年、建築物や橋梁等の鋼構造物が
大型化するにつれ、大規模な地震においても十分な耐震
性能を有することが要求されているが、低降伏比鋼材の
使用だけでは十分な耐震性能を確保することは難しくな
っている。そのため、鉄骨建築物の柱や梁、または橋脚
等に使用される鋼部材は、より厚肉の鋼板を使用しその
断面の幅厚比を小さくしたり、また補剛板によって補強
する等の方法によって座屈を生じにくくし、保有耐力を
高めている。
[0004] In recent years, as steel structures such as buildings and bridges have become larger, they are required to have sufficient seismic performance even in the case of large-scale earthquakes. It is becoming difficult to ensure high seismic performance. For this reason, steel members used for columns and beams, bridge piers, etc. of steel buildings use thicker steel plates and reduce the width-to-thickness ratio of their cross-sections, or reinforce them with stiffening plates, etc. This makes buckling less likely to occur and increases the holding strength.

【0005】しかしながら、幅厚比の低下や補剛板の使
用はコスト上昇をまねくだけでなく、設計の自由度を阻
害する原因となっており、幅厚比が大きな場合でも優れ
た座屈性能を有する鋼板が望まれている。
However, the reduction in the width-to-thickness ratio and the use of the stiffening plate not only increase the cost, but also hinder the degree of freedom in design. Even when the width-to-thickness ratio is large, excellent buckling performance is obtained. Are desired.

【0006】一方、建築物の火災に関して、耐火設計の
見直しが行われたことにより、高温強度に優れた耐火鋼
を用いて耐火被覆を減らすことが可能となっており、工
期の短縮、工事比の削滅、建築物内の有効面積の拡張等
のメリットがあるため、その適用が盛んになってきてい
る。耐火性に優れた建築用鋼材については、特開平4−
83821号公報、特開平4−56723号公報、特開
平4−56362号公報等に提案されている。しかしな
がら、これらはいずれも低降伏比であることをその特徴
としており、前述したようにそれのみでは十分な耐震性
能を確保することは難しい。
[0006] On the other hand, with respect to fires in buildings, a review of fire-resistant design has made it possible to reduce fire-resistant coating using fire-resistant steel having excellent high-temperature strength. There are merits such as the elimination of waste and the expansion of the effective area in buildings, and the application thereof has become active. For construction steel materials with excellent fire resistance, see
JP-A-83821, JP-A-4-56723, JP-A-4-56362, and the like. However, each of them is characterized by a low yield ratio, and as described above, it is difficult to secure sufficient seismic performance by itself.

【0007】[0007]

【発明が解決しようとする課題】本発明はかかる事情に
鑑みてなされたものであって、大地震の際に作用する大
きな圧縮荷重に対して、幅厚比が大きい場合や補剛材が
なくとも局部座屈を起こしにくく、鉄骨建築物の柱や
梁、または橋脚等への使用に適した、耐鍵性能に優れ、
かつ耐火性に優れた鋼部材を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a large width-to-thickness ratio or no stiffener against a large compressive load acting during a large earthquake. Both are hard to cause local buckling and are excellent in key resistance performance suitable for use on columns and beams of steel structures or piers,
It is another object of the present invention to provide a steel member having excellent fire resistance.

【0008】[0008]

【課題を解決するための手段】本発明者らは箱形断面ま
たはH型断面の鋼部材の座屈特性について鋭意研究を重
ねた結果、以下の知見を得るに至った。鋼部材の座屈特
性はそれに使用される鋼材の引張試験で得られる応力歪
曲線と密接な関係があり、下降伏点現象のような変形中
での応力低下を生じさせないことにより、耐座屈性能が
大きく向上することを見いだした。そして、そのような
公称応力−公称歪曲線を得るために、鋼材の成分及び製
造方法を検討した結果、熱間圧延後、Ar3変態点以下の
温度から加速冷却を行い、組織をフェライト+ベイナイ
トまたはフェライト+マルテンサイトの二相組織とする
ことにより、上述した公称応力−公称歪曲線を有する鋼
材が得られるものである。
The present inventors have conducted intensive studies on the buckling characteristics of a steel member having a box-shaped cross section or an H-shaped cross section, and have obtained the following findings. The buckling characteristics of a steel member are closely related to the stress-strain curve obtained in a tensile test of the steel material used for it. It has been found that performance is greatly improved. Then, in order to obtain such a nominal stress-nominal strain curve, as a result of examining the composition and the manufacturing method of the steel material, after hot rolling, accelerated cooling was performed from a temperature lower than the Ar3 transformation point, and the structure was changed to ferrite + bainite or By forming a two-phase structure of ferrite + martensite, a steel material having the above-described nominal stress-nominal strain curve can be obtained.

