JPH11125770A - Zoom image pickup optical system for endoscope - Google Patents

Zoom image pickup optical system for endoscope

Info

Publication number
JPH11125770A
JPH11125770A JP9305045A JP30504597A JPH11125770A JP H11125770 A JPH11125770 A JP H11125770A JP 9305045 A JP9305045 A JP 9305045A JP 30504597 A JP30504597 A JP 30504597A JP H11125770 A JPH11125770 A JP H11125770A
Authority
JP
Japan
Prior art keywords
lens group
lens
endoscope
optical system
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9305045A
Other languages
Japanese (ja)
Inventor
Tsutomu Igarashi
勉 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP9305045A priority Critical patent/JPH11125770A/en
Publication of JPH11125770A publication Critical patent/JPH11125770A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To make an image pickup optical system suitable to constitute a rigid endoscope field conversion system by optical image segmenting by providing a 4th lens group nearest to an image side with a lens group which does not contribute to variable power and providing the 4th lens group with at least one surface intended to perform the adjustment of the variable power or the adjustment of the position of an exit pupil. SOLUTION: This optical system is constituted of a 1st lens group G1 having a positive focal distance and performing focusing by moving an entire lens group or partially moving lens components in the lens group in an optical axis direction, a 2nd lens group G2 having a negative focal distance and moving in the optical axis direction in the case of the variable power, a 3rd lens group G3 having the positive focal distance and moving in the optical axis direction in the case of the variable power, and the 4th lens group G4 always fixed in order from an endoscope side. Then, it satisfies conditions (1) 0.3<β4 <3, (2) -1.2<f2 /fW<-0.5, and (3) -1.3<f2 /f3 <-0.5. In the expressions, β4 is the paraxial lateral magnification of the 4th lens group, fW is the focal distance of an entire system at a wide end, and f2 and f3 are the focal distances of the 1st and the 2nd lens groups.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内視鏡の接眼部に
接続可能な撮像装置に用いるズーム撮像光学系に関する
ものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a zoom image pickup optical system used for an image pickup apparatus connectable to an eyepiece of an endoscope.

【0002】[0002]

【従来の技術】光学的に画像を伝送する内視鏡として、
イメージガイドファイバーを用いたファイバースコープ
と、リレーレンズを用いた硬性鏡とがある。これらの内
視鏡は、接眼側にアイピースを備えていて接眼観察可能
なように構成されている。このようなファイバースコー
プや硬性鏡のアイピースに、撮像光学系と撮像素子を有
する撮像装置を接続することにより、テレビモニター上
で内視鏡画像を観察することができる。
2. Description of the Related Art As an endoscope for transmitting images optically,
There are a fiberscope using an image guide fiber and a rigid scope using a relay lens. These endoscopes are provided with eyepieces on the eyepiece side so that eyepiece observation is possible. By connecting an imaging device having an imaging optical system and an imaging device to such a fiberscope or an eyepiece of a rigid endoscope, an endoscope image can be observed on a television monitor.

【0003】近年、内視鏡下外科手術の普及により、テ
レビモニター上での画像観察が必須になりつつある。特
にファイバースコープよりも解像力の高い硬性鏡でのテ
レビモニターによる観察が主流である。
In recent years, with the spread of endoscopic surgery, image observation on a television monitor has become essential. In particular, observation with a television monitor using a rigid scope having a higher resolution than a fiberscope is mainly used.

【0004】図19は、硬性鏡に撮像装置を接続してモ
ニターにて映し出すための装置の概要を示す図である。
図において、1は硬性鏡、2は硬性鏡の接眼部、3はア
ダプター、4はテレビカメラである。この図のように硬
性鏡1の接眼部2にアダプター3を取付け更にテレビカ
メラを取付ける。このようにして、硬性鏡1に備えられ
た対物レンズにより形成された物体像11を接眼部2内
に配置された接眼レンズ12により拡大し、アダプター
3の撮影光学系13によりテレビカメラ4内に設けられ
た撮像素子14上に結像する。この撮像素子14上に形
成された像は、カメラコントロールユニット5にて信号
処理された後にテレビモニター6上に映し出される。又
15は赤外カットフィルター、光学的ローパスフィルタ
ー等よりなるフィルター群である。
FIG. 19 is a diagram showing an outline of an apparatus for connecting an imaging device to a rigid endoscope and projecting the image on a monitor.
In the figure, 1 is a rigid endoscope, 2 is an eyepiece of the rigid endoscope, 3 is an adapter, and 4 is a television camera. As shown in this figure, an adapter 3 is attached to the eyepiece 2 of the rigid endoscope 1, and a television camera is further attached. In this way, the object image 11 formed by the objective lens provided in the rigid endoscope 1 is enlarged by the eyepiece 12 arranged in the eyepiece 2, and the object image 11 in the television camera 4 is formed by the photographing optical system 13 of the adapter 3. An image is formed on the image pickup device 14 provided in the. The image formed on the image sensor 14 is signal-processed by the camera control unit 5 and then displayed on the television monitor 6. Reference numeral 15 denotes a filter group including an infrared cut filter, an optical low-pass filter, and the like.

【0005】図19に示す装置において、焦点距離の異
なる撮影光学系を備えたアダプターを適宜選択して取付
けることにより手技や内視鏡の種類に応じた所望の視野
の物体像を映し出すことができる。しかし、例えば手術
中に視野の大きさや観察倍率を変えたい時に、必要とす
る視野や倍率のアダプターに取り替えることは面倒であ
るために、ズーム機能を有するアダプターが望まれる。
In the apparatus shown in FIG. 19, an object image having a desired field of view can be displayed according to a procedure or an endoscope by appropriately selecting and attaching an adapter having an imaging optical system having a different focal length. . However, for example, when it is desired to change the size of the visual field or the observation magnification during the operation, it is troublesome to replace the adapter with the required visual field or magnification. Therefore, an adapter having a zoom function is desired.

【0006】また、アダプターとテレビカメラとを一体
にした構成の装置もあり、このような装置においてもズ
ーム機能を有するアダプターが望まれる。
There is also a device having a configuration in which an adapter and a television camera are integrated, and in such a device, an adapter having a zoom function is desired.

【0007】このような内視鏡に接続する撮像装置にて
用いられるズーム機能を有するアダプターも、一般のズ
ームレンズの場合と同様に、ズーム比の拡大が要求され
る。
[0007] An adapter having a zoom function used in an image pickup apparatus connected to such an endoscope also requires an increase in the zoom ratio, as in the case of a general zoom lens.

【0008】また、硬性鏡は像の伝送がレンズ系のみで
行なわれるために、撮像光学系13にフォーカス機能を
設けることにより、観察物体に対する最適なピント調整
を行なうことができる。そのために撮像装置(アダプタ
ー)にフォーカス機能を持たせる場合が多い。
[0008] Further, since the image of the hard endoscope is transmitted only through the lens system, by providing the imaging optical system 13 with a focus function, it is possible to perform an optimum focus adjustment for the observation object. For this reason, an imaging device (adapter) is often provided with a focus function.

【0009】上述のような、ズーム機能とフォーカス機
能を備えた内視鏡用撮像光学系の従来例として特開平4
−90503号公報に記載された光学系が知られてい
る。この従来例は、正、負、正のレンズ群よりなる3群
ズームで、前群でフォーカシングが行なわれる。
A conventional example of an endoscope imaging optical system having a zoom function and a focus function as described above is disclosed in
An optical system described in JP-A-90503 is known. In this conventional example, focusing is performed in a front group by a three-group zoom including a positive, a negative, and a positive lens group.

【0010】しかし、この従来例は、ズーム比が1.9
程度であり、又この従来例の構成のレンズでは、ズーム
比を拡大することはできない。
However, this conventional example has a zoom ratio of 1.9.
The zoom ratio cannot be increased with the lens having the configuration of the conventional example.

【0011】又、内視鏡下外科手術の作業効率を大幅に
改善するために硬性鏡視野変換システムを備えた従来例
として、特開平9−28663号公報や特開平8−33
2169号公報に示された装置が知られている。
Japanese Patent Application Laid-Open Nos. 9-28663 and 8-33 disclose conventional examples provided with a rigid scope conversion system in order to greatly improve the working efficiency of endoscopic surgery.
An apparatus disclosed in Japanese Patent No. 2169 is known.

【0012】図20は、前記の視野変換システムを持つ
撮像装置を示す。この図20において16はズーム撮像
光学系、17は光軸に垂直な方向に移動可能な撮像可能
な撮像ユニットである。この撮像ユニット17は赤外カ
ットフィルターや光学的ローパスフィルター等よりなる
フィルター群18を備えている。この撮像ユニット17
は、図示しないXYリニアステージ上に取付けられこの
リニアステージはモーター等を用いて駆動される。
FIG. 20 shows an image pickup apparatus having the above-mentioned visual field conversion system. In FIG. 20, reference numeral 16 denotes a zoom image pickup optical system, and reference numeral 17 denotes an image pickup unit capable of moving in a direction perpendicular to the optical axis. The imaging unit 17 includes a filter group 18 including an infrared cut filter, an optical low-pass filter, and the like. This imaging unit 17
Is mounted on an XY linear stage (not shown), and this linear stage is driven using a motor or the like.

【0013】図21は視野変換の概念図であり、(A)
はワイド側、(B)はテレ側を示す。ワイド側では、撮
像範囲の大きさに近い光学像が得られる。一方、テレ側
では視野変換を行なうために撮像範囲よりも大きな光学
像を形成し、この光学像の範囲内で撮像範囲をシフトさ
せることにより視野の変換を行なう。つまり図において
(A)のワイド側では撮像範囲21に近い最終像に対
し、(B)のテレ側では最終像23のように像を広く
し、撮像範囲21を矢印のように移動させて視野変換を
行なう。
FIG. 21 is a conceptual diagram of the field of view conversion.
Indicates the wide side, and (B) indicates the tele side. On the wide side, an optical image close to the size of the imaging range is obtained. On the other hand, on the telephoto side, an optical image larger than the imaging range is formed in order to perform the visual field conversion, and the visual field conversion is performed by shifting the imaging range within the range of the optical image. In other words, in the figure, the image is widened as the final image 23 on the telephoto side in FIG. 3B, and the imaging range 21 is moved as shown by the arrow in the view of FIG. Perform the conversion.

【0014】前記従来例にて示される光学的画像切り出
しによる硬性鏡視野変換システムは、ズーム比を大きく
とる程術者が硬性鏡の位置を移動する作業が少なくなる
ため、撮像光学系はズーム比の拡大が要求される。ま
た、前記硬性鏡視野変換システムは、ズームのテレ側に
おいて、撮像素子が拡大された硬性鏡の像の中を移動す
るため、光学設計上はテレ側での設計像高をズーム比に
応じて大きくしなければならない。これによって、撮像
光学系の収差補正が著しく困難になり、前記従来例の特
開平4−90503号公報に記載されているズームレン
ズの構成では十分良好な光学性能が得られない。
In the rigid-field-of-view conversion system based on optical image clipping described in the above-mentioned conventional example, the operation of moving the position of the rigid endoscope is reduced as the operator increases the zoom ratio. Expansion is required. In addition, in the rigid-scope field-of-view conversion system, on the tele side of the zoom, since the imaging device moves in the image of the enlarged rigid mirror, the design image height on the tele side is optically designed according to the zoom ratio. Must be bigger. As a result, it becomes extremely difficult to correct the aberration of the image pickup optical system, and a satisfactory optical performance cannot be obtained with the configuration of the zoom lens described in Japanese Patent Application Laid-Open No. Hei 4-90503.

【0015】[0015]

【発明が解決しようとする課題】本発明は、各種内視鏡
に取付けて使用する撮像装置のフォーカス機能付きズー
ム撮像光学系で、ズーム比が2を越えても使用し得る内
視鏡用ズーム撮像光学系を提供するものである。
SUMMARY OF THE INVENTION The present invention relates to a zoom imaging optical system having a focus function of an imaging device which is used by being attached to various endoscopes, and which can be used even when the zoom ratio exceeds 2. An image pickup optical system is provided.

【0016】本発明は、特に光学的画像切り出しによる
硬性鏡視野変換システムを構成するのに適したズーム撮
像光学系を提供するものである。
An object of the present invention is to provide a zoom image pickup optical system which is particularly suitable for configuring a rigid-field-of-view conversion system by clipping an optical image.

【0017】[0017]

【課題を解決するための手段】本発明の内視鏡用撮像光
学系は、内視鏡側から順に、レンズ群全体もしくはレン
ズ群中の一部のレンズ成分を光軸方向に移動させてフォ
ーカシングを行なう正の焦点距離の第1レンズ群と変倍
時に光軸方向に移動する負の焦点距離の第2レンズ群
と、変倍時に光軸方向に移動する正の焦点距離の第3レ
ンズ群と、常時固定の第4レンズ群とよりなり、下記条
件(1),(2),(3)を満足することを特徴として
いる。 (1) 0.3<β4 <3 (2) −1.2<f2 /fW <−0.5 (3) −1.3<f2 /f3 <−0.5 ただし、β4 は第4レンズ群の近軸横倍率、fW はワイ
ド端における全体の焦点距離、f2 ,f3 は夫々第1レ
ンズ群および第2レンズ群の焦点距離である。
An imaging optical system for an endoscope according to the present invention focuses by moving an entire lens group or a part of lens components in the lens group in the optical axis direction in order from the endoscope. A first lens group having a positive focal length, a second lens group having a negative focal length that moves in the optical axis direction during zooming, and a third lens group having a positive focal length that moves in the optical axis direction during zooming. And a fourth lens group which is always fixed, and satisfies the following conditions (1), (2) and (3). (1) 0.3 <β 4 <3 (2) −1.2 <f 2 / f W <−0.5 (3) −1.3 <f 2 / f 3 <−0.5 where β 4 is the focal length of the fourth paraxial lateral magnification of the lens group, f W is the total focal length at the wide end, f 2, f 3 are each the first lens group and the second lens group.

