JPH11122805A - Conduction controller and self-diagnostic method - Google Patents

Conduction controller and self-diagnostic method

Info

Publication number
JPH11122805A
JPH11122805A JP9278817A JP27881797A JPH11122805A JP H11122805 A JPH11122805 A JP H11122805A JP 9278817 A JP9278817 A JP 9278817A JP 27881797 A JP27881797 A JP 27881797A JP H11122805 A JPH11122805 A JP H11122805A
Authority
JP
Japan
Prior art keywords
time
conduction
semiconductor switches
threshold value
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9278817A
Other languages
Japanese (ja)
Other versions
JP3339383B2 (en
Inventor
Toshiyuki Taniguchi
俊之 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP27881797A priority Critical patent/JP3339383B2/en
Publication of JPH11122805A publication Critical patent/JPH11122805A/en
Application granted granted Critical
Publication of JP3339383B2 publication Critical patent/JP3339383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To lessen stress on a semiconductor switch while shortening the time required for failure diagnosis by shortening the conduction time and the conduction interval of the semiconductor switch. SOLUTION: Semiconductor switches S1, S2 constituting a switch circuit 4 are subjected to time division sequential conduction at a constant time interval for a time shorter than that required for an inrush current to reach an absolute maximum rated level at the time of conduction and the smoothed output voltage Vm from a DC motor is compared with a threshold level when a specified number of conduction times us reached. If it is lower than the threshold level, a decision is made that at least one of the semiconductor switches S1, S2 is abnormal. According to the arrangement, stress on the semiconductor switch can be lessened while shortening the time required for failure diagnosis.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電動式アクチュエ
ータの駆動源である直流モータ等の制御対象を通電制御
する通電制御装置及びその自己診断方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energization control device for energizing a control target such as a DC motor which is a drive source of an electric actuator, and a self-diagnosis method thereof.

【0002】[0002]

【従来の技術】図4に示す通電制御装置1は、電動式ア
クチュエータの駆動源である直流モータ2を通電制御対
象とする装置であり、バッテリ電源3のプラス端子と直
流モータ2の正電圧印加端子の間に接続したスイッチ回
路4を、マイクロプロセッサ5が導通制御する構成とさ
れている。スイッチ回路4は、直流モータ2の駆動に必
要な駆動電流に見合う数の半導体スイッチを並列接続し
たものであり、本例の場合、ゲートに印加するゲート電
圧に応じて導通或いは非導通とされFET(電界効果ト
ランジスタ)からなる2個の半導体スイッチS1,S2
を、互いに並列接続して駆動電流要件に適合させてあ
る。半導体スイッチS1,S2のゲートは、マイクロプ
ロセッサ5の出力ポートに接続してある。また、マイク
ロプロセッサ5のA/D変換器内蔵入力ポートには、フ
ィルタ回路6を介して直流モータ2の正電圧印加端子が
接続してある。フィルタ回路6は、抵抗Rとコンデンサ
Cからなる低域濾波回路からなり、直流モータ2への印
加電圧を平滑してマイクロプロセッサ5の入力ポートに
供給する働きをする。
2. Description of the Related Art An energization control apparatus 1 shown in FIG. 4 is an apparatus for energization control of a DC motor 2 which is a drive source of an electric actuator, and has a positive terminal of a battery power supply 3 and a positive voltage application to the DC motor 2. The switching circuit 4 connected between the terminals is controlled by a microprocessor 5 to conduct. The switch circuit 4 is formed by connecting in parallel a number of semiconductor switches corresponding to the drive current required for driving the DC motor 2. In this example, the switch is turned on or off depending on the gate voltage applied to the gate. (Semiconductor Switches S1 and S2)
Are connected in parallel with each other to meet the drive current requirements. The gates of the semiconductor switches S1 and S2 are connected to the output port of the microprocessor 5. A positive voltage application terminal of the DC motor 2 is connected to an input port with a built-in A / D converter of the microprocessor 5 via a filter circuit 6. The filter circuit 6 includes a low-pass filter circuit including a resistor R and a capacitor C, and functions to smooth the voltage applied to the DC motor 2 and supply the smoothed voltage to the input port of the microprocessor 5.

【0003】ところで、半導体スイッチS1,S2は、
機械式リレー等に較べより多くの故障モードを抱えてお
り、定期的な故障診断が欠かせないものである。本例に
示したスイッチ回路4は、直流モータ2の駆動電流要件
に応えるべく一対の半導体スイッチS1,S2を並列接
続して構成してあるため、それぞれの半導体スイッチS
1,S2は個別に診断する必要がある。そこで、従来
は、各半導体スイッチS1,S2を十分な余裕を見込ん
で設定した一定の時間を置いて交互に導通させ、そのと
きの直流モータ2の印加電圧Vdをフィルタ回路6を介
して取り込み、その平滑出力電圧Vmをしきい値判別し
て故障判定する方法を採ってきた。図5は、図4に示し
たマイクロプロセッサによる故障診断動作を説明するた
めのフローチャート、図6(A),(B)は、それぞれ
正常時と故障時の図4に示したモータ駆動装置の回路各
部の信号波形図である。
Incidentally, the semiconductor switches S1 and S2 are
It has more failure modes than a mechanical relay or the like, and periodic failure diagnosis is indispensable. The switch circuit 4 shown in this example is configured by connecting a pair of semiconductor switches S1 and S2 in parallel in order to meet the drive current requirement of the DC motor 2, so that each semiconductor switch S
1 and S2 need to be individually diagnosed. Therefore, conventionally, the semiconductor switches S1 and S2 are turned on alternately at a set time interval in consideration of a sufficient margin, and the applied voltage Vd of the DC motor 2 at that time is taken in through the filter circuit 6. A method of judging a failure by judging a threshold value of the smoothed output voltage Vm has been adopted. FIG. 5 is a flowchart for explaining a failure diagnosis operation by the microprocessor shown in FIG. 4, and FIGS. 6A and 6B are diagrams showing a circuit of the motor drive device shown in FIG. It is a signal waveform diagram of each part.