【0009】すなわち、本発明は上記知見をもとになさ
れたものであってその要旨は、(1)重量%で、C:
0.03〜0.25%、Mn:0.5〜2.0%、M
o:0.05〜0.70%を含有する鋼を熱間圧延した
後に、その鋼の成分で定まる(Ar3+40)〜(Ar3+
80)℃の温度域から2℃/sec以上の冷却速度で製
造した鋼を用いることを特徴とする、耐座屈特性および
耐火性に優れた鋼部材。(2)重量%で、C:0.03
〜0.25%、Mn:0.5〜2.0%、Mo:0.0
5〜0.70%を含有し、さらに、Si:0.01〜
1.0%、Cu:0.05〜0.50%、Ni:0.0
5〜0.50%、Cr:0.05〜0.50%、Mo:
0.05〜0.50%、Nb:0.005〜0.10
%、V:0.005〜0.10%、Ti:0.005〜
0.10%の1種または2種以上を含有する鋼を熱間圧
延した後に、その鋼の成分で定まる(Ar3+40)〜
(Ar3−80)℃の温度域から2℃/sec以上の冷却
速度で製造した鋼を用いることを特徴とする、耐座屈特
性および耐火性に優れた鋼部材である。
That is, the present invention has been made on the basis of the above findings, and the gist of the present invention is that (1) wt.
0.03-0.25%, Mn: 0.5-2.0%, M
o: After hot rolling a steel containing 0.05 to 0.70%, it is determined by the composition of the steel (Ar3 + 40) to (Ar3 +
80) A steel member having excellent buckling resistance and fire resistance, characterized by using steel manufactured at a cooling rate of 2 ° C / sec or more from a temperature range of 0 ° C. (2) By weight%, C: 0.03
-0.25%, Mn: 0.5-2.0%, Mo: 0.0
5 to 0.70%, and further, Si: 0.01 to
1.0%, Cu: 0.05 to 0.50%, Ni: 0.0
5 to 0.50%, Cr: 0.05 to 0.50%, Mo:
0.05 to 0.50%, Nb: 0.005 to 0.10
%, V: 0.005 to 0.10%, Ti: 0.005 to
After hot rolling a steel containing 0.10% or more of one or more, it is determined by the composition of the steel (Ar3 + 40) ~
A steel member having excellent buckling resistance and fire resistance, characterized by using steel manufactured at a cooling rate of 2 ° C./sec or more from a temperature range of (Ar 3 −80) ° C.

【0010】[0010]

【発明の実施の形態】以下に本発明における各構成要件
の限定理由を説明する。 C:0.03〜0.25% Cは鋼部材の強度を確保するために必要な元素てある
が、0.03%未満では強度が不足し、0.25%を超
えて添加すると溶接性を損ねるので、その含有量は0.
03〜0.25%とする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting each constituent element in the present invention will be described below. C: 0.03 to 0.25% C is an element necessary for securing the strength of the steel member. However, if the content is less than 0.03%, the strength is insufficient. Is impaired, so that the content is 0.1.
03 to 0.25%.

【0011】Mn:0.5〜2.0% Mnは鋼部材の強度を高めるために添加されるが、0.
5%末満では強度が不足し、2.0%を超えて添加する
と母材と溶接部の靱性の劣化および溶接性の劣化を招く
ので、その含有量は0.5〜2.0%とする。
Mn: 0.5 to 2.0% Mn is added to increase the strength of a steel member.
If the content is less than 5%, the strength is insufficient. If the content exceeds 2.0%, the toughness of the base material and the welded portion and the weldability are deteriorated, so the content is 0.5 to 2.0%. I do.

