JPH11124569A - Method for subdividing and filling non-axeotropic refrigerant - Google Patents
Method for subdividing and filling non-axeotropic refrigerantInfo
- Publication number
- JPH11124569A JPH11124569A JP9294618A JP29461897A JPH11124569A JP H11124569 A JPH11124569 A JP H11124569A JP 9294618 A JP9294618 A JP 9294618A JP 29461897 A JP29461897 A JP 29461897A JP H11124569 A JPH11124569 A JP H11124569A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- subdivision
- composition
- storage tank
- filling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冷媒貯槽に充填さ
れた非共沸混合冷媒を複数の受器に順次に小分け充填す
るに際して、小分けされた前記冷媒の組成が受器ごとに
変化することを防止する非共沸混合冷媒の小分け充填方
法に関する。BACKGROUND OF THE INVENTION The present invention relates to a non-azeotropic mixed refrigerant filled in a refrigerant storage tank which is sequentially divided and charged into a plurality of receivers, wherein the composition of the divided refrigerant changes for each receiver. The present invention relates to a subdivision filling method of a non-azeotropic mixed refrigerant for preventing the occurrence of azeotropic refrigerant.
【0002】[0002]
【従来の技術】従来、空調・冷凍機器用の冷媒として
は、ジクロロジフルオロメタン(通称CFC12、以下
同じ)やクロロジフルオロメタン(HCFC22)など
単一組成のものが広く用いられていた。しかし近年にな
って、クロロフルオロカーボン類(CFC)による成層
圏のオゾン層破壊が深刻な環境問題として提起され、19
95年末にその生産が中止された。そこで、既存のCFC
を使用した空調・冷凍設備については、その代替又は補
充用として物性や冷却性能を調整した複数のハイドロク
ロロフルオロカーボン類(HCFC)、ハイドロフルオ
ロカーボン類(HFC)、フルオロカーボン類(F
C)、ハイドロカーボン類(HC)等からなる混合冷媒
が開発されるに至った。2. Description of the Related Art Conventionally, refrigerants having a single composition such as dichlorodifluoromethane (commonly referred to as CFC12, the same applies hereinafter) and chlorodifluoromethane (HCFC22) have been widely used as refrigerants for air conditioning / refrigeration equipment. However, in recent years, stratospheric ozone depletion by chlorofluorocarbons (CFCs) has been raised as a serious environmental problem.
Its production was discontinued at the end of 1995. Therefore, the existing CFC
Air-conditioning and refrigeration equipment using a plurality of hydrochlorofluorocarbons (HCFC), hydrofluorocarbons (HFC), and fluorocarbons (F
C), mixed refrigerants comprising hydrocarbons (HC) and the like have been developed.
【0003】更に、前記のHCFCについても、CFC
に比較してオゾン層破壊に対する影響は小さいものの、
CFCの代替用途などで使用量が増大する可能性が高い
ことから2020年の原則全廃が決定され、1996年より国際
的な総量規制が開始された。そこで特に、空調機器など
に広く使用されているHCFC22の代替品として、規
制の対象外であるオゾン破壊係数ゼロのHFC成分を用
いた冷媒が検討されている。[0003] Further, the above-mentioned HCFC is also
Although the impact on ozone depletion is smaller than
Since there is a high possibility that the amount of CFC used will increase due to alternative uses, it was decided to abolish the principle in 2020, and international total regulation was started in 1996. Therefore, in particular, refrigerants using HFC components having an ozone depletion potential of zero, which are not subject to regulations, are being studied as alternatives to HCFC22 widely used in air conditioners and the like.
【0004】HCFC22に代替し得る冷媒組成物とし
ては、従来のHCFC22用の機器にそのまま入れ換え
て使用できる単一組成の冷媒が見当たらないため、複数
成分を混合することで物性などを調整した2成分系また
は3成分系以上のHFC系混合冷媒が開発されている。
また、同様な観点から、HCの混合冷媒、HCとHFC
との混合冷媒、更にはハイドロフルオロエーテル(HF
E)やフルオロエーテル(FE)を含む混合冷媒も各種
のものが提案されている。[0004] As a refrigerant composition that can be substituted for HCFC22, there is no refrigerant having a single composition that can be used as it is in conventional HCFC22 equipment. Therefore, a two-component refrigerant whose physical properties are adjusted by mixing a plurality of components is used. An HFC-based mixed refrigerant of a system or a ternary system or more has been developed.
Further, from a similar viewpoint, a mixed refrigerant of HC, HC and HFC
And a mixed refrigerant with hydrofluoroether (HF)
Various mixed refrigerants containing E) or fluoroether (FE) have been proposed.
【0005】[0005]
【発明が解決しようとする課題】しかしこれらの混合冷
媒は、CFC12やHCFC22など単一組成の冷媒
や、低温用冷媒として従来から用いられていた通称R5
02などの共沸混合冷媒と異なり、そのほとんどが非共
沸混合物であるため、冷媒貯槽から複数の受器に順次に
小分け充填する際に、受器ごとの組成が元来の組成(元
組成)から変化するという問題が起こる。この問題は、
これらの非共沸混合物にあっては気液平衡関係によっ
て、含まれる低沸点成分の濃度が液相におけるより気相
において高くなるので、一定容量の冷媒貯槽内で、小分
け充填のための抜き出しにより液相の容量が減少する
と、これに伴って相対的に気相の容量が増大し低沸点成
分が気相により多く移行する結果、冷媒(液相)中の低
沸点成分の濃度が漸次低下することに起因している。小
分け充填された受器内で、冷媒の組成が許容限界を越え
て変化すると、空調・冷凍機器の冷却性能その他の性能
が変化して使用が困難になる。実際には、前記のように
冷媒貯槽中の残留冷媒量が減少するに伴って組成変化が
大となるので、組成の許容限界から、例えば冷媒貯槽か
ら80%程度抜き出した後の残留冷媒は小分け充填に使
わず、そのまま充填工場に返却される場合が多い。しか
し充填工場に返却されても、組成が変化した冷媒の回収
や再生処理に多大の経費と時間とを要するので、このこ
とが冷媒製品の価格上昇の一因となっていた。However, these mixed refrigerants are refrigerants having a single composition such as CFC12 or HCFC22, or R5 which has been conventionally used as a low-temperature refrigerant.
Unlike azeotropic mixed refrigerants such as 02, most of them are non-azeotropic mixtures. Therefore, when the refrigerant is gradually filled into a plurality of receivers from the storage tank, the composition of each receiver is changed to the original composition (original composition). ). This problem,
In these non-azeotropic mixtures, the concentration of low-boiling components contained in the gas phase is higher than that in the liquid phase due to the vapor-liquid equilibrium relationship. As the capacity of the liquid phase decreases, the capacity of the gas phase relatively increases with this, and more low-boiling components are transferred to the gas phase. As a result, the concentration of the low-boiling components in the refrigerant (liquid phase) gradually decreases. It is due to If the composition of the refrigerant in the partially filled receiver changes beyond the allowable limit, the cooling performance and other performances of the air conditioning / refrigeration equipment change, making it difficult to use. Actually, as described above, the composition change becomes large as the amount of the residual refrigerant in the refrigerant storage tank decreases. Therefore, from the allowable limit of the composition, for example, the residual refrigerant after being extracted from the refrigerant storage tank by about 80% is subdivided. It is often returned to the filling factory without being used for filling. However, even if returned to a filling factory, the recovery and regeneration of the refrigerant whose composition has changed requires a great deal of cost and time, and this has contributed to an increase in the price of the refrigerant product.
【0006】非共沸混合冷媒における小分け充填時の液
相組成の変動の問題を解決する手段として、例えば特開
平8−157810号公報及びWO第96/33377
号国際公開公報は、冷媒貯槽に充填する小分け用冷媒の
組成を、予め低沸点成分が過剰となるように調整してお
く方法を提案している。しかしこれらの方法も、冷媒貯
槽の容量、抜き出し量、小分け充填回数などによって受
器ごとの組成変動を防止することはできなかった。本発
明は、上記の課題を解決するためになされたものであっ
て、従ってその目的は、冷媒貯槽に充填された非共沸混
合冷媒を複数の受器に順次に小分け充填するに際して、
小分けされた前記冷媒の組成が受器ごとに変化すること
を防止する非共沸混合冷媒の小分け充填方法を提供する
ことにある。As means for solving the problem of fluctuation of the liquid phase composition at the time of subdivision filling in a non-azeotropic mixed refrigerant, for example, Japanese Patent Application Laid-Open No. 8-157810 and WO 96/33377
International Patent Publication No. WO 2006/073139 proposes a method in which the composition of the subdivision refrigerant to be charged into the refrigerant storage tank is adjusted in advance so that the low-boiling component is excessive. However, even with these methods, it was not possible to prevent the composition fluctuation of each receiver due to the capacity of the refrigerant storage tank, the amount of extraction, the number of times of subdivision filling, and the like. The present invention has been made in order to solve the above-described problems, and therefore, an object of the present invention is to sequentially fill a plurality of receivers with a non-azeotropic mixed refrigerant filled in a refrigerant storage tank.
It is an object of the present invention to provide a subdivision filling method of a non-azeotropic refrigerant mixture that prevents the composition of the subdivided refrigerant from changing for each receiver.
【0007】[0007]
【課題を解決するための手段】上記の課題を解決するた
めに本発明は、冷媒貯槽に充填された非共沸混合冷媒か
らなる小分け用冷媒を複数の受器に順次に小分け充填す
るに際して、前記の小分け用冷媒の気相又は液相を、こ
の冷媒と実質的に同等な組成を有する調整用冷媒の気相
と導通させる非共沸混合冷媒の小分け充填方法を提供す
る。前記において小分け用冷媒及び調整用冷媒は何れ
も、それぞれの気相が互いに導通された複数の容器に充
填されていてもよい。前記において調整用冷媒の総量
は、小分け用冷媒の総量の1重量倍以上とすることが好
ましい。また調整用冷媒の組成は、小分け用冷媒の組成
に対して±2重量%の誤差範囲内で同等とすることが好
ましい。更に前記において調整用冷媒の温度は、小分け
用冷媒の温度と同等〜+5℃の範囲内とすることが好ま
しい。更にまた小分け充填開始から終了までの小分け用
冷媒の温度は、小分け充填開始時の温度に対して±10
℃の変動範囲内とすることが好ましい。前記の小分け用
冷媒は、HCFC、HFC、HC、FC、HFE、F
E、及びフルオロヨードカーボン(FIC)の群から選
ばれた2種以上からなる非共沸混合冷媒であることが好
ましい。特に前記の小分け用冷媒は、ジフルオロメタン
(HFC32)、ペンタフルオロエタン(HFC12
5)及び1,1,1,2-テトラフルオロエタン(HFC134
a)の群から選ばれた2種以上からなる非共沸混合冷媒
であることが好ましい。本明細書において、「冷媒」と
は断りない限りその液相を意味する。また「組成」は冷
媒(液相)を構成する各成分の重量比を表す。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is directed to a method of sequentially filling a plurality of receivers with a subdivision refrigerant composed of a non-azeotropic mixed refrigerant filled in a refrigerant storage tank. There is provided a subdivision filling method of a non-azeotropic mixed refrigerant, in which a gaseous phase or a liquid phase of the subdivision refrigerant is conducted to a gaseous phase of an adjustment refrigerant having substantially the same composition as the refrigerant. In the above, each of the subdivision refrigerant and the adjustment refrigerant may be filled in a plurality of containers in which respective gas phases are conducted to each other. In the above, it is preferable that the total amount of the refrigerant for adjustment is at least 1 weight times the total amount of the refrigerant for subdivision. Further, it is preferable that the composition of the adjustment refrigerant is equal to the composition of the subdivision refrigerant within an error range of ± 2% by weight. Further, in the above, it is preferable that the temperature of the adjusting refrigerant is in the range of the same as the temperature of the subdivision refrigerant to + 5 ° C. Furthermore, the temperature of the subdivision refrigerant from the start to the end of subdivision filling is ± 10% of the temperature at the start of subdivision filling.