【0004】診断にさいしては、まず、図5のステップ
(201)に示したように、マイクロプロセッサ5が一
方の半導体スイッチS1を導通させる。そして、直流モ
ータ2の印可電圧Vdが安定するのに必要な一定時間T
1が経過するまで導通状態を持続させる。そして、規定
の一定時間T1が経過したならば、判断ステップ(20
2)に続く判断ステップ(203)において、フィルタ
回路4が平滑出力する電圧Vdを、入力ポートが内蔵す
るA/D変換器(図示せず)を介して取り込み、マイク
ロプロセッサ5の診断動作プログラム上に設定された故
障判定しきい値Vthhと比較する。
In diagnosis, first, as shown in step (201) of FIG. 5, the microprocessor 5 turns on one semiconductor switch S1. Then, a fixed time T required for the applied voltage Vd of the DC motor 2 to stabilize.
The conduction state is maintained until 1 has elapsed. Then, if the specified fixed time T1 has elapsed, the judgment step (20)
In the judgment step (203) following 2), the voltage Vd smoothed and output by the filter circuit 4 is taken in via an A / D converter (not shown) built in the input port, and the voltage Vd is input to the diagnostic operation program of the microprocessor 5. Is compared with the failure determination threshold value Vthh set in (1).

【0005】半導体スイッチS1が正常である場合は、
図6(A)に示したように、導通後に僅かの遅れを伴っ
て直流モータ2の印加電圧Vdは上昇し、最終的にはバ
ッテリ電源3の出力電圧にごく近い電圧で安定する。こ
のため、導通後一定時間T1が経過したときには、平滑
出力電圧Vmが故障判定しきい値Vthhを越えてお
り、判断ステップ(203)における判断は肯定され
る。判断ステップ(203)における判断が肯定され、
半導体スイッチS1が正常であることが判ると、第2段
階として、ステップ(204)において、マイクロプロ
セッサ5はもう一方の半導体スイッチS2を導通させ、
直後のステップ(205)において、半導体スイッチS
1を非導通とする。そして、ここでもまた、直流モータ
2への印可電圧Vdが安定するのに必要な一定時間T1
が経過するまで導通状態を持続させ、一定時間T1が経
過したときに、判断ステップ(206)に続く判断ステ
ップ(207)において、フィルタ回路6の出力電圧V
mをマイクロプロセッサ5のプログラム上で設定された
故障判定しきい値Vthhと比較する。
If the semiconductor switch S1 is normal,
As shown in FIG. 6A, the applied voltage Vd of the DC motor 2 increases with a slight delay after the conduction, and finally stabilizes at a voltage very close to the output voltage of the battery power supply 3. Therefore, when the predetermined time T1 has elapsed after the conduction, the smoothed output voltage Vm has exceeded the failure determination threshold value Vthh, and the determination in the determination step (203) is affirmed. The determination in the determination step (203) is affirmed,
When the semiconductor switch S1 is found to be normal, as a second step, in step (204), the microprocessor 5 turns on the other semiconductor switch S2,
In the immediately following step (205), the semiconductor switch S
1 is non-conductive. In this case, too, the fixed time T1 required for stabilizing the applied voltage Vd to the DC motor 2 is obtained.
Is maintained until a predetermined time T1 elapses, and in a determination step (207) following the determination step (206), the output voltage V of the filter circuit 6 is determined.
m is compared with a failure determination threshold value Vthh set on a program of the microprocessor 5.

【0006】この場合、半導体スイッチS2が正常であ
れば、図6(A)に示したように、導通後も印加電圧V
dはを維持する。しかしながら、半導体スイッチS2が
故障している場合は、印加電圧Vdはバッテリ電源3の
出力電圧にごく近い電圧を維持できず、図6(B)に示
したように、時間の経過とともに降圧する。従って、導
通後一定時間T1が経過すると、平滑出力電圧Vmは0
V近くまで降圧してしまい、その結果として判断ステッ
プ(207)においてVm≦Vthhであると判断され
る。これにより、半導体スイッチS2は故障しているも
のとして、ステップ(211)において故障が報知され
る。
In this case, if the semiconductor switch S2 is normal, as shown in FIG.
d maintains However, when the semiconductor switch S2 is out of order, the applied voltage Vd cannot maintain a voltage very close to the output voltage of the battery power supply 3, and drops as time passes, as shown in FIG. Therefore, when a certain time T1 elapses after the conduction, the smoothed output voltage Vm becomes 0
The voltage drops to near V, and as a result, it is determined in the determination step (207) that Vm ≦ Vthh. Thereby, the failure is notified in step (211) assuming that the semiconductor switch S2 has failed.