【0012】Mo:0.05〜0.70% Moは焼入性の向上、析出強化等により鋼の強度を上昇
させるのに有効な元素であり、特に中・高温強度に対し
ては極めて有効である。しかし、0.05%未満ではそ
の効果を得ることは困難であり、また、0.70%を超
えて添加しても添加コストに見合った効果が見られない
だけでなく、溶接性も劣化させるのでその含有量は0.
05〜0.70%とする。
Mo: 0.05-0.70% Mo is an element effective for increasing the strength of steel by improving hardenability, precipitation strengthening, etc., and is extremely effective especially for medium and high temperature strength. It is. However, if it is less than 0.05%, it is difficult to obtain the effect, and even if it exceeds 0.70%, not only the effect corresponding to the addition cost is not seen, but also the weldability is deteriorated. So its content is 0.
05 to 0.70%.

【0013】Si:0.01〜1.0% Siは鋼部材の強度を高めるとともに製鋼過程における
脱酸剤として必要であるが、0.01%未満ではその効
果が不十分であり、1.0%を超えて添加すると溶接部
の靱性を劣化させるので、その含有量を0.01〜2.
0%とする。
Si: 0.01-1.0% Si is necessary not only to increase the strength of the steel member but also as a deoxidizing agent in the steel making process, but if it is less than 0.01%, the effect is insufficient. If added in excess of 0%, the toughness of the weld is degraded.
0%.

【0014】Cu:0.05〜0.50% Ni:0.05〜0.50% Cr:0.05〜0.50% Cu、Ni、Crは強度の上昇に有効であるが、それぞ
れ0.05%未満ではその効果が発揮されず、0.50
%を超えると溶接性の劣化を招くため、その含有量は
0.05〜0.50%とする。
Cu: 0.05 to 0.50% Ni: 0.05 to 0.50% Cr: 0.05 to 0.50% Cu, Ni and Cr are effective in increasing the strength, but each is 0%. If it is less than 0.05%, the effect is not exhibited, and 0.50%
%, The weldability deteriorates, so the content is set to 0.05 to 0.50%.

【0015】Nb:0.005〜0.10% V:0.005〜0.10% Ti:0.005〜0.10% Nb、V、Tiは微量添加により靭性及び常温、高温強
度の向上に有効な元素であるが、その含有量が0.00
5%未満ではその効果を有効に発揮することができず、
0.10%を超えると溶接部の靱性を劣化させるので、
その含有量は0.005〜0.10%とする。
Nb: 0.005 to 0.10% V: 0.005 to 0.10% Ti: 0.005 to 0.10% Nb, V, and Ti improve toughness and normal temperature and high temperature strength by adding a small amount. Is an effective element, but its content is 0.00
If it is less than 5%, the effect cannot be exhibited effectively,
If it exceeds 0.10%, the toughness of the weld is deteriorated.
The content is made 0.005 to 0.10%.

【0016】また、その他に不純物元素として含有され
る、P、S、また、脱酸剤として添加されるAl等を含
有してもよく、これらの元素により本発明鋼の耐座屈性
能が損なわれるものではない。
[0016] In addition, P and S, which are contained as impurity elements, and Al or the like which is added as a deoxidizing agent may be contained, and these elements impair the buckling resistance of the steel of the present invention. It is not something to be done.

【0017】次に、製造条件について説明する。まず、
上述の成分の鋼を熱間圧延した後、その鋼の成分で決ま
る(Ar3+40)℃〜(Ar3−80)℃の温度域から2
℃/sec以上の冷却速度で冷却する。ここで、Ar3変
態温度は次式で求めるものとする。
Next, the manufacturing conditions will be described. First,
After hot-rolling a steel having the above-described composition, a temperature range of (Ar3 + 40) ° C to (Ar3-80) ° C determined by the composition of the steel is 2
Cool at a cooling rate of at least ° C / sec. Here, the Ar3 transformation temperature is determined by the following equation.

【0018】Ar3(℃)=910−310C(%)−8
0Mn(%)−20Cu(%)−15Cr(%)−55
Ni(%)−80Mo(%) 冷却開始温度が(Ar3+40)℃を超えると組織がベイ
ナイト単相組織となり、降伏比が増加するため冷却開始
温度の上限を(Ar3+40)℃とする。また、冷却開始
温度が(Ar3−80)℃より低くなると、パーライトが
生成し、公称応力−公称歪曲線に降伏棚が生じるため、
冷却開始温度の下限を(Ar3−80)℃とする。
Ar 3 (° C.) = 910-310 C (%)-8
0Mn (%)-20Cu (%)-15Cr (%)-55
Ni (%)-80Mo (%) When the cooling start temperature exceeds (Ar3 + 40) ° C., the structure becomes a bainite single phase structure and the yield ratio increases, so the upper limit of the cooling start temperature is set to (Ar3 + 40) ° C. When the cooling start temperature is lower than (Ar3-80) ° C., pearlite is generated, and a yield shelf is generated in a nominal stress-nominal strain curve.
The lower limit of the cooling start temperature is (Ar3-80) ° C.