【0018】本発明の光学系の特徴は、最も像側の第4
レンズ群が変倍に寄与しないレンズ群を設け、この第4
レンズ群に倍率調整もしくは射出瞳位置調整を目的とす
る面を少なくとも1面設けたことである。そしてこの面
により収差補正とは独立にパワー配置を制御することが
可能になり、これにより収差補正の自由度が高くなり、
従来にない高変倍比のズーム光学系を実現し得るように
した。もしくは、この第4レンズ群内に接合レンズを用
いたり、このレンズ群内の各面での収差をコントロール
するために、両端面のパワーバランスを制御するために
ベンディングさせこれにより収差補正の自由度を高くし
たことにある。
The feature of the optical system of the present invention is that
A lens group in which the lens group does not contribute to zooming is provided.
That is, at least one surface for adjusting the magnification or adjusting the position of the exit pupil is provided in the lens group. This surface makes it possible to control the power arrangement independently of the aberration correction, thereby increasing the degree of freedom of the aberration correction,
A zoom optical system with an unprecedented high zoom ratio can be realized. Alternatively, a cemented lens may be used in the fourth lens unit, or bending may be performed to control the power balance between both end surfaces in order to control aberration on each surface in the lens unit, thereby providing a degree of freedom of aberration correction. Has been raised.

【0019】従来の内視鏡用3群ズーム撮像光学系が、
ズーム比を拡大し得ないのは、この光学系を内視鏡と組
合わせた時に入射瞳位置が制約されるためである。
A conventional three-group zoom imaging optical system for an endoscope is
The reason that the zoom ratio cannot be enlarged is that the position of the entrance pupil is restricted when this optical system is combined with an endoscope.

【0020】通常、内視鏡用撮像光学系は、明るさ絞り
を有していないため、結像光束の開口は、内視鏡の射出
瞳径で定まる。内視鏡のアイポイントは、一般に眼視観
察に問題がない程度の位置に設定されており、アイピー
ス端面から数mmしか離れていない。そのために、撮像光
学系の入射瞳位置が内視鏡に近い位置に設定されなけれ
ばならず、前置固定絞りのズーム光学系にしなければな
らない。このことはズーム比を拡大した時の収差補正に
とって大きな制約になる。
Normally, since the endoscope imaging optical system does not have a brightness stop, the aperture of the image forming light beam is determined by the exit pupil diameter of the endoscope. The eye point of the endoscope is generally set at a position where there is no problem in visual observation, and is only a few mm away from the end face of the eyepiece. For that purpose, the position of the entrance pupil of the imaging optical system must be set to a position close to the endoscope, and the zoom optical system of the fixed aperture stop must be used. This greatly restricts aberration correction when the zoom ratio is enlarged.

【0021】3群ズーム光学系においても、必要とする
変倍範囲を確保することは可能であるが、ペッツバール
和の補正のための各レンズ群のパワーのバランス制御
や、変倍範囲全体での射出瞳位置の制御と収差の制御の
うちの少なくとも一方が制御不能になる。そのために、
瞳位置を含めた光学系にて要求される仕様を強制的に確
保しようとすると、光学系の収差補正が困難になる。
In the three-unit zoom optical system, it is possible to secure a required zoom range, but it is necessary to control the balance of the power of each lens unit for correcting the Petzval sum and to control the entire zoom range. At least one of the control of the exit pupil position and the control of the aberration becomes impossible to control. for that reason,
Forcibly securing specifications required for the optical system including the pupil position makes it difficult to correct aberrations of the optical system.

【0022】そのため本発明の光学系は、第4レンズ群
が条件(1)を満足するようにした。
Therefore, in the optical system of the present invention, the fourth lens group satisfies the condition (1).

【0023】条件(1)は本発明光学系の第4レンズ群
の像倍率に関する条件である。この第4レンズ群は3群
ズーム光学系に対する付加的な役割をするレンズ群であ
る。そのため第4レンズ群の結像に対する作用は強くし
ないようにすることが必要である。
Condition (1) is a condition relating to the image magnification of the fourth lens group of the optical system of the present invention. This fourth lens group is a lens group that plays an additional role to the three-group zoom optical system. Therefore, it is necessary to prevent the fourth lens group from having a strong effect on image formation.

【0024】フイルムカメラ用の4群ズーム光学系にお
いて、第3レンズ群までをアフォーカルにしたものが知
られている。しかし、本発明の光学系のように入射瞳が
極端に前側にある構成の光学系においては、瞳から最も
離れている第4レンズ群に結像作用を持たせると本発明
の目的に反し収差補正が困難になる。そのために前述の
ような第3レンズ群までをアフォーカルにして第4レン
ズ群に結像作用を持たせることは望ましくない。
There is known a four-group zoom optical system for a film camera in which the third lens group is afocal. However, in an optical system having a configuration in which the entrance pupil is extremely forward, such as the optical system of the present invention, if the fourth lens group furthest from the pupil has an image-forming action, the aberration is contrary to the object of the present invention. Correction becomes difficult. Therefore, it is not desirable to make the fourth lens group have an image-forming action by afocaling up to the third lens group as described above.

【0025】本発明は、第4レンズ群の倍率を条件
(1)に示す範囲にして第4レンズ群に極端な収斂作用
や発散作用を持たせないようにした。
In the present invention, the magnification of the fourth lens unit is set in the range shown in the condition (1) so that the fourth lens unit does not have an extreme convergence or divergence.

【0026】条件(1)の下限の0.3を下回ると第4
レンズ群の収斂作用が強くなりすぎ、又上限の3を上回
ると発散作用が強くなりすぎいずれも収差補正の目的で
導入した第4レンズ群による効果が得られない。
When the value goes below the lower limit of 0.3 to condition (1), the fourth condition
The convergence action of the lens group becomes too strong, and if it exceeds the upper limit of 3, the divergence action becomes too strong, and in any case, the effect of the fourth lens group introduced for the purpose of aberration correction cannot be obtained.

【0027】本発明のズーム光学系において第1レンズ
群から第3レンズ群までは、次に述べるようによく知ら
れた構成である。
The first to third lens groups in the zoom optical system according to the present invention have a well-known configuration as described below.

【0028】最も内視鏡側にある第1レンズ群は、フォ
ーカシングに用いるレンズ群で、ズームの状態には依存
しないフォーカシングを行なうことができる。
The first lens group closest to the endoscope is a lens group used for focusing, and can perform focusing independent of the zoom state.

【0029】第2レンズ群と第3レンズ群とは、一般の
ズームレンズと同様に光軸方向への移動により変倍と変
倍時の像位置の補正とを行なう。比較的簡単な構成で変
倍比を大にするためには、第1レンズ群〜第3レンズ群
を正,負,正のレンズ群にて構成し、負の第2レンズ群
を移動して変倍を行ない、正の第1レンズ群又は第3レ
ンズ群のいずれかにより像位置を補正するのが効果的で
ある。本発明では、第1レンズ群内にフォーカシングの
機能を持たせるため、第3レンズ群を変倍時移動させて
像位置の補正を行なっている。尚、この第3レンズ群
は、像位置の補正のみではなく、変倍にも大きく寄与す
るようにしてある。
The second lens group and the third lens group perform magnification and correction of the image position at the time of magnification by moving in the optical axis direction, similarly to a general zoom lens. In order to increase the zoom ratio with a relatively simple configuration, the first to third lens units are composed of positive, negative, and positive lens units, and the negative second lens unit is moved. It is effective to perform zooming and correct the image position with either the positive first lens unit or the third lens unit. In the present invention, the image position is corrected by moving the third lens unit during zooming in order to provide the first lens unit with a focusing function. The third lens group is designed to contribute not only to the correction of the image position but also to the magnification.

【0030】以上述べた第1〜第3レンズ群において、
本発明では、第2,第3レンズ群を条件(2),(3)
を満足するようにした。
In the first to third lens groups described above,
In the present invention, the conditions (2) and (3) are satisfied for the second and third lens groups.
Was satisfied.

【0031】これら条件(2),(3)は、第2レンズ
群と第3レンズ群の移動範囲とペッツバール和に関する
条件である。変倍時のレンズ群の移動範囲は、小さいほ
うが枠設計が容易になるため好ましい。又第2、第3レ
ンズ群の焦点距離f2 ,f3 が小さい程移動範囲が小さ
くなるため設計上好ましい。しかし、第2レンズ群のパ
ワーが強くなりすぎるとペッツバール和が補正過剰傾向
になり好ましくない。第2レンズ群のパワーが強くなり
すぎなければ、ペッツバール和を第2レンズ群と第3レ
ンズ群とのパワーバランスにより制御することが可能で
ある。そのために、第2レンズ群のパワーを条件(2)
の範囲に限定し、又条件(3)を満足するようにして第
2レンズ群と第3レンズ群のパワーバランスをとること
が望ましい。
These conditions (2) and (3) relate to the moving range of the second lens unit and the third lens unit and the Petzval sum. It is preferable that the moving range of the lens unit during zooming be small, because the frame design becomes easy. Also, the smaller the focal lengths f 2 and f 3 of the second and third lens groups, the smaller the moving range, which is preferable in design. However, if the power of the second lens group becomes too strong, the Petzval sum tends to be overcorrected, which is not preferable. If the power of the second lens group does not become too strong, the Petzval sum can be controlled by the power balance between the second lens group and the third lens group. For this purpose, the power of the second lens group must be set to the condition (2).
It is desirable that the power balance between the second lens group and the third lens group be set so as to satisfy the condition (3).

【0032】条件(2)の下限の−1.2より下回ると
第2レンズ群のパワーが弱くなり変倍時の第2レンズ群
の移動範囲が大になり好ましくない。又上限の−0.5
を超えると第2レンズ群のパワーが強くなりペッツバー
ル和の補正が困難になる。又条件(3)の下限の−1.
3を超えるとペッツバール和が補正不足になり上限の−
0.5を超えるとペッツバール和が補正過剰になる。
When the value goes below the lower limit of -1.2 of the condition (2), the power of the second lens unit becomes weak, and the moving range of the second lens unit at the time of zooming becomes large. The upper limit is -0.5
When the value exceeds, the power of the second lens group becomes strong, and it becomes difficult to correct the Petzval sum. The lower limit of condition (3) is -1.
If it exceeds 3, the Petzval sum becomes insufficiently corrected and the upper limit is −
If it exceeds 0.5, the Petzval sum becomes overcorrected.

【0033】又、前述の本発明のズーム撮像光学系にお
いて、下記条件(4)を満足すれば更に望ましい。 (4) 0.7<β2W/β3W<1.4 ただし、β2W,β3wは夫々第2レンズ群および第3レン
ズ群のワイド端における近軸横倍率である。
In the zoom optical system according to the present invention, it is more preferable that the following condition (4) is satisfied. (4) 0.7 <β 2W / β 3W <1.4 where β 2W and β 3w are paraxial lateral magnifications of the second lens unit and the third lens unit, respectively, at the wide ends.

【0034】条件(4)は第2レンズ群と第3レンズ群
の変倍への寄与のバランスを保つことにより両レンズ群
の変倍時の移動範囲が大きくなりすぎないようにするた
めに設けた条件である。
The condition (4) is provided to keep the range of movement of both the lens units during zooming by keeping the balance of the contribution of the second lens unit and the third lens unit to zooming. Condition.

【0035】最も簡単な変倍のための構成としては、負
の第2レンズ群をバリエーターに、正の第3レンズ群を
コンペンセーターにするものがある。しかし、この場合
第2レンズ群の移動量が大になり、カムの回転角の設定
等の枠設計に悪影響がでる。そのために第3レンズ群を
純粋なコンペンセーターとはせずに、変倍に寄与できる
倍率範囲にて使用することが望ましい。ワイド端の状態
において、第2レンズ群と第3レンズ群との倍率をでき
る限り近づければ、第3レンズ群にもバリエーターに近
い性質を与えることができ、両レンズ群の移動範囲のバ
ランスをとりやすくなる。
The simplest configuration for zooming includes a configuration in which the negative second lens unit is used as a variator and the positive third lens unit is used as a compensator. However, in this case, the amount of movement of the second lens group becomes large, which adversely affects the frame design such as setting the rotation angle of the cam. For this reason, it is desirable to use the third lens group in a magnification range that can contribute to zooming without using a pure compensator. In the wide-angle end state, if the magnifications of the second lens unit and the third lens unit are made as close as possible, the third lens unit can be given a property close to a variator, and the movement range of both lens units can be balanced. Easy to take.

【0036】条件(4)の上限の1.4を超えると第2
レンズ群の移動量が大きくなりすぎ、又条件(4)の下
限の0.7を超えると第3レンズ群の移動量が大きくな
りすぎる。
When the value exceeds the upper limit of 1.4 of the condition (4), the second condition is satisfied.
If the amount of movement of the lens group is too large, and if the lower limit of 0.7 of the condition (4) is exceeded, the amount of movement of the third lens group will be too large.

【0037】本発明のズーム撮像光学系において、変倍
範囲内に第2レンズ群と第3レンズ群の近軸横倍率が同
時にほぼ−1倍になる状態が含まれるようにすることが
望ましい。
In the zoom image pickup optical system according to the present invention, it is preferable that the zoom range includes a state in which the paraxial lateral magnification of the second lens unit and the third lens unit becomes substantially -1 at the same time.

【0038】上記のように、両レンズ群が同時にほぼ−
1倍になる状態を含むことにより、第2レンズ群と第3
レンズ群のカム溝内ガタによる変倍時のピントずれを減
少させることができる。
As described above, both lens groups are almost simultaneously
By including the state of 1x, the second lens group and the third
Defocusing at the time of zooming due to backlash in the cam groove of the lens group can be reduced.