【0007】上記ステップ(207)までにおいて、半
導体スイッチS1,S2に異常が検出されなかった場
合、マイクロプロセッサ5は、続くステップ(208)
において半導体スイッチS2を非導通とする。そして、
印可電圧Vdが零電圧に収束するのに十分な一定時間T
2が経過したときに、判断ステップ209に続くステッ
プ(210)において、フィルタ回路6の出力電圧Vm
を取り込み、ステップ(210)においてマイクロプロ
セッサ5のプログラム上で設定された故障判定しきい値
Vthlと比較する。この場合、半導体スイッチS1,
S2がともに正常であれば、直流モータ2の印加電圧V
mは0Vにごく近い電圧で安定するが、いずれか一方に
異常がある場合は、故障判定しきい値電圧Vthl以下
となることはない。このため、Vm>Vthlであるこ
とが判った場合は、半導体スイッチS1又はS2のいず
れか一方が故障しているからであり、ステップ(21
1)において故障が報知される。
If no abnormality is detected in the semiconductor switches S1 and S2 up to the step (207), the microprocessor 5 proceeds to the next step (208).
, The semiconductor switch S2 is turned off. And
A constant time T sufficient for the applied voltage Vd to converge to zero voltage
2, the output voltage Vm of the filter circuit 6 is determined in a step (210) following the determination step 209.
And compares it with the failure determination threshold value Vthl set on the program of the microprocessor 5 in step (210). In this case, the semiconductor switches S1,
If both S2 are normal, the applied voltage V
Although m is stabilized at a voltage very close to 0 V, if any one of them is abnormal, it does not fall below the failure determination threshold voltage Vthl. For this reason, if it is determined that Vm> Vthl, it means that one of the semiconductor switches S1 and S2 has failed, and step (21)
A failure is reported in 1).

【0008】[0008]

【発明が解決しようとする課題】上記従来の通電制御装
置1は、マイクロプロセッサ5が自己診断プログラムに
従って2つの半導体スイッチS1,S2を交互に一定時
間ずつ動作させ、そのときの直流モータ2の印加電圧V
dを平滑して得られる電圧Vmを故障判定しきい値電圧
Vthh或いはVthlと比較し、比較結果に応じて自
己診断を行っていた。しかしながら、個々の半導体スイ
ッチS1,S2の診断は、直流モータ2に印加する印可
電圧Vdが安定するのに十分な時間T1,T2を割り当
て、静的に安定した条件下で平滑出力電圧Vmをしきい
値判別していたため、診断のつど半導体スイッチS1或
いはS2に大電流の突入電流が流れ込んでいた。このた
め、こうし大電流によるストレスが診断のつど蓄積さ
れ、しかも定常電流による温度上昇がストレスを助長す
るため、故障率の上昇を招くといった課題を抱えるもの
であった。さらにまた、各半導体スイッチS1,S2を
十分な時間を置いて交互に動作させながら診断するた
め、スイッチ回路4を構成する半導体スイッチの数が増
えるほど、診断に要する時間が長時間化するといった課
題を抱えるものであった。
In the conventional energization control device 1, the microprocessor 5 alternately operates the two semiconductor switches S1 and S2 for a predetermined time according to a self-diagnosis program, and applies the DC motor 2 at that time. Voltage V
The voltage Vm obtained by smoothing d is compared with the failure determination threshold voltage Vthh or Vthl, and self-diagnosis is performed according to the comparison result. However, the diagnosis of the individual semiconductor switches S1 and S2 is performed by allocating time periods T1 and T2 sufficient to stabilize the applied voltage Vd applied to the DC motor 2, and determining the smoothed output voltage Vm under statically stable conditions. Since the threshold value was determined, a large inrush current flowed into the semiconductor switch S1 or S2 at each diagnosis. For this reason, the stress caused by such a large current is accumulated each time diagnosis is performed, and the temperature rise caused by the steady current promotes the stress. Furthermore, since the diagnosis is performed while the semiconductor switches S1 and S2 are alternately operated at a sufficient time interval, the time required for the diagnosis becomes longer as the number of semiconductor switches constituting the switch circuit 4 increases. It was something to have.

【0009】本発明は上記課題を解決したものであり、
半導体スイッチへの通電時間ならびに通電間隔を短縮
し、半導体スイッチへのストレス軽減ならびに故障診断
の時間短縮を図ることを目的とするものである。
The present invention has solved the above-mentioned problems, and
It is an object of the present invention to reduce the energizing time and energizing interval to a semiconductor switch, to reduce stress on the semiconductor switch, and to shorten the time for failure diagnosis.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明の通電制御装置は、互いに並列に接続した複
数の半導体スイッチからなり、制御対象と電源の間に接
続されるスイッチ回路と、前記制御対象に印加される電
圧を平滑して検出するフィルタ回路と、前記スイッチ回
路の各半導体スイッチを個々に導通制御するとともに、
診断モード時には前記複数の半導体スイッチを導通時に
流れ込む突入電流が絶対最大定格値まで上昇する時間よ
りも短い時間だけ、一定の時間間隔を置いて時分割的に
順次導通させ、所定の導通回数に達した時点で前記フィ
ルタ回路の出力をしきい値判別し、しきい値以下である
場合は前記複数の半導体スイッチの少なくとも一つが異
常であると診断するマイクロプロセッサとを具備するこ
とを特徴とする。
To achieve the above object, an energization control device according to the present invention comprises a plurality of semiconductor switches connected in parallel to each other, and a switch circuit connected between a control target and a power supply; A filter circuit for smoothing and detecting a voltage applied to the control target, and individually controlling conduction of each semiconductor switch of the switch circuit;
In the diagnostic mode, the plurality of semiconductor switches are sequentially turned on in a time-sharing manner at a fixed time interval for a time shorter than a time during which an inrush current flowing during conduction rises to an absolute maximum rated value, and a predetermined number of times of conduction is reached. A threshold value discrimination of the output of the filter circuit at the time when the threshold value is reached, and a microprocessor that diagnoses that at least one of the plurality of semiconductor switches is abnormal when the output value is equal to or less than the threshold value.