【0019】冷却速度は、冷却開始から500℃までの
平均冷却速度とするが、その値が2℃未満では、組織が
フェライト+パーライトとなり、公称応力−公称歪曲線
に降伏棚が生じる。よって、冷却速度の下限を2℃/s
ecとした。また、冷却速度が2℃以上でも少量のパー
ライトを生成する場合があるため、より優れた耐座屈特
性が要求される場合は冷却速度を5℃/sec以上とす
る事が望ましい。
The cooling rate is an average cooling rate from the start of cooling to 500 ° C. If the value is less than 2 ° C., the structure becomes ferrite + pearlite, and a yield shelf is generated on the nominal stress-nominal strain curve. Therefore, the lower limit of the cooling rate is 2 ° C./s
ec. Further, even if the cooling rate is 2 ° C. or more, a small amount of pearlite may be generated. Therefore, when more excellent buckling resistance is required, the cooling rate is desirably 5 ° C./sec or more.

【0020】[0020]

【実施例】以下に、本発明の実施例について説明する。
表1に示した成分の鋼を熱間圧延後、加速冷却により板
厚12mmの鋼板とした。ここで鋼種A〜Eは本発明の
成分範囲を満足する鋼であり、鋼種FはMoが本発明の
成分範囲から外れた鋼である。表2に加速冷却の開始温
度、加速冷却開始温度とAr3温度の差、冷却速度を示
す。ここで、A−1〜A−4、B−1〜B−4、C−1
〜C−3、D−1〜D−3、E−1〜E−3はいずれも
本発明の製造条件範囲を満たした本発明例であり、A−
5〜A−7、B−5〜B−7、C−4〜C−6、D−4
〜D−5、E−4〜E−5は本発明の製造条件範囲から
外れた比較例である。またF−1〜F−2は製造条件は
本発明の範囲を満たしているものの、成分が本発明の範
囲から外れた比較例である。これらの鋼板の圧延方向と
平行な方向から引張試験片を採取し、引張試験により公
称応力−公称歪曲線を測定し降伏点から公称歪5%まで
の間で最小となる勾配を求めた。その結果を常温での降
伏強度、引張強度、600℃での降伏強度とともに表2
に示す。本発明例は全て図3(c)に示したような降伏
棚の無い公称応力−公称歪曲線を有しており、降伏比も
80%以下である。また、600℃での降伏強度は常温
での降伏強度の2/3以上であり、耐火鋼としての十分
な性能を有している。これに対し比較例は図3(a)ま
たは(b)のような降伏棚を有する公称応力−公称歪曲
線となっているか、または、降伏棚が無くとも降伏比が
高くなっている。また、比較例F−1、F−2はMoが
0.05%未満であるため、600℃での降伏強度が常
温での降伏強度の2/3未満であり、耐火鋼としての十
分な性能を有していない。
Embodiments of the present invention will be described below.
After the steel having the components shown in Table 1 was hot-rolled, a 12 mm-thick steel sheet was formed by accelerated cooling. Here, steel types A to E are steels satisfying the component range of the present invention, and steel type F is steel whose Mo is out of the component range of the present invention. Table 2 shows the starting temperature of the accelerated cooling, the difference between the accelerated cooling starting temperature and the Ar3 temperature, and the cooling rate. Here, A-1 to A-4, B-1 to B-4, C-1
To C-3, D-1 to D-3, and E-1 to E-3 are all examples of the present invention satisfying the production conditions of the present invention.
5 to A-7, B-5 to B-7, C-4 to C-6, D-4
D-5 and E-4 to E-5 are comparative examples out of the production condition range of the present invention. F-1 to F-2 are comparative examples in which the production conditions satisfy the range of the present invention, but the components are out of the range of the present invention. Tensile test specimens were sampled from a direction parallel to the rolling direction of these steel sheets, a nominal stress-nominal strain curve was measured by a tensile test, and a minimum gradient from the yield point to a nominal strain of 5% was determined. Table 2 shows the results together with the yield strength at room temperature, tensile strength, and yield strength at 600 ° C.
Shown in All of the examples of the present invention have a nominal stress-nominal strain curve without a yield shelf as shown in FIG. 3 (c), and the yield ratio is 80% or less. Further, the yield strength at 600 ° C. is 2/3 or more of the yield strength at room temperature, and has sufficient performance as fire-resistant steel. On the other hand, the comparative example has a nominal stress-nominal strain curve having a yield shelf as shown in FIG. 3A or 3B, or has a high yield ratio without a yield shelf. Further, in Comparative Examples F-1 and F-2, since Mo is less than 0.05%, the yield strength at 600 ° C. is less than 未 満 of the yield strength at room temperature, and sufficient performance as fire-resistant steel Do not have.