It is preferable to be within the fluctuation range of ° C. The subdivision refrigerant is HCFC, HFC, HC, FC, HFE, F
It is preferably a non-azeotropic refrigerant mixture of two or more selected from the group consisting of E and fluoroiodocarbon (FIC). In particular, the subdivision refrigerants are difluoromethane (HFC32) and pentafluoroethane (HFC12).
5) and 1,1,1,2-tetrafluoroethane (HFC134
It is preferably a non-azeotropic mixed refrigerant composed of two or more types selected from the group a). In this specification, the term “refrigerant” means its liquid phase unless otherwise specified. "Composition" indicates the weight ratio of each component constituting the refrigerant (liquid phase).
【0008】[0008]
【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて説明する。図1は本発明の非共沸混合冷媒の小
分け充填方法の一実施形態を示している。図1において
符号1は冷媒貯槽であり、この冷媒貯槽1には、非共沸
混合冷媒からなり所定の組成S0 を有する小分け用冷媒
Mの所定量が充填されている。この冷媒貯槽1は、器底
に達する液相抜出管2を有していて、この液相抜出管2
及びその槽外延長部に設けられた液相弁3を通して、小
分け用冷媒Mが小分け充填用の受器R1 ,R2 ,…,R
n に抜き出せるようになっている。また冷媒貯槽1の頂
部から伸びる導管には、気相弁4が取付けられている。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of a method for subdividing and charging a non-azeotropic mixed refrigerant of the present invention. Reference numeral 1 in FIG. 1 is a refrigerant tank, to the coolant tank 1, a predetermined amount of dispensing refrigerant M having a predetermined composition S 0 of a non-azeotropic refrigerant is filled. The refrigerant storage tank 1 has a liquid phase discharge pipe 2 reaching the bottom of the vessel.
And the liquid refrigerant M provided in the extension outside the tank, the subdivision refrigerant M receives the subdivision filling receivers R 1 , R 2 ,.
It can be extracted to n . A gas phase valve 4 is attached to a conduit extending from the top of the refrigerant storage tank 1.
【0009】各受器R1 ,R2 ,…,Rn は、容量は任
意であるが、それぞれ小分け充填された冷媒mを受け入
れる導入弁V1 ,V2 ,…,Vn を有していて、これら
の導入弁と前記冷媒貯槽1の液相弁3とをフレキシブル
ホース5等で連結することによって、対応する量の小分
けされた冷媒mが受器中に充填されるようになってい
る。図1は受器R1 が冷媒貯槽1に連結された状態を示
している。[0009] Each receiver R 1, R 2, ..., R n is the capacitance is optional, inlet valve V 1, V 2 for receiving refrigerant m which is subdivided and packed respectively, ..., have a V n By connecting these introduction valves and the liquid phase valve 3 of the refrigerant storage tank 1 with a flexible hose 5 or the like, a corresponding amount of the subdivided refrigerant m is filled in the receiver. . FIG. 1 shows a state where the receiver R 1 is connected to the refrigerant storage tank 1.
【0010】本発明においては、別の容器(調整用容
器)6に、前記の小分け用冷媒Mの組成S0 と実質的に
同等な組成を有する調整用の冷媒(調整用冷媒)Hを充
填し、この調整用容器6の頂部導管に設けられた気相弁
8と前記冷媒貯槽1の気相弁4とを導通管7で連結す
る。この状態で気相弁4と気相弁8とを開くと、小分け
用冷媒Mの気相と調整用冷媒Hの気相とが互いに導通す
るようになる。この調整用冷媒Hの総量は、小分け用冷
媒Mの総量の1重量倍以上とされていることが好まし
い。。In the present invention, another container (adjustment container) 6 is filled with an adjustment refrigerant (adjustment refrigerant) H having a composition substantially equivalent to the composition S 0 of the subdivision refrigerant M. Then, a gas-phase valve 8 provided in a top conduit of the adjustment container 6 and a gas-phase valve 4 of the refrigerant storage tank 1 are connected by a conduction pipe 7. In this state, when the gas phase valve 4 and the gas phase valve 8 are opened, the gas phase of the subdivision refrigerant M and the gas phase of the adjustment refrigerant H are conducted to each other. It is preferable that the total amount of the adjusting refrigerant H be at least 1 weight times the total amount of the subdivision refrigerant M. .
【0011】このとき用いる調整用冷媒Hの組成S
H は、小分け用冷媒Mの組成S0 と実質的に同等とされ
ていることが必要であるが、完全に一致している必要は
なく、小分け用冷媒の組成S0 に対して好ましくは±2
重量%の誤差範囲内で同等とされていればよい。また小
分けに際しての調整用冷媒Hの温度は、小分け用冷媒M
の温度と同等〜+5℃の範囲内に調整されていることが
好ましい。The composition S of the adjusting refrigerant H used at this time is
H needs to be substantially equal to the composition S 0 of the subdivision refrigerant M, but does not have to completely match the composition S 0 , and is preferably ± with respect to the composition S 0 of the subdivision refrigerant M. 2
What is necessary is just to make it equivalent within the error range of weight%. Further, the temperature of the adjusting refrigerant H at the time of subdivision is determined by the subdivision refrigerant M.
It is preferable that the temperature is adjusted within the range of the same temperature to + 5 ° C.
【0012】この連結系が一定温度(好ましくは室温)
に安定したとき、液相弁3及び導入弁V1 を開くと、冷
媒貯槽1内の気相の内圧によって小分け用冷媒M(液
相)が押し出され、液相抜出管2、液相弁3、フレキシ
ブルホース5及び導入弁V1 を順次に経由して、所定量
が受器R1 に冷媒mとして充填される。The coupling system is at a constant temperature (preferably at room temperature)
When stable, when opening the Ekishoben 3 and inlet valve V 1, aliquoted refrigerant M (liquid phase) is pushed out by the pressure of the vapor phase in the refrigerant tank 1, liquid phase extraction pipe 2, Ekishoben 3, through the flexible hose 5 and the introduction valve V 1 sequentially, a predetermined amount is filled as a refrigerant m to receiver R 1.
【0013】このとき、もし冷媒貯槽1と調整用容器6
との導通が遮断されていると、冷媒貯槽1内の液相量が
減少し気相容量が増大するに従って、小分け用冷媒Mの
液相中の低沸点成分の濃度が低下する方向に組成変化が
起きる。従って受器を受器R 1 から例えば受器R2 ,
…,Rn に順次に切り替えて小分け充填を続けると、こ
れらの受器に充填された冷媒の組成S2 ,…,Sn は、
小分け用冷媒Mの初期組成(以下「元組成」と記す)S
0 から変化してしまう。しかし冷媒貯槽1と調整用容器
6とが気相において導通している本発明の場合には、調
整用容器6内の気液平衡関係と冷媒貯槽1内の気液平衡
関係とが一致する結果、冷媒貯槽1の気相容量の増大に
拘らず、残留する小分け用冷媒Mの組成が元組成S0 の
ままに維持される。従って、受器R1 ,R2 ,…,Rn
を順次に切り替えて小分け充填を繰り返しても、それぞ
れの受器R1 ,R2 ,…,Rn に充填される冷媒の組成
は、それら受器の容量や充填順序に係わりなく、±1重
量%、好適には±0.5重量%の範囲内で実質的に元組
成S0 と等しくなる。本発明の他の実施形態において
は、後に図2によって説明するように、調整用冷媒Hの
気相が小分け用冷媒Mの液相と導通されていても実質的
に同様の結果が得られる。At this time, if the refrigerant storage tank 1 and the adjusting container 6
Is disconnected, the liquid phase amount in the refrigerant storage tank 1 becomes
As the gas volume decreases and the gas phase capacity increases,
The composition changes in the direction in which the concentration of low boiling components in the liquid phase decreases.
Get up. Therefore, the receiver R 1From receiver RTwo,
…, RnWhen the subdivision filling is continued by sequentially switching to
Composition S of refrigerant filled in these receiversTwo, ..., SnIs
Initial composition (hereinafter referred to as "original composition") S of the subdivision refrigerant M
0Will change from. However, the refrigerant storage tank 1 and the adjustment container
In the case of the present invention, in which
Vapor-Liquid Equilibrium Relationship in Regulating Container 6
As a result, the gas volume capacity of the refrigerant storage tank 1 increases.
Regardless, the composition of the remaining subdivision refrigerant M is the original composition S0of
Will be kept as it is. Therefore, receiver R1, RTwo, ..., Rn
Are switched in order, and subdivision filling is repeated.
Receiver R1, RTwo, ..., RnComposition of refrigerant to be filled
± 1 fold, regardless of the capacity of these receivers or the filling order
%, Preferably within ± 0.5% by weight.
S0Becomes equal to In another embodiment of the present invention
As will be described later with reference to FIG.
Substantially even if the gas phase is in communication with the liquid phase of the subdivision refrigerant M
Yields similar results.
【0014】この小分けの期間中、冷媒貯槽1中の小分
け用冷媒Mの温度が大きく変動すると冷媒貯槽1内の気
液平衡関係が変化して小分け充填される冷媒の組成に変
動をもたらすので、温度の変動はないことが望ましい
が、あるとしても小分け充填開始時の温度に対して±1
0℃の変動範囲内に管理することが好ましい。If the temperature of the subdivision refrigerant M in the refrigerant storage tank 1 fluctuates greatly during the subdivision period, the gas-liquid equilibrium relationship in the refrigerant storage tank 1 changes, causing a change in the composition of the refrigerant to be subdivided and charged. It is desirable that the temperature does not fluctuate, but at least ± 1 with respect to the temperature at the start of subdivision filling.
It is preferable to control the temperature within a fluctuation range of 0 ° C.
【0015】この実施形態においては、調整用冷媒Hの
総量が小分け用冷媒Mの総量の1重量倍以上とされてい
るので、小分け充填のどの段階にあっても、調整用冷媒
Hから気相を経由して小分け用冷媒Mへの低沸点成分の
補給が速やかに行われ、各受器における前記許容範囲内
での元組成S0 を維持しながら、速やかな小分け充填が
可能となる。In this embodiment, since the total amount of the adjusting refrigerant H is at least 1 weight times the total amount of the subdivision refrigerant M, the gaseous phase from the adjusting refrigerant H is obtained at any stage of subdivision filling. , The low-boiling component is quickly supplied to the subdivision refrigerant M, and the subdivision can be quickly filled while maintaining the original composition S 0 within the allowable range in each receiver.
【0016】図1に示す具体例では調整用容器6を1本
としたが、必ずしも1本である必要はなく、複数の調整
用容器の気相を導通管で連結した状態で用いてもよい。
またこの場合にそれぞれの調整用容器に充填された調整
用冷媒の量は、それぞれが一定でも異なっていてもよ
く、要はこれらの調整用冷媒の総量が小分け用冷媒の量
の1重量倍以上とされていればよい。In the specific example shown in FIG. 1, the number of the adjusting containers 6 is one. However, the number of adjusting containers is not necessarily limited to one. .
In this case, the amount of the adjusting refrigerant filled in each adjusting container may be constant or different. In short, the total amount of these adjusting refrigerants is at least 1 weight times the amount of the subdivision refrigerant. It should just be.