【0011】また、本発明の通電制御装置の自己診断方
法は、制御対象と電源の間に互いに並列に接続した複数
の半導体スイッチを、個々に導通制御するとともに前記
制御対象に印加される電圧を平滑して検出する通電制御
装置の自己診断方法であって、前記複数の半導体スイッ
チを導通時に流れ込む突入電流が絶対最大定格値まで上
昇する時間よりも短い時間だけ、一定の時間間隔を置い
て時分割的に順次導通させ、所定の導通回数に達した時
点で前記平滑検出した電圧をしきい値判別し、しきい値
以下である場合は前記複数の半導体スイッチの少なくと
も一つが異常であると診断することを特徴とするもので
ある。
In addition, the self-diagnosis method of the power supply control device according to the present invention controls the conduction of a plurality of semiconductor switches connected in parallel between a control target and a power supply, and controls a voltage applied to the control target. A self-diagnosis method for an energization control device that detects by smoothing, wherein a time interval is shorter than a time period during which an inrush current flowing into the plurality of semiconductor switches during conduction increases to an absolute maximum rated value at a predetermined time interval. Conduction is sequentially performed in a divided manner, and when the predetermined number of times of conduction is reached, the smoothed voltage is discriminated as a threshold value, and when the voltage is equal to or less than the threshold value, at least one of the plurality of semiconductor switches is diagnosed as abnormal It is characterized by doing.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態を図1な
いし図3を参照して説明する。図1は、本発明の通電制
御装置を適用したモータ駆動装置の一実施形態を示す概
略回路構成図、図2は、図1に示したマイクロプロセッ
サによる故障診断動作を説明するためのフローチャー
ト、図3(A),(B)は、それぞれ正常時と故障時の
図1に示したモータ駆動装置の回路各部の信号波形図で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic circuit configuration diagram showing an embodiment of a motor drive device to which an energization control device according to the present invention is applied, and FIG. 2 is a flowchart for explaining a failure diagnosis operation by the microprocessor shown in FIG. 3 (A) and 3 (B) are signal waveform diagrams of respective parts of the circuit of the motor drive device shown in FIG. 1 at the time of normal operation and at the time of failure, respectively.

【0013】図1に示す通電制御装置11は、回路構成
上はマイクロプロセッサ12を除き、従来とほぼ同一の
回路構成をなす。マイクロプロセッサ12には、半導体
スイッチS1,S2の診断ソフトウェアを改良したもの
が用いられ、この改良により過度のストレスを及ぼすこ
となく半導体スイッチS1,S2を短時間で診断できる
ようになっている。マイクロプロセッサ12が搭載する
診断ソフトウェアの最大の改良点は、半導体スイッチS
1,S2を導通時に流れ込む突入電流が絶対最大定格値
まで上昇する時間よりも短い時間だけ、一定の時間間隔
を置いて時分割的に順次導通させるようにした点にあ
り、半導体スイッチS1,S2への通電時間ならびに通
電間隔を従来に比べ相当に短縮できる点にある。
The energization control device 11 shown in FIG. 1 has almost the same circuit configuration as the conventional one except for the microprocessor 12 in terms of circuit configuration. As the microprocessor 12, improved software for diagnosing the semiconductor switches S1 and S2 is used. With this improvement, the semiconductor switches S1 and S2 can be diagnosed in a short time without exerting excessive stress. The biggest improvement of the diagnostic software installed in the microprocessor 12 is that the semiconductor switch S
1 and S2 are turned on sequentially in a time-division manner at regular time intervals for a time shorter than the time during which the inrush current flowing during conduction rises to the absolute maximum rated value. The point is that the current supply time and the current supply interval can be considerably reduced as compared with the related art.

【0014】ここで、診断モードにおいてマイクロプロ
セッサ12が診断動作を開始すると、まず最初にステッ
プ(101)において、半導体スイッチS1を導通さ
せ、τ1時間に亙ってその状態を持続させる。ただし、
この導通時間τ1は、前述したように、半導体スイッチ
S1を導通させた瞬間に流れ込む突入電流が、半導体ス
イッチS1の絶対最大定格値まで上昇する時間よりも短
く設定してある。続いて、時間τ1が経過した時点で、
判断ステップ(102)に続くステップ(103)にお
いて、半導体スイッチS1を非導通とする。この場合の
非導通期間τ2は、ここでは導通期間τ1と同程度の時
間に設定してある。
Here, when the microprocessor 12 starts a diagnostic operation in the diagnostic mode, first, in step (101), the semiconductor switch S1 is turned on, and the state is maintained for τ1 time. However,
As described above, the conduction time τ1 is set to be shorter than the time during which the rush current flowing at the moment when the semiconductor switch S1 is turned on increases to the absolute maximum rated value of the semiconductor switch S1. Subsequently, when the time τ1 has elapsed,
In a step (103) following the determination step (102), the semiconductor switch S1 is turned off. In this case, the non-conduction period τ2 is set to be approximately the same as the conduction period τ1.

