JPH11125685A - Support device of reactor pressure vessel - Google Patents

Support device of reactor pressure vessel

Info

Publication number
JPH11125685A
JPH11125685A JP9289538A JP28953897A JPH11125685A JP H11125685 A JPH11125685 A JP H11125685A JP 9289538 A JP9289538 A JP 9289538A JP 28953897 A JP28953897 A JP 28953897A JP H11125685 A JPH11125685 A JP H11125685A
Authority
JP
Japan
Prior art keywords
pressure vessel
reactor pressure
reactor
support
vibration damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9289538A
Other languages
Japanese (ja)
Inventor
Etsuro Domoto
悦朗 堂本
Masao Kubo
正雄 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP9289538A priority Critical patent/JPH11125685A/en
Publication of JPH11125685A publication Critical patent/JPH11125685A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Vibration Prevention Devices (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve productivity and placement, absorb thermal expansion of reactor pressure vessel in operation without restricting and ensure stable aseismicity. SOLUTION: In between the outer surface of a reactor pressure vessel 1 and the inner surface of reactor shield wall 2 covering around it, a plurality of vibration damper mechanisms 10 are installed with specific intervals in the circumference direction in this device. In this case, the vibration damper mechanisms 10 are provided with a plurality of metal plate springs 17 layered in the radial direction of the reactor pressure vessel 1 and each of vibration damper mechanisms 10 forms a slope B constituted of the ratio of each displacement so that the displacement due to thermal expansion of the reactor pressure vessel 1 in radial direction and axial direction in the plane where the vessel side support part 22 fixed on the outer surface of the reactor pressure vessel 1 and the support part 20 co-working with each plate spring 17 face to each other becomes free. Each plate spring 17 is provided with a specific spring constant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子力圧力容器の
制振機構に係り、特に熱膨張を拘束しないで吸収し、か
つ地震時の水平力を吸収するのに好適な原子炉圧力容器
の支持装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration control mechanism for a nuclear pressure vessel, and more particularly to a support for a nuclear reactor pressure vessel suitable for absorbing thermal expansion without restraint and absorbing horizontal force during an earthquake. Related to the device.

【0002】[0002]

【従来の技術】従来の原子炉圧力容器の支持装置におい
ては、図7に示すように、原子炉圧力容器1は、内部に
核燃料を内蔵した炉心部を収容する容器であって、原子
炉格納容器7内のペデスタル8上に中空円筒を縦に立て
た形で設置される。原子炉格納容器7は、コンクリート
壁で形成された生体しゃへい壁6で覆われ、かつ原子炉
建家基礎9上に設置される。また原子炉圧力容器1の周
りに原子炉しゃへい壁2が上部まで覆うように立設さ
れ、原子炉しゃへい壁2の上端にトッププレート4が原
子炉格納容器7の内面と連結されて剛性を確保するよう
になっている。
2. Description of the Related Art In a conventional apparatus for supporting a reactor pressure vessel, as shown in FIG. 7, a reactor pressure vessel 1 is a vessel for accommodating a reactor core containing nuclear fuel therein, A hollow cylinder is set up vertically on a pedestal 8 in a container 7. The reactor containment vessel 7 is covered with a living body shielding wall 6 formed of a concrete wall, and is installed on a reactor building foundation 9. Further, the reactor shield wall 2 is erected around the reactor pressure vessel 1 so as to cover up to the top, and the top plate 4 is connected to the inner surface of the reactor containment vessel 7 at the upper end of the reactor shield wall 2 to secure rigidity. It is supposed to.

【0003】そして原子炉圧力容器1の耐震支持装置と
して、図8〜図10に示すように複数のスタビライザ
(制振機構)5が外周に沿って設けられていた。すなわ
ち、スタビライザ5は、原子炉しゃへい壁2のトッププ
レート4上に固設したソールプレート4Aにブラケット
5Cが溶着され、このブラケット5Cが原子炉圧力容器
1の外面に突設したスタビライザブラケット3を挟持
し、周方向に積層した皿ばね5Jを介してスタビライザ
ブラケット3を締め付け、地震時に原子炉圧力容器1の
水平振動を抑制するものである。このスタビライザ5
は、原子炉圧力容器1の外周を等間隔に配分して複数個
が備えられ、あらゆる方向の地震に対処することができ
る。なお一つのスタビライザ5は、図9及び図10に示
すように、ブラケット5Cに下端面を溶着され対向して
設けられた二つのブラケット5Bと、二つのブラケット
5B間の両端に溶着される二つのブラケット5Aと、二
つのブラケット5Aの間に設けられスタビライザブラケ
ット3の挿通穴を有するヨーク5Hと、ブラケット5A
を介してヨーク5Hと対向する両端の二つのワッシャ5
Gと、ワッシャ5Gに接し周方向に積層した両端の複数
の皿ばね5Jと、皿ばね5Jに当接する両端のスリーブ
5Fと、ブラケット5Aとワッシャ5Gと皿ばね5Jと
に挿通される二つのロッド5Dと、ロッド5Dに螺着さ
れスリーブ5Fに当接する二つのナット5Eとにより形
成されている。なお、地震時の水平震度の制振機構を図
11に簡略化して模式的に示す。図中の矢印は地震の方
向を示し、ばね34が皿ばね5Jに相当する。
As a seismic support device for the reactor pressure vessel 1, a plurality of stabilizers (vibration control mechanisms) 5 are provided along the outer periphery as shown in FIGS. That is, the stabilizer 5 has a bracket 5C welded to a sole plate 4A fixed on the top plate 4 of the reactor shield wall 2, and the bracket 5C holds the stabilizer bracket 3 projecting from the outer surface of the reactor pressure vessel 1. Then, the stabilizer bracket 3 is tightened via the disc springs 5J stacked in the circumferential direction to suppress horizontal vibration of the reactor pressure vessel 1 during an earthquake. This stabilizer 5
Are provided at equal intervals on the outer circumference of the reactor pressure vessel 1, and can cope with earthquakes in all directions. As shown in FIGS. 9 and 10, one stabilizer 5 has two brackets 5 </ b> B whose lower end surfaces are welded to a bracket 5 </ b> C and provided opposite to each other, and two stabilizers 5 are welded to both ends between the two brackets 5 </ b> B. A bracket 5A, a yoke 5H provided between the two brackets 5A and having a through hole for the stabilizer bracket 3, and a bracket 5A
The two washers 5 at both ends facing the yoke 5H through the
G, a plurality of disc springs 5J at both ends in contact with the washer 5G and laminated in the circumferential direction, sleeves 5F at both ends contacting the disc spring 5J, and two rods inserted through the bracket 5A, the washer 5G, and the disc spring 5J. 5D and two nuts 5E screwed to the rod 5D and abutting against the sleeve 5F. FIG. 11 schematically shows a simplified mechanism for controlling the horizontal seismic intensity during an earthquake. The arrow in the figure indicates the direction of the earthquake, and the spring 34 corresponds to the disc spring 5J.