【0039】ユーザーがズーム操作を行なうと両レンズ
群が移動するが、最終的に各レンズ群が静止する位置が
カム溝のガタによるばらつきを生ずる。このガタにより
ピントずれを生ずるため、各レンズ群の光軸方向の微小
な移動によるピントずれの感度を小さくすることが望ま
しい。あるレンズ群が近軸横倍率が−1に近いところで
は、そのレンズ群を光軸方向に移動させてもほとんどピ
ントが変化せず、又ピントずれの感度は、近軸横倍率が
−1倍から離れるにしたがって増大する。そのために、
変倍のために移動する第2レンズ群と第3レンズ群を変
倍範囲内においてその近軸横倍率が同時にほぼ−1倍に
なる状態を有するようにすれば、変倍範囲内において第
2、第3の両レンズ群が常に−1倍に近い倍率になり、
変倍時のピントずれを軽減することができる。尚変倍範
囲内で第2レンズ群と第3レンズ群ともに−1倍を含ん
でいても、両レンズ群が同時にほぼ−1倍にならなけれ
ば、設計時でも変倍時のピント移動が生じ好ましくな
い。
When the user performs a zoom operation, both lens groups move, but finally the position where each lens group comes to rest varies due to the play of the cam groove. Since this play causes a focus shift, it is desirable to reduce the sensitivity of the focus shift due to minute movement of each lens group in the optical axis direction. When a certain lens group has a paraxial lateral magnification close to -1, the focus hardly changes even when the lens group is moved in the optical axis direction, and the sensitivity of defocusing is as follows. Increases with distance from the object. for that reason,
If the second lens group and the third lens group that move for zooming have a state in which the paraxial lateral magnification becomes approximately -1 at the same time within the zooming range, the second lens group and the third lens group move within the zooming range. , The third lens group always has a magnification close to −1,
Defocus at the time of zooming can be reduced. Even if both the second lens unit and the third lens unit include -1x within the zooming range, if both lens units do not become approximately -1x at the same time, focus movement at the time of zooming will occur even at the time of design. Not preferred.

【0040】本発明のズーム撮像光学系において、第
1,第2,第3レンズ群は、次の通りの構成にすること
が望ましい。
In the zoom imaging optical system according to the present invention, it is desirable that the first, second, and third lens groups have the following configurations.

【0041】第1レンズ群は、一つの正レンズとこの正
レンズよりもアッベ数の小さい一つの負レンズからな
り、第2レンズ群は、一つの正レンズとこの正レンズよ
りも低い屈折率でかつ低分散の一つの負レンズからなる
一つの接合レンズ成分からなる。この接合レンズの接合
面は、正の屈折力を有している。又第3レンズ群は、三
つ以上のレンズ成分よりなり、そのうちの一つのレンズ
成分はアッベ数が40以下の材質よりなる負レンズを含
み、更に前記レンズ成分のうちの少なくとも一つのレン
ズ成分は負の屈折力の接合面を有する接合レンズである
ことが望ましい。
The first lens group includes one positive lens and one negative lens having an Abbe number smaller than the positive lens, and the second lens group has one positive lens and a lower refractive index than the positive lens. In addition, it is composed of one cemented lens component composed of one negative lens having low dispersion. The cemented surface of this cemented lens has a positive refractive power. The third lens group includes three or more lens components, one of which includes a negative lens made of a material having an Abbe number of 40 or less, and at least one of the lens components includes It is desirable that the cemented lens has a cemented surface having a negative refractive power.

【0042】尚、前記レンズ成分とは、互いに空気間隔
をおいて配置された単レンズや接合レンズをいう。
The above-mentioned lens component refers to a single lens or a cemented lens arranged with an air gap therebetween.

【0043】ズームレンズの設計においては、変倍範囲
全域にわたって収差を減少させるためには、各レンズ群
での収差を小さくする必要がある。
In the design of the zoom lens, it is necessary to reduce the aberration in each lens group in order to reduce the aberration over the entire zoom range.

【0044】本発明の光学系は、画角が狭いため歪曲収
差の補正はあまり問題にならず、また像面湾曲は各レン
ズ群のパワー配分によりおおよそ定まるために各レンズ
群内のレンズ構成は像面湾曲にはあまり関係ない。その
ためその他の収差を第1レンズ群、第2レンズ群、第3
レンズ群内で夫々単独に小さくする必要がある。
In the optical system of the present invention, the correction of distortion is not a problem because the angle of view is narrow, and the curvature of field is roughly determined by the power distribution of each lens unit. It has little to do with field curvature. Therefore, other aberrations are reduced by the first lens group, the second lens group, and the third lens group.
It is necessary to reduce the size of each lens group independently.

【0045】本発明ズーム撮像光学系において、第1レ
ンズ群は前述のように一つの正レンズとこの正レンズよ
りもアッベ数の小さい一つの負レンズとにて構成される
ことが望ましい。
In the zoom image pickup optical system according to the present invention, it is desirable that the first lens group includes one positive lens and one negative lens having an Abbe number smaller than the positive lens as described above.

【0046】第1レンズ群を上記の通りの構成にするの
は、球面収差、コマ収差、軸上色収差を補正するのに効
果的であるためである。第1レンズ群内では、主光線高
が低いため、非点収差や倍率の色収差の補正について
は、それほど配慮しなくともよい。第1レンズ群を前記
の構成にしない場合、このレンズ群内での前記各収差の
補正が不十分になり、変倍範囲全域での全系における前
記各収差の補正が困難になる。
The reason why the first lens group is configured as described above is that it is effective in correcting spherical aberration, coma, and axial chromatic aberration. In the first lens group, since the principal ray height is low, it is not necessary to pay much attention to correction of astigmatism and chromatic aberration of magnification. If the first lens group is not configured as described above, the correction of the aberrations in this lens group becomes insufficient, and it becomes difficult to correct the aberrations in the entire system in the entire zoom range.

【0047】又、第2レンズ群は、そのレンズ群内で球
面収差、非点収差、コマ収差、色収差を良好に補正する
ために前述の通りの構成にすることが望ましい。第2レ
ンズ群は移動レンズ群となる第3レンズ群と第1レンズ
群との間に挟まれるために空間的な余裕が得られないた
め、レンズ群全体を簡素化して厚みを減らしかつ収差を
良好に補正しなければならない。そのために一つの接合
レンズのみで構成するのが望ましい。
It is desirable that the second lens group has the above-described configuration in order to favorably correct spherical aberration, astigmatism, coma aberration, and chromatic aberration in the lens group. Since the second lens group is sandwiched between the first lens group and the third lens group that is a moving lens group, a spatial margin cannot be obtained. Therefore, the entire lens group is simplified to reduce the thickness and reduce aberration. It must be well corrected. For that purpose, it is desirable to constitute only one cemented lens.

【0048】また、負のパワーの第2レンズ群に正の屈
折力を有する接合面を導入することにより補正過剰傾向
になる球面収差、非点収差、コマ収差を相補的に補正で
きる。さらに第2レンズ群は、全系の中で特に強いパワ
ーを有するため、レンズに用いる材料への配慮が必要に
なる。
Further, by introducing a cemented surface having a positive refractive power into the second lens unit having a negative power, spherical aberration, astigmatism and coma which tend to be overcorrected can be complementarily corrected. Further, since the second lens group has a particularly strong power in the entire system, it is necessary to consider the material used for the lens.

【0049】次に第3レンズ群内での球面収差、非点収
差、コマ収差、色収差を補正するためには、第3レンズ
群を次のように構成することが望ましい。
Next, in order to correct spherical aberration, astigmatism, coma, and chromatic aberration in the third lens group, it is desirable that the third lens group is configured as follows.

【0050】球面収差とコマ収差を補正するためには、
両側が空気接触面でそのベンディングが可能なレンズ成
分を三つ以上設ける必要がある。更に非点収差を補正す
るために少なくとも一つの負の屈折力の接合面が必要で
ある。また色収差を補正するためにはアッベ数が40以
下の材質からなる負レンズを少なくとも一つ設ける必要
がある。
In order to correct spherical aberration and coma,
It is necessary to provide three or more lens components that can be bent with air contact surfaces on both sides. Further, at least one cemented surface having a negative refractive power is required to correct astigmatism. In order to correct chromatic aberration, it is necessary to provide at least one negative lens made of a material having an Abbe number of 40 or less.

【0051】以上の理由から、本発明のズーム撮像光学
系においては、第3レンズ群を前記の通りの構成にする
ことが望ましい。
For the above reasons, in the zoom image pickup optical system according to the present invention, it is desirable that the third lens group has the above-described configuration.

【0052】もし、前記のような構成にしないと第3レ
ンズ群内での前記各収差の補正が不十分になり、変倍範
囲全域での全系における前記各収差の補正が困難にな
る。
If the above configuration is not adopted, the correction of the aberrations in the third lens group becomes insufficient, and the correction of the aberrations in the entire system in the entire zoom range becomes difficult.

【0053】又、本発明の基本構成並びにその他の各構
成のズーム撮影光学系において、下記条件(5),
(6),(7),(8)を満足することが望ましい。 (5) n2P>1.7 (6) 0.03<n2P−n2N<0.15 (7) ν2P<35 (8) ν2N−ν2P>15 ただし、n2P,n2Nは夫々第2レンズ群の正レンズおよ
び負レンズの屈折率、ν2P,ν2Nは夫々第2レンズ群の
正レンズおよび負レンズのアッベ数である。
In the zoom photographing optical system having the basic structure of the present invention and other structures, the following conditions (5) and (5) are satisfied.
It is desirable to satisfy (6), (7), and (8). (5) n 2P > 1.7 (6) 0.03 <n 2P −n 2N <0.15 (7) ν 2P <35 (8) ν 2N −ν 2P > 15 where n 2P and n 2N are Refractive indexes of the positive lens and the negative lens of the second lens group, and ν 2P and ν 2N are Abbe numbers of the positive lens and the negative lens of the second lens group, respectively.

【0054】これら条件(5)乃至条件(8)は、第2
レンズ群内での球面収差、非点収差、コマ収差、色収差
を補正するためのものである。
The conditions (5) to (8) correspond to the second
This is for correcting spherical aberration, astigmatism, coma aberration, and chromatic aberration in the lens group.

【0055】条件(5),(6)を満足しないと、第2
レンズ群内での非点収差、コマ収差の補正が不十分にな
る。また、ペッツバール和が補正過剰になりすぎること
がある。
If the conditions (5) and (6) are not satisfied, the second condition
Correction of astigmatism and coma in the lens group becomes insufficient. Further, the Petzval sum may be excessively corrected.

【0056】条件(7),(8)を満足しないと第2レ
ンズ群内での色収差の補正が不十分になり、変倍範囲全
域での全系の色収差補正が困難になる。
If the conditions (7) and (8) are not satisfied, the correction of chromatic aberration in the second lens group becomes insufficient, and it becomes difficult to correct the chromatic aberration of the entire system in the entire zoom range.

【0057】又、本発明の基本構成並びにその他の前記
のすべての構成のズーム撮像光学系において、第4レン
ズ群の近軸横倍率を1未満にすることが望ましい。これ
は第2レンズ群と第3レンズ群のカム溝内ガタによる変
倍時のピントずれを減少させるためである。
In the zoom imaging optical system having the basic structure of the present invention and all the other structures described above, it is desirable that the paraxial lateral magnification of the fourth lens group be less than 1. This is to reduce a focus shift at the time of zooming due to backlash in the cam groove between the second lens unit and the third lens unit.

【0058】第2,第3レンズ群のピント感度には、第
4レンズ群の倍率が関係する。第4レンズ群の近軸横倍
率を1未満にして縮小系にすれば、第2レンズ群と第3
レンズ群のピント感度は、第4レンズ群の近軸横倍率の
自乗に比例して縮小され、変倍時のピントずれを軽減で
きる。逆に第4レンズ群が拡大系であると、第2,第3
レンズ群のピント感度が拡大され、カム溝内ガタによる
変倍時ピントずれが増大するため好ましくない。
The focus sensitivity of the second and third lens units is related to the magnification of the fourth lens unit. If the paraxial lateral magnification of the fourth lens group is set to less than 1 to provide a reduction system, the second lens group and the third
The focus sensitivity of the lens group is reduced in proportion to the square of the paraxial lateral magnification of the fourth lens group, and the focus shift during zooming can be reduced. Conversely, if the fourth lens group is a magnifying system,
It is not preferable because the focus sensitivity of the lens group is increased and the focus shift during zooming due to backlash in the cam groove increases.

【0059】以上の理由から、第4レンズ群が条件
(1)の代りに下記条件(1’)を満足することが望ま
しい。 (1’) 0.3<β4 <1
For the above reasons, it is desirable that the fourth lens group satisfies the following condition (1 ') instead of the condition (1). (1 ′) 0.3 <β 4 <1

【0060】この条件は、条件(1)の上限をせばめた
条件で、これによって第2レンズ群,第3レンズ群のカ
ム溝内ガタによる変倍時のピントずれを減少させ得る。
This condition is a condition in which the upper limit of the condition (1) is narrowed. By this, it is possible to reduce the focus shift at the time of zooming due to backlash in the cam grooves of the second lens unit and the third lens unit.

【0061】条件(1’)の上限の1を超えると、第4
レンズ群が拡大系になり、第2レンズ群,第3レンズ群
のピント感度は拡大されるために、カム溝内ガタによる
変倍時のピントずれが増大する。
If the upper limit of 1 to condition (1 ′) is exceeded, the fourth condition
Since the lens group becomes a magnifying system and the focus sensitivity of the second lens group and the third lens group is expanded, the focus shift at the time of zooming due to backlash in the cam groove increases.

【0062】又、本発明のズーム撮像光学系は、光学的
画像切り出しによる硬性鏡視野変換システムに適用すれ
ば非常に有用である。そのため本発明光学系において、
像位置付近に光軸に垂直な方向に移動可能な固体撮像ユ
ニットを配置し、この固体撮像ユニットの移動により視
野変換を行なうようにすれば硬性鏡視野変換システムに
最も適した撮像光学系を実現し得る。
The zoom imaging optical system of the present invention is very useful if applied to a rigid-scope field-of-view conversion system based on optical image clipping. Therefore, in the optical system of the present invention,
A solid-state imaging unit that can move in the direction perpendicular to the optical axis is placed near the image position, and if this solid-state imaging unit is moved to convert the field of view, an imaging optical system most suitable for a rigid mirror field-of-view conversion system is realized. I can do it.

【0063】[0063]

【発明の実施の形態】次に本発明の実施の形態を各実施
例をもとに説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described based on respective examples.