【0015】半導体スイッチS1を非導通としてから時
間τ2が経過すると、判断ステップ(104)に続くス
テップ(105)において、マイクロプロセッサ12は
半導体スイッチS2を導通させ、τ1時間に亙ってその
状態を持続させる。ただし、この導通時間τ1も、半導
体スイッチS2を導通させた瞬間に流れ込む突入電流
が、半導体スイッチS2の絶対最大定格値まで上昇する
時間よりも短い時間であることは同様である。続いて、
時間τ1が経過した時点で、判断ステップ(106)に
続くステップ(107)において、半導体スイッチS2
を非導通とする。この場合の非導通期間τ2は、導通期
間τ1と同程度の時間に設定してある。
When the time τ2 has elapsed since the semiconductor switch S1 was turned off, the microprocessor 12 turns on the semiconductor switch S2 in a step (105) following the determination step (104), and the state is changed over the time τ1. Persist. However, the conduction time τ1 is also shorter than the time when the inrush current flowing at the moment when the semiconductor switch S2 is turned on rises to the absolute maximum rated value of the semiconductor switch S2. continue,
When the time τ1 has elapsed, in the step (107) following the determination step (106), the semiconductor switch S2
Is turned off. In this case, the non-conduction period τ2 is set to a time approximately equal to the conduction period τ1.

【0016】半導体スイッチS2を非導通としてから時
間τ2が経過すると、判断ステップ(108)に続くス
テップ(109)において、ステップ(101)からス
テップ(108)までの処理が、予め定めた所定回数だ
け実行されたかどうか判断する。実行回数が所定回数に
満たない場合は、判断ステップ(109)からステップ
(101)に戻り、これまでと同じ動作を繰り返すが、
実行回数が所定回数に達している場合は、続く判断ステ
ップ(110)においてフィルタ回路6の出力電圧Vm
をしきい判別する。
When the time τ2 has elapsed since the semiconductor switch S2 was turned off, in the step (109) following the determination step (108), the processing from the step (101) to the step (108) is repeated a predetermined number of times. Determine if it has been performed. If the number of executions is less than the predetermined number, the process returns from the determination step (109) to the step (101) and repeats the same operation as before.
If the number of executions has reached the predetermined number, the output voltage Vm of the filter circuit 6 is determined in the subsequent determination step (110).
Is determined.

【0017】この場合、半導体スイッチS1,S2がと
もに正常であれば、直流モータ2はτ1/(τ1+τ
2)のデューティをもって断続的に所定回数通電される
ため、平滑出力電圧Vmは、図3(A)に示したように
定常駆動電圧にまで上昇しており、バッテリ電源3の出
力電圧にごく近い電圧で安定する。このため、判断ステ
ップ(110)において平滑出力電圧Vmをしきい判別
したときに、しきい値電圧VthをVmが上回っていれ
ば、半導体スイッチS1,S2はともに正常であると判
断することができる。これに対し、半導体スイッチS
1,S2のいずれか一方、例えばS2が故障している場
合は、直流モータ2はτ1/2(τ1+τ2)のデュー
ティでしか断続的に通電されず、図3(B)に示したよ
うに、故障した半導体スイッチS2による通電が欠落す
る分、直流モータ2の印加電圧Vdは上昇しない。この
ため、判断ステップ(110)において平滑出力電圧V
mをしきい判別したときに、しきい値電圧VthをVm
が上回ることはない。すなわち、Vth≦Vmである。
従って、このときのしきい値判別結果に従い、マイクロ
プロセッサ12は半導体スイッチS1,S2が正常であ
るか、或いは少なくとも一方に異常があるかを診断する
ことができる。
In this case, if the semiconductor switches S1 and S2 are both normal, the DC motor 2 is τ1 / (τ1 + τ
Since the current is intermittently supplied a predetermined number of times with the duty of 2), the smoothed output voltage Vm rises to the steady drive voltage as shown in FIG. 3A, and is very close to the output voltage of the battery power supply 3. Stabilizes with voltage. Therefore, when the threshold value Vm is higher than the threshold voltage Vth when the threshold value of the smoothed output voltage Vm is determined in the determination step (110), it can be determined that both the semiconductor switches S1 and S2 are normal. . On the other hand, the semiconductor switch S
If any one of S1 and S2, for example, S2 is faulty, the DC motor 2 is intermittently energized only at a duty of τ1 / 2 (τ1 + τ2), and as shown in FIG. The voltage Vd applied to the DC motor 2 does not increase to the extent that energization by the failed semiconductor switch S2 is lost. Therefore, in the determination step (110), the smoothed output voltage V
m, the threshold voltage Vth is set to Vm
Will not exceed. That is, Vth ≦ Vm.
Therefore, the microprocessor 12 can diagnose whether the semiconductor switches S1 and S2 are normal or at least one of them is abnormal according to the threshold value determination result at this time.