【0017】同様に、冷媒貯槽1も必ずしも1本である
必要はなく、それぞれの量の小分け用冷媒が充填された
複数の冷媒貯槽の気相を導通管で連結した状態で用いて
もよい。すなわち、例えば複数の調整用容器と複数の冷
媒貯槽の気相を導通した状態で、これら複数の冷媒貯槽
から同時並行的に小分け充填を行うことも可能である。
この場合にも、調整用冷媒の総量が小分け用冷媒の総量
の1重量倍以上となるようにすることが好ましい。。Similarly, the number of the refrigerant storage tanks 1 does not necessarily have to be one, and the gas phases of a plurality of refrigerant storage tanks filled with the respective amounts of the subdivision refrigerant may be used in a state where they are connected by a conduit. That is, for example, in a state where the gas phases of the plurality of adjustment containers and the plurality of refrigerant storage tanks are conducted, it is also possible to perform the subdivision filling from the plurality of refrigerant storage tanks simultaneously and in parallel.
In this case as well, it is preferable that the total amount of the adjusting refrigerant be at least 1 weight times the total amount of the subdivision refrigerant. .
【0018】本発明の方法によれば、冷媒貯槽1中の小
分け用冷媒Mの残量が抜き出し限界(冷媒の特性上、液
相が消滅する限界)に達するまで、元組成S0 を維持し
たままで複数の受器に順次に小分け充填することができ
るので、組成が変化した残留冷媒を充填工場に返却して
冷媒の回収や再生処理等を行う必要がなく、冷媒製品の
価格上昇の一因が排除できて簡便かつ経済的である。According to the method of the present invention, the original composition S 0 is maintained until the remaining amount of the subdivision refrigerant M in the refrigerant storage tank 1 reaches the extraction limit (limit of the liquid phase disappearing due to the characteristics of the refrigerant). Since a plurality of receivers can be sequentially filled in small quantities as they are, there is no need to return the residual refrigerant of which composition has changed to the filling factory to perform refrigerant recovery or regeneration processing. The factors can be eliminated and it is simple and economical.
【0019】本発明の小分け充填方法が適用される冷媒
は、HCFC、HFC、HC、FC、HFE、FE、及
びFICの群から選ばれた2種以上からなる非共沸混合
物であることが好ましい。これらの内、HCFCの具体
例としては、例えばHCFC22(CHClF2)、H
CFC123(CHCl2-CF3)、HCFC124
(CHClF-CF3)、HCFC141b(CH3-CC
l2F)、HCFC142b(CH3-CClF2)、HC
FC225ca(CHCl2-CF2-CF3)、HCFC
225cb(CHClF-CF2-CClF2)等を挙げる
ことができる。HFCの具体例としては、例えばHFC
23(CHF3)、HFC32(CH2F2)、HFC4
1(CH3F)、HFC134(CHF2-CHF2)、H
FC134a(CH2F-CF3)、HFC143a(C
H3-CF3)、HFC125(CHF2-CF3)、HFC
161(CH3-CH2F)、HFC227ea(CF3-
CHF-CF3)、HFC227ca(CHF2-CF2-C
F3)、HFC236ca(CHF2-CF2-CHF2)、
HFC236cb(CH2F-CF2-CF3)、HFC2
36ea(CHF2-CHF-CF3)、HFC236fa
(CF3-CH2-CF 3)、HFC245ca(CH2F-
CF2-CHF2)、HFC245cb(CH3-CF2-C
F3)、HFC245fa(CHF2-CH2-CF3)、H
FC254cb(CH3-CF2-CHF2)等を挙げるこ
とができる。HCの具体例としては、例えばHC290
(CH3-CH2-CH3)、HC600(CH3-CH2-C
H2-CH3)、HC600a((CH3)2CH-C
H3)、HC601(CH3-CH2-CH2-CH2-C
H3)、HC601a((CH3)2CH-CH2-C
H3)、HC601b((CH3)4C)、HC170
(CH3-CH3)、HC−C270(環状-CH2-CH2-
CH2-)、HC1270(CH3-CH=CH 2)等を挙げ
ることができる。FCの具体例としては、例えばFC2
18(CF3-CF2-CF3)、FC−C318(環状-C
4F8-)等を挙げることができる。HFE、FEの具体
例としては、例えばHFE134(CHF2-O-CH
F2)、HFE143a(CH3-O-CF3)、HFE1
25(CHF2-O-CF3)、HFE227ca2(CH
F2-CF2-O-CF3)、HFE245cb2(CH3-C
F2-O-CF3)、HFE−C318(環状-CF2-CF2
-CF2-O-CF2-)、FE116(CF3-O-CF3)等
を挙げることができる。FICの具体例としては、例え
ばFIC13I1(CF3I)、FIC115I1(C
F3-CF2I)等を挙げることができる。Refrigerant to which the subdivision filling method of the present invention is applied
Are HCFC, HFC, HC, FC, HFE, FE, and
And non-azeotropic mixture of two or more selected from the group of FIC
It is preferably an object. Of these, specifics of HCFC
As an example, for example, HCFC22 (CHClFTwo), H
CFC123 (CHClTwo-CFThree), HCFC124
(CHClF-CFThree), HCFC141b (CHThree-CC
lTwoF), HCFC142b (CHThree-CCIFTwo), HC
FC225ca (CHClTwo-CFTwo-CFThree), HCFC
225cb (CHClF-CFTwo-CCIFTwo) Etc.
be able to. As a specific example of HFC, for example, HFC
23 (CHFThree), HFC32 (CHTwoFTwo), HFC4
1 (CHThreeF), HFC134 (CHFTwo-CHFTwo), H
FC134a (CHTwoF-CFThree), HFC143a (C
HThree-CFThree), HFC125 (CHFTwo-CFThree), HFC
161 (CHThree-CHTwoF), HFC227ea (CFThree-
CHF-CFThree), HFC227ca (CHFTwo-CFTwo-C
FThree), HFC236ca (CHFTwo-CFTwo-CHFTwo),
HFC236cb (CHTwoF-CFTwo-CFThree), HFC2
36ea (CHFTwo-CHF-CFThree), HFC236fa
(CFThree-CHTwo-CF Three), HFC245ca (CHTwoF-
CFTwo-CHFTwo), HFC245cb (CHThree-CFTwo-C
FThree), HFC245fa (CHFTwo-CHTwo-CFThree), H
FC254cb (CHThree-CFTwo-CHFTwo) Etc.
Can be. As a specific example of HC, for example, HC290
(CHThree-CHTwo-CHThree), HC600 (CHThree-CHTwo-C
HTwo-CHThree), HC600a ((CHThree)TwoCH-C
HThree), HC601 (CHThree-CHTwo-CHTwo-CHTwo-C
HThree), HC601a ((CHThree)TwoCH-CHTwo-C
HThree), HC601b ((CHThree)FourC), HC170
(CHThree-CHThree), HC-C270 (cyclic-CHTwo-CHTwo-
CHTwo-), HC1270 (CHThree-CH = CH Two)
Can be As a specific example of FC, for example, FC2
18 (CFThree-CFTwo-CFThree), FC-C318 (cyclic-C
FourF8-) And the like. Specifics of HFE and FE
As an example, for example, HFE134 (CHFTwo-O-CH
FTwo), HFE143a (CHThree-O-CFThree), HFE1
25 (CHFTwo-O-CFThree), HFE227ca2 (CH
FTwo-CFTwo-O-CFThree), HFE245cb2 (CHThree-C
FTwo-O-CFThree), HFE-C318 (cyclic-CFTwo-CFTwo
-CFTwo-O-CFTwo-), FE116 (CFThree-O-CFThree)etc
Can be mentioned. As a specific example of FIC,
BA FIC13I1 (CFThreeI), FIC115I1 (C
FThree-CFTwoI) and the like.
【0020】特に、本発明の小分け充填方法は、従来か
ら代替冷媒として有望視されている非共沸混合冷媒の小
分け充填に有効に適用できる。これらの非共沸混合冷媒
の例として、通称及び成分・組成(重量%)を挙げれ
ば、例えば、 R403B:HC290/HCFC22/FC218=
5/56/39 R407C:HFC32/HFC125/HFC134
a=23/25/52 R407E:HFC32/HFC125/HFC134
a=25/15/60 R900JA:HFC32/HFC134a=30/7
0 等がある。In particular, the subdivision charging method of the present invention can be effectively applied to subdivision charging of a non-azeotropic mixed refrigerant which has been regarded as a promising alternative refrigerant. Examples of these non-azeotropic mixed refrigerants include a common name and a component / composition (% by weight). For example, R403B: HC290 / HCFC22 / FC218 =
5/56/39 R407C: HFC32 / HFC125 / HFC134
a = 23/25/52 R407E: HFC32 / HFC125 / HFC134
a = 25/15/60 R900JA: HFC32 / HFC134a = 30/7
0 and so on.
【0021】これらの内でも特にR407Cは、HCF
C22の代替冷媒として有望視されている。そこで、こ
のR407Cを小分け充填する際における本発明の一適
用例を以下に詳しく説明する。図1において、冷媒貯槽
1に小分け用冷媒Mとして冷媒R407Cを例えば20
kg充填し、一方、調整用容器6には調整用冷媒Hとして
実質的に同等組成の冷媒R407Cを例えば20kg充填
し、気相弁4,8を開き、冷媒貯槽1と調整用容器6と
を気相において導通する。この状態で、冷媒貯槽1から
液相抜出管2を通して冷媒を抜き出し、複数の受器
R1 ,R2 ,…,Rn にそれぞれ0.5kgずつ充填す
る。この操作を冷媒貯槽1の抜き取り限界まで続ける。
次に各受器に充填された冷媒mの試料を採取してガスク
ロマトグラフィーにより組成を分析し、冷媒貯槽1から
の液相抜き出し率に対する受器液相中のHFC32(標
準沸点−51.7℃)及びHFC125(標準沸点−4
8.5℃)の組成変化を求めると図3の結果が得られ
る。Of these, especially R407C is HCF
Promising as an alternative refrigerant to C22. Therefore, one application example of the present invention when the R407C is filled in small portions will be described in detail below. In FIG. 1, a refrigerant R407C as a subdivision refrigerant M
kg, while the adjustment container 6 is filled with, for example, 20 kg of a refrigerant R407C having substantially the same composition as the adjustment refrigerant H, the gas phase valves 4 and 8 are opened, and the refrigerant storage tank 1 and the adjustment container 6 are connected. Conducts in the gas phase. In this state, withdrawing refrigerant through liquid discharge pipe 2 from the refrigerant tank 1, a plurality of receiver R 1, R 2, ..., filled by each 0.5kg to R n. This operation is continued until the refrigerant storage tank 1 is removed.
Next, a sample of the refrigerant m filled in each receiver was collected and analyzed for composition by gas chromatography, and HFC32 in the receiver liquid phase (standard boiling point −51.7) with respect to the liquid phase withdrawal rate from the refrigerant storage tank 1 was measured. ° C) and HFC125 (standard boiling point -4)
(8.5 ° C.), the result of FIG. 3 is obtained.
【0022】図3の結果から、本発明の方法に従い、小
分け用冷媒Mの気相を調整用冷媒Hの気相と導通させる
ことによって、冷媒貯槽1の抜き取り限界まで組成をほ
とんど変化させることなく小分け充填ができることがわ
かる。From the results shown in FIG. 3, according to the method of the present invention, by allowing the gas phase of the subdivision refrigerant M to communicate with the gas phase of the adjustment refrigerant H, the composition hardly changes to the extraction limit of the refrigerant storage tank 1. It can be seen that subdivision filling can be performed.
【0023】これに対して本発明の方法を用いずに、図
1における気相弁4を閉じて冷媒貯槽1と調整用容器6
との導通を遮断した状態で、前記と同様に冷媒貯槽1か
ら複数の受器R1 ,R2 ,…,Rn に0.5kgずつの冷
媒mを小分け充填し、各受器の冷媒を分析し、調整用冷
媒Hを用いない場合の、冷媒貯槽1からの液相抜き出し
率に対する受器液相中のHFC32及びHFC125の
組成変化を求めると図4のようになる。On the other hand, without using the method of the present invention, the gas phase valve 4 in FIG.