【0004】また、図12〜図14に示すように、複数
のラバーベアリング(制振機構)30を原子炉しゃへい
壁2の内面と原子炉圧力容器1の外面との間に設けた構
成が特開昭59−75188号公報に開示されている。
ラバーベアリング30は、金属板32と硬質ゴム31と
を交互に積層し、その一端面をソールプレート29に溶
着して形成されている。原子炉圧力容器1の外面と原子
炉しゃへい壁2の内面との間にはギャップ35があり、
このギャップ35内において、原子炉しゃへい壁2の内
面上部に台座28を突設し、この台座28にソールプレ
ート29が締着されている。ラバーベアリング30は、
その積層構造の方向が、原子炉圧力容器1の半径方向の
外方に向き、先端面33が原子炉圧力容器1の外面に僅
かなギャップ39を介して対向している。このように形
成したラバーベアリング30の複数個が、原子炉圧力容
器1の円周方向に等間隔に配置され、原子炉圧力容器1
の耐震支持装置として構成されている。この耐震支持装
置を図15に簡略化して模式的に示す。図中の矢印は地
震の方向を示し、ばね34がラバーベアリング30に相
当する。
As shown in FIGS. 12 to 14, a plurality of rubber bearings (damping mechanisms) 30 are provided between the inner surface of the reactor shield wall 2 and the outer surface of the reactor pressure vessel 1. It is disclosed in JP-A-59-75188.
The rubber bearing 30 is formed by alternately laminating a metal plate 32 and a hard rubber 31, and welding one end surface of the rubber plate 30 to the sole plate 29. There is a gap 35 between the outer surface of the reactor pressure vessel 1 and the inner surface of the reactor shield wall 2,
In the gap 35, a pedestal 28 is protruded from an upper portion of the inner surface of the reactor shield wall 2, and a sole plate 29 is fastened to the pedestal 28. The rubber bearing 30
The direction of the laminated structure faces outward in the radial direction of the reactor pressure vessel 1, and the front end face 33 faces the outer surface of the reactor pressure vessel 1 via a slight gap 39. A plurality of the rubber bearings 30 formed as described above are arranged at equal intervals in a circumferential direction of the reactor pressure vessel 1,
It is configured as a seismic support device. FIG. 15 schematically illustrates this seismic support device. The arrow in the figure indicates the direction of the earthquake, and the spring 34 corresponds to the rubber bearing 30.

【0005】しかし従来の技術は、以下の点が配慮され
ていない。第1点として、スタビライザを形成する部品
の形状及び数が多いことに加え、スタビライザブラケッ
トを挟む構造としていることから、スタビライザとその
周辺の部品とが大型化している。このため、現地での据
付作業が複雑となり、この点について配慮されていなか
った。また、地震時にスタビライザブラケットに作用し
た荷重は、モーメントとして作用し高応力を発生する恐
れがあり、スタビライザブラケット等に強度上の配慮が
されていなかった。
However, the prior art does not consider the following points. The first point is that the stabilizer and its surrounding parts are enlarged because the stabilizer bracket is sandwiched in addition to the large number and shape of the parts forming the stabilizer. For this reason, installation work on site was complicated, and this point was not considered. Also, the load acting on the stabilizer bracket during the earthquake may act as a moment and generate high stress, and the strength of the stabilizer bracket has not been considered.