【0021】次いで、これらの鋼板から溶接により図1
に示した角形断面の短柱圧縮試験体を製作した。ここ
で、幅圧比は全てB/t=30とした。また、短柱圧縮
試験体の長手方向は鋼板の圧延方向と一致するようにし
た。そして、図2に示した方法で圧縮試験を実施し、座
屈発生により荷重低下が開始する歪を座屈歪として評価
した。圧縮試験の結果を表2に合わせて示した。本発明
例は全て座屈歪が1%以上であり、優れた耐座屈特性を
有している。これに対して、比較例は公称応力−公称歪
曲線に降伏棚があるか、または降伏比が大きいために座
屈歪が小さく、耐座屈性が劣っている。
Next, these steel plates are welded as shown in FIG.
A short column compression test specimen having a rectangular cross section shown in Fig. 1 was manufactured. Here, all the width pressure ratios were set to B / t = 30. Further, the longitudinal direction of the short column compression test specimen was made to coincide with the rolling direction of the steel sheet. Then, a compression test was performed by the method shown in FIG. 2, and the strain at which the load began to decrease due to the occurrence of buckling was evaluated as buckling strain. The results of the compression test are shown in Table 2. All of the examples of the present invention have a buckling strain of 1% or more and have excellent buckling resistance. On the other hand, in the comparative example, the buckling strain is small and the buckling resistance is poor because the nominal stress-nominal strain curve has a yield shelf or a large yield ratio.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】以上に示したように、本発明によれば大
地震時の際に受ける大きな圧縮荷重に対して、耐座屈特
性に優れ、かつ耐火性に優れた鋼材を提供することが可
能であり、耐震性の要求される鉄骨建築物や橋梁などの
鋼構造物への利用に適しているといえる。
As described above, according to the present invention, it is possible to provide a steel material excellent in buckling resistance and fire resistance against a large compressive load received during a large earthquake. It is possible and can be said that it is suitable for use in steel structures such as steel buildings and bridges that require earthquake resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】圧縮試験に用いた短柱圧縮試験体の形状を示す
図。
FIG. 1 is a view showing the shape of a short column compression test piece used in a compression test.

【図2】圧縮試験での試験機及び試験体の設置状況を示
す図。
FIG. 2 is a diagram showing a setting state of a test machine and a test body in a compression test.