While blocking conduction between the a receiver R 1 from the refrigerant tank 1 a plurality of similar, R 2, ..., aliquoted filled refrigerant m of each 0.5kg to R n, the refrigerant of each receiver FIG. 4 shows the results of the analysis to determine the composition change of HFC32 and HFC125 in the receiver liquid phase with respect to the liquid phase withdrawal rate from the refrigerant storage tank 1 when the adjusting refrigerant H is not used.
【0024】図4から、調整用冷媒Hを用いない場合
は、液相の抜き出し率が増大するに伴って受器R1 ,R
2 ,…,Rn の液相中のHFC32及びHFC125の
濃度が漸次低下し、図示しないが、相対的にHFC13
4a(標準沸点−26.5℃)の濃度が増大し、特に抜
き出し率が70%〜80%以上ではその組成変化が著し
くなることがわかる。FIG. 4 shows that when the adjusting refrigerant H is not used, the receivers R 1 , R
2, ..., concentrations of HFC32 and HFC125 in the liquid phase of R n is gradually decreased, although not shown, relatively HFC13
It can be seen that the concentration of 4a (normal boiling point -26.5 ° C) increases, and the composition change becomes remarkable especially when the withdrawal rate is 70% to 80% or more.
【0025】実際に、調整用冷媒Hを用いない従来の方
法で冷媒貯槽から所定量の小分け用冷媒を複数の冷凍・
空調機器の冷媒タンクに順次小分け充填すると、結果的
に機器ごとの組成変化は避けられず、機器の性能を管理
限界内に保持するためには、ある一定の抜き出し率に達
したとき、それ以上の抜き出しを中止しなければならな
い。通常、室温下では例えば70%〜80%程度の液相
抜き出し率で抜き出しを中止すれば、HFC32及びH
FC125の組成変化をそれぞれ元組成のほぼ−0.5
重量%以内に抑えることができる。HFC32及びHF
C125の−0.5重量%の組成変化は、相対的にHF
C134aに+1重量%の組成変化をもたらすから、結
果として各成分の組成変化を元組成の±1重量%以内と
することができ、この程度であれば、冷凍・空調機器の
性能面からも許容範囲内とされる。従ってHFC32、
HFC125及びHFC134aからなる非共沸混合冷
媒の場合、本発明の方法は初期の抜き出し後に残留する
20%〜30%の後期残留冷媒に対して特に有効に適用
されることになる。Actually, a predetermined amount of the subdivision refrigerant is stored in the refrigerant storage tank by a plurality of refrigeration / cooling methods by the conventional method without using the adjustment refrigerant H.
If the refrigerant tank of an air conditioner is filled in small batches, the composition of each machine will inevitably change.As a result, in order to maintain the performance of the machine within the control limits, when the extraction rate reaches a certain level, the Must be stopped. Normally, at room temperature, if the withdrawal is stopped at a liquid phase withdrawal rate of, for example, about 70% to 80%, the HFC 32 and H
Each change in the composition of FC125 was approximately -0.5 of the original composition.
% By weight. HFC32 and HF
The composition change of -0.5% by weight of C125 is relatively HF.
Since + 1% by weight of composition change is caused to C134a, the composition change of each component can be made within ± 1% by weight of the original composition as a result. To this extent, the performance of refrigeration and air conditioning equipment is acceptable. Within the range. Therefore HFC32,
In the case of a non-azeotropic refrigerant mixture consisting of HFC125 and HFC134a, the method of the present invention will be particularly effectively applied to the late residual refrigerant of 20% to 30% remaining after the initial withdrawal.
【0026】本発明の方法において、冷媒貯槽1中の小
分け用冷媒Mの気相又は液相と調整用冷媒Hの気相とを
導通するとき、小分け用冷媒Mの組成は、量が多いほう
の組成に近づく方向に変化するので、組成調整源として
の調整用冷媒Hの総量は、小分け用冷媒Mの総量の1重
量倍以上とすることが好ましい。更に小分け用冷媒Mの
組成を抜き取り限界まで一定に維持するためには、2重
量倍以上とすることがより好ましい。しかし、実際には
前記のように、本発明の方法は初期の抜き出し後に残留
する20%〜30%の後期残留冷媒に対して特に有効で
あるので、この後期残留冷媒に対して2重量倍以上程度
の調整用冷媒Hがあればよいことになる。従って、冷媒
貯槽1中の小分け用冷媒Mの初期の総量に対しては、調
整用冷媒Hの総量が例えば1/2重量倍程度であっても
有効である。In the method of the present invention, when the gas phase or the liquid phase of the subdivision refrigerant M in the refrigerant storage tank 1 and the gas phase of the adjustment refrigerant H are conducted, the composition of the subdivision refrigerant M is larger. Therefore, the total amount of the adjusting refrigerant H as the composition adjusting source is preferably at least 1 weight times the total amount of the subdivision refrigerant M. Further, in order to keep the composition of the subdivision refrigerant M constant up to the extraction limit, it is more preferable that the composition be 2 times or more. However, in practice, as described above, the method of the present invention is particularly effective for the late residual refrigerant of 20% to 30% remaining after the initial withdrawal. It is only necessary to have a certain degree of adjustment refrigerant H. Therefore, it is effective even if the total amount of the adjusting refrigerant H is, for example, about 重量 weight times the initial total amount of the subdivision refrigerant M in the refrigerant storage tank 1.
【0027】また前記のように、小分け用冷媒Mの気相
又は液相と調整用冷媒Hの気相とを導通するとき、小分
け用冷媒Mの組成は、量が多いほうの組成に近づく方向
に変化するが、小分けされた冷媒mの組成を例えば許容
限界である±1重量%の範囲内に保つためには、小分け
用冷媒Mの元組成S0 に対して調整用冷媒Hの組成S H
は、完全に同等でないとしても±2重量%の誤差範囲内
に調整されていることが好ましい。調整用冷媒Hの組成
SH が小分け用冷媒Mの元組成S0 に対して±2重量%
を越えて変化していると、特に小分け後期に充填された
小分け冷媒mの組成が許容限界を越えて変化する可能性
があり好ましくない。As described above, the gas phase of the subdivision refrigerant M
Or, when conducting the liquid phase and the gas phase of the adjusting refrigerant H,
The composition of the cooling medium M is in the direction of approaching the composition with the larger amount.
But the composition of the subdivided refrigerant m
To keep within the limit of ± 1% by weight,
Composition S of refrigerant M0The composition S of the adjusting refrigerant H H
Is within ± 2% by weight even if not completely equivalent
It is preferable that it is adjusted to. Composition of adjustment refrigerant H
SHIs the original composition S of the subdivision refrigerant M0± 2% by weight
If it has changed beyond the
Possibility that the composition of subdivided refrigerant m changes beyond the allowable limit
Is not preferred.
【0028】本発明の方法においては結局、冷媒貯槽中
の小分け用冷媒Mの、小分け充填に伴う低沸点成分の濃
度低下を調整用冷媒Hの気相に含まれる低沸点成分で補
う形となるので、図2に示すように、調整用容器26と
冷媒貯槽21とを連結する導通管27の冷媒貯槽21側
端末を、気相弁24を介して冷媒貯槽21の底部付近ま
で延長管29として延ばすことによって、調整用冷媒H
の気相が小分け用冷媒Mの液相と直接接触するようにし
てもよい。In the method of the present invention, the low-boiling component contained in the gas phase of the adjusting refrigerant H compensates for the decrease in the concentration of the low-boiling component of the subdivision refrigerant M in the refrigerant storage tank due to the subdivision filling. Therefore, as shown in FIG. 2, the refrigerant storage tank 21 side terminal of the conduction pipe 27 that connects the adjustment container 26 and the refrigerant storage tank 21 is formed as an extension pipe 29 through the gas phase valve 24 to near the bottom of the refrigerant storage tank 21. By extending, the adjusting refrigerant H
May directly contact the liquid phase of the subdivision refrigerant M.
【0029】図1及び図2の何れの方式であっても、冷
媒貯槽と調整用容器とはそれぞれの内部の気液平衡関係
を一致させる必要があるので、必然的に同一温度下に置
くことが好ましい。すなわち、調整用冷媒Hの温度は、
小分け用冷媒Mの温度と同等であるか又は温度差がある
としても+5℃までの範囲内とされていることが好まし
い。調整用冷媒Hの温度が小分け用冷媒Mの温度より低
い場合、又は+5℃を越えて高い場合は、気液平衡関係
から調整用冷媒Hが小分け用冷媒Mの組成を一定範囲内
に保つ機能を発揮し得なくなる可能性がある。In any of the systems shown in FIGS. 1 and 2, the refrigerant storage tank and the adjusting container must be kept at the same temperature because the internal gas-liquid equilibrium relationship must be matched. Is preferred. That is, the temperature of the adjusting refrigerant H is
It is preferable that the temperature is equal to or lower than the temperature of the subdivision refrigerant M up to + 5 ° C. even if there is a temperature difference. When the temperature of the refrigerant for adjustment H is lower than the temperature of the refrigerant for subdivision M or higher than + 5 ° C., the function of the refrigerant for adjustment H keeps the composition of the refrigerant for subdivision M within a certain range from a gas-liquid equilibrium relationship. May not be able to be exhibited.
【0030】小分け充填時の小分け用冷媒Mの温度は任
意に設定できるが、一般に40℃以上では内圧が高くな
って高圧ガスとしての規制を受ける可能性もあるので好
ましくない。通常は40℃未満の室温を維持して小分け
充填作業を行うことが好ましい。また小分け充填作業中
の小分け用冷媒Mの温度は、小分け充填開始から終了ま
で一定であることが好ましく、温度変化があるとしても
±10℃以内に抑えることが好ましい。この範囲を越え
て温度が変化すると、冷媒貯槽中の気液平衡関係が変化
するために小分け充填用の受器R1 ,R2 ,…,Rn に
抜き出された冷媒mの組成が許容限界を越えて変化する
可能性があり好ましくない。The temperature of the subdivision refrigerant M at the time of subdivision filling can be set arbitrarily. However, in general, if the temperature is higher than 40 ° C., it is not preferable because the internal pressure becomes high and there is a possibility of being restricted as a high pressure gas. Usually, it is preferable to perform the subdivision filling operation while maintaining the room temperature of less than 40 ° C. Further, the temperature of the subdivision refrigerant M during the subdivision filling operation is preferably constant from the start to the end of the subdivision filling, and even if there is a temperature change, it is preferable to keep it within ± 10 ° C. When changing the temperature exceeds this range, receiver R 1, R 2 for subdivided and packed for vapor-liquid equilibrium in the refrigerant tank changes, ..., the composition of the refrigerant m withdrawn in R n is acceptable It is not preferable because it may change beyond the limit.
【0031】本発明の方法を適用する際の容器は、冷媒
貯槽、調整用容器及び受器(R1 ,R2 ,…,Rn )の
何れも、容量や形状や数が特に限定されるものではな
い。例えばサービス缶と呼ばれる金属薄板製の缶、ボン
ベ、タンクローリー、アイソコンテナなどの移動用容
器、あるいは冷凍・空調機器に付属する冷媒タンク、製
品タンクなどの固定冷媒容器のいずれであってもよい。
また冷媒貯槽と調整用容器と受器とはそれぞれ同種のも
のであっても異なっていてもよい。従って冷媒貯槽と調
整用容器とが、共に数本のボンベで構成されていてもよ
い。When applying the method of the present invention, the volume, shape and number of the refrigerant storage tank, the adjusting container and the receivers (R 1 , R 2 ,..., R n ) are particularly limited. Not something. For example, it may be a metal thin plate can called a service can, a transfer container such as a cylinder, a tank lorry, or an iso-container, or a fixed refrigerant container such as a refrigerant tank attached to refrigeration / air-conditioning equipment or a product tank.