【0006】一方、原子炉圧力容器が運転中と停止状態
とでは、原子炉圧力容器の外面とラバーベアリングの先
端面とのギャップが異なることになる。すなわち、運転
中のギャップは停止状態のそれより小となり、停止状態
〜運転中〜停止状態を通じ一貫して一定のギャップを保
持することができない恐れがあり、耐震性を一定に確保
する点について、配慮されていなかった。
On the other hand, the gap between the outer surface of the reactor pressure vessel and the tip surface of the rubber bearing differs between the reactor pressure vessel during operation and the stopped state. That is, the gap during operation is smaller than that in the stopped state, there is a possibility that it is not possible to maintain a constant gap consistently from the stopped state to the operation to the stopped state, and in terms of securing the earthquake resistance constant, Was not considered.

【0007】[0007]

【発明が解決しようとする課題】従来の原子炉圧力容器
の支持装置にあっては、スタビライザの部品数が多くか
つ大型であり、製作性、現地での据付性及び作業性がよ
くない問題点があった。また、スタビライザブラケット
に高応力が発生する恐れがあるという問題点があった。
さらに、ラバーベアリングは、停止中及び運転中を通
じ、一貫して耐震性を一定に確保できない恐れがあると
いう問題点があった。
The conventional apparatus for supporting a reactor pressure vessel has a problem that the number of parts of the stabilizer is large and large, and the manufacturability, on-site installation and workability are not good. was there. In addition, there is a problem that high stress may be generated in the stabilizer bracket.
Further, there is a problem that the rubber bearing may not be able to maintain a constant earthquake resistance consistently during stop and during operation.

【0008】本発明の目的は、製作性及び据付性を向上
し、運転中の原子炉圧力容器の熱膨張を拘束しないで吸
収し、かつ運転中及び停止中の原子炉圧力容器の耐震性
を一定に確保し、地震時の水平力を効果的に支持するこ
とのできる原子炉圧力容器の支持装置を提供することに
ある。
It is an object of the present invention to improve manufacturability and installation, absorb the thermal expansion of a reactor pressure vessel during operation without restraint, and improve the seismic resistance of the reactor pressure vessel during operation and at rest. It is an object of the present invention to provide a reactor pressure vessel support device that can maintain a constant level and effectively support horizontal force during an earthquake.

【0009】[0009]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る原子炉圧力容器の支持装置は、原子炉
圧力容器の外面と、その周りを覆う原子炉しゃへい壁の
内面との間に、周方向に所定の間隔で複数の制振機構を
介装した原子炉圧力容器の支持装置において、それぞれ
の制振機構は、原子炉圧力容器の半径方向に積層した複
数の金属製の皿ばねを具備している構成とする。この構
成により、耐震上必要とする所定のばね定数が得られ
る。積層方向が一方向であることから、支持装置全体が
簡素化して小型化され、製作性及び据付性の向上が図ら
れる。
In order to achieve the above-mentioned object, a support apparatus for a reactor pressure vessel according to the present invention comprises a reactor pressure vessel having an outer surface and an inner surface of a reactor shielding wall surrounding the reactor pressure vessel. In the meantime, in a reactor pressure vessel support device in which a plurality of vibration damping mechanisms are interposed at predetermined intervals in the circumferential direction, each of the vibration damping mechanisms is formed of a plurality of metal layers stacked in the radial direction of the reactor pressure vessel. It is configured to have a disc spring. With this configuration, a predetermined spring constant required for earthquake resistance can be obtained. Since the laminating direction is one direction, the entire supporting device is simplified and downsized, and the manufacturability and the installation property are improved.

【0010】そしてそれぞれの制振機構は、原子炉圧力
容器の外面に固設した容器側サポート部と、それぞれの
皿ばねと協動するサポート部との互いに対向するそれぞ
れの面に、原子炉圧力容器の半径方向及び軸方向の熱膨
張による変位が自在になるように、それぞれの変位量の
比よりなる勾配を形成し、それぞれの皿ばねに、所定の
ばね定数を備えた構成でもよい。この構成により、原子
炉圧力容器の半径方向及び軸方向の熱膨張が自在に変位
可能となり、容器側サポート部とサポート部との接触が
抑制されるので、モーメントによる応力が低減される。
[0010] Each of the vibration damping mechanisms includes a reactor side support portion fixed on the outer surface of the reactor pressure vessel and a support portion cooperating with each disc spring. A configuration may be employed in which a gradient is formed by the ratio of the respective displacement amounts so that the displacement due to thermal expansion in the radial direction and the axial direction of the container becomes free, and each disc spring has a predetermined spring constant. With this configuration, thermal expansion in the radial and axial directions of the reactor pressure vessel can be freely displaced, and contact between the vessel-side support portion and the support portion is suppressed, so that stress due to moment is reduced.

【0011】またそれぞれの皿ばねは、一端面を固定し
たサポートシリンダに挿通されている構成でもよく、皿
ばねの積層方向と交叉する方向の地震荷重がサポートシ
リンダで受けられようになり、制振機構の個数が低減さ
れる。
Each of the disc springs may have a configuration in which one end face is inserted into a support cylinder having a fixed end face, so that the support cylinder can receive an earthquake load in a direction intersecting with the lamination direction of the disc springs. The number of mechanisms is reduced.