【0064】本発明のズーム撮像光学系の各実施例は、
図1乃至図5に示す通りで下記データの通りである。 実施例1 f=14.359〜24.447〜40.988(13.281〜45.664) 仮想絞りの内径=4.400 ,全長=67.282 ズーム比=2.85,入射瞳位置=4.561 r1 =∞ d1 =1.0000 n1 =1.51633 ν1 =64.15 r2 =∞ d2 =5.0000 r3 =18.7470 d3 =1.4000 n2 =1.80610 ν2 =40.92 r4 =-18.7470 d4 =0.7000 n3 =1.74077 ν3 =27.79 r5 =42.5620 d5 =D1 (可変) r6 =-14.2800 d6 =1.9000 n4 =1.84666 ν4 =23.78 r7 =-6.0580 d7 =0.9000 n5 =1.78590 ν5 =44.20 r8 =25.7970 d8 =D2 (可変) r9 =∞ d9 =3.1500 n6 =1.72916 ν6 =54.68 r10=-23.4520 d10=0.2000 r11=44.8460 d11=5.0500 n7 =1.72916 ν7 =54.68 r12=-17.8940 d12=1.6000 n8 =1.84666 ν8 =23.78 r13=-111.2400 d13=0.2000 r14=12.4220 d14=4.4000 n9 =1.58913 ν9 =61.14 r15=35.5110 d15=0.3000 r16=19.8230 d16=2.7000 n10=1.58913 ν10=61.14 r17=∞ d17=1.4000 n11=1.83400 ν11=37.16 r18=9.3060 d18=D3 (可変) r19=10.6910 d19=3.5000 n12=1.69895 ν12=30.13 r20=∞ d20=1.2000 n13=1.80100 ν13=34.97 r21=14.0560 d21=1.8000 r22=∞ d22=1.6000 n14=1.51399 ν14=74.00 r23=∞ d23=2.0000 r24=∞ d24=0.7500 n15=1.51633 ν15=64.14 r25=∞ d25=0.9600 r26=∞(像) f 像高 F D123 14.359(fW) 1.718 3.228 3.9190 18.0935 2.7399 24.447(fS) 2.937 5.544 7.9760 10.5529 6.2235 40.988(fT ) 5.086 9.647 11.0857 2.8270 10.8398 13.281(fWM) 1.718 2.985 3.2320 19.2145 2.3060 45.664(fTM) 5.086 10.905 11.6583 1.0590 12.0351 f D123 β2 β3 14.359 3.9190 18.0935 2.7399 -0.751 -0.775 15.147 4.3749 17.3302 3.0473 -0.773 -0.795 15.983 4.8210 16.5669 3.3646 -0.795 -0.816 16.868 5.2570 15.8036 3.6919 -0.818 -0.837 17.803 5.6829 15.0402 4.0293 -0.842 -0.858 18.793 6.0985 14.2769 4.3771 -0.867 -0.881 19.837 6.5037 13.5136 4.7352 -0.893 -0.904 20.939 6.8984 12.7503 5.1038 -0.919 -0.928 22.100 7.2827 11.9869 5.4828 -0.946 -0.952 23.322 7.6564 11.2236 5.8725 -0.975 -0.977 24.606 8.0195 10.4603 6.2726 -1.004 -1.003 25.953 8.3721 9.6969 6.6834 -1.033 -1.030 27.365 8.7142 8.9336 7.1046 -1.064 -1.057 28.841 9.0459 8.1703 7.5362 -1.096 -1.085 30.383 9.3673 7.4070 7.9782 -1.128 -1.113 31.991 9.6784 6.6436 8.4304 -1.162 -1.142 33.663 9.9794 5.8803 8.8927 -1.196 -1.172 35.400 10.2704 5.1170 9.3650 -1.231 -1.203 37.201 10.5517 4.3537 9.8471 -1.267 -1.234 39.064 10.8234 3.5903 10.3387 -1.303 -1.266 40.988 11.0857 2.8270 10.8398 -1.341 -1.298 fW =14.359,f1 =33.481,f2 =-12.237 ,f3 =15.498,f4 =53.913 fC =33.481,β2W=-0.751,β3W=-0.775,β4 =0.705 f1 /fW =2.332 ,f2 /fW =-0.852,f3 /fW =1.079 f4 /fW =3.755 ,f2 /f3 =-0.790,fC /fW =2.332 β2W/β3W=0.969 ,n2P−n2N=0.0608,ν2N−ν2P=20.42
Each embodiment of the zoom imaging optical system according to the present invention
The following data is shown in FIGS. Example 1 f = 14.359~24.447~40.988 (13.281~45.664) virtual aperture inner diameter = 4.400, Length = 67.282 zoom ratio = 2.85, the entrance pupil position = 4.561 r 1 = ∞ d 1 = 1.0000 n 1 = 1.51633 ν 1 = 64.15 r 2 = ∞ d 2 = 5.0000 r 3 = 18.7470 d 3 = 1.4000 n 2 = 1.80610 ν 2 = 40.92 r 4 = -18.7470 d 4 = 0.7000 n 3 = 1.74077 ν 3 = 27.79 r 5 = 42.5620 d 5 = D 1 (variable) r 6 = -14.2800 d 6 = 1.9000 n 4 = 1.84666 ν 4 = 23.78 r 7 = −6.0580 d 7 = 0.9000 n 5 = 1.79090 ν 5 = 44.20 r 8 = 25.7970 d 8 = D 2 (variable) r 9 = ∞ d 9 = 3.1500 n 6 = 1.72916 v 6 = 54.68 r 10 = -23.4520 d 10 = 0.2000 r 11 = 44.8460 d 11 = 5.0500 n 7 = 1.72916 v 7 = 54.68 r 12 = -17.8940 d 12 = 1.6000 n 8 = 1.84666 v 8 = 23.78 r 13 = -111.2400 d 13 = 0.2000 r 14 = 12.4220 d 14 = 4.4000 n 9 = 1.58913 ν 9 = 61.14 r 15 = 35.5110 d 15 = 0.3000 r 16 = 19.8230 d 16 = 2.7000 n 1 0 = 1.58913 ν 10 = 61.14 r 17 = ∞ d 17 = 1.4000 n 11 = 1.83400 ν 11 = 37.16 r 18 = 9.3060 d 18 = D 3 ( variable) r 19 = 10.6910 d 19 = 3.5000 n 12 = 1.69895 ν 12 = 30.13 r 20 = ∞ d 20 = 1.2000 n 13 = 1.80100 ν 13 = 34.97 r 21 = 14.0560 d 21 = 1.8000 r 22 = ∞ d 22 = 1.6000 n 14 = 1.51399 ν 14 = 74.00 r 23 = ∞ d 23 = 2.0000 r 24 = ∞ d 24 = 0.7500 n 15 = 1.51633 ν 15 = 64.14 r 25 = ∞ d 25 = 0.9600 r 26 = ∞ (image) f Image height FD 1 D 2 D 3 14.359 (f W ) 1.718 3.228 3.9190 18.0935 2.7399 24.447 (f S) 2.937 5.544 7.9760 10.5529 6.2235 40.988 (f T) 5.086 9.647 11.0857 2.8270 10.8398 13.281 (f WM) 1.718 2.985 3.2320 19.2145 2.3060 45.664 (f TM) 5.086 10.905 11.6583 1.0590 12.0351 f D 1 D 2 D 3 β 2 β 3 14.359 3.9190 18.0935 2.7399 -0.751 -0.775 15.147 4.3749 17.3302 3.0473 -0.773 -0.795 15.983 4.8210 16.5669 3.3646 -0.795 -0.816 16.868 5.2570 15.8036 3.6919 -0.818 -0.837 17.80 3 5.6829 15.0402 4.0293 -0.842 -0.858 18.793 6.0985 14.2769 4.3771 -0.867 -0.881 19.837 6.5037 13.5136 4.7352 -0.893 -0.904 20.939 6.8984 12.7503 5.1038 -0.919 -0.928 22.100 7.2827 11.9869 5.4828 -0.946 -0.952 23.322 7.6564 11.2236 7.9725 -24 10.4603 6.2726 -1.004 -1.003 25.953 8.3721 9.6969 6.6834 -1.033 -1.030 27.365 8.7142 8.9336 7.1046 -1.064 -1.057 28.841 9.0459 8.1703 7.5362 -1.096 -1.085 30.383 9.3673 7.4070 7.9782 -1.128 -1.113 31.991 9.6784 6.6436 8.4304 -3.1639.94 -42. -1.196 -1.172 35.400 10.2704 5.1170 9.3650 -1.231 -1.203 37.201 10.5517 4.3537 9.8471 -1.267 -1.234 39.064 10.8234 3.5903 10.3387 -1.303 -1.266 40.988 11.0857 2.8270 10.8398 -1.341 -1.298 f W = 14.359, f 1 = 33.481, f 2 = - 12.237, f 3 = 15.498, f 4 = 53.913 f C = 33.481, β 2W = -0.751, β 3W = -0.775, β 4 = 0.705 f 1 / f W = 2.332, f 2 / f W = -0.852, f 3 / f W = 1.079 f 4 / f W = 3.755, f 2 / f 3 = -0.790, f C / f W = 2.332 β 2W / β 3W = 0.969, n 2P −n 2N = 0.0608, ν 2N −ν 2P = 20.42

【0065】 実施例2 f=14.295〜39.620 仮想絞りの内径=5.000 ,全長=63.949 ズーム比=2.77,入射瞳位置=4.881 r1 =∞ d1 =1.0000 n1 =1.51633 ν1 =64.15 r2 =∞ d2 =4.6379 r3 =15.7592 d3 =1.5000 n2 =1.48749 ν2 =70.23 r4 =-40.6457 d4 =1.5000 r5 =-35.9574 d5 =1.0000 n3 =1.84666 ν3 =23.78 r6 =-641.0854 d6 =D1 (可変) r7 =-18.7678 d7 =2.5000 n4 =1.84666 ν4 =23.78 r8 =-7.0000 d8 =1.2000 n5 =1.77250 ν5 =49.60 r9 =22.9879 d9 =D2 (可変) r10=-778.8880 d10=2.7694 n6 =1.48749 ν6 =70.23 r11=-23.9900 d11=0.3000 r12=26.5232 d12=3.3172 n7 =1.58913 ν7 =61.14 r13=-47.6765 d13=0.3000 r14=18.5549 d14=5.0000 n8 =1.51633 ν8 =64.14 r15=-34.9549 d15=1.8000 n9 =1.84666 ν9 =23.78 r16=65.8593 d16=0.3000 r17=10.4752 d17=4.2707 n10=1.72916 ν10=54.68 r18=∞ d18=1.8000 n11=1.83400 ν11=37.16 r19=6.9568 d19=D3 (可変) r20=-69.5104 d20=2.1213 n12=1.83400 ν12=37.16 r21=-32.0947 d21=2.0000 r22=∞ d22=1.6000 n13=1.51399 ν13=74.00 r23=∞ d23=0.5000 r24=∞ d24=0.7500 n14=1.51633 ν14=64.14 r25=∞ d25=0.9600 r26=∞(像) f 像高 F D123 14.295(fW) 1.697 2.813 2.2000 17.0878 3.0350 39.620(fT ) 5.090 8.117 11.6487 2.1459 8.5281 f D123 β2 β3 14.295 2.2000 17.0878 3.0350 -0.575 -0.558 17.388 4.4382 14.0994 3.7852 -0.632 -0.618 21.289 6.5536 11.1110 4.6581 -0.698 -0.688 26.175 8.5252 8.1227 5.6749 -0.773 -0.768 32.215 10.3175 5.1343 6.8710 -0.856 -0.864 39.620 11.6487 2.1459 8.5281 -0.931 -0.996 fW =14.295,f1 =44.594,f2 =-14.225 ,f3 =12.563,f4 =69.696 fC =23.500,β2W=-0.575,β3W=-0.558,β4 =0.942 f1 /fW =3.120 ,f2 /fW =-0.995,f3 /fW =0.879 f4 /fW =4.876 ,f2 /f3 =-1.132,fC /fW =1.644 β2W/β3W=1.030 ,n2P−n2N=0.0742,ν2N−ν2P=25.82 Example 2 f = 14.295 to 39.620 Inner diameter of virtual stop = 5.000, overall length = 63.949 Zoom ratio = 2.77, entrance pupil position = 4.881 r 1 = ∞d 1 = 1.0000 n 1 = 1.51633 ν 1 = 64.15 r 2 = D d 2 = 4.6379 r 3 = 15.7592 d 3 = 1.5000 n 2 = 1.48749 ν 2 = 70.23 r 4 = -40.6457 d 4 = 1.5000 r 5 = -35.9574 d 5 = 1.0000 n 3 = 1.84666 ν 3 = 23.78 r 6 = -641.0854 d 6 = D 1 (variable) r 7 = -18.7678 d 7 = 2.5000 n 4 = 1.84666 ν 4 = 23.78 r 8 = -7.0000 d 8 = 1.2000 n 5 = 1.77250 ν 5 = 49.60 r 9 = 22.9879 d 9 = D 2 (variable) r 10 = -778.8880 d 10 = 2.7694 n 6 = 1.48749 ν 6 = 70.23 r 11 = -23.9900 d 11 = 0.3000 r 12 = 26.5232 d 12 = 3.3172 n 7 = 1.58913 ν 7 = 61.14 r 13 = -47.6765 d 13 = 0.3000 r 14 = 18.5549 d 14 = 5.0000 n 8 = 1.51633 ν 8 = 64.14 r 15 = -34.9549 d 15 = 1.8000 n 9 = 1.84666 ν 9 = 23.78 r 16 = 65.8593 d 16 = 0.3000 r 17 10.4752 d 17 = 4.2707 n 10 = 1.72916 ν 10 = 54.68 r 18 = ∞ d 18 = 1.8000 n 11 = 1.83400 ν 11 = 37.16 r 19 = 6.9568 d 19 = D 3 ( variable) r 20 = -69.5104 d 20 = 2.1213 n 12 = 1.83400 v 12 = 37.16 r 21 = -32.0947 d 21 = 2.0000 r 22 = ∞ d 22 = 1.6000 n 13 = 1.51399 v 13 = 74.00 r 23 = ∞ d 23 = 0.5000 r 24 = ∞ d 24 = 0.7500 n 14 = 1.51633 ν 14 = 64.14 r 25 = ∞ d 25 = 0.9600 r 26 = ∞ (image) f Image height FD 1 D 2 D 3 14.295 (f W ) 1.697 2.813 2.2000 17.0878 3.0350 39.620 (f T ) 5.090 8.117 11.6487 2.1459 8.5281 f D 1 D 2 D 3 β 2 β 3 14.295 2.2000 17.0878 3.0350 -0.575 -0.558 17.388 4.4382 14.0994 3.7852 -0.632 -0.618 21.289 6.5536 11.1110 4.6581 -0.698 -0.688 26.175 8.5252 8.1227 5.6749 -0.773 -0.768 32.215 10.3175 5.1343 6.8710- 0.856 -0.864 39.620 11.6487 2.1459 8.5281 -0.931 -0.996 f W = 14.295, f 1 = 44.594, f 2 = -14.225, f 3 = 12.563, f 4 = 69.696 f C = 23.500, β 2W = -0.575, β 3W = -0.558, β 4 = 0.942 f 1 / f W = 3.120, f 2 / f W = -0.995, f 3 / f W = 0.879 f 4 / f W = 4.876 , F 2 / f 3 = −1.132, f C / f W = 1.644 β 2W / β 3W = 1.030, n 2P −n 2N = 0.0742, ν 2N −ν 2P = 25.82