Further, the refrigerant storage tank, the adjustment container, and the receiver may be the same or different. Therefore, both the refrigerant storage tank and the adjustment container may be constituted by several cylinders.
【0032】本発明の方法によれば、冷媒貯槽から小分
け用冷媒の液相の一部を抜き取った後に残留する冷媒の
組成を元組成から変化させることなく維持できるので、
実質的に冷媒貯槽が空になるまで組成の変動なしに小分
け充填が可能になる。またこの小分け充填に際して、調
整用冷媒の組成は実質的にほとんど変化しないので、例
えば冷媒貯槽中の小分け用冷媒を使いきった後は、この
調整用冷媒入りの容器を、新たな同等組成の冷媒入り容
器を調整用容器として用いた上で、次回の小分け充填用
の冷媒貯槽として用いることもできる。According to the method of the present invention, the composition of the refrigerant remaining after extracting a part of the liquid phase of the subdivision refrigerant from the refrigerant storage tank can be maintained without changing from the original composition.
Until the refrigerant storage tank is emptied, sub-filling is possible without a change in composition. In addition, since the composition of the adjusting refrigerant does not substantially change during the subdivision filling, for example, after the substituting refrigerant in the refrigerant storage tank is used up, the container containing the adjusting refrigerant is filled with a new refrigerant having the same composition. After using the container as an adjusting container, it can be used as a refrigerant storage tank for the next subdivision filling.
【0033】[0033]
【実施例】以下に本発明の実施例を示す。各実施例にお
いて、組成割合は全て重量%である。 (実施例1)図1において、冷媒貯槽1に小分け用冷媒
Mとして非共沸混合冷媒R407Cを20kg充填した。
容器内の小分け用冷媒Mを液相抜出管2からサンプリン
グしてガスクロマトグラフィーにより組成を測定したと
ころ、 HFC32/HFC125/HFC134a=22.9
/24.9/52.2 であった。Examples of the present invention will be described below. In each of the examples, the composition ratios are all by weight. (Example 1) In FIG. 1, a refrigerant storage tank 1 was filled with 20 kg of a non-azeotropic mixed refrigerant R407C as a subdivision refrigerant M.
The refrigerant M for subdivision in the container was sampled from the liquid phase extraction pipe 2 and the composition was measured by gas chromatography. HFC32 / HFC125 / HFC134a = 22.9
/24.9/52.2.
【0034】別に、調整用容器6に前記と同様なR40
7Cを20kg充填し、調整用冷媒Hとした。この調整用
冷媒Hの組成は、 HFC32/HFC125/HFC134a=23.3
/25.2/51.5 であり、小分け用冷媒Mの組成に対して±1重量%の誤
差範囲内で実質的に同等の組成であることが確認され
た。Separately, the same R40 as described above is placed in the adjusting container 6.
20 kg of 7C was charged and used as refrigerant H for adjustment. The composition of the adjusting refrigerant H is as follows: HFC32 / HFC125 / HFC134a = 23.3
/25.2/51.5, and it was confirmed that the composition was substantially the same as the composition of the subdivision refrigerant M within an error range of ± 1% by weight.
【0035】次に、図1に示すように、冷媒貯槽1の頂
部と調整用容器6の頂部とを導通管7で連結し、それぞ
れの容器頂部の気相弁4,8を閉じたまま、側管の排気
弁10を開いて導通管7内を排気し、排気後に排気弁1
0を閉じ、気相弁4,8を開き、双方の容器の気相部を
導通させた。この状態で、冷媒貯槽1の液相抜出管2、
液相弁3及びフレキシブルホース5を通して冷媒を小分
け充填用の受器R1 ,R2 ,…,Rn に、0.5kgずつ
順次に抜き出し充填した。Next, as shown in FIG. 1, the top of the refrigerant storage tank 1 and the top of the adjusting vessel 6 are connected by a conducting pipe 7, and while the gas phase valves 4, 8 at the top of each vessel are closed, The exhaust pipe 10 of the side pipe is opened to evacuate the inside of the conduction pipe 7, and after the exhaust, the exhaust valve 1 is exhausted.
0 was closed, and the gas phase valves 4 and 8 were opened, and the gas phase portions of both containers were conducted. In this state, the liquid phase extraction pipe 2 of the refrigerant storage tank 1
Ekishoben 3 and receiver R 1, R 2 for dispensing filled with refrigerant through a flexible hose 5, ..., to R n, are sequentially extracted filled by 0.5 kg.
【0036】各小分け充填用の受器R1 ,R2 ,…,R
n から液相をサンプリングし、それぞれについて組成を
分析したところ、図3に示す結果が得られた。すなわ
ち、冷媒貯槽1の抜き出し限界である液相抜き出し率約
95%に至るまで、HFC32及びHFC125の低沸
点成分に関して濃度低下は0.1重量%程度であり、複
数の小分け充填用受器に小分け用冷媒Mの元組成に対し
て組成変動が±1重量%以内のR407Cを充填するこ
とができた。The receivers R 1 , R 2 ,.
When the liquid phase was sampled from n and the composition was analyzed for each, the results shown in FIG. 3 were obtained. That is, the concentration drop of the low boiling components of HFC32 and HFC125 is about 0.1% by weight up to the liquid phase extraction rate of about 95%, which is the extraction limit of the refrigerant storage tank 1, and is divided into a plurality of subdivision filling receivers. R407C whose composition variation was within ± 1% by weight with respect to the original composition of the refrigerant M was able to be charged.
【0037】前記の小分け充填作業終了後に、調整用容
器6内の冷媒をサンプリングし分析したところ、 HFC32/HFC125/HFC134a=23.1
/25.0/51.9 となっていて、小分け用冷媒Mの元組成と実質的に同等
であった。そこで、この調整用容器6を冷媒貯槽1とし
て用い、新たな調整用容器を接続した上で、そのまま次
回の小分け充填に再使用したところ、抜き出し限界に至
るまで前記の新たな小分け用冷媒Mの元組成に対して組
成変動が±1重量%以内のR407Cを充填することが
できた。After the above-mentioned subdivision filling operation was completed, the refrigerant in the adjusting container 6 was sampled and analyzed. HFC32 / HFC125 / HFC134a = 23.1
/25.0/51.9, which was substantially the same as the original composition of the subdivision refrigerant M. Therefore, when this adjusting container 6 is used as the refrigerant storage tank 1 and a new adjusting container is connected and reused as it is for the next subdivision filling, the new subdivision refrigerant M is used until the extraction limit is reached. R407C having a composition variation of ± 1% by weight with respect to the original composition could be filled.
【0038】(比較例1)冷媒貯槽1の頂部気相弁4を
閉じ、冷媒貯槽1の気相と調整用容器6の気相とを遮断
した以外は実施例1と同様の方法を繰り返した。冷媒貯
槽1中の小分け用冷媒Mの元組成は HFC32/HFC125/HFC134a=23.1
/25.0/51.9 であった。各小分け充填用の受器R1 ,R2 ,…,Rn
から液相を採取し、それぞれの組成を分析したところ、
図4に示す結果が得られた。小分け充填の結果、冷媒貯
槽1の抜き出し限界である液相抜き出し率約95%付近
で小分け充填した受器中の冷媒の組成は、HFC32/
HFC125/HFC134a=21.6/23.9/5
4.5となって、小分け用冷媒Mの元組成に対して±1
重量%の許容範囲を越えて変化していた。(Comparative Example 1) The same method as in Example 1 was repeated except that the top gas phase valve 4 of the refrigerant storage tank 1 was closed and the gas phase of the refrigerant storage tank 1 and the gas phase of the adjustment container 6 were shut off. . The original composition of the subdivision refrigerant M in the refrigerant storage tank 1 is HFC32 / HFC125 / HFC134a = 23.1
/25.0/51.9. Receiver R 1, R 2 for each subdivided and packed, ..., R n
When the liquid phase was collected from and analyzed for each composition,
The result shown in FIG. 4 was obtained. As a result of the subdivision filling, the composition of the refrigerant in the subdivided and filled receiver near the liquid phase extraction rate of about 95%, which is the extraction limit of the refrigerant storage tank 1, is HFC32 /
HFC125 / HFC134a = 21.6 / 23.9 / 5
4.5, which is ± 1 with respect to the original composition of the subdivision refrigerant M.
Weight percent was out of tolerance.
【0039】(実施例2)図1において、冷媒貯槽1に
小分け用冷媒Mとして非共沸混合冷媒R407Eを20
kg充填した。容器内の小分け用冷媒を液相抜出管2から
サンプリングしてガスクロマトグラフィーにより元組成
を測定したところ、 HFC32/HFC125/HFC134a=25.1
/14.9/60.0 であった。(Embodiment 2) In FIG. 1, a non-azeotropic mixed refrigerant R407E as a subdivision refrigerant M is stored in a refrigerant storage tank 1 for 20 minutes.
kg filled. The subdivision refrigerant in the container was sampled from the liquid phase extraction pipe 2 and the original composition was measured by gas chromatography. HFC32 / HFC125 / HFC134a = 25.1
/14.9/60.0.
【0040】別に、調整用容器6に前記と同様なR40
7Eを10kg充填し、調整用冷媒Hとした。この調整用
冷媒Hの量は冷媒貯槽1中の小分け用冷媒Mの量の1/
2重量倍であった。この調整用冷媒Hの組成は、 HFC32/HFC125/HFC134a=25.2
/15.4/59.4 であり、小分け用冷媒Mの元組成に対して±1重量%の
誤差範囲内で実質的に同等の組成であることが確認され
た。Separately, the same R40 as described above is placed in the adjusting container 6.
10 kg of 7E was charged and used as refrigerant H for adjustment. The amount of the refrigerant for adjustment H is 1 / the amount of the refrigerant for subdivision M in the refrigerant storage tank 1.
It was 2 weight times. The composition of the adjusting refrigerant H is HFC32 / HFC125 / HFC134a = 25.2.
/15.4/59.4, and it was confirmed that the composition was substantially the same as the original composition of the subdivision refrigerant M within an error range of ± 1% by weight.
【0041】次に、図1に示すように、冷媒貯槽1の頂
部と調整用容器6の頂部とを導通管7で連結し、それぞ
れの容器頂部の気相弁4,8を閉じたまま、側管の排気
弁10を開いて導通管7内を排気し、排気後に排気弁1
0を閉じ、気相弁4,8を開き、双方の容器の気相部を
導通させた。この状態で、冷媒貯槽1の液相抜出管2、
液相弁3及びフレキシブルホース5を通して冷媒を小分
け充填用の受器R1 ,R2 ,…,Rn に、0.5kgずつ
順次に抜き出し充填した。Next, as shown in FIG. 1, the top of the refrigerant storage tank 1 and the top of the adjustment vessel 6 are connected by a conducting pipe 7, and while the gas phase valves 4, 8 at the top of each vessel are closed, The exhaust pipe 10 of the side pipe is opened to evacuate the inside of the conduction pipe 7, and after the exhaust, the exhaust valve 1 is exhausted.
0 was closed, and the gas phase valves 4 and 8 were opened, and the gas phase portions of both containers were conducted. In this state, the liquid phase extraction pipe 2 of the refrigerant storage tank 1
Ekishoben 3 and receiver R 1, R 2 for dispensing filled with refrigerant through a flexible hose 5, ..., to R n, are sequentially extracted filled by 0.5 kg.
【0042】各小分け充填用の受器R1 ,R2 ,…,R
n から液相をサンプリングし、それぞれについて組成を
分析した。結果は、何れの受器についてもほぼ同等な組
成を示しており、冷媒貯槽1の抜き出し限界である液相
抜き出し率95%付近で小分け充填した受器中の冷媒に
ついても、その組成は小分け用冷媒Mの元組成に対して
組成変動が±1重量%以内であった。Receiving units R 1 , R 2 ,.
The liquid phase was sampled from n and the composition was analyzed for each. The results show that almost the same composition is obtained for each of the receivers. The composition of the refrigerant in the receiver which is subdivided and filled near the liquid phase extraction rate of 95%, which is the extraction limit of the refrigerant storage tank 1, is the same as that for the subdivision. The composition variation was within ± 1% by weight with respect to the original composition of the refrigerant M.
【0043】(比較例2)冷媒貯槽1の頂部気相弁4を
閉じて冷媒貯槽1の気相と調整用容器6の気相とを遮断
した以外は実施例2と同様の方法を繰り返した。冷媒貯
槽1中の小分け用冷媒Mの元組成は HFC32/HFC125/HFC134a=24.9
/15.1/60.0 であった。小分け充填の結果、冷媒貯槽1の抜き出し限
界である液相抜き出し率95%付近で小分け充填した受
器中の冷媒の組成は、 HFC32/HFC125/HFC134a=22.4
/14.0/63.6 となって、小分け用冷媒Mの元組成に対して±1重量%
の許容範囲を越えて変化していた。Comparative Example 2 The same method as in Example 2 was repeated, except that the top gas phase valve 4 of the refrigerant storage tank 1 was closed to shut off the gas phase of the refrigerant storage tank 1 and the gas phase of the adjustment container 6. . The original composition of the subdivision refrigerant M in the refrigerant storage tank 1 is HFC32 / HFC125 / HFC134a = 24.9
/15.1/60.0. As a result of the subdivision filling, the composition of the refrigerant in the subdivided and filled receiver near the liquid phase extraction rate of 95%, which is the extraction limit of the refrigerant storage tank 1, is HFC32 / HFC125 / HFC134a = 22.4.
/14.0/63.6, ± 1% by weight based on the original composition of the subdivision refrigerant M
Was out of the allowable range.
【0044】(実施例3)図1において、冷媒貯槽1に
小分け用冷媒Mとして非共沸混合冷媒R900JAを2
0kg充填した。容器内の小分け用冷媒Mを液相抜出管2
からサンプリングしてガスクロマトグラフィーにより元
組成を測定したところ、 HFC32/HFC134a=29.9/70.1 であった。(Embodiment 3) In FIG. 1, a non-azeotropic mixed refrigerant R900JA as a subdivision refrigerant M
0 kg was filled. Liquid phase discharge pipe 2 for subdivision refrigerant M in container
And the original composition was measured by gas chromatography. The result was HFC32 / HFC134a = 29.9 / 70.1.
【0045】別に、調整用容器6に冷媒R900JAを
40kg充填し調整用冷媒Hとした。この調整用冷媒Hの
量は冷媒貯槽1に充填した小分け用冷媒Mの量の2重量
倍であった。この調整用冷媒Hの組成は、 HFC32/HFC134a=31.4/68.6 であり、小分け用冷媒Mの元組成に対して±2重量%の
誤差範囲内で実質的に同等の組成であることが確認され
た。Separately, the adjusting container 6 was filled with 40 kg of the refrigerant R900JA to obtain the adjusting refrigerant H. The amount of the adjusting refrigerant H was twice as large as the amount of the subdivision refrigerant M filled in the refrigerant storage tank 1. The composition of the conditioning refrigerant H is HFC32 / HFC134a = 31.4 / 68.6, which is substantially the same as the original composition of the subdivision refrigerant M within an error range of ± 2% by weight. It was confirmed that.
【0046】次に、図1に示すように、冷媒貯槽1の頂
部と調整用容器6の頂部とを導通管7で連結し、それぞ
れの容器頂部の気相弁4,8を閉じたまま、側管の排気
弁10を開いて導通管7内を排気し、排気後に排気弁1
0を閉じ、気相弁4,8を開き、双方の容器の気相部を
導通させた。この状態で、冷媒貯槽1の液相抜出管2、
液相弁3及びフレキシブルホース5を通して冷媒を小分
け充填用の受器R1 ,R2 ,…,Rn に、0.5kgずつ
順次に抜き出し充填した。Next, as shown in FIG. 1, the top of the refrigerant storage tank 1 and the top of the adjusting vessel 6 are connected by a conducting pipe 7, and the gas phase valves 4 and 8 at the top of each vessel are kept closed. The exhaust pipe 10 of the side pipe is opened to evacuate the inside of the conduction pipe 7, and after the exhaust, the exhaust valve 1 is exhausted.
0 was closed, and the gas phase valves 4 and 8 were opened, and the gas phase portions of both containers were conducted. In this state, the liquid phase extraction pipe 2 of the refrigerant storage tank 1
Ekishoben 3 and receiver R 1, R 2 for dispensing filled with refrigerant through a flexible hose 5, ..., to R n, are sequentially extracted filled by 0.5 kg.
【0047】各小分け充填用の受器R1 ,R2 ,…,R
n から液相をサンプリングし、それぞれについて組成を
分析した。結果は、何れの受器についてもほぼ同等な組
成を示しており、冷媒貯槽1の抜き出し限界である液相
抜き出し率95%付近で小分け充填した受器中の冷媒に
ついても、その組成は小分け用冷媒Mの元組成に対して
組成変動が±1重量%以内であった。The receivers R 1 , R 2 ,.
The liquid phase was sampled from n and the composition was analyzed for each. The results show that almost the same composition is obtained for each of the receivers. The composition of the refrigerant in the receiver which is subdivided and filled near the liquid phase extraction rate of 95%, which is the extraction limit of the refrigerant storage tank 1, is the same as that for the subdivision. The composition variation was within ± 1% by weight with respect to the original composition of the refrigerant M.
【0048】(比較例3)冷媒貯槽1の頂部気相弁4を
閉じ冷媒貯槽1の気相と調整用容器6の気相とを遮断し
た以外は実施例3と同様の方法を繰り返した。冷媒貯槽
1中の初期の小分け用冷媒Mの元組成は HFC32/HFC134a=30.2/69.8 であった。小分け充填の結果、冷媒貯槽1の抜き出し限
界である液相抜き出し率95%付近で小分け充填した受
器中の冷媒の組成は、 HFC32/HFC134a=28.6/71.4 となって、小分け用冷媒Mの元組成に対して±1重量%
の許容範囲を越えて変化していた。Comparative Example 3 The same method as in Example 3 was repeated, except that the top gas phase valve 4 of the refrigerant storage tank 1 was closed and the gas phase of the refrigerant storage tank 1 and the gas phase of the adjustment container 6 were shut off. The original composition of the subdivision refrigerant M in the refrigerant storage tank 1 in the initial stage was HFC32 / HFC134a = 30.2 / 69.8. As a result of subdivision filling, the composition of the refrigerant in the receiver subdivided and filled near the liquid phase extraction rate of 95%, which is the extraction limit of the refrigerant storage tank 1, is HFC32 / HFC134a = 28.6 / 71.4. ± 1% by weight based on the original composition of refrigerant M
Was out of the allowable range.
【0049】(実施例4)図1において、冷媒貯槽1に
小分け用冷媒Mとして非共沸混合冷媒R403Bを20
kg充填した。容器内の小分け用冷媒Mを液相抜出管2か
らサンプリングしてガスクロマトグラフィーにより元組
成を測定したところ、 HC290/HCFC22/FC218=4.9/56.
1/39.0 であった。(Embodiment 4) In FIG. 1, a non-azeotropic mixed refrigerant R403B was stored in a refrigerant storage tank 1 as a subdivision refrigerant M for 20 minutes.
kg filled. The refrigerant M for subdivision in the container was sampled from the liquid phase extraction pipe 2 and the original composition was measured by gas chromatography. HC290 / HCFC22 / FC218 = 4.9 / 56.
1 / 39.0.
【0050】別に、調整用容器6に前記と同様なR40
3Bを100kg充填し、調整用冷媒Hとした。この調整
用冷媒Hの量は冷媒貯槽1中の小分け用冷媒Mの量の5
重量倍であった。この調整用冷媒Hの組成は、 HC290/HCFC22/FC218=5.2/55.
3/39.5 であり、小分け用冷媒Mの元組成に対して±1重量%の
誤差範囲内で実質的に同等の組成であることが確認され
た。Separately, the same R40 as described above is placed in the adjusting container 6.
100 kg of 3B was charged, and used as refrigerant H for adjustment. The amount of the refrigerant for adjustment H is 5 times the amount of the refrigerant for subdivision M in the refrigerant storage tank 1.
It was weight-fold. The composition of the adjusting refrigerant H is as follows: HC290 / HCFC22 / FC218 = 5.2 / 55.
3 / 39.5, and it was confirmed that the composition was substantially the same as the original composition of the subdivision refrigerant M within an error range of ± 1% by weight.
【0051】次に、図1に示すように、冷媒貯槽1の頂
部と調整用容器6の頂部とを導通管7で連結し、それぞ
れの容器頂部の気相弁4,8を閉じたまま、側管の排気
弁10を開いて導通管7内を排気し、排気後に排気弁1
0を閉じ、気相弁4,8を開き、双方の容器の気相部を
導通させた。この状態で、冷媒貯槽1の液相抜出管2、
液相弁3及びフレキシブルホース5を通して冷媒を小分
け充填用の受器R1 ,R2 ,…,Rn に、0.5kgずつ
順次に抜き出し充填した。Next, as shown in FIG. 1, the top of the refrigerant storage tank 1 and the top of the adjusting vessel 6 are connected by a conducting pipe 7, and the gas phase valves 4, 8 at the top of each vessel are kept closed. The exhaust pipe 10 of the side pipe is opened to evacuate the inside of the conduction pipe 7, and after the exhaust, the exhaust valve 1 is exhausted.
0 was closed, and the gas phase valves 4 and 8 were opened, and the gas phase portions of both containers were conducted. In this state, the liquid phase extraction pipe 2 of the refrigerant storage tank 1
Ekishoben 3 and receiver R 1, R 2 for dispensing filled with refrigerant through a flexible hose 5, ..., to R n, are sequentially extracted filled by 0.5 kg.
【0052】各小分け充填用の受器R1 ,R2 ,…,R
n から液相をサンプリングし、それぞれについて組成を
分析した。結果は、何れの受器についてもほぼ同等な組
成を示しており、冷媒貯槽1の抜き出し限界である液相
抜き出し率95%付近で小分け充填した受器中の冷媒に
ついても、その組成は小分け用冷媒Mの元組成に対して
組成変動が±1重量%以内であった。Each of the receivers R 1 , R 2 ,.
The liquid phase was sampled from n and the composition was analyzed for each. The results show that almost the same composition is obtained for each of the receivers. The composition of the refrigerant in the receiver which is subdivided and filled near the liquid phase extraction rate of 95%, which is the extraction limit of the refrigerant storage tank 1, is the same as that for the subdivision. The composition variation was within ± 1% by weight with respect to the original composition of the refrigerant M.
【0053】(比較例4)冷媒貯槽1の頂部気相弁4を
閉じて冷媒貯槽1の気相と調整用容器6の気相とを遮断
した以外は実施例4と同様の方法を繰り返した。冷媒貯
槽1中の小分け用冷媒Mの元組成は HC290/HCFC22/FC218=5.1/56.
2/38.7 であった。小分け充填の結果、冷媒貯槽1の抜き出し限
界である液相抜き出し率95%付近で小分け充填した受
器中の冷媒の組成は、 HC290/HCFC22/FC218=4.7/58.