【0012】さらに原子炉圧力容器においては、前記い
ずれか一つの原子炉圧力容器の支持装置を付設し、それ
ぞれの制振機構のサポート部に対向する容器側サポート
部を固設してなる構成とし、地震荷重等による応力が低
減され耐震性が向上される。
Further, in the reactor pressure vessel, a support device for any one of the above-mentioned reactor pressure vessels is provided, and a vessel-side support portion opposed to a support portion of each vibration damping mechanism is fixed. In addition, stress due to seismic load and the like is reduced, and seismic resistance is improved.

【0013】[0013]

【発明の実施の形態】本発明の一実施例を図1〜図4を
参照しながら説明する。図1〜図4に示すように、原子
炉圧力容器1の外面と、その周りを覆う原子炉しゃへい
壁2の内面との間に、複数の制振機構10を周方向に所
定の間隔で介装した原子炉圧力容器の支持装置であっ
て、それぞれの制振機構10は、原子炉圧力容器1の半
径R方向に積層した複数の金属製の皿ばね17を具備し
ている構成とする。それぞれの制振機構10は、原子炉
圧力容器1の外面に固設した容器側サポート部(容器側
斜面サポート)22と、それぞれの皿ばね17と協動す
るサポート部(斜面サポート)20との互いに対向する
それぞれの面に、原子炉圧力容器1の半径方向及び軸方
向の熱膨張による変位が自在になるように、それぞれの
変位量ΔR,ΔVの比ΔR/ΔVよりなる勾配Bを形成
してそれぞれの面の間に所定のギャップAを形成し、そ
れぞれの皿ばね17に、所定のばね定数を備えたものと
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. As shown in FIGS. 1 to 4, a plurality of vibration damping mechanisms 10 are provided at predetermined intervals in the circumferential direction between the outer surface of the reactor pressure vessel 1 and the inner surface of the reactor shielding wall 2 surrounding the reactor pressure vessel 1. This is a supporting device for a mounted reactor pressure vessel, and each vibration damping mechanism 10 includes a plurality of metal disc springs 17 stacked in the radius R direction of the reactor pressure vessel 1. Each vibration damping mechanism 10 includes a container-side support portion (container-side slope support) 22 fixed on the outer surface of the reactor pressure vessel 1 and a support portion (slope support) 20 that cooperates with each disc spring 17. A gradient B having a ratio ΔR / ΔV of the respective displacement amounts ΔR and ΔV is formed on each of the opposing surfaces so that the displacement due to the thermal expansion in the radial direction and the axial direction of the reactor pressure vessel 1 becomes free. Thus, a predetermined gap A is formed between the respective surfaces, and each disc spring 17 has a predetermined spring constant.

【0014】容器側サポート部22の製造方法は、原子
炉圧力容器1の材料と同一材料で形成して、予め原子炉
圧力容器1の外面に溶接等で固設又は一体成型し、原子
炉圧力容器1とともに熱処理後にその外面に所定の勾配
Bで面加工する。またサポート部20も、ほぼ同一材料
で形成し、外周及び凹部等を加工した後に最終的に他端
面を所定の勾配Bで面加工する。皿ばね17は、ばね鋼
等を用い、所定のばね定数を備えるように皿状に成型す
る。各部品は一端組立て、少なくとも長さ寸法を、実際
の原子炉圧力容器1の外面と原子炉しゃへい壁2の内面
との間のギャップに合わせて調整するのが望ましく、微
調整をシム21の厚さで行う。
The method of manufacturing the vessel-side support portion 22 is to form the same material as the material of the reactor pressure vessel 1 and to fix or integrally mold the outer surface of the reactor pressure vessel 1 in advance by welding or the like. After the heat treatment together with the container 1, the outer surface thereof is subjected to surface processing at a predetermined gradient B. The support portion 20 is also formed of substantially the same material, and after the outer periphery and the concave portion are processed, the other end surface is finally surface-processed with a predetermined gradient B. The disc spring 17 is formed in a dish shape using spring steel or the like so as to have a predetermined spring constant. It is desirable to assemble each part at one end and adjust at least the length dimension according to the gap between the actual outer surface of the reactor pressure vessel 1 and the inner surface of the reactor shielding wall 2. I will do it.

【0015】制振機構の組立ては、原子炉しゃへい壁2
の内面に固設したソールプレート11に、一端面を溶着
したロッド14に所定のばね定数を有する複数の皿ばね
17を挿通して積層し、その他端面に皿ばね17を押え
るスリーブ16を当接し、ロッド14の他端に螺着した
ナット15をねじ回し、積層した各皿ばね17を完全に
密着させて各皿ばね17間の隙間をなくす。各皿ばね1
7は皿ばね高さDを有し、凹面を原子炉圧力容器1に向
けて積層する。そしてスリーブ16の他端面にシム21
を介して斜面サポート20を取付ける。その時、その内
部に形成した凹部にロッド14の他端部及びナット15
を収容する。
The assembly of the vibration damping mechanism is performed by using the reactor shielding wall 2
A plurality of disc springs 17 having a predetermined spring constant are inserted through a rod 14 having one end welded to a sole plate 11 fixed to an inner surface of the sole plate 11 and laminated, and a sleeve 16 for holding the disc spring 17 is abutted on the other end. Then, the nut 15 screwed to the other end of the rod 14 is screwed, and the laminated disc springs 17 are completely adhered to each other to eliminate the gap between the disc springs 17. Each disc spring 1
Numeral 7 has a disc spring height D, and the concave surface is laminated toward the reactor pressure vessel 1. Then, a shim 21 is attached to the other end surface of the sleeve 16.
The slope support 20 is attached via the. At this time, the other end of the rod 14 and the nut 15 are inserted into the recess formed therein.
To accommodate.

【0016】制振機構の据付けは、原子炉圧力容器1を
据付けた後に斜面サポート20及びシム21を取付ける
前の状態で各部品を、アンカーボルト12及びナット1
3によって、原子炉しゃへい壁2の内面に取付ける。そ
の後、原子炉圧力容器1の外面に固設した容器側斜面サ
ポート22と、斜面サポート20との間のギャップAを
所定寸法のギャップに設定し、シム21を介して容器側
斜面サポート22をボルト18及びナット19によりス
リーブ16に取付けることにより、制振機構10の据付
けを完了する。なお斜面サポート20及び容器側斜面サ
ポート22の対向するそれぞれの面には、原子炉圧力容
器1の運転中における半径方向の半径Rに対する熱膨張
量ΔRと、軸方向の長さVに対する熱膨張量ΔVとの関
係で定まるΔR/ΔV=勾配Bを設けておく。勾配Bは
一般的には軸方向に設けられるが、熱膨張による変位に
応じて他の方向にも設けられる。また、斜面サポート2
0の凹部内面とロッド14の他端面との間には所定寸法
のギャップCを設ける。このギャップCは、皿ばね17
の弾性機能を確保するためのものであり、皿ばね高さD
以上の値を設定する必要がある。
The vibration damping mechanism is installed by installing each component in a state before installing the slope support 20 and the shim 21 after the installation of the reactor pressure vessel 1 and the anchor bolt 12 and the nut 1.
3 attaches to the inner surface of the reactor shield wall 2. Thereafter, the gap A between the vessel-side slope support 22 fixed to the outer surface of the reactor pressure vessel 1 and the slope support 20 is set to a predetermined gap, and the vessel-side slope support 22 is bolted through the shim 21. By attaching the vibration damping mechanism 10 to the sleeve 16 with the nut 18 and the nut 19, the installation of the vibration damping mechanism 10 is completed. The opposite surfaces of the slope support 20 and the vessel-side slope support 22 have a thermal expansion amount ΔR with respect to a radial radius R and a thermal expansion amount with respect to an axial length V during operation of the reactor pressure vessel 1. ΔR / ΔV = gradient B determined by the relationship with ΔV is provided. The gradient B is generally provided in the axial direction, but may be provided in other directions according to displacement due to thermal expansion. Also, slope support 2
A gap C having a predetermined size is provided between the inner surface of the recessed portion of No. 0 and the other end surface of the rod 14. This gap C is formed by the disc spring 17
To ensure the elastic function of the disc spring height D
It is necessary to set the above values.

【0017】本実施例の熱膨張に対する動作を説明す
る。原子炉圧力容器1が停止状態より運転に入り、熱膨
張によって原子炉圧力容器1が半径方向及び軸方向に伸
びる。ギャップAを設けているので、この伸びは、予め
設定してある勾配Bに沿って伸びるため、制振機構は、
据付時より運転中を通して常に原子炉圧力容器1の熱膨
張を拘束しないで変位自在にすることができる。この状
態を簡略化して図4に模式的に示す。実線は原子力圧力
容器の据付時又は停止時の状態を示し、破線は運転時の
状態を示す。そしてばね36が皿ばね17に相当する。
したがって、熱膨張による荷重が複数の制振機構よりな
る支持装置に作用しないため、支持装置の強度健全性に
全く影響を受けない。また半径方向及び軸方向の伸びが
所定量以上の時は、斜面サポートと容器側斜面サポート
とが当接する場合があるが、当接によりその伸びを水平
力に変えて皿ばねのばね力で吸収することができるた
め、支持装置の信頼性を向上するという効果がある。
The operation of this embodiment for thermal expansion will be described. The reactor pressure vessel 1 starts operation from a stopped state, and the reactor pressure vessel 1 extends in the radial direction and the axial direction due to thermal expansion. Since the gap A is provided, this elongation extends along a preset gradient B.
The reactor pressure vessel 1 can be freely displaced without restricting the thermal expansion of the reactor pressure vessel 1 throughout the operation from the time of installation. This state is simplified and schematically shown in FIG. The solid line shows the state when the nuclear pressure vessel is installed or stopped, and the broken line shows the state during operation. The spring 36 corresponds to the disc spring 17.
Therefore, since the load due to thermal expansion does not act on the support device including the plurality of vibration damping mechanisms, the strength and soundness of the support device are not affected at all. When the elongation in the radial and axial directions is more than a predetermined amount, the slope support may come into contact with the container-side slope support, but the abutment converts the elongation into horizontal force and absorbs the spring force of the disc spring. Therefore, there is an effect that the reliability of the supporting device is improved.

【0018】次に、本実施例の地震に対する動作を説明
する。地震時、原子炉圧力容器1に急激な水平荷重が発
生した場合、その荷重は、容器側斜面サポート22より
接触した斜面サポート20に伝達される。そして、シム
21よりスリーブ16を介して、スリーブ16の長手方
向より皿ばね17に伝達され、皿ばね17のばね力によ
り荷重が吸収されて制振機構が耐震機能を発揮する。し
たがって、地震時、容器側斜面サポート22に働くモー
メントが小さくなるので応力も小さくなり、原子炉圧力
容器1の強度健全性が向上する。
Next, the operation of this embodiment in response to an earthquake will be described. When an abrupt horizontal load occurs in the reactor pressure vessel 1 during an earthquake, the load is transmitted from the vessel-side slope support 22 to the contacted slope support 20. Then, the vibration is transmitted from the shim 21 through the sleeve 16 to the disc spring 17 from the longitudinal direction of the sleeve 16, and the load is absorbed by the spring force of the disc spring 17, so that the vibration damping mechanism exhibits the anti-seismic function. Therefore, during an earthquake, the moment acting on the vessel-side slope support 22 is reduced, so that the stress is also reduced, and the strength soundness of the reactor pressure vessel 1 is improved.

【0019】本実施例によれば、機構を簡素化してコス
トの低減が図れる。また、原子炉圧力容器の停止状態か
ら運転中を通して、一貫して、斜面サポートと容器側斜
面サポートとの間のギャップを一定に維持できることか
ら、停止状態及び運転中においても、原子炉圧力容器の
耐震性を確保することができ、信頼性が向上できる。ま
た、従来より小型化し、原子炉圧力容器と原子炉しゃへ
い壁との間のスペースからの供用期間中の検査作業性や
定期検査時の作業性も向上する。
According to this embodiment, the mechanism can be simplified and the cost can be reduced. In addition, since the gap between the slope support and the vessel-side slope support can be kept constant throughout the operation of the reactor pressure vessel from the stopped state to the operation, the reactor pressure vessel can be maintained even during the stopped state and during operation. Seismic resistance can be ensured, and reliability can be improved. In addition, the size is made smaller than before, and the inspection workability during the service period from the space between the reactor pressure vessel and the reactor shield wall and the workability at the time of periodic inspection are improved.

【0020】本発明の他の実施例を図5及び図6に示
す。本実施例の図2に示す実施例と異なる点は、皿ばね
の外周にサポートシリンダを挿着している。スリーブ2
6の皿ばね17側に突出部26Aを突設し、皿ばね17
及び突出部26Aの外周にサポートシリンダ23を挿着
して、サポートシリンダ23の一端面をソールプレート
11に溶着し、スリーブ26の他端面とサポートシリン
ダ23の一端面との間、及び突出部26Aの一端面とサ
ポートシリンダ23の挿入部他端面との間にギャップE
を設けた構成である。前記実施例と同様に、皿ばね17
の弾性機能を確保するため、ギャップEは皿ばね高さD
以上の値を設定する必要がある。このサポートシリンダ
23を設けることによって、前記の機能及び効果に加え
て、次の効果がある。
Another embodiment of the present invention is shown in FIGS. This embodiment differs from the embodiment shown in FIG. 2 in that a support cylinder is inserted around the outer periphery of the disc spring. Sleeve 2
A protruding portion 26A is provided on the side of the disc spring 17 of FIG.
The support cylinder 23 is inserted into the outer periphery of the protruding portion 26A, one end surface of the support cylinder 23 is welded to the sole plate 11, and between the other end surface of the sleeve 26 and one end surface of the support cylinder 23, and the protruding portion 26A. E between one end face of the support cylinder 23 and the other end face of the insertion portion of the support cylinder 23.
Is provided. As in the previous embodiment, the disc spring 17
In order to ensure the elastic function of the spring, the gap E is the height of the disc spring D
It is necessary to set the above values. The provision of the support cylinder 23 has the following effects in addition to the functions and effects described above.

【0021】すなわち、皿ばねの積層方向と直角方向に
地震荷重が作用した場合、つまり図5及び図6に示す矢
印方向、例えば軸方向の地震荷重で、斜面サポートと容
器側斜面サポートとの摩擦によって発生する荷重が作用
した場合、その荷重を、サポートシリンダでも受けるこ
とができ、軸方向の耐震機能も有することになる。した
がって、地震時、原子炉圧力容器で発生した地震荷重の
合計が同一(全支持装置に作用する地震荷重が同一)の
場合は、図5及び図6に示す制振機構の必要数を、図2
及び図3に示す制振機構より減少することが可能とな
る。
That is, when an earthquake load acts in a direction perpendicular to the lamination direction of the disc springs, that is, in the direction of the arrow shown in FIGS. 5 and 6, for example, in the axial direction, the friction between the slope support and the container-side slope support is increased. When the load generated by the load acts on the support cylinder, the load can be received by the support cylinder, and the support cylinder also has an axial seismic function. Therefore, if the sum of the seismic loads generated in the reactor pressure vessel during an earthquake is the same (the seismic loads acting on all the supporting devices are the same), the required number of vibration damping mechanisms shown in Figs. 2
And the vibration reduction mechanism shown in FIG. 3 can be reduced.

【0022】本発明の他の実施例として、原子炉圧力容
器においては、前記いずれか一つの原子炉圧力容器の支
持装置を付設し、それぞれの制振機構のサポート部に対
向する位置に容器側サポート部を固設し、互いに対向す
る面に勾配を形成してなる構成とする。
As another embodiment of the present invention, in a reactor pressure vessel, a support device for any one of the above-mentioned reactor pressure vessels is provided, and the vessel side is located at a position opposed to a support portion of each vibration damping mechanism. The support portion is fixedly provided, and the surfaces facing each other are formed with a gradient.

【0023】本実施例によれば、地震荷重に対する応力
が低減され、耐震性能を向上した原子炉圧力容器を提供
できる。
According to the present embodiment, it is possible to provide a reactor pressure vessel in which stress against an earthquake load is reduced and seismic performance is improved.

【0024】[0024]

【発明の効果】制振機構に皿ばねを積層し、サポート部
の対向面に勾配を形成したため、半径方向及び軸方向の
熱膨張が変位自在となり、小型化して機構が簡素化する
とともに停止中及び運転中の原子炉圧力容器の耐震性を
確保することができ、供用期間中の検査作業性、定期検
査時の作業性及び信頼性を向上することができる。
According to the present invention, a disk spring is laminated on the vibration damping mechanism, and a gradient is formed on the opposing surface of the support portion, so that thermal expansion in the radial and axial directions can be freely displaced. In addition, the earthquake resistance of the reactor pressure vessel during operation can be ensured, and the inspection workability during the service period, the workability and reliability at the time of regular inspection can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】原子力発電所の主要部を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a main part of a nuclear power plant.

【図2】本発明の一実施例を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing one embodiment of the present invention.

【図3】図2のA・A線断面を示す断面図である。FIG. 3 is a sectional view showing a section taken along line AA in FIG. 2;

【図4】図2の制振機構を模式的に示した図である。FIG. 4 is a diagram schematically showing the vibration damping mechanism of FIG. 2;

【図5】本発明の他の実施例を示す縦断面図である。FIG. 5 is a longitudinal sectional view showing another embodiment of the present invention.

【図6】図5のB・B線断面を示す断面図である。FIG. 6 is a sectional view showing a section taken along line BB of FIG. 5;

【図7】従来の技術を示す縦断面図である。FIG. 7 is a longitudinal sectional view showing a conventional technique.

【図8】図7のC・C線断面を示す断面図である。FIG. 8 is a cross-sectional view showing a cross section taken along line CC of FIG. 7;

【図9】図8のD部を拡大した図である。FIG. 9 is an enlarged view of a portion D in FIG. 8;

【図10】図9のE・E線断面を示す断面図である。FIG. 10 is a sectional view showing a section taken along line EE in FIG. 9;

【図11】従来の技術の制振機構を模式的に示した図で
ある。
FIG. 11 is a diagram schematically showing a conventional vibration damping mechanism.

【図12】従来の技術を示す縦断面図である。FIG. 12 is a longitudinal sectional view showing a conventional technique.

【図13】図12のF部を拡大した図である。FIG. 13 is an enlarged view of a portion F in FIG. 12;

【図14】図12のG・G線矢視を示す図である。FIG. 14 is a view taken along line GG of FIG. 12;

【図15】従来の技術の制振機構を模式的に示した図で
ある。
FIG. 15 is a diagram schematically showing a conventional vibration damping mechanism.

【符号の説明】 1 原子力圧力容器 2 原子炉しゃへい壁 7 原子炉格納容器 10 制振機構 17 皿ばね 20 斜面サポート 22 容器側斜面サポート[Description of Signs] 1 Nuclear Pressure Vessel 2 Reactor Shielding Wall 7 Reactor Containment Vessel 10 Vibration Suppression Mechanism 17 Disc Springs 20 Slope Support 22 Vessel Side Slope Support

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原子炉圧力容器の外面と、その周りを覆
う原子炉しゃへい壁の内面との間に、周方向に所定の間
隔で複数の制振機構を介装した原子炉圧力容器の支持装
置において、それぞれの制振機構は、前記原子炉圧力容
器の半径方向に積層した複数の金属製の皿ばねを具備し
ていることを特徴とする原子炉圧力容器の支持装置。
A reactor pressure vessel having a plurality of vibration damping mechanisms interposed at predetermined intervals in a circumferential direction between an outer surface of the reactor pressure vessel and an inner surface of a reactor shielding wall surrounding the reactor pressure vessel. In the apparatus, each vibration damping mechanism includes a plurality of metal disc springs stacked in a radial direction of the reactor pressure vessel.
【請求項2】 それぞれの制振機構は、原子炉圧力容器
の外面に固設した容器側サポート部と、それぞれの皿ば
ねと協動するサポート部との互いに対向するそれぞれの
面に、前記原子炉圧力容器の半径方向及び軸方向の熱膨
張による変位が自在になるように、それぞれの変位量の
比よりなる勾配を形成し、それぞれの皿ばねに、所定の
ばね定数を備えたことを特徴とする請求項1記載の原子
炉圧力容器の支持装置。
2. Each of the vibration damping mechanisms includes a container-side support portion fixed to an outer surface of a reactor pressure vessel, and a support portion cooperating with a respective disc spring. A gradient formed by the ratio of the respective displacement amounts is formed so that the displacement due to thermal expansion in the radial and axial directions of the furnace pressure vessel becomes free, and each disc spring has a predetermined spring constant. The support apparatus for a reactor pressure vessel according to claim 1, wherein
【請求項3】 それぞれの皿ばねは、一端面を固定した
サポートシリンダに挿通されていることを特徴とする請
求項1又は2記載の原子炉圧力容器の支持装置。
3. The reactor pressure vessel support device according to claim 1, wherein each of the disc springs is inserted into a support cylinder having one end surface fixed.
【請求項4】 請求項1又は2記載の原子炉圧力容器の
支持装置を付設し、それぞれの制振機構のサポート部に
対向する容器側サポート部を固設してなることを特徴と
する原子炉圧力容器。
4. A nuclear reactor comprising the reactor pressure vessel support device according to claim 1 or 2, and a vessel-side support portion opposed to a support portion of each of the vibration damping mechanisms. Furnace pressure vessel.
JP9289538A 1997-10-22 1997-10-22 Support device of reactor pressure vessel Pending JPH11125685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9289538A JPH11125685A (en) 1997-10-22 1997-10-22 Support device of reactor pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9289538A JPH11125685A (en) 1997-10-22 1997-10-22 Support device of reactor pressure vessel