【0066】 実施例3 f=16.928〜41.318 仮想絞りの内径=6.868 ,全長=77.436 ズーム比=2.44,入射瞳位置=4.881 r1 =∞ d1 =3.0000 n1 =1.51633 ν1 =64.15 r2 =∞ d2 =3.6810 r3 =13.1870 d3 =1.7500 n2 =1.51633 ν2 =64.15 r4 =-54.7020 d4 =1.5000 n3 =1.78472 ν3 =25.68 r5 =82.2820 d5 =D1 (可変) r6 =-18.3760 d6 =3.0000 n4 =1.84666 ν4 =23.78 r7 =-6.5630 d7 =1.7000 n5 =1.77250 ν5 =49.60 r8 =16.1440 d8 =D2 (可変) r9 =40.6530 d9 =2.0000 n6 =1.84666 ν6 =23.78 r10=23.2870 d10=6.0000 n7 =1.72916 ν7 =54.68 r11=-36.5300 d11=0.3000 r12=62.0340 d12=5.9100 n8 =1.80610 ν8 =40.95 r13=-20.0030 d13=2.0000 n9 =1.84666 ν9 =23.78 r14=∞ d14=0.3000 r15=18.6320 d15=7.0000 n10=1.77250 ν10=49.60 r16=∞ d16=2.0000 n11=1.78472 ν11=25.68 r17=43.6890 d17=D3 (可変) r18=-25.9400 d18=1.5000 n12=1.51633 ν12=64.15 r19=∞ d19=5.9400 r20=∞ d20=1.6000 n13=1.51399 ν13=74.00 r21=∞ d21=2.0000 r22=∞ d22=0.7500 n14=1.51633 ν14=64.14 r23=∞ d23=0.9600 r24=∞(像) f 像高 F D123 16.928(fW) 1.993 2.421 4.0241 15.5080 4.5124 41.318(fT) 5.096 6.184 10.1361 2.0982 11.8102 f D123 β2 β3 16.928 4.0241 15.5080 4.5124 -0.549 -0.611 20.278 5.8586 12.8261 5.3599 -0.602 -0.668 24.394 7.5539 10.1441 6.3465 -0.660 -0.735 29.381 9.0599 7.4621 7.5225 -0.723 -0.815 35.234 10.2313 4.7802 9.0331 -0.780 -0.917 41.318 10.1361 2.0982 11.8102 -0.775 -1.105 fW =16.928,f1 =39.002,f2 =-11.505 ,f3 =14.761 f4 =-50.239 ,fC =39.002,β2W=-0.549,β3W=-0.611,β4 =1.228 f1 /fW =2.304 ,f2 /fW =-0.680,f3 /fW =0.872 f4 /fW =-2.968,f2 /f3 =-0.779,fC /fW =2.304 β2W/β3W=0.899 ,n2P−n2N=0.0742,ν2N−ν2P=25.82 [0066] Example 3 f = from 16.928 to 41.318 virtual aperture inner diameter = 6.868, Length = 77.436 zoom ratio = 2.44, the entrance pupil position = 4.881 r 1 = ∞ d 1 = 3.0000 n 1 = 1.51633 ν 1 = 64.15 r 2 = ∞ d 2 = 3.6810 r 3 = 13.1870 d 3 = 1.7500 n 2 = 1.51633 ν 2 = 64.15 r 4 = -54.7020 d 4 = 1.5000 n 3 = 1.78472 ν 3 = 25.68 r 5 = 82.2820 d 5 = D 1 (variable) r 6 = -18.3760 d 6 = 3.0000 n 4 = 1.84666 ν 4 = 23.78 r 7 = -6.5630 d 7 = 1.7000 n 5 = 1.77250 ν 5 = 49.60 r 8 = 16.1440 d 8 = D 2 ( variable) r 9 = 40.6530 d 9 = 2.0000 n 6 = 1.84666 v 6 = 23.78 r 10 = 23.2870 d 10 = 6.0000 n 7 = 1.72916 v 7 = 54.68 r 11 = -36.5300 d 11 = 0.3000 r 12 = 62.0340 d 12 = 5.9100 n 8 = 1.80610 v 8 = 40.95 r 13 = -20.0030 d 13 = 2.0000 n 9 = 1.84666 ν 9 = 23.78 r 14 = ∞ d 14 = 0.3000 r 15 = 18.6320 d 15 = 7.0000 n 10 = 1.77250 ν 10 = 49.60 r 16 = ∞ d 16 = 2.0000 n 11 = 1.78472 v 11 = 25.68 r 17 = 43.6890 d 17 = D 3 (variable) r 18 = -25.9400 d 18 = 1.5000 n 12 = 1.51633 v 12 = 64.15 r 19 = ∞ d 19 = 5.9400 r 20 = ∞ d 20 = 1.6000 n 13 = 1.51399 ν 13 = 74.00 r 21 = ∞ d 21 = 2.0000 r 22 = ∞ d 22 = 0.7500 n 14 = 1.51633 ν 14 = 64.14 r 23 = ∞ d 23 = 0.9600 r 24 = ∞ ( Image) f Image height FD 1 D 2 D 3 16.928 (f W ) 1.993 2.421 4.0241 15.5080 4.5124 41.318 (f T ) 5.096 6.184 10.1361 2.0982 11.8102 f D 1 D 2 D 3 β 2 β 3 16.928 4.0241 15.5080 4.5124 -0.549- 0.611 20.278 5.8586 12.8261 5.3599 -0.602 -0.668 24.394 7.5539 10.1441 6.3465 -0.660 -0.735 29.381 9.0599 7.4621 7.5225 -0.723 -0.815 35.234 10.2313 4.7802 9.0331 -0.780 -0.917 41.318 10.1361 2.0982 11.8102 -0.775 -1.105 f W = 16.928, f 1 = 39.002 , F 2 = -11.505, f 3 = 14.761 f 4 = -50.239, f C = 39.002, β 2W = -0.549, β 3W = -0.611, β 4 = 1.228 f 1 / f W = 2.304, f 2 / f W = -0.680, f 3 / f W = 0.872 f 4 / f W = -2.968, f 2 / f 3 = -0.779, f C / f W = 2.304 β 2W / β 3W = 0.899 , N 2P −n 2N = 0.0742, ν 2N −ν 2P = 25.82

【0067】 実施例4 f=14.180〜41.250 仮想絞りの内径=5.000 ,全長=86.630 ズーム比=2.91,入射瞳位置=4.881 r1 =∞ d1 =3.0000 n1 =1.51633 ν1 =64.15 r2 =∞ d2 =5.0000 r3 =18.9881 d3 =1.8000 n2 =1.48749 ν2 =70.23 r4 =-47.0367 d4 =0.8000 n3 =1.80518 ν3 =25.42 r5 =-159.1706 d5 =D1 (可変) r6 =-13.5097 d6 =2.5000 n4 =1.84666 ν4 =23.78 r7 =-7.1390 d7 =1.2000 n5 =1.72916 ν5 =54.68 r8 =30.5672 d8 =D2 (可変) r9 =32.9102 d9 =7.0000 n6 =1.48749 ν6 =70.23 r10=-17.0000 d10=1.8000 n7 =1.83400 ν7 =37.16 r11=-34.9999 d11=0.3000 r12=192.1030 d12=1.8000 n8 =1.83400 ν8 =37.16 r13=32.8387 d13=5.6000 n9 =1.48749 ν9 =70.23 r14=-37.3424 d14=0.3000 r15=60.2247 d15=3.7834 n10=1.58913 ν10=61.14 r16=-73.0024 d16=0.3000 r17=28.9594 d17=5.6000 n11=1.48749 ν11=70.23 r18=-41.8922 d18=1.8000 n12=1.83400 ν12=37.16 r19=-152.4859 d19=D3 (可変) r20=12.7558 d20=3.2000 n13=1.48749 ν13=70.23 r21=18.0000 d21=3.7681 r22=26.3299 d22=3.8566 n14=1.48749 ν14=70.23 r23=∞ d23=1.4000 n15=1.84666 ν15=23.78 r24=11.4174 d24=2.7000 r25=∞ d25=1.6000 n16=1.51399 ν16=74.00 r26=∞ d26=0.5000 r27=∞ d27=0.7500 n17=1.51633 ν17=64.14 r28=∞ d28=0.9600 r29=∞(像) f 像高 F D123 14.180(fW) 1.688 2.790 2.9000 19.0026 2.9093 41.250(fT) 5.053 8.504 19.0568 2.3000 3.4550 f D123 β2 β3 14.180 2.9000 19.0026 2.9093 -0.570 -0.612 18.230 6.1314 14.3111 4.3694 -0.656 -0.684 24.082 9.3627 9.2904 6.1587 -0.773 -0.773 31.955 12.5941 4.3181 7.8997 -0.941 -0.859 37.895 15.8255 2.0565 6.9298 -1.202 -0.811 41.250 19.0568 2.3003 3.4547 -1.663 -0.639 fW =14.180,f1 =41.688,f2 =-13.999 ,f3 =20.232 f4 =-36.241 ,fC =41.688,β2W=-0.570,β3W=-0.612,β4 =0.926 f1 /fW =2.940 ,f2 /fW =-0.987,f3 /fW =1.427 f4 /fW =-2.556,f2 /f3 =-0.692,fC /fW =2.940 β2W/β3W=0.931 ,n2P−n2N=0.1175,ν2N−ν2P=30.90 Example 4 f = 14.180 to 41.250 Inner Diameter of Virtual Aperture = 5.000, Overall Length = 86.630 Zoom Ratio = 2.91, Entrance Pupil Position = 4.881 r 1 = ∞ d 1 = 3.0000 n 1 = 1.51633 ν 1 = 64.15 r 2 = ∞ d 2 = 5.0000 r 3 = 18.9881 d 3 = 1.8000 n 2 = 1.48749 ν 2 = 70.23 r 4 = -47.0367 d 4 = 0.8000 n 3 = 1.80518 ν 3 = 25.42 r 5 = -159.1706 d 5 = D 1 ( variable ) R 6 = -13.5097 d 6 = 2.5000 n 4 = 1.84666 ν 4 = 23.78 r 7 = −7.1390 d 7 = 1.2000 n 5 = 1.79216 ν 5 = 54.68 r 8 = 30.5672 d 8 = D 2 (variable) r 9 = 32.9102 d 9 = 7.0000 n 6 = 1.48749 ν 6 = 70.23 r 10 = -17.0000 d 10 = 1.8000 n 7 = 1.83400 ν 7 = 37.16 r 11 = -34.9999 d 11 = 0.3000 r 12 = 192.1030 d 12 = 1.8000 n 8 = 1.83400 ν 8 = 37.16 r 13 = 32.8387 d 13 = 5.6000 n 9 = 1.48749 ν 9 = 70.23 r 14 = -37.3424 d 14 = 0.3000 r 15 = 60.2247 d 15 = 3.7834 n 10 = 1.58913 ν 10 = 61.14 r 16 =- 7 3.0024 d 16 = 0.3000 r 17 = 28.9594 d 17 = 5.6000 n 11 = 1.48749 ν 11 = 70.23 r 18 = -41.8922 d 18 = 1.8000 n 12 = 1.83400 ν 12 = 37.16 r 19 = -152.4859 d 19 = D 3 ( variable ) r 20 = 12.7558 d 20 = 3.2000 n 13 = 1.48749 ν 13 = 70.23 r 21 = 18.0000 d 21 = 3.7681 r 22 = 26.3299 d 22 = 3.8566 n 14 = 1.48749 ν 14 = 70.23 r 23 = ∞ d 23 = 1.4000 n 15 = 1.84666 ν 15 = 23.78 r 24 = 11.4174 d 24 = 2.7000 r 25 = ∞ d 25 = 1.6000 n 16 = 1.51399 ν 16 = 74.00 r 26 = ∞ d 26 = 0.5000 r 27 = ∞ d 27 = 0.7500 n 17 = 1.51633 ν 17 = 64.14 r 28 = ∞ d 28 = 0.9600 r 29 = ∞ (image) f Image height FD 1 D 2 D 3 14.180 (f W ) 1.688 2.790 2.9000 19.0026 2.9093 41.250 (f T ) 5.053 8.504 19.0568 2.3000 3.4550 f D 1 D 2 D 3 β 2 β 3 14.180 2.9000 19.0026 2.9093 -0.570 -0.612 18.230 6.1314 14.3111 4.3694 -0.656 -0.684 24.082 9.3627 9.2904 6.1587 -0.773 -0.773 31.955 12.5941 4.318 1 7.8997 -0.941 -0.859 37.895 15.8255 2.0565 6.9298 -1.202 -0.811 41.250 19.0568 2.3003 3.4547 -1.663 -0.639 f W = 14.180, f 1 = 41.688, f 2 = -13.999, f 3 = 20.232 f 4 = -36.241, f C = 41.688, β 2W = -0.570, β 3W = -0.612, β 4 = 0.926 f 1 / f W = 2.940, f 2 / f W = -0.987, f 3 / f W = 1.427 f 4 / f W =- 2.556, f 2 / f 3 = -0.692, f C / f W = 2.940 β 2W / β 3W = 0.931, n 2P -n 2N = 0.1175, ν 2N -ν 2P = 30.90