【図3】引張試験により得られる公称応力−公称歪線図
を模式的に示す図。
FIG. 3 is a diagram schematically showing a nominal stress-nominal strain diagram obtained by a tensile test.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.03〜0.25%、
Mn:0.5〜2.0%、Mo:0.05〜0.70%
を含有する鋼を熱間圧延した後に、その鋼の成分で定ま
る(Ar3+40)〜(Ar3−80)℃の温度域から2℃
/sec以上の冷却速度で製造した鋼を用いることを特
徴とする耐座屈特性および耐火性に優れた鋼部材。
(1) C: 0.03 to 0.25% by weight,
Mn: 0.5 to 2.0%, Mo: 0.05 to 0.70%
After hot-rolling a steel containing, 2 ° C. from a temperature range of (Ar 3 +40) to (Ar 3 −80) ° C. determined by the composition of the steel.
A steel member having excellent buckling resistance and fire resistance, characterized by using steel produced at a cooling rate of not less than / sec.
【請求項2】 重量%で、C:0.03〜0.25%、
Mn:0.5〜2.0、Mo:0.05〜0.70%を
含有し、さらに、Si:0.01〜1.0%、Cu:
0.05〜0.50%、Ni:0.05〜0.50%、
Cr:0.05〜0.50%、Nb:0.005〜0.
10%、V:0.005%〜0.10%、Ti:0.0
05〜0.10%の1種または2種以上を含有する鋼を
熱間圧延した後に、その鋼の成分で定まる(Ar3+4
0)〜(Ar3−80)℃の温度域から2℃/sec以上
の冷却速度で製造した鋼を用いることを特徴とする耐座
屈特性および耐火性に優れた鋼部材。
2. C: 0.03 to 0.25% by weight,
Mn: 0.5 to 2.0, Mo: 0.05 to 0.70%, Si: 0.01 to 1.0%, Cu:
0.05 to 0.50%, Ni: 0.05 to 0.50%,
Cr: 0.05 to 0.50%, Nb: 0.005 to 0.5%.
10%, V: 0.005% to 0.10%, Ti: 0.0
After hot-rolling a steel containing one or two or more elements of 0.5 to 0.10%, it is determined by the composition of the steel (Ar3 + 4
A steel member having excellent buckling resistance and fire resistance, characterized by using steel produced at a cooling rate of 2 ° C./sec or more from a temperature range of 0) to (Ar 3 −80) ° C.
JP17021897A 1997-06-26 1997-06-26 Steel excellent in buckling resistance and fire resistance Pending JPH1112648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17021897A JPH1112648A (en) 1997-06-26 1997-06-26 Steel excellent in buckling resistance and fire resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17021897A JPH1112648A (en) 1997-06-26 1997-06-26 Steel excellent in buckling resistance and fire resistance

Publications (1)

Publication Number Publication Date
JPH1112648A true JPH1112648A (en) 1999-01-19

Family

ID=15900869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17021897A Pending JPH1112648A (en) 1997-06-26 1997-06-26 Steel excellent in buckling resistance and fire resistance

Country Status (1)

Country Link
JP (1) JPH1112648A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294984A (en) * 2000-04-12 2001-10-26 Nkk Corp Fire resistant rolled steel and its producing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294984A (en) * 2000-04-12 2001-10-26 Nkk Corp Fire resistant rolled steel and its producing method
JP4543492B2 (en) * 2000-04-12 2010-09-15 Jfeスチール株式会社 Rolled refractory section steel and method for producing the same

Similar Documents

Publication Publication Date Title
JP2006089789A (en) Low yield ratio high tensile steel sheet having low acoustic anisotropy and having excellent weldability and its production method
Kanno Advances in steel materials for innovative and elegant steel structures in japan–A review
JP3849244B2 (en) Steel material excellent in ductile crack growth resistance under repeated large deformation and its manufacturing method
KR100559095B1 (en) Method of manufacturing high strength rolled h-shapes
JPH11131188A (en) Wide-flange shape steel for tunnel timbering, and its production
JP3214281B2 (en) Low-temperature building steel
JPH1112648A (en) Steel excellent in buckling resistance and fire resistance
JP3852279B2 (en) Manufacturing method of rolled H-section steel with excellent earthquake resistance
JPH0995731A (en) Production of building steel for low temperature use
JP3454670B2 (en) Steel members with excellent buckling resistance
JP2001247930A (en) Rolled shape steel excellent in earthquake resistance and fire resistance and its producing method
JP3743033B2 (en) Manufacturing method of steel materials for low-temperature buildings
JPH1112679A (en) Steel member having excellent bucking resisting characteristic and fire resisting characteristic
JPH1121622A (en) Manufacture of steel product for welded structure, having excellent atmospheric corrosion resistance and low yield ratio
JPH10330877A (en) Manufacture of steel member excellent in buckling resistance
JP2002047538A (en) Rolled shape having excellent earthquake resistance and sulfuric acid resistance, and its manufacturing method
JP2001247935A (en) Rolled shape steel excellent in earthquake resistance and weather resistance and its producing method
JPH10330884A (en) Steel member excellent in buckling resistance
JP3797080B2 (en) H-shaped steel with excellent earthquake resistance and steel structure using the same
JP2002363642A (en) Method for producing rolled wide flange shape having low yield ratio and excellent toughness
JPH1112681A (en) Steel member having excellent buckling resisting characteristic and fire resistance
JPH1112680A (en) Steel member having excellent buckling resisting characteristic and fire resistance
JP3371712B2 (en) Manufacturing method of earthquake resistant building steel with excellent fire resistance
JP3371699B2 (en) Manufacturing method of earthquake resistant building steel with excellent fire resistance
JPH10330885A (en) Steel member excellent in buckling resistance