【0018】このように、上記の通電制御装置11は、
スイッチ回路4を構成する半導体スイッチS1,S2
を、それぞれ導通時に流れ込む突入電流が絶対最大定格
値まで上昇する時間よりも短い時間τ1だけ、一定の時
間間隔τ2を置いて時分割的に順次導通させ、所定の導
通回数に達した時点で直流モータ2の平滑出力電圧Vm
をしきい値判別し、しきい値以下である場合は半導体ス
イッチS1,S2の少なくとも一つが異常であると診断
するようにしたから、個々の半導体スイッチS1,S2
に対し過大な突入電流通電に伴うストレスを与えること
はなく、無理をさせずに故障診断することができる。従
って、例えば直流モータ2に印加する印可電圧Vdが安
定するのに十分な時間を割り当て、静的に安定した条件
下で平滑出力電圧Vmをしきい値判別する従来装置1の
ように、診断のつど半導体スイッチS1,S2に大電流
の突入電流が流れ込み、大電流によるストレスが回を増
すにつれて蓄積されたり、定常電流による温度上昇のス
トレス等が原因で故障率の上昇を招くといったことはな
く、しかも故障診断に要する時間は、直流モータ2の電
圧印加特性ならびにフィルタ回路6の時定数から決定さ
れ、複数の半導体スイッチS1,S2を時分割的に順次
導通させるため、必要最小限の回数だけ導通させること
で診断が可能であり、直流モータ2に印加する印可電圧
が安定するのに十分な時間を割り当てていた従来の方法
と異なり、短時間で診断を完了することができる。
As described above, the above-described power supply control device 11
Semiconductor switches S1 and S2 constituting switch circuit 4
Are successively conducted in a time-division manner at a constant time interval τ2 for a time τ1 shorter than the time during which the inrush current flowing during conduction rises to the absolute maximum rated value, and when the prescribed number of conductions is reached, Smooth output voltage Vm of motor 2
Is determined as a threshold value, and when the difference is equal to or less than the threshold value, at least one of the semiconductor switches S1 and S2 is diagnosed as abnormal.
Therefore, stress is not given due to excessive inrush current flow, and a failure diagnosis can be performed without overdoing. Therefore, for example, a sufficient time is allowed for the applied voltage Vd to be applied to the DC motor 2 to stabilize, and the threshold value of the smoothed output voltage Vm is determined under statically stable conditions, as in the conventional apparatus 1. Each time the inrush current of the large current flows into the semiconductor switches S1 and S2, the stress caused by the large current does not accumulate as the frequency increases, and the failure rate does not increase due to the stress of the temperature rise due to the steady current, etc. In addition, the time required for the failure diagnosis is determined from the voltage application characteristics of the DC motor 2 and the time constant of the filter circuit 6, and the plurality of semiconductor switches S1 and S2 are sequentially turned on in a time-sharing manner. This makes it possible to make a diagnosis, and unlike the conventional method in which sufficient time is allocated to stabilize the applied voltage applied to the DC motor 2, In it is possible to complete the diagnosis.

【0019】なお、上記実施形態では、一対の半導体ス
イッチS1,S2で構成されたスイッチ回路4を用いた
場合を例にとったが、スイッチ回路4を構成する半導体
スイッチの数は3以上であってもよい。また、通電制御
対象は直流モータ2に限定されず、電動式アクチュエー
タの他の駆動源等の通電制御対象であってもよい。
In the above embodiment, the case where the switch circuit 4 composed of a pair of semiconductor switches S1 and S2 is used is taken as an example. However, the number of semiconductor switches constituting the switch circuit 4 is three or more. You may. Further, the energization control target is not limited to the DC motor 2 and may be an energization control target such as another drive source of the electric actuator.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
スイッチ回路を構成する半導体スイッチを、それぞれ導
通時に流れ込む突入電流が絶対最大定格値まで上昇する
時間よりも短い時間だけ、一定の時間間隔を置いて時分
割的に順次導通させ、所定の導通回数に達した時点で制
御対象の印加電圧をしきい値判別し、しきい値以下であ
る場合は半導体スイッチの少なくとも一つが異常である
と診断するようにしたから、個々の半導体スイッチに対
し過大な突入電流通電に伴うストレスを与えることはな
く、無理をさせずに故障診断することができ、従って制
御対象に印加する印可電圧が安定するのに十分な時間を
割り当て、静的に安定した条件下で印加電圧をしきい値
判別する従来の装置のように、診断のつど半導体スイッ
チに大電流の突入電流が流れ込み、大電流によるストレ
スが回を増すにつれて蓄積されたり、定常電流による温
度上昇のストレス等が原因で故障率の上昇を招くといっ
たことはなく、しかも故障診断に要する時間は、制御対
象の電圧印加特性ならびにフィルタ回路の時定数から決
定され、複数の半導体を時分割的に順次導通させるた
め、必要最小限の回数だけ導通させることで診断が可能
であり、制御対象に印加する印可電圧が安定するのに十
分な時間を割り当てていた従来の方法と異なり、短時間
で診断を完了することができる等の優れた効果を奏す
る。
As described above, according to the present invention,
The semiconductor switches that constitute the switch circuit are sequentially turned on in a time-division manner at regular time intervals for a time shorter than the time during which the inrush current flowing during conduction rises to the absolute maximum rated value, and a predetermined number of times of conduction. At that point, the applied voltage of the control target is determined as a threshold value. If the applied voltage is lower than the threshold value, at least one of the semiconductor switches is diagnosed as abnormal. Without the stress associated with the current flow, it is possible to diagnose the failure without overdoing it.Therefore, allocate sufficient time for the applied voltage to be applied to the control target to stabilize, and under statically stable conditions. As in the conventional device that determines the threshold of the applied voltage, a large inrush current flows into the semiconductor switch at each diagnosis, and the stress due to the large current increases. The failure rate does not increase due to stress caused by temperature rise due to steady current, and the time required for failure diagnosis is determined by the voltage application characteristics of the control target and the time constant of the filter circuit. Conventionally, a plurality of semiconductors are sequentially turned on in a time-sharing manner, so that diagnosis can be performed by turning on only a necessary minimum number of times, and sufficient time is allocated to stabilize an applied voltage applied to a control target. In contrast to the method described above, an excellent effect is obtained such that the diagnosis can be completed in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の通電制御装置を適用したモータ駆動装
置の一実施形態を示す概略回路構成図である。
FIG. 1 is a schematic circuit configuration diagram showing one embodiment of a motor drive device to which an energization control device of the present invention is applied.