3/37.0 となって、小分け用冷媒Mの元組成に対して±1重量%
の許容範囲を越えて変化していた。(Comparative Example 4) The same method as in Example 4 was repeated, except that the top gas phase valve 4 of the refrigerant storage tank 1 was closed to shut off the gas phase of the refrigerant storage tank 1 and the gas phase of the adjustment container 6. . The original composition of the subdivision refrigerant M in the refrigerant storage tank 1 is HC290 / HCFC22 / FC218 = 5.1 / 56.
2 / 38.7. As a result of the subdivision filling, the composition of the refrigerant in the subdivision-filled receiver near the liquid phase extraction rate of 95%, which is the extraction limit of the refrigerant storage tank 1, is HC290 / HCFC22 / FC218 = 4.7 / 58.
3 / 37.0, ± 1% by weight based on the original composition of subdivision refrigerant M
Was out of the allowable range.
【0054】(実施例5)図2において、調整用冷媒H
の気相が直接、小分け用冷媒Mの液相と接触するように
延長管29が挿入された冷媒貯槽21に、小分け用冷媒
Mとして非共沸混合冷媒R407Cを20kg充填した。
冷媒貯槽21内の小分け用冷媒Mを底部の液相抜出管2
2からサンプリングして元組成を分析したところ、 HFC32/HFC125/HFC134a=23.2
/24.9/51.9 であった。(Embodiment 5) Referring to FIG.
20 kg of the non-azeotropic mixed refrigerant R407C as the subdivision refrigerant M was charged into the refrigerant storage tank 21 in which the extension pipe 29 was inserted so that the gas phase of the above directly contacted the liquid phase of the subdivision refrigerant M.
The subdivision refrigerant M in the refrigerant storage tank 21 is supplied to the liquid phase extraction pipe 2 at the bottom.
HFC32 / HFC125 / HFC134a = 23.2
/24.9/51.9.
【0055】別に、調整用容器26に冷媒R407Cを
20kg充填し、調整用冷媒Hとした。この調整用冷媒H
の量は冷媒貯槽21中の小分け用冷媒Mの量の1重量倍
であった。この調整用冷媒Hの組成は、 HFC32/HFC125/HFC134a=24.1
/25.8/50.1 であり、小分け用冷媒Mの元組成に対して±2重量%の
誤差範囲内で実質的に同等の組成であることが確認され
た。Separately, 20 kg of the refrigerant R407C was charged into the adjusting container 26 to obtain the adjusting refrigerant H. This adjusting refrigerant H
Was 1 weight times the amount of the subdivision refrigerant M in the refrigerant storage tank 21. The composition of the adjusting refrigerant H is as follows: HFC32 / HFC125 / HFC134a = 24.1
/25.8/50.1, and it was confirmed that the composition was substantially the same as the original composition of the subdivision refrigerant M within an error range of ± 2% by weight.
【0056】次に、図2に示すように、冷媒貯槽21の
頂部と調整用容器26の頂部とにそれぞれ設けられた気
相弁24,28を導通管27で連結し、それぞれの気相
弁24,28を閉じた状態で、導通管27の側管に設け
た排気弁30を開いて導通管27内を排気し、排気後に
排気弁30を閉じ、気相弁24,28を開き、双方の容
器を導通させた。この状態で、冷媒貯槽21の液相抜出
管22及び液相弁23を通して冷媒を小分け充填用の受
器(図示せず)に、0.5kgずつ順次に抜き出し充填し
た。Next, as shown in FIG. 2, the gas phase valves 24 and 28 provided at the top of the refrigerant storage tank 21 and the top of the adjustment vessel 26 are connected by a conduction pipe 27. With the valves 24 and 28 closed, the exhaust valve 30 provided on the side pipe of the conduit 27 is opened to evacuate the interior of the conduit 27. After the exhaust, the exhaust valve 30 is closed and the gas phase valves 24 and 28 are opened. Were made conductive. In this state, the refrigerant was sequentially extracted and filled into a receiver (not shown) for subdivision filling at a rate of 0.5 kg through the liquid phase extraction pipe 22 and the liquid phase valve 23 of the refrigerant storage tank 21.
【0057】各小分け充填用の受器から液相をサンプリ
ングし、それぞれについて組成を分析したところ、冷媒
貯槽21の抜き出し限界に至るまで、複数の小分け充填
用受器に小分け用冷媒Mの元組成に対して組成変動が±
1重量%以内であった。The liquid phase was sampled from each of the subdivision filling receivers, and the composition was analyzed for each. As a result, the original composition of the subdivision refrigerant M was transferred to a plurality of subdivision filling receivers until the extraction limit of the refrigerant storage tank 21 was reached. ± composition variation
It was within 1% by weight.
【0058】[0058]
【発明の効果】本発明の非共沸混合冷媒の小分け充填方
法は、小分け用冷媒の気相又は液相を、この冷媒と実質
的に同等な組成を有する調整用冷媒の気相と導通させた
状態で小分け充填するものであるので、冷媒貯槽中の冷
媒の抜き出し限界に至るまで、小分けされた冷媒の組成
を一定に維持することができる。According to the method for subdividing and charging a non-azeotropic mixed refrigerant of the present invention, the gas phase or the liquid phase of the subdivision refrigerant is brought into communication with the gas phase of a conditioning refrigerant having substantially the same composition as this refrigerant. Since the refrigerant is filled in the divided state in the divided state, the composition of the divided refrigerant can be maintained at a constant level up to the limit of extracting the refrigerant from the refrigerant storage tank.
【図1】 本発明の一実施形態を示す工程図。FIG. 1 is a process chart showing one embodiment of the present invention.
【図2】 本発明の他の一実施形態を示す工程図。FIG. 2 is a process chart showing another embodiment of the present invention.
【図3】 本発明の一実施例における液相抜き出し率と
液相組成との関係を示すグラフ。FIG. 3 is a graph showing a relationship between a liquid phase extraction rate and a liquid phase composition in one example of the present invention.
【図4】 比較例における液相抜き出し率と液相組成と
の関係を示すグラフ。FIG. 4 is a graph showing a relationship between a liquid phase extraction rate and a liquid phase composition in a comparative example.
1…冷媒貯槽、 2…液相抜出管、 3…液相弁、 4,8…気相弁、 5…フレキシブルホース、 6…調整用容器、 7…導通管、 10…排気弁、 21…冷媒貯槽、 22…液相抜出管、 23…液相弁、 24,28…気相弁、 26…調整用容器、 27…導通管、 29…延長管、 30…排気弁、 M…小分け用冷媒、 m…冷媒、 H…調整用冷媒、 R1 ,R2 ,Rn …受器、 V1 ,V2 ,Vn …導入弁。DESCRIPTION OF SYMBOLS 1 ... Refrigerant storage tank, 2 ... Liquid phase extraction pipe, 3 ... Liquid phase valve, 4, 8 ... Gas phase valve, 5 ... Flexible hose, 6 ... Adjustment container, 7 ... Conducting pipe, 10 ... Exhaust valve, 21 ... Refrigerant storage tank, 22: liquid phase extraction pipe, 23: liquid phase valve, 24, 28: gas phase valve, 26: adjustment container, 27: conduction pipe, 29: extension pipe, 30: exhaust valve, M: subdivision refrigerant, m ... refrigerant, H ... adjusting refrigerant, R 1, R 2, R n ... receiver, V 1, V 2, V n ... introduction valve.
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成10年11月17日[Submission date] November 17, 1998
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】特許請求の範囲[Correction target item name] Claims
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【特許請求の範囲】[Claims]
【請求項3】 調整用冷媒の総量を、小分け用冷媒の総
量の1重量倍以上とすることを特徴とする請求項1又は
請求項2に記載の非共沸混合冷媒の小分け充填方法。 Wherein the total amount of the adjustment refrigerant claim 1 or, characterized in that a 1 weight times the total amount of dispensing refrigerant
A method for subdividing and charging a non-azeotropic mixed refrigerant according to claim 2 .
【請求項4】 調整用冷媒の組成を、小分け用冷媒の組
成に対して±2重量%の誤差範囲内で同等とすることを
特徴とする請求項1〜請求項3の何れかに記載の非共沸
混合冷媒の小分け充填方法。The composition of claim 4 for adjusting the refrigerant, according to any one of claims 1 to 3, characterized in that the equivalent within an error range of ± 2% by weight relative to the composition of the subdivision refrigerant Subdivision filling method of non-azeotropic mixed refrigerant.
【請求項5】 調整用冷媒の温度を、小分け用冷媒の温
度と同等〜+5℃の範囲内とすることを特徴とする請求
項1〜請求項4の何れかに記載の非共沸混合冷媒の小分
け充填方法。 5. The temperature adjustment refrigerant, a non-azeotropic refrigerant mixture according to any one of claims 1 to 4, characterized in that the temperature within the range of equivalents ~ + 5 ° C. in small portions refrigerant Subdivision filling method.
【請求項6】 小分け充填開始から終了までの小分け用
冷媒の温度を、小分け充填開始時の温度に対して±10
℃の変動範囲内とすることを特徴とする請求項1〜請求
項5の何れかに記載の非共沸混合冷媒の小分け充填方
法。 6. The temperature of the subdivision refrigerant from the start to the end of subdivision filling is ± 10% of the temperature at the start of subdivision filling.
The method according to any one of claims 1 to 5 , wherein the temperature is within a fluctuation range of ° C.
【請求項7】 小分け用冷媒が、ハイドロクロロフルオ
ロカーボン、ハイドロフルオロカーボン、ハイドロカー
ボン、フルオロカーボン、ハイドロフルオロエーテル、
フルオロエーテル、及びフルオロヨードカーボンの群か
ら選ばれた2種以上からなる非共沸混合冷媒であること
を特徴とする請求項1〜請求項6の何れかに記載の非共
沸混合冷媒の小分け充填方法。 7. The subdivision refrigerant is hydrochlorofluorocarbon, hydrofluorocarbon, hydrocarbon, fluorocarbon, hydrofluoroether,
The non-azeotropic refrigerant mixture according to any one of claims 1 to 6 , wherein the refrigerant is a non-azeotropic refrigerant mixture comprising two or more kinds selected from the group consisting of fluoroether and fluoroiodocarbon. Filling method.
【請求項8】 小分け用冷媒が、ジフルオロメタン、ペ
ンタフルオロエタン及び1,1,1,2-テトラフルオロエタン
の群から選ばれた2種以上からなる非共沸混合冷媒であ
ることを特徴とする請求項1〜請求項6の何れかに記載
の非共沸混合冷媒の小分け充填方法。 8. A non-azeotropic mixed refrigerant comprising at least two refrigerants selected from the group consisting of difluoromethane, pentafluoroethane and 1,1,1,2-tetrafluoroethane. 7. The method for subdividing and charging a non-azeotropic mixed refrigerant according to any one of claims 1 to 6 .
【手続補正2】[Procedure amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0007[Correction target item name] 0007
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0007】[0007]
【課題を解決するための手段】上記の課題を解決するた
めに本発明は、冷媒貯槽に充填された非共沸混合冷媒か
らなる小分け用冷媒を複数の受器に順次に小分け充填す
るに際して、前記の小分け用冷媒の気相又は液相を、こ
の冷媒と実質的に同等な組成を有する調整用冷媒の気相
と導通させる非共沸混合冷媒の小分け充填方法を提供す
る。前記において小分け用冷媒及び調整用冷媒は何れ
も、それぞれの気相が互いに導通された複数の容器に充
填されていてもよい。前記において調整用冷媒と小分け
用冷媒とは、同一の気液平衡関係に保持されるように導
通されていることが好ましい。前記において調整用冷媒
の総量は、小分け用冷媒の総量の1重量倍以上とするこ
とが好ましい。また調整用冷媒の組成は、小分け用冷媒
の組成に対して±2重量%の誤差範囲内で同等とするこ
とが好ましい。更に前記において調整用冷媒の温度は、
小分け用冷媒の温度と同等〜+5℃の範囲内とすること
が好ましい。更にまた小分け充填開始から終了までの小
分け用冷媒の温度は、小分け充填開始時の温度に対して
±10℃の変動範囲内とすることが好ましい。前記の小
分け用冷媒は、HCFC、HFC、HC、FC、HF
E、FE、及びフルオロヨードカーボン(FIC)の群
から選ばれた2種以上からなる非共沸混合冷媒であるこ
とが好ましい。特に前記の小分け用冷媒は、ジフルオロ
メタン(HFC32)、ペンタフルオロエタン(HFC
125)及び1,1,1,2-テトラフルオロエタン(HFC1
34a)の群から選ばれた2種以上からなる非共沸混合
冷媒であることが好ましい。本明細書において、「冷
媒」とは断りない限りその液相を意味する。また「組
成」は冷媒(液相)を構成する各成分の重量比を表す。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is directed to a method of sequentially filling a plurality of receivers with a subdivision refrigerant composed of a non-azeotropic mixed refrigerant filled in a refrigerant storage tank. There is provided a subdivision filling method of a non-azeotropic mixed refrigerant, in which a gaseous phase or a liquid phase of the subdivision refrigerant is conducted to a gaseous phase of an adjustment refrigerant having substantially the same composition as the refrigerant. In the above, each of the subdivision refrigerant and the adjustment refrigerant may be filled in a plurality of containers in which respective gas phases are conducted to each other. In the above, subdivision with adjustment refrigerant
And the refrigerant used to maintain the same gas-liquid equilibrium relationship.
It is preferably passed through. In the above, it is preferable that the total amount of the refrigerant for adjustment is at least 1 weight times the total amount of the refrigerant for subdivision. Further, it is preferable that the composition of the adjustment refrigerant is equal to the composition of the subdivision refrigerant within an error range of ± 2% by weight. Further, in the above, the temperature of the adjusting refrigerant is
It is preferable that the temperature is equal to or higher than the temperature of the subdivision refrigerant and + 5 ° C. Further, it is preferable that the temperature of the subdivision refrigerant from the start to the end of the subdivision filling be within a fluctuation range of ± 10 ° C. with respect to the temperature at the start of the subdivision filling. The subdivision refrigerant is HCFC, HFC, HC, FC, HF
It is preferably a non-azeotropic mixed refrigerant composed of two or more selected from the group consisting of E, FE, and fluoroiodocarbon (FIC). In particular, the subdivision refrigerants are difluoromethane (HFC32) and pentafluoroethane (HFC32).
125) and 1,1,1,2-tetrafluoroethane (HFC1
It is preferably a non-azeotropic refrigerant mixture composed of two or more kinds selected from the group 34a). In this specification, the term “refrigerant” means its liquid phase unless otherwise specified. "Composition" indicates the weight ratio of each component constituting the refrigerant (liquid phase).
Claims (7)
らなる小分け用冷媒を複数の受器に順次に小分け充填す
るに際して、前記の小分け用冷媒の気相又は液相を、こ
の冷媒と実質的に同等な組成を有する調整用冷媒の気相
と導通させることを特徴とする非共沸混合冷媒の小分け
充填方法。When a subdivision refrigerant composed of a non-azeotropic mixed refrigerant filled in a refrigerant storage tank is sequentially subdivided into a plurality of receivers, a gaseous phase or a liquid phase of the subdivision refrigerant is combined with the refrigerant. A subdivision filling method of a non-azeotropic refrigerant mixture, which is conducted to a gaseous phase of a conditioning refrigerant having substantially the same composition.
量の1重量倍以上とすることを特徴とする請求項1に記
載の非共沸混合冷媒の小分け充填方法。2. The method according to claim 1, wherein the total amount of the adjusting refrigerant is at least 1 weight times the total amount of the subdivision refrigerant.
成に対して±2重量%の誤差範囲内で同等とすることを
特徴とする請求項1又は請求項2に記載の非共沸混合冷
媒の小分け充填方法。3. The non-azeotropic composition according to claim 1, wherein the composition of the conditioning refrigerant is equal to the composition of the subdivision refrigerant within an error range of ± 2% by weight. Subdivision filling method of mixed refrigerant.
度と同等〜+5℃の範囲内とすることを特徴とする請求
項1〜請求項3の何れかに記載の非共沸混合冷媒の小分
け充填方法。4. The non-azeotropic mixed refrigerant according to any one of claims 1 to 3, wherein the temperature of the adjusting refrigerant is in a range from the temperature of the subdivision refrigerant to + 5 ° C. Subdivision filling method.
冷媒の温度を、小分け充填開始時の温度に対して±10
℃の変動範囲内とすることを特徴とする請求項1〜請求
項4の何れかに記載の非共沸混合冷媒の小分け充填方
法。5. The temperature of the subdivision refrigerant from the start to the end of the subdivision filling is ± 10% of the temperature at the start of the subdivision filling.
The method for subdividing and charging a non-azeotropic mixed refrigerant according to any one of claims 1 to 4, wherein the temperature is within a fluctuation range of ° C.
ロカーボン、ハイドロフルオロカーボン、ハイドロカー
ボン、フルオロカーボン、ハイドロフルオロエーテル、
フルオロエーテル、及びフルオロヨードカーボンの群か
ら選ばれた2種以上からなる非共沸混合冷媒であること
を特徴とする請求項1〜請求項5の何れかに記載の非共
沸混合冷媒の小分け充填方法。6. The subdivision refrigerant is hydrochlorofluorocarbon, hydrofluorocarbon, hydrocarbon, fluorocarbon, hydrofluoroether,
The non-azeotropic mixed refrigerant according to any one of claims 1 to 5, wherein the refrigerant is a non-azeotropic mixed refrigerant composed of two or more kinds selected from the group consisting of fluoroether and fluoroiodocarbon. Filling method.
ンタフルオロエタン及び1,1,1,2-テトラフルオロエタン
の群から選ばれた2種以上からなる非共沸混合冷媒であ
ることを特徴とする請求項1〜請求項5の何れかに記載
の非共沸混合冷媒の小分け充填方法。7. A non-azeotropic mixed refrigerant comprising at least two refrigerants selected from the group consisting of difluoromethane, pentafluoroethane and 1,1,1,2-tetrafluoroethane. The method for subdividing and charging a non-azeotropic mixed refrigerant according to any one of claims 1 to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9294618A JPH11124569A (en) | 1997-08-19 | 1997-10-27 | Method for subdividing and filling non-axeotropic refrigerant |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-222768 | 1997-08-19 | ||
JP22276897 | 1997-08-19 | ||
JP9294618A JPH11124569A (en) | 1997-08-19 | 1997-10-27 | Method for subdividing and filling non-axeotropic refrigerant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11124569A true JPH11124569A (en) | 1999-05-11 |
Family
ID=26525070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9294618A Pending JPH11124569A (en) | 1997-08-19 | 1997-10-27 | Method for subdividing and filling non-axeotropic refrigerant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11124569A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014038604A1 (en) * | 2012-09-04 | 2016-08-12 | ダイキン工業株式会社 | Method for charging mixed refrigerant containing 2,3,3,3-tetrafluoropropene |
JP6315071B1 (en) * | 2016-11-28 | 2018-04-25 | ダイキン工業株式会社 | Method for transferring and filling refrigerant composition |
WO2021132256A1 (en) | 2019-12-27 | 2021-07-01 | Cpmホールディング株式会社 | Mixed refrigerant production device, method for producing mixed refrigerant, mixed refrigerant container, method for using mixed refrigerant container, gas-liquid mixing function-equipped mixed refrigerant container, and method for using gas-liquid mixing function-equipped mixed refrigerant container |
-
1997
- 1997-10-27 JP JP9294618A patent/JPH11124569A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014038604A1 (en) * | 2012-09-04 | 2016-08-12 | ダイキン工業株式会社 | Method for charging mixed refrigerant containing 2,3,3,3-tetrafluoropropene |
JP6315071B1 (en) * | 2016-11-28 | 2018-04-25 | ダイキン工業株式会社 | Method for transferring and filling refrigerant composition |
WO2018097310A1 (en) * | 2016-11-28 | 2018-05-31 | ダイキン工業株式会社 | Method for transfer-filling refrigerant composition |
KR20190086518A (en) * | 2016-11-28 | 2019-07-22 | 다이킨 고교 가부시키가이샤 | Recharge method of refrigerant composition |
US10858563B2 (en) | 2016-11-28 | 2020-12-08 | Daikin Industries, Ltd. | Method for transfer-filling refrigerant composition |
WO2021132256A1 (en) | 2019-12-27 | 2021-07-01 | Cpmホールディング株式会社 | Mixed refrigerant production device, method for producing mixed refrigerant, mixed refrigerant container, method for using mixed refrigerant container, gas-liquid mixing function-equipped mixed refrigerant container, and method for using gas-liquid mixing function-equipped mixed refrigerant container |
JP2021105502A (en) * | 2019-12-27 | 2021-07-26 | Cpmホールディング株式会社 | Mixed refrigerant production device, mixed refrigerant production method, mixed refrigerant container, method of using mixed refrigerant container, mixed refrigerant container with gas-liquid mixing function, and method of using mixed refrigerant container with gas-liquid mixing function |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6000230A (en) | Method for dividing and charging of non-azeotropic mixed refrigerant | |
CN1102729C (en) | Apparatus and method for charging three-component mixed refrigerant | |
JP5084986B2 (en) | Compositions of difluoromethane, pentafluoroethane, 1,1,1,2-tetrafluoroethane and hydrocarbons | |
US9969917B2 (en) | Method for producing working fluid | |
WO1992016597A1 (en) | Non-azeotropic refrigerant compositions comprising difluoromethane; 1,1,1-trifluoroethane; or propane | |
EP0772659A1 (en) | Refrigerant compositions | |
US6237348B1 (en) | Process for transferring liquefied gases between containers | |
US6018952A (en) | Method for charging refrigerant blend | |
WO2017126447A1 (en) | Filling method for mixed refrigerant including trifluoroethylene | |
WO1997011138A1 (en) | Drop-in substitutes for dichlorodifluoromethane refrigerant | |
JP2698319B2 (en) | Non-azeotropic mixtures containing difluoromethane and 1,1,1,2-tetrafluoroethane and their application as refrigerant liquids in air conditioning | |
JP2002228307A (en) | Mixed refrigerant filling method and apparatus filled with mixed refrigerant | |
AU722935B2 (en) | Method for charging refrigerant blend | |
JPH11124569A (en) | Method for subdividing and filling non-axeotropic refrigerant | |
US20220154056A1 (en) | Composition of fluoroolefin and fluoroalkane | |
JPH08291284A (en) | Pseudoazeotrope based on difluoromethane and pentafluorodimethyl ether and its use as refrigerant | |
EP3521397B1 (en) | Method for transfer-filling refrigerant composition | |
JPH1161110A (en) | Regeneration of residual refrigerant | |
JP3575090B2 (en) | Adjusting composition change during non-azeotropic refrigerant mixture transfer and filling | |
JP3575089B2 (en) | Method for forming a non-azeotropic mixed refrigerant | |
US5709093A (en) | Process for minimizing compositional changes | |
WO2017126446A1 (en) | Filling method for mixed refrigerant including trifluoroethylene | |
JP3589247B2 (en) | Liquefied gas filling method | |
JPH10267474A (en) | Refrigerant supply container | |
MacNeill et al. | Charging And Recovery Techniques For Low GWP Refrigerant Blends |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20001017 |