【0068】 実施例5 f=13.539〜41.337 仮想絞りの内径=5.000 ,全長=70.674 ズーム比=3.05,入射瞳位置=4.881 r1 =∞ d1 =3.0000 n1 =1.51633 ν1 =64.15 r2 =∞ d2 =5.8000 r3 =18.3671 d3 =1.8000 n2 =1.48749 ν2 =70.23 r4 =-15.7473 d4 =0.8000 n3 =1.83400 ν3 =37.16 r5 =-28.7665 d5 =D1 (可変) r6 =-13.8273 d6 =3.2000 n4 =1.84666 ν4 =23.78 r7 =-5.7489 d7 =1.2000 n5 =1.77250 ν5 =49.60 r8 =27.3038 d8 =D2 (可変) r9 =-79.6208 d9 =1.8000 n6 =1.84666 ν6 =23.78 r10=15.7000 d10=6.0000 n7 =1.48749 ν7 =70.23 r11=-33.5310 d11=0.3000 r12=55.1239 d12=4.0000 n8 =1.77250 ν8 =49.60 r13=-42.8482 d13=0.3000 r14=36.9810 d14=3.4000 n9 =1.77250 ν9 =49.60 r15=-172.9625 d15=0.3000 r16=27.4881 d16=4.8000 n10=1.72916 ν10=54.68 r17=-41.9951 d17=1.8000 n11=1.84666 ν11=23.78 r18=-99.1111 d18=D3 (可変) r19=18.1724 d19=2.8000 n12=1.48749 ν12=70.23 r20=-26.8269 d20=1.2000 n13=1.83400 ν13=37.16 r21=10.2042 d21=2.8000 r22=∞ d22=1.6000 n14=1.51399 ν14=74.00 r23=∞ d23=0.5000 r24=∞ d24=0.7500 n15=1.51633 ν15=64.14 r25=∞ d25=0.9600 r26=∞(像) f 像高 F D123 13.539(fW) 1.610 2.666 3.1000 11.4692 6.4943 41.337(fT) 5.287 8.437 17.5739 2.3000 1.1896 f D123 β2 β3 13.539 3.1000 11.4692 6.4943 -0.924 -0.360 17.032 5.9948 8.6103 6.4585 -1.173 -0.358 21.436 8.8896 6.0563 6.1176 -1.603 -0.330 26.754 11.7844 4.0021 5.2771 -2.535 -0.262 33.076 14.6791 2.6570 3.7274 -6.046 -0.137 41.337 17.5739 2.3000 1.1896 15.689 0.067 fW =13.539,f1 =30.086,f2 =-12.633 ,f3 =12.406 f4 =-16.061 ,fC =30.086,β2W=-0.924,β3W=-0.360,β4 =1.302 f1 /fW =2.222 ,f2 /fW =-0.933,f3 /fW =0.916 f4 /fW =-1.186,f2 /f3 =-1.018,fC /fW =2.222 β2W/β3W=2.567 ,n2P−n2N=0.0742,ν2N−ν2P=25.82 ただしr1 ,r2 ,・・・ は各レンズ面の曲率半径、d
1 ,d2 ,・・・ は各レンズの肉厚および空気間隔、n
1 ,n2 ,・・・ は各レンズの屈折率、ν1 ,ν2,・・・
は各レンズのアッベ数である。また、fWはワイド端に
おけるレンズ系全体の焦点距離、fSは中間状態におけ
るレンズ系全体の焦点距離、fTはテレ端におけるレン
ズ系全体の焦点距離、fWMはワイド端での機械的移動限
界におけるレンズ系全体の焦点距離、fTMはテレ端での
機械的移動限界におけるレンズ系全体の焦点距離、f1
は第1レンズ群の焦点距離、f2は第2レンズ群の焦点
距離、f3は第3レンズ群の焦点距離、f4は第4レンズ
群の焦点距離、fCは第1レンズ群内のフォーカス群の
焦点距離、β2Wは第2レンズ群のワイド端での近軸横倍
率、β3Wは第3レンズ群のワイド端での近軸横倍率、β
4は第4レンズ群の近軸横倍率、n2Pは第2レンズ群の
正レンズの屈折率、n2Nは第2レンズ群の負レンズの屈
折率、ν2Pは第2レンズ群の正レンズのアッベ数、ν2N
は第2レンズ群の負レンズのアッベ数である。尚焦点距
離、曲率半径等の長さの単位はmmである。
[0068] Example 5 f = 13.539 to 41.337 virtual aperture inner diameter = 5.000, Length = 70.674 zoom ratio = 3.05, the entrance pupil position = 4.881 r 1 = ∞ d 1 = 3.0000 n 1 = 1.51633 ν 1 = 64.15 r 2 = ∞ d 2 = 5.8000 r 3 = 18.3671 d 3 = 1.8000 n 2 = 1.48749 ν 2 = 70.23 r 4 = -15.7473 d 4 = 0.8000 n 3 = 1.83400 ν 3 = 37.16 r 5 = -28.7665 d 5 = D 1 ( variable ) R 6 = -13.8273 d 6 = 3.2000 n 4 = 1.84666 ν 4 = 23.78 r 7 = -5.7489 d 7 = 1.2000 n 5 = 1.777250 ν 5 = 49.60 r 8 = 27.3038 d 8 = D 2 (variable) r 9 = -79.6208 d 9 = 1.8000 n 6 = 1.84666 ν 6 = 23.78 r 10 = 15.7000 d 10 = 6.0000 n 7 = 1.48749 ν 7 = 70.23 r 11 = -33.5310 d 11 = 0.3000 r 12 = 55.1239 d 12 = 4.0000 n 8 = 1.77250 v 8 = 49.60 r 13 = -42.8482 d 13 = 0.3000 r 14 = 36.9810 d 14 = 3.4000 n 9 = 1.77 250 v 9 = 49.60 r 15 = -172.9625 d 15 = 0.3000 r 16 = 27.4881 d 16 = 4.8000 n 10 = 1.72916 ν 10 = 54.68 r 17 = -41.9951 d 17 = 1.8000 n 11 = 1.84666 ν 11 = 23.78 r 18 = -99.1111 d 18 = D 3 (variable) r 19 = 18.1724 d 19 = 2.8000 n 12 = 1.48749 ν 12 = 70.23 r 20 = -26.8269 d 20 = 1.2000 n 13 = 1.83400 ν 13 = 37.16 r 21 = 10.2042 d 21 = 2.8000 r 22 = ∞ d 22 = 1.6000 n 14 = 1.51399 ν 14 = 74.00 r 23 = ∞ d 23 = 0.5000 r 24 = ∞ d 24 = 0.7500 n 15 = 1.51633 v 15 = 64.14 r 25 = ∞ d 25 = 0.9600 r 26 = ∞ (image) f Image height FD 1 D 2 D 3 13.539 (f W ) 1.610 2.666 3.1000 11.4692 6.4943 41.337 (f T ) 5.287 8.437 17.5739 2.3000 1.1896 f D 1 D 2 D 3 β 2 β 3 13.539 3.1000 11.4692 6.4943 -0.924 -0.360 17.032 5.9948 8.6103 6.4585 -1.173 -0.358 21.436 8.8896 6.0563 6.1176 -1.603 -0.330 4.76 26.754 11.784 5.2771 -2.535 -0.262 33.076 14.6791 2.6570 3.7274 -6.046 -0.137 41.337 17.5739 2.3000 1.1896 15.689 0.067 f W = 13.539, f 1 = 30.086, f 2 = -12.633, 3 = 12.406 f 4 = -16.061, f C = 30.086, β 2W = -0.924, β 3W = -0.360, β 4 = 1.302 f 1 / f W = 2.222, f 2 / f W = -0.933, f 3 / f W = 0.916 f 4 / f W = -1.186, f 2 / f 3 = -1.018, f C / f W = 2.222 β 2W / β 3W = 2.567, n 2P −n 2N = 0.0742, ν 2N −ν 2P = 25.82 where r 1 , r 2 ,... Are the radii of curvature of the respective lens surfaces, d
1 , d 2 ,... Are the thickness of each lens and the air gap, n
1 , n 2 ,... Are the refractive indices of each lens, ν 1 , ν 2 ,.
Is the Abbe number of each lens. F W is the focal length of the entire lens system at the wide end, f S is the focal length of the entire lens system in the intermediate state, f T is the focal length of the entire lens system at the telephoto end, and f WM is mechanical at the wide end. The focal length of the entire lens system at the movement limit, fTM is the focal length of the entire lens system at the mechanical movement limit at the telephoto end, f 1
The focal length of the first lens group, f 2 is the focal length of the second lens group, f 3 is the focal length of the third lens group, f 4 is the focal length of the fourth lens group, f C is the first lens group , Β 2W is the paraxial lateral magnification at the wide end of the second lens group, β 3W is the paraxial lateral magnification at the wide end of the third lens group, β
4 is the paraxial lateral magnification of the fourth lens group, n 2P is the refractive index of the positive lens of the second lens group, n 2N is the refractive index of the negative lens of the second lens group, and ν 2P is the positive lens of the second lens group. Abbe number of ν 2N
Is the Abbe number of the negative lens in the second lens group. The unit of length such as focal length and radius of curvature is mm.

【0069】実施例1は、内視鏡側から順に、正の焦点
距離の第1レンズ群G1と、負の焦点距離の第2レンズ
群G2と、正の焦点距離の第3レンズ群G3と、第4レ
ンズ群G4とよりなり、又、第1レンズ群と第4レンズ
群を固定し、第2,第3レンズ群を移動させて変倍を行
なう光学系である。
The first embodiment includes, in order from the endoscope side, a first lens group G1 having a positive focal length, a second lens group G2 having a negative focal length, and a third lens group G3 having a positive focal length. , And a fourth lens group G4. The first lens group and the fourth lens group are fixed, and the second and third lens groups are moved to perform zooming.

【0070】又、各レンズ群は次の通りである。第1レ
ンズ群G1は、正レンズと負レンズの接合レンズで、正
レンズより負レンズのアッベ数が小である。第2レンズ
群G2は、正レンズと負レンズの接合レンズで接合面は
正の屈折力を有する。第3レンズ群G3は正レンズと接
合レンズと正レンズと接合レンズとの四つのレンズ成分
よりなり、内視鏡側の接合レンズ成分の正レンズと像側
の接合レンズ成分の負レンズがアッベ数が40以下であ
る。第4レンズ群G4は一つの接合レンズ成分よりな
る。
Each lens group is as follows. The first lens group G1 is a cemented lens of a positive lens and a negative lens, and the Abbe number of the negative lens is smaller than that of the positive lens. The second lens group G2 is a cemented lens of a positive lens and a negative lens, and the cemented surface has a positive refractive power. The third lens group G3 includes four lens components, a positive lens, a cemented lens, a positive lens, and a cemented lens. The positive lens of the cemented lens component on the endoscope side and the negative lens of the cemented lens component on the image side are Abbe numbers. Is 40 or less. The fourth lens group G4 includes one cemented lens component.

【0071】この実施例の光学系は、中間焦点距離にお
いて第2レンズ群と第3レンズ群が同時にほぼ−1倍に
なる。又全系焦点距離の対数に対する第2レンズ群G
2,第3レンズ群G3の位置は図6に示すように単調に
変化し、かつ変曲点を有しない。カム曲線が変曲点を有
するとカム溝の加工精度が落ちるので、この実施例のよ
うに変曲点がないことが望ましい。又、この実施例では
第2レンズ群G2もしくは第3レンズ群G3を移動させ
るためのカムを直線カムにしてもよい。
In the optical system of this embodiment, at the intermediate focal length, the second lens unit and the third lens unit become approximately -1 at the same time. The second lens group G for the logarithm of the focal length of the entire system
2. The position of the third lens group G3 changes monotonously as shown in FIG. 6, and has no inflection point. If the cam curve has an inflection point, the machining accuracy of the cam groove decreases, so it is desirable that there be no inflection point as in this embodiment. In this embodiment, the cam for moving the second lens group G2 or the third lens group G3 may be a linear cam.

【0072】図11は全系焦点距離の対数に対する第2
レンズ群G2と第3レンズ群G3の倍率変化を示す。実
施例1の光学系は、第2,第3レンズ群G2,G3の倍
率変化がほぼ均等であり、第3レンズ群G3も変倍に大
きく寄与している。
FIG. 11 is a graph showing the second logarithm of the focal length of the entire system.
10 shows a change in magnification of the lens group G2 and the third lens group G3. In the optical system according to the first embodiment, the change in magnification of the second and third lens groups G2 and G3 is substantially uniform, and the third lens group G3 also greatly contributes to zooming.

【0073】又、第1レンズ群G1は、一つの接合レン
ズ成分にて構成され、このレンズ成分を光軸方向に移動
させてフォーカシングを行なう。
The first lens group G1 is composed of one cemented lens component, and performs focusing by moving this lens component in the optical axis direction.

【0074】第4レンズ群G4は、正の焦点距離を有す
る一つの接合レンズ成分よりなり、像高が高くなるテレ
側で射出瞳位置が像に近づくのをさけ、全変倍域で射出
瞳位置を像に対して遠ざけることができ固体撮像素子と
組合わせた時にシェーディング等の問題を回避できる。
The fourth lens unit G4 is composed of one cemented lens component having a positive focal length, and prevents the exit pupil position from approaching the image on the telephoto side where the image height is high. The position can be moved away from the image, and problems such as shading can be avoided when combined with a solid-state imaging device.

【0075】又、第4レンズ群G4の倍率は縮小系であ
り、第2レンズ群G2と第3レンズ群G3が−1倍に近
いことと併せ、変倍レンズ群のピント感度を低減させて
いる。
The magnification of the fourth lens group G4 is of a reduction system. In addition to the fact that the second lens group G2 and the third lens group G3 are close to −1, the focus sensitivity of the variable power lens group is reduced. I have.

【0076】この実施例1はズーム比2.85であるが
更にズーム比を拡大しての使用も可能である。
In the first embodiment, the zoom ratio is 2.85, but the zoom ratio can be further increased.

【0077】ズーム光学系において、ズーム操作を電動
化する場合、ワイド端とテレ端の停止位置をソフトウエ
アー制御する際には、機械的移動範囲に余裕を持たせる
必要がある。実施例1は、そのズーム比をソフトウエア
ー制御を考慮して2.85にしてあるが、機械操作の際
は、ズーム比3.44のズーム光学系として機能させ得
る。
When the zoom operation is motorized in the zoom optical system, it is necessary to allow a margin in the mechanical movement range when software controlling the stop positions of the wide end and the tele end. In the first embodiment, the zoom ratio is set to 2.85 in consideration of software control. However, when operating a machine, the zoom ratio can be made to function as a zoom optical system having a zoom ratio of 3.44.

【0078】実施例2は、図2に示す通りで、第1レン
ズ群G1は分離して配置された正レンズと負レンズとの
二つのレンズ成分よりなり、第3レンズ群G3が内視鏡
側より順に、正レンズと正レンズと接合レンズと接合レ
ンズとの四つのレンズ成分よりなり、更に第4レンズ群
G4が正の単レンズよりなる点で実施例1とは異なった
構成である。又、この実施例の全系の焦点距離の対数に
対する第2,第3レンズ群G2,G3の位置との関係を
示す図7より明るかなようにこれらレンズ群の動きは、
実施例1と同じである。又、この実施例の全系の焦点距
離の対数に対する第2,第3レンズ群G2,G3の倍率
との関係を示す図12から明らかなように、これらレン
ズ群G2,G3の倍率はテレ端付近で−1倍に近い値で
ある。
In the second embodiment, as shown in FIG. 2, the first lens group G1 is composed of two lens components, a positive lens and a negative lens, which are separately disposed, and the third lens group G3 is an endoscope. The fourth embodiment differs from the first embodiment in that, in order from the side, the fourth lens unit G4 includes four lens components of a positive lens, a positive lens, a cemented lens, and a cemented lens, and the fourth lens group G4 includes a positive single lens. Further, as is clear from FIG. 7, which shows the relationship between the logarithm of the focal length of the entire system and the position of the second and third lens groups G2 and G3 in this embodiment, the movement of these lens groups is as follows.
This is the same as the first embodiment. FIG. 12 shows the relationship between the logarithm of the focal length of the entire system and the magnification of the second and third lens groups G2 and G3 in this embodiment. In the vicinity, the value is close to -1 times.

【0079】又、実施例2は、第1レンズ群G1のうち
の内視鏡側の正レンズL1のみを移動させてフォーカシ
ングを行なう。又、第1レンズ群全体の焦点距離に対し
てフォーカシングを行なう可動レンズの正レンズの焦点
距離を短くできるため、フォーカシングの際の移動範囲
を小さくできる。
In the second embodiment, focusing is performed by moving only the endoscope-side positive lens L1 of the first lens group G1. Further, since the focal length of the positive lens of the movable lens that performs focusing with respect to the focal length of the entire first lens group can be shortened, the moving range at the time of focusing can be reduced.

【0080】又、1枚の正レンズよりなる第4レンズ群
G4により固体撮像素子と組合わせた時のシェーディン
グ等の問題を回避できる。
The fourth lens group G4 including one positive lens can avoid problems such as shading when combined with a solid-state imaging device.

【0081】実施例3は、図3に示す通りの構成で第3
レンズ群G3が三つの接合レンズ成分よりなり、第4レ
ンズ群G4が一つの負の単レンズ成分よりなる点で実施
例1と相違する。
In the third embodiment, the third embodiment is configured as shown in FIG.
The fourth embodiment differs from the first embodiment in that the lens unit G3 includes three cemented lens components, and the fourth lens unit G4 includes one negative single lens component.

【0082】この実施例は、他の実施例よりもズーム比
が小さいが入射瞳径が大きく明るい光学系である。
This embodiment is an optical system having a smaller zoom ratio but a larger entrance pupil diameter than the other embodiments and is bright.

【0083】この実施例の全系の焦点距離の対数に対す
る第2レンズ群G2と第3レンズ群G3の位置に関する
図8より明らかなように、第2レンズ群G2の動きは、
テレ端近傍で極値を有し、この第2レンズ群が多少コン
ペンセーターに近い役割を有している。
The position of the second lens group G2 and the position of the third lens group G3 with respect to the logarithm of the focal length of the entire system in this embodiment is clear from FIG.
The second lens group has an extreme value near the telephoto end, and has a role somewhat like a compensator.

【0084】又、全系の焦点距離の対数に対する第2,
第3レンズ群G2,G3の倍率の関係を示す図13よ
り、第3レンズ群G3のみが−1倍をはさんで移動する
構成であり、第3レンズ群G3の変倍への寄与は、第2
レンズ群G2に対し少し大きい。
Further, the second and second logarithms of the focal length of the entire system are
From FIG. 13 showing the relationship between the magnifications of the third lens groups G2 and G3, only the third lens group G3 is configured to move across −1, and the contribution of the third lens group G3 to zooming is as follows. Second
A little larger than the lens group G2.

【0085】又、第4レンズ群G4は、拡大系にして全
系の焦点距離を伸ばすために凹平の負レンズにしてあ
る。
Further, the fourth lens group G4 is a concave negative lens in order to extend the focal length of the entire system as a magnifying system.

【0086】実施例4は、図4に示す通りの構成で、第
3レンズ群G3が内視鏡側より接合レンズ成分、接合レ
ンズ成分、単レンズ成分、接合レンズ成分の四つのレン
ズ成分よりなり、第4レンズ群が単レンズ成分と接合レ
ンズ成分よりなる点で実施例1と異なっている。
In the fourth embodiment, the third lens group G3 is composed of four lens components, a cemented lens component, a cemented lens component, a single lens component, and a cemented lens component, from the endoscope side, as shown in FIG. The fourth embodiment differs from the first embodiment in that the fourth lens group includes a single lens component and a cemented lens component.

【0087】この実施例は、全系の焦点距離の対数に対
する第2,第3レンズ群G2,G3の位置の関係を示す
図9のように、第3レンズ群G3の動きがテレ端付近で
極値を有しこのレンズ群がコンペンセーターに近い役割
を有している。
In this embodiment, as shown in FIG. 9 showing the relationship between the logarithm of the focal length of the entire system and the position of the second and third lens groups G2 and G3, the movement of the third lens group G3 is close to the telephoto end. This lens group has an extreme value and plays a role close to a compensator.

【0088】又、図14の全系の焦点距離の対数に対す
る倍率の関係から、第2レンズ群G2のみが−1倍をは
さんで移動する構成であり、第3レンズ群G3の変倍へ
の寄与度は第2レンズ群G2より少し少ない。
Further, from the relationship between the logarithm and the logarithm of the focal length of the entire system shown in FIG. 14, only the second lens group G2 is moved by -1 times, and the magnification of the third lens group G3 is changed. Is slightly smaller than the second lens group G2.

【0089】又、第4レンズ群G4の焦点距離は負であ
る。しかし二つのレンズ成分に分割し、内視鏡側に正の
パワーを集めて縮少系にしてある。又この第4レンズ群
G4内に高分散の負レンズを配置して倍率の色収差の補
正を行なっている。又、二つのレンズ成分に分割するこ
ととこれらレンズ成分の内視鏡側の面を凸面にすること
により変倍時の非点収差の変動を補正している。
The focal length of the fourth lens group G4 is negative. However, it is divided into two lens components, and positive power is collected on the endoscope side to make a reduced system. Further, a high dispersion negative lens is arranged in the fourth lens group G4 to correct lateral chromatic aberration. Further, by dividing the lens component into two lens components and making the endoscope-side surface of these lens components convex, the fluctuation of astigmatism during zooming is corrected.

【0090】実施例5は、図5に示す通りで、第3レン
ズ群G3が内視鏡側から順に、接合レンズ成分と単レン
ズ成分と単レンズ成分と接合レンズ成分の四つのレンズ
成分よりなる点で実施例1と相違する。
In the fifth embodiment, as shown in FIG. 5, the third lens group G3 is composed of four lens components of a cemented lens component, a single lens component, a single lens component, and a cemented lens component in this order from the endoscope side. This is different from the first embodiment in the point.

【0091】この実施例5は、全系の焦点距離の対数に
対する第2,第3レンズ群G2,G3の位置の関係を示
す図10からわかるように第2レンズ群G2がバリエー
ターで第3レンズ群G3がコンペンセーターである。
又、図15の全系の焦点距離の対数に対する倍率の関係
からわかるように、第3レンズ群G3は、テレ側に行く
にしたがって倍率の絶対値が減少する傾向にある。
In the fifth embodiment, as can be seen from FIG. 10 showing the relationship between the logarithm of the focal length of the entire system and the positions of the second and third lens groups G2 and G3, the second lens group G2 is a variator and the third lens group is a third lens group. Group G3 is the compensator.
Further, as can be seen from the relationship between the logarithm of the focal length of the whole system and the magnification in FIG. 15, the absolute value of the magnification of the third lens group G3 tends to decrease toward the telephoto side.

【0092】又、第4レンズ群G4内に分散の差がある
接合レンズを配置して倍率の色収差の補正を行ない、負
のパワーの接合面と内視鏡側を凸面にして変倍時の非点
収差を補正している。
A chromatic aberration of magnification is corrected by disposing a cemented lens having a difference in dispersion in the fourth lens group G4. Astigmatism is corrected.

【0093】なお、各実施例とも、物体距離は第1面か
ら内視鏡側に1000mm(視度−1/m)のところに
ある。又、第1レンズ群よりも内視鏡側には平行平面板
が配置されているが、これは外面保護カバーガラスであ
る。また、第4レンズ群と像の間には平行平面板が2枚
配置されているが、これらは内視鏡側から順に赤外カッ
トフィルター、撮像素子カバーガラスである。また、入
射瞳位置は第1面(外面保護カバーガラスの内視鏡側
面)から像側に向かった距離である。
In each of the embodiments, the object distance is 1000 mm (diopter -1 / m) from the first surface toward the endoscope. Further, a parallel flat plate is disposed closer to the endoscope than the first lens group, but this is an outer surface protective cover glass. Two parallel flat plates are arranged between the fourth lens group and the image. These are an infrared cut filter and an image sensor cover glass in this order from the endoscope side. The entrance pupil position is the distance from the first surface (the endoscope side surface of the outer protective cover glass) toward the image side.

【0094】また、各実施例の断面図中、図1の(A)
はワイド端、(B)は中間焦点距離、(C)はテレ端を
示し、又図2乃至図5はいずれも(A)はワイド端、
(B)はテレ端を示している。
Further, in the sectional views of the respective embodiments, FIG.
2B shows the wide end, FIG. 2C shows the telephoto end, FIG. 2A to FIG.
(B) shows the telephoto end.

【0095】また図6乃至図10において横軸は焦点距
離の対数、縦軸は第1レンズ群G1の最も像側の面から
の距離である。又図11乃至図15において横軸は焦点
距離の対数、縦軸は倍率である。
In FIGS. 6 to 10, the horizontal axis represents the logarithm of the focal length, and the vertical axis represents the distance from the most image side surface of the first lens unit G1. 11 to 15, the horizontal axis is the logarithm of the focal length, and the vertical axis is the magnification.

【0096】以上述べたように、本発明は特許請求の範
囲の請求項1,2,3のほかに次の各項に記載する光学
系もその目的を達成し得るものである。
As described above, according to the present invention, in addition to the first, second, and third aspects of the present invention, the optical systems described in the following aspects can also achieve the object.

【0097】(1)特許請求の範囲の請求項1,2又は
3に記載する光学系で、変倍範囲内に第2レンズ群と第
3レンズ群の近軸横倍率が同時にほぼ−1の状態を含む
ようにしたことを特徴とする内視鏡用ズーム撮像光学
系。
(1) In the optical system described in claims 1, 2 or 3, the paraxial lateral magnification of the second lens group and the third lens group is substantially -1 simultaneously within the zooming range. A zoom imaging optical system for an endoscope, characterized by including a state.

【0098】(2)特許請求の範囲の請求項1,2又は
3あるいは前記の(1)の項に記載する光学系で、第1
レンズ群が一つの正レンズと前記正レンズよりアッベ数
が小さい一つの負レンズとよりなり、第2レンズ群が正
レンズと、前記正レンズよりも低屈折率で低分散の一つ
の負レンズとを貼り合わせた接合レンズとからなり、前
記接合レンズが正の屈折力を有する接合面を有し、第3
レンズ群が三つ以上のレンズ成分よりなり、第3レンズ
群の前記レンズ成分のうち少なくとも一つのレンズ成分
はアッベ数が40以下の材質からなる負レンズを含んで
おり、更に第3レンズ群の前記レンズ成分のうち少なく
とも一つのレンズ成分は負の屈折力の接合面を有する接
合レンズ成分であることを特徴とする内視鏡用ズーム撮
像光学系。
(2) The optical system according to claim 1, 2, or 3 or (1), wherein
The lens group includes one positive lens and one negative lens having an Abbe number smaller than the positive lens, and the second lens group includes a positive lens and one negative lens having a lower refractive index and a lower dispersion than the positive lens. A cemented lens having a cemented surface having a positive refractive power;
The lens group includes three or more lens components, and at least one of the lens components of the third lens group includes a negative lens made of a material having an Abbe number of 40 or less. At least one lens component of the lens components is a cemented lens component having a cemented surface having a negative refractive power.

【0099】(3)特許請求の範囲の請求項1,2又は
3あるいは、前記の(1)又は(2)の項の光学系で、
下記条件(5),(6),(7),(8)を満足するこ
とを特徴とする内視鏡用ズーム撮像光学系。 (5) n2P>1.7 (6) 0.03<n2P−n2N<0.15 (7) ν2P<35 (8) ν2N−ν2P>15
(3) The optical system according to claim 1, 2, or 3, or the optical system according to (1) or (2),
A zoom imaging optical system for an endoscope, which satisfies the following conditions (5), (6), (7), and (8). (5) n 2P > 1.7 (6) 0.03 <n 2P −n 2N <0.15 (7) ν 2P <35 (8) ν 2N −ν 2P > 15

【0100】(4)特許請求の範囲の請求項1,2又は
3あるいは前記の(1),(2)又は(3)の項に記載
する光学系で、第4レンズ群の近軸の横倍率が常に1未
満であることを特徴とする内視鏡用ズーム撮像光学系。
(4) The optical system according to claim 1, 2, or 3, or (1), (2), or (3), wherein the fourth lens group has a paraxial horizontal axis. A zoom imaging optical system for an endoscope, wherein a magnification is always less than 1.

【0101】[0101]

【発明の効果】本発明によれば、ズーム比が2を越えて
も使用できる内視鏡ズーム光学系で、更に光学的画像切
り出しによる硬性鏡視野変換システムを構成するのに適
したズーム撮像光学系を実現し得る。
According to the present invention, there is provided an endoscope zoom optical system which can be used even when the zoom ratio exceeds 2, and a zoom imaging optical system which is suitable for forming a rigid endoscope visual field conversion system by cutting out an optical image. System can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の断面図FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】本発明の実施例2の断面図FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】本発明の実施例3の断面図FIG. 3 is a sectional view of a third embodiment of the present invention.

【図4】本発明の実施例4の断面図FIG. 4 is a sectional view of a fourth embodiment of the present invention.

【図5】本発明の実施例5の断面図FIG. 5 is a sectional view of a fifth embodiment of the present invention.

【図6】本発明の実施例1の第2,第3レンズ群の移動
軌跡を示す図
FIG. 6 is a diagram illustrating the movement trajectories of the second and third lens groups according to the first embodiment of the present invention.

【図7】本発明の実施例2の第2,第3レンズ群の移動
軌跡を示す図
FIG. 7 is a diagram illustrating the movement trajectories of the second and third lens units according to the second embodiment of the present invention.

【図8】本発明の実施例3の第2,第3レンズ群の移動
軌跡を示す図
FIG. 8 is a diagram showing the movement locus of the second and third lens groups according to the third embodiment of the present invention.

【図9】本発明の実施例4の第2,第3レンズ群の移動
軌跡を示す図
FIG. 9 is a diagram showing the movement trajectories of the second and third lens groups according to a fourth embodiment of the present invention.

【図10】本発明の実施例5の第2,第3レンズ群の移
動軌跡を示す図
FIG. 10 is a diagram showing the movement trajectories of the second and third lens units according to a fifth embodiment of the present invention.

【図11】本発明の実施例1の第2,第3レンズ群の変
倍変化を示す図
FIG. 11 is a diagram showing a magnification change of the second and third lens units according to the first embodiment of the present invention.

【図12】本発明の実施例2の第2,第3レンズ群の変
倍変化を示す図
FIG. 12 is a diagram showing a magnification change of the second and third lens units according to the second embodiment of the present invention.

【図13】本発明の実施例3の第2,第3レンズ群の変
倍変化を示す図
FIG. 13 is a diagram showing a magnification change of the second and third lens units according to the third embodiment of the present invention.

【図14】本発明の実施例4の第2,第3レンズ群の変
倍変化を示す図
FIG. 14 is a diagram showing a magnification change change of the second and third lens units according to the fourth embodiment of the present invention.

【図15】本発明の実施例5の第2,第3レンズ群の変
倍変化を示す図
FIG. 15 is a diagram showing a magnification change of the second and third lens units according to Example 5 of the present invention.

【図16】本発明の実施例1のワイド端における収差曲
線図
FIG. 16 is an aberration curve diagram at the wide-angle end according to the first embodiment of the present invention.

【図17】本発明の実施例1の中間焦点距離における収
差曲線図
FIG. 17 is an aberration curve diagram at the intermediate focal length according to the first embodiment of the present invention.

【図18】本発明の実施例1のテレ端における収差曲線
FIG. 18 is an aberration curve diagram at the telephoto end according to the first embodiment of the present invention.

【図19】硬性鏡に接続する撮像装置の基本構成を示す
FIG. 19 is a diagram showing a basic configuration of an imaging device connected to a rigid endoscope;

【図20】硬性鏡に接続する視野変換撮像装置の構成を
示す図
FIG. 20 is a diagram showing a configuration of a visual field conversion imaging device connected to a rigid endoscope;

【図21】視野変換の概念を示す図FIG. 21 is a diagram showing the concept of field of view conversion.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】内視鏡接眼部に接続する撮像光学系で、内
視鏡側から順に、レンズ群もしくはレンズ群中の1部の
レンズを光軸方向に移動してフォーカシングを行なう正
の焦点距離の第1レンズ群と、変倍時に光軸方向に移動
する負の焦点距離の第2レンズ群と、変倍時に光軸方向
に移動する正の焦点距離の第3レンズ群と、常時固定の
第4レンズ群とよりなり、下記条件(1),(2),
(3)を満足することを特徴とする内視鏡用ズーム撮像
光学系。 (1) 0.3<β4 <3 (2) −1.2<f2 /fW <−0.5 (3) −1.3<f2 /f3 <−0.5 ただし、β4 は第4レンズ群の近軸横倍率、fW はワイ
ド端における全体の焦点距離、f2 ,f3 は夫々第2レ
ンズ群および第3レンズ群の焦点距離である。
An imaging optical system connected to an eyepiece of an endoscope, wherein a positive lens for focusing by moving a lens group or a part of lenses in the lens group in the optical axis direction in order from the endoscope side. A first lens group with a focal length, a second lens group with a negative focal length that moves in the optical axis direction during zooming, a third lens group with a positive focal length that moves in the optical axis direction during zooming, and It consists of a fixed fourth lens group, and has the following conditions (1), (2),
A zoom imaging optical system for an endoscope, which satisfies (3). (1) 0.3 <β 4 <3 (2) −1.2 <f 2 / f W <−0.5 (3) −1.3 <f 2 / f 3 <−0.5 where β 4 is the focal length of the fourth paraxial lateral magnification of the lens group, f W is the total focal length at the wide end, f 2, f 3 are each second and third lens groups.
【請求項2】下記条件(4)を満足する請求項1の内視
鏡用ズーム撮像光学系。 (4) 0.7<β2W/β3W<1.4 ただし、β2W,β3Wは夫々第2レンズ群および第3レン
ズ群のワイド端における近軸横倍率である。
2. The zoom imaging optical system for an endoscope according to claim 1, wherein the following condition (4) is satisfied. (4) 0.7 <β 2W / β 3W <1.4 where β 2W and β 3W are paraxial lateral magnifications of the second lens unit and the third lens unit, respectively, at the wide ends.
【請求項3】内視鏡接眼部に接続する撮像光学系で、内
視鏡側から順に、レンズ群もしくはレンズ群中の1部の
レンズを光軸方向に移動してフォーカシングを行なう正
の焦点距離の第1レンズ群と、変倍時に光軸方向に移動
する負の焦点距離の第2レンズ群と、変倍時に光軸方向
に移動する正の焦点距離の第3レンズ群と、常時固定の
第4レンズ群とよりなるズーム光学系と、内視鏡の視野
を移動させるために光軸に垂直な方向に移動可能である
固体撮像素子ユニットからなり、下記条件(1),
(2),(3)を満足することを特徴とする内視鏡用ズ
ーム撮像光学系。 (1) 0.3<β4 <3 (2) −1.2<f2 /fW <−0.5 (3) −1.3<f2 /f3 <−0.5 ただし、β4 は第4レンズ群の近軸横倍率、fW はワイ
ド端における全体の焦点距離、f2 ,f3 は夫々第2レ
ンズ群および第3レンズ群の焦点距離である。
3. An imaging optical system connected to an endoscope eyepiece, wherein a positive lens for focusing by moving a lens group or a part of lenses in the lens group in the optical axis direction in order from the endoscope. A first lens group with a focal length, a second lens group with a negative focal length that moves in the optical axis direction during zooming, a third lens group with a positive focal length that moves in the optical axis direction during zooming, and A zoom optical system including a fixed fourth lens group, and a solid-state image sensor unit movable in a direction perpendicular to the optical axis in order to move the field of view of the endoscope.
A zoom imaging optical system for an endoscope, which satisfies (2) and (3). (1) 0.3 <β 4 <3 (2) −1.2 <f 2 / f W <−0.5 (3) −1.3 <f 2 / f 3 <−0.5 where β 4 is the focal length of the fourth paraxial lateral magnification of the lens group, f W is the total focal length at the wide end, f 2, f 3 are each second and third lens groups.
JP9305045A 1997-10-21 1997-10-21 Zoom image pickup optical system for endoscope Withdrawn JPH11125770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9305045A JPH11125770A (en) 1997-10-21 1997-10-21 Zoom image pickup optical system for endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9305045A JPH11125770A (en) 1997-10-21 1997-10-21 Zoom image pickup optical system for endoscope

Publications (1)

Publication Number Publication Date
JPH11125770A true JPH11125770A (en) 1999-05-11

Family

ID=17940456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9305045A Withdrawn JPH11125770A (en) 1997-10-21 1997-10-21 Zoom image pickup optical system for endoscope

Country Status (1)

Country Link
JP (1) JPH11125770A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002057830A1 (en) * 2001-01-10 2002-07-25 Nikon Corporation Zoom optical system, aligner having the zoom optical system, and aligning method
US6950247B2 (en) 2001-08-03 2005-09-27 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus
JP2009251520A (en) * 2008-04-10 2009-10-29 Olympus Medical Systems Corp Camera head optical system
EP2437094A1 (en) * 2009-05-26 2012-04-04 Olympus Medical Systems Corp. Objective lens of endoscope
WO2015025802A1 (en) * 2013-08-22 2015-02-26 オリンパスメディカルシステムズ株式会社 Enlarging endoscope optical system
WO2016129055A1 (en) * 2015-02-10 2016-08-18 オリンパス株式会社 Zoom imaging device
WO2016147501A1 (en) * 2015-03-18 2016-09-22 オリンパス株式会社 Image pickup optical system
US10338342B2 (en) 2015-02-10 2019-07-02 Olympus Corporation Zoom image pickup apparatus
US10416412B2 (en) 2015-02-10 2019-09-17 Olympus Corporation Zoom image pickup apparatus
US11229349B2 (en) 2017-04-04 2022-01-25 Tamron Co., Ltd. Variable-magnification optical system and imaging apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002057830A1 (en) * 2001-01-10 2002-07-25 Nikon Corporation Zoom optical system, aligner having the zoom optical system, and aligning method
US6950247B2 (en) 2001-08-03 2005-09-27 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus
JP2009251520A (en) * 2008-04-10 2009-10-29 Olympus Medical Systems Corp Camera head optical system
EP2437094A1 (en) * 2009-05-26 2012-04-04 Olympus Medical Systems Corp. Objective lens of endoscope
CN102428401A (en) * 2009-05-26 2012-04-25 奥林巴斯医疗株式会社 Objective lens of endoscope
EP2437094A4 (en) * 2009-05-26 2012-10-24 Olympus Medical Systems Corp Objective lens of endoscope
US10251537B2 (en) 2013-08-22 2019-04-09 Olympus Corporation Magnifying endoscope optical system
WO2015025802A1 (en) * 2013-08-22 2015-02-26 オリンパスメディカルシステムズ株式会社 Enlarging endoscope optical system
WO2016129055A1 (en) * 2015-02-10 2016-08-18 オリンパス株式会社 Zoom imaging device
JPWO2016129055A1 (en) * 2015-02-10 2017-11-24 オリンパス株式会社 Zoom imaging device
US10191260B2 (en) 2015-02-10 2019-01-29 Olympus Corporation Zoom image pickup apparatus
US10338342B2 (en) 2015-02-10 2019-07-02 Olympus Corporation Zoom image pickup apparatus
US10416412B2 (en) 2015-02-10 2019-09-17 Olympus Corporation Zoom image pickup apparatus
WO2016147501A1 (en) * 2015-03-18 2016-09-22 オリンパス株式会社 Image pickup optical system
JPWO2016147501A1 (en) * 2015-03-18 2017-04-27 オリンパス株式会社 Imaging optical system
US11229349B2 (en) 2017-04-04 2022-01-25 Tamron Co., Ltd. Variable-magnification optical system and imaging apparatus

Similar Documents

Publication Publication Date Title
JP3722458B2 (en) Endoscope objective lens
JP3845331B2 (en) Endoscope objective optical system
US5933282A (en) Vari-focal image pickup optical system for endoscopes
JP3606548B2 (en) 3 group zoom lens
JP2876252B2 (en) Endoscope objective lens
JP2000330015A (en) Objective lens for endoscope of observation depth variable type
JP2628633B2 (en) Compact zoom lens
US5245475A (en) Imaging optical system for endoscopes
US5701196A (en) Stereomicroscope
JPH07253542A (en) Zoom lens
JP4061152B2 (en) Zoom photography optics
JP3292510B2 (en) Zoom lens
JP3264949B2 (en) Zoom lens with short overall length
JPH07306362A (en) Zoom lens
JP3429554B2 (en) Zoom lens
JP3889849B2 (en) Microscope objective lens and single objective binocular stereomicroscope system
JPH11125770A (en) Zoom image pickup optical system for endoscope
JPH1048524A (en) Variable power optical system 7
JPH0273211A (en) High variable power zoom lens for compact camera
JPH0833514B2 (en) Compact high-magnification zoom lens
JP6503383B2 (en) Zoom imaging device
JPH07151971A (en) Zoom lens
JPH0830783B2 (en) High magnification zoom lens for compact cameras
JP4426236B2 (en) Endoscope objective optical system
JPH08248319A (en) Zoom lens

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104