【図2】図1に示したマイクロプロセッサによる故障診
断動作を説明するためのフローチャートである。
FIG. 2 is a flowchart for explaining a failure diagnosis operation by the microprocessor shown in FIG. 1;

【図3】(A),(B)は、それぞれ正常時と故障時の
図1に示したモータ駆動装置の回路各部の信号波形図で
ある。
FIGS. 3A and 3B are signal waveform diagrams of respective parts of the circuit of the motor drive device shown in FIG. 1 in a normal state and a fault state, respectively.

【図4】従来の通電制御装置を適用したモータ駆動装置
の一例を示す概略回路構成図である。
FIG. 4 is a schematic circuit configuration diagram showing an example of a motor drive device to which a conventional energization control device is applied.

【図5】図4に示したマイクロプロセッサによる故障診
断動作を説明するためのフローチャートである。
FIG. 5 is a flowchart for explaining a failure diagnosis operation by the microprocessor shown in FIG. 4;

【図6】(A),(B)は、それぞれ正常時と故障時の
図4に示したモータ駆動装置の回路各部の信号波形図で
ある。
6 (A) and 6 (B) are signal waveform diagrams of respective parts of the circuit of the motor drive device shown in FIG. 4 in a normal state and a fault state, respectively.

【符号の説明】[Explanation of symbols]

2 直流モータ(制御対象) 3 バッテリ電源 4 スイッチ回路 6 フィルタ回路 11 通電制御装置 12 マイクロプロセッサ S1,S2 半導体スイッチ 2 DC motor (control target) 3 Battery power supply 4 Switch circuit 6 Filter circuit 11 Current control device 12 Microprocessor S1, S2 Semiconductor switch

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 互いに並列に接続した複数の半導体スイ
ッチからなり、制御対象と電源の間に接続されるスイッ
チ回路と、前記制御対象に印加される電圧を平滑して検
出するフィルタ回路と、前記スイッチ回路の各半導体ス
イッチを個々に導通制御するとともに、診断モード時に
は前記複数の半導体スイッチを導通時に流れ込む突入電
流が絶対最大定格値まで上昇する時間よりも短い時間だ
け、一定の時間間隔を置いて時分割的に順次導通させ、
所定の導通回数に達した時点で前記フィルタ回路の出力
をしきい値判別し、しきい値以下である場合は前記複数
の半導体スイッチの少なくとも一つが異常であると診断
するマイクロプロセッサとを具備することを特徴とする
通電制御装置。
A switch circuit comprising a plurality of semiconductor switches connected in parallel to each other and connected between a control target and a power supply; a filter circuit for smoothing and detecting a voltage applied to the control target; While conducting conduction control of each semiconductor switch of the switch circuit individually, at the time of the diagnostic mode, the rush current flowing when conducting the plurality of semiconductor switches during a period shorter than the time during which the inrush current rises to the absolute maximum rated value is provided at fixed time intervals. Conducted sequentially in time division,
A microprocessor that determines a threshold value of the output of the filter circuit when a predetermined number of times of conduction is reached, and diagnoses that at least one of the plurality of semiconductor switches is abnormal when the output value is equal to or less than the threshold value. An energization control device characterized by the above-mentioned.
【請求項2】 制御対象と電源の間に互いに並列に接続
した複数の半導体スイッチを、個々に導通制御するとと
もに前記制御対象に印加される電圧を平滑して検出する
通電制御装置の自己診断方法であって、前記複数の半導
体スイッチを導通時に流れ込む突入電流が絶対最大定格
値まで上昇する時間よりも短い時間だけ、一定の時間間
隔を置いて時分割的に順次導通させ、所定の導通回数に
達した時点で前記平滑検出した電圧をしきい値判別し、
しきい値以下である場合は前記複数の半導体スイッチの
少なくとも一つが異常であると診断することを特徴とす
る通電制御装置の自己診断方法。
2. A self-diagnosis method for an energization control device that individually controls conduction of a plurality of semiconductor switches connected in parallel between a control target and a power supply and smoothes and detects a voltage applied to the control target. The plurality of semiconductor switches are sequentially turned on in a time-division manner at regular time intervals for a time shorter than a time during which an inrush current flowing during conduction rises to an absolute maximum rated value, at a predetermined number of times of conduction. When the voltage reaches the threshold value, the threshold value is determined for the smoothed voltage,
A self-diagnosis method for an energization control device, characterized in that at least one of the plurality of semiconductor switches is diagnosed as abnormal when the threshold value is equal to or less than a threshold value.
JP27881797A 1997-10-13 1997-10-13 Energization control device and self-diagnosis method thereof Expired - Fee Related JP3339383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27881797A JP3339383B2 (en) 1997-10-13 1997-10-13 Energization control device and self-diagnosis method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27881797A JP3339383B2 (en) 1997-10-13 1997-10-13 Energization control device and self-diagnosis method thereof