Publications (1)

Publication Number Publication Date
JPH11125685A true JPH11125685A (en) 1999-05-11

Family

ID=17744547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9289538A Pending JPH11125685A (en) 1997-10-22 1997-10-22 Support device of reactor pressure vessel

Country Status (1)

Country Link
JP (1) JPH11125685A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009156710A2 (en) * 2008-06-26 2009-12-30 Aker Subsea Limited Centralising mechanism for an inner assembly within a vessel particularly for use in subsea modules
CN108091405A (en) * 2017-12-25 2018-05-29 中广核研究院有限公司 Reactor-loop and reactor main equipment rolling bearing device
CN108953855A (en) * 2018-08-01 2018-12-07 中广核研究院有限公司 Reactor is layered supporting arrangement
CN109243628A (en) * 2018-08-01 2019-01-18 中广核研究院有限公司 Multi-point support device for multi-vessel system
WO2020232310A1 (en) * 2019-05-16 2020-11-19 Framatome Inc. Nuclear reactor core shroud securing device
KR20220112629A (en) * 2021-02-04 2022-08-11 한국수력원자력 주식회사 Reinforcement and support structure for reactor vessel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009156710A2 (en) * 2008-06-26 2009-12-30 Aker Subsea Limited Centralising mechanism for an inner assembly within a vessel particularly for use in subsea modules
WO2009156710A3 (en) * 2008-06-26 2010-03-25 Aker Subsea Limited Centralising mechanism for an inner assembly within a vessel particularly for use in subsea modules
CN108091405A (en) * 2017-12-25 2018-05-29 中广核研究院有限公司 Reactor-loop and reactor main equipment rolling bearing device
CN108091405B (en) * 2017-12-25 2024-03-22 中广核研究院有限公司 Rolling support device for primary reactor circuit and primary reactor equipment
CN108953855A (en) * 2018-08-01 2018-12-07 中广核研究院有限公司 Reactor is layered supporting arrangement
CN109243628A (en) * 2018-08-01 2019-01-18 中广核研究院有限公司 Multi-point support device for multi-vessel system
CN109243628B (en) * 2018-08-01 2024-05-10 中广核研究院有限公司 Multi-point support device for multi-container system
WO2020232310A1 (en) * 2019-05-16 2020-11-19 Framatome Inc. Nuclear reactor core shroud securing device
US11289216B2 (en) 2019-05-16 2022-03-29 Framatome Inc. Nuclear reactor core shroud securing device
KR20220112629A (en) * 2021-02-04 2022-08-11 한국수력원자력 주식회사 Reinforcement and support structure for reactor vessel

Similar Documents

Publication Publication Date Title
US5014474A (en) System and apparatus for limiting the effect of vibrations between a structure and its foundation
US11002032B2 (en) Self-centring and energy-dissipating seismic isolation device and system of the elastomeric-frictional type
JPH11125685A (en) Support device of reactor pressure vessel
JP2007262833A (en) Viscous system vibration damper and base isolation building having this damper
JP2000050538A (en) Stator support construction and stator assembly method for rotating electric machine
JP2001303587A (en) Aseismatic construction method for anchor bolt
JPH11270623A (en) Vibration absorbing device for tension structure and its construction method
JP2001241502A (en) Sliding brace for isolating seismic vibrations
JP2001289988A (en) Nuclear reactor containment supporting device, and nuclear reactor
JP6641970B2 (en) Unit-type vibration damping device and vibration-isolation gantry equipped with the unit-type vibration damping device
KR102081921B1 (en) Hollow elastic resin isolation switchboard of composite modular type
JP2003302487A (en) Supporting device for nuclear reactor pressure vessel
CN114737472B (en) Damping limiting inhaul cable device, bridge damping system and carbon fiber cable design method
CN112888876A (en) Shock absorber for high-voltage equipment
KR102142244B1 (en) 3D vibration damping device using friction damper and horizontal holding mechanism
JPH10267077A (en) Lead cylindrical damper containing steel rod
JP2004333195A (en) Supporting device for nuclear reactor pressure vessel
JP3713645B2 (en) Seismic isolation device using laminated rubber
JP3503712B2 (en) Lead encapsulated laminated rubber
JPH0262670B2 (en)
JP2962913B2 (en) Reactor building
JP7506008B2 (en) Viscous vibration damping device
JPH0647148Y2 (en) Steel rod damper
JP2669112B2 (en) Damper for vibration isolation
JP2740881B2 (en) Pedestal for base isolation device and base isolation structure