Publications (2)

Publication Number Publication Date
JPH11122805A true JPH11122805A (en) 1999-04-30
JP3339383B2 JP3339383B2 (en) 2002-10-28

Family

ID=17602574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27881797A Expired - Fee Related JP3339383B2 (en) 1997-10-13 1997-10-13 Energization control device and self-diagnosis method thereof

Country Status (1)

Country Link
JP (1) JP3339383B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285969A (en) * 2006-04-19 2007-11-01 Yokogawa Electric Corp Switch fault detection circuit
KR100851147B1 (en) 2006-12-14 2008-08-08 현대자동차주식회사 a dual power system using smart junction box and a line short detection method of the system
DE10115869B4 (en) * 2001-03-30 2009-12-17 Automotive Lighting Reutlingen Gmbh Device for protecting an output stage circuit
EP2196887A1 (en) * 2008-12-04 2010-06-16 ELMOS Semiconductor AG Device for driving a load
JP2012138832A (en) * 2010-12-27 2012-07-19 Denso Corp Electrical load drive device
JP2012138831A (en) * 2010-12-27 2012-07-19 Denso Corp Electrical load drive device
WO2020203511A1 (en) * 2019-03-29 2020-10-08 住友電装株式会社 Power supply control device, disconnection detection method and computer program
WO2022255621A1 (en) * 2021-06-01 2022-12-08 삼성전자 주식회사 Electronic device for detecting defect of semiconductor component, and method for controlling same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10115869B4 (en) * 2001-03-30 2009-12-17 Automotive Lighting Reutlingen Gmbh Device for protecting an output stage circuit
JP2007285969A (en) * 2006-04-19 2007-11-01 Yokogawa Electric Corp Switch fault detection circuit
KR100851147B1 (en) 2006-12-14 2008-08-08 현대자동차주식회사 a dual power system using smart junction box and a line short detection method of the system
EP2196887A1 (en) * 2008-12-04 2010-06-16 ELMOS Semiconductor AG Device for driving a load
JP2012138832A (en) * 2010-12-27 2012-07-19 Denso Corp Electrical load drive device
JP2012138831A (en) * 2010-12-27 2012-07-19 Denso Corp Electrical load drive device
WO2020203511A1 (en) * 2019-03-29 2020-10-08 住友電装株式会社 Power supply control device, disconnection detection method and computer program
JP2020167611A (en) * 2019-03-29 2020-10-08 住友電装株式会社 Power supply control device, open circuit detection method and computer program
US11646729B2 (en) 2019-03-29 2023-05-09 Sumitomo Wiring Systems, Ltd. Power supply control device, open failure detection method and computer program
WO2022255621A1 (en) * 2021-06-01 2022-12-08 삼성전자 주식회사 Electronic device for detecting defect of semiconductor component, and method for controlling same

Also Published As

Publication number Publication date
JP3339383B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
EP0488240B1 (en) Inverter apparatus provided with electric discharge control circuit of DC smoothing capacitor and method of controlling the same
JP5980943B2 (en) Battery monitoring device
JP6353648B2 (en) Semiconductor abnormality detection circuit
JP2006320176A (en) Method and device for diagnosing inverter
WO2013175605A1 (en) Battery control device
JP2007242247A (en) Arrangement for controlling vehicular power supply system
JP6901989B2 (en) Battery monitoring device, battery monitoring system, and battery monitoring method
JPWO2016143679A1 (en) Battery management device, battery monitoring circuit, control system
JP3339383B2 (en) Energization control device and self-diagnosis method thereof
US6213571B1 (en) Control apparatus for an electric vehicle and a method therefor
JP6376422B2 (en) Charge / discharge device
JP2006279866A (en) Load drive unit
JP4556918B2 (en) Power supply device with regenerative energy consumption circuit
JP7006435B2 (en) Input / output device
KR20040081176A (en) Load failure diagnosis method and apparatus and load failure processing method and apparatus
JP7221632B2 (en) Electric compressor controller
JP6267232B2 (en) Load drive circuit
CN110137032A (en) Load drive device and load driving method
JP2000125586A (en) Method and device for diagnosing failures
JP6391402B2 (en) DCDC converter fault diagnosis device and fault diagnosis method
JP6788119B2 (en) Load control device
US10742207B2 (en) Drive circuit of switching circuit
JP2020205693A (en) Controller
JPH0646522A (en) Normal supervisory unit for circuit breaker operation control circuit
JP7077971B2 (en) Electronic control device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020716

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070816

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees