JPH11122212A - Sir estimation method - Google Patents
Sir estimation methodInfo
- Publication number
- JPH11122212A JPH11122212A JP9277180A JP27718097A JPH11122212A JP H11122212 A JPH11122212 A JP H11122212A JP 9277180 A JP9277180 A JP 9277180A JP 27718097 A JP27718097 A JP 27718097A JP H11122212 A JPH11122212 A JP H11122212A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- power
- interference noise
- slot
- average
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、移動無線通信、特
に符号分割多重通信システム(CDMA)における送信
電力制御のために用いられる、所望の信号成分の電力と
それ以外の干渉雑音信号との比(SIR)の推定方法に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ratio of the power of a desired signal component to the power of other interference noise signals used for transmission power control in mobile radio communication, especially in code division multiplex communication system (CDMA). (SIR) estimation method.
【0002】[0002]
【従来の技術】従来、このような技術としては、例えば
次の文献に記載されたものがある。 文献:「DC−CDMAの適応送信電力制御におけるS
IR測定法の検討」清尾 俊輔等1996年電子情報通
信学会ソサイエティ大会B−3302. Description of the Related Art Conventionally, as such a technique, for example, there is a technique described in the following document. Reference: "S in adaptive transmission power control of DC-CDMA"
Examination of IR measurement method ”Shunsuke Kiyoo et al. 1996 IEICE Society Conference B-330
【0003】CDMAにおいては、各移動局は同じ周波
数帯域を共有して使用し、その代わりに、各移動局から
の送信信号は、各移動局に固有に割り当てられた拡散符
号により識別される。この場合、各移動局の通話品質が
同一、公平であるためには、基地局での所望局の受信電
力(所望の信号成分の電力)とその他の局から被る干渉
電力の比(それ以外の干渉雑音信号)との比(SIR)
が一定、同一であることが必要である。上記の文献では
このような目的で用いるSIR推定方法について提案さ
れている。In CDMA, each mobile station shares and uses the same frequency band. Instead, a transmission signal from each mobile station is identified by a spreading code uniquely assigned to each mobile station. In this case, in order for the communication quality of each mobile station to be the same and fair, the ratio of the received power of the desired station (power of the desired signal component) at the base station to the interference power received from other stations (other than that). (Interference noise signal)
Need to be constant and identical. The above document proposes an SIR estimation method used for such a purpose.
【0004】図2はそのSIR推定方法が適用された基
地局の機能ブロック図である。移動局からの送信信号は
送受信アンテナ10にて受信され、そして、高周波増幅
器11にて拡散帯域の信号に変換される。移動局からの
送信信号には一定の周期(Tp)で既知の符号であるパ
イロット信号が挿入されており、RAKE受信部12は
送受信アンテナ10の受信信号の逆拡散と合成の処理を
行い、スロット内信号電力算出部13は、RAKE受信
部12の出力信号の内、スロット内のパイロット信号を
用いて信号電力を推定する。同様にして干渉雑音も、ス
ロット内干渉雑音電力算出部14においてスロット内の
信号を用いて、その分散により算出される。ここで干渉
雑音に関しては、更に、スロット間平均干渉雑音電力算
出部15において長時間の平均的干渉雑音を算出してい
る。しかし、信号電力については瞬時瞬時の電力変動の
観測が重要となるため、スロット内信号電力算出部13
は1スロット内での観測を行っている。FIG. 2 is a functional block diagram of a base station to which the SIR estimation method is applied. A transmission signal from the mobile station is received by the transmission / reception antenna 10 and is converted by the high frequency amplifier 11 into a signal in a spread band. A pilot signal, which is a known code, is inserted into the transmission signal from the mobile station at a constant period (Tp), and the rake receiving unit 12 performs despreading and combining processing of the reception signal of the transmission / reception antenna 10, and The internal signal power calculator 13 estimates the signal power using the pilot signal in the slot among the output signals of the rake receiver 12. Similarly, the interference noise is calculated by the intra-slot interference noise power calculation unit 14 using the signal in the slot and by its variance. Here, regarding the interference noise, the inter-slot average interference noise power calculation unit 15 calculates the long-term average interference noise. However, it is important to observe the instantaneous power fluctuation of the signal power.
Performs observations within one slot.
【0005】[0005]
【発明が解決しようとする課題】しかし、上記の推定方
法では、信号電力の算出に際して、スロット内の受信電
力の算出精度をあげるには、より長い算出区間(スロッ
ト全体)が好ましいが、一方、そうすることにより演算
遅延が生じてしまい、フェージング変動が激しいときに
は送信電力の制御精度が劣化してしまい、フェージング
変動の速さによって好適なSIR算出方法が異なってし
まうと言う問題点があった。即ち、これはは、信号電力
の算出を現在のスロットの受信電力により行おうとする
ことから必然的に起こるトレードオフに起因して発生す
る問題点である。However, in the above estimation method, a longer calculation section (entire slot) is preferable in order to improve the calculation accuracy of the received power in the slot when calculating the signal power. By doing so, there is a problem that a calculation delay is caused, and when the fading fluctuation is severe, the control accuracy of the transmission power is deteriorated, and a suitable SIR calculation method differs depending on the speed of the fading fluctuation. That is, this is a problem that arises due to a trade-off inevitably caused by trying to calculate the signal power based on the received power of the current slot.
【0006】このようなことから、フェージング変動の
速さに依存せずに、より好適な送信電力制御を行うのに
適したSIR推進方法の開発が望まれていた。[0006] For these reasons, it has been desired to develop an SIR propulsion method suitable for performing more suitable transmission power control without depending on the speed of fading fluctuation.
【0007】[0007]
【課題を解決するための手段】本発明に係るSIR推定
方法は、移動局から所定の周期間隔で既知の信号を含ん
だ信号が送信され、その受信信号に含まれる所望の信号
成分の電力とそれ以外の干渉雑音信号との比を求めるS
IR推定方法において、所定の周期内の所望の信号成分
の平均受信電力を求める際に、所定の周期内の既知の信
号とそれ以前の既知信号とで1つの時系列信号を形成
し、この時間系列信号を線形予測分析して所定の周期内
の信号の平均電力を算出し、その平均電力を所望の信号
成分の平均受信電力とするものである。このため、所望
の信号成分の平均受信電力を算出するための演算遅延が
無くなり、その所定の周期における信号電力の制御が遅
延を伴わず実行できることになる。According to the SIR estimating method of the present invention, a signal containing a known signal is transmitted from a mobile station at a predetermined cycle interval, and the power of a desired signal component contained in the received signal is obtained. S for calculating the ratio to other interference noise signals
In the IR estimation method, when obtaining the average received power of a desired signal component within a predetermined cycle, a known signal within a predetermined cycle and a known signal before that form one time-series signal. The linear signal is subjected to linear prediction analysis to calculate the average power of the signal within a predetermined cycle, and the average power is used as the average received power of a desired signal component. Therefore, there is no calculation delay for calculating the average received power of the desired signal component, and the control of the signal power in the predetermined cycle can be executed without delay.
【0008】[0008]
【発明の実施の形態】図1は本発明の一実施形態に係る
SIR推定方法が適用された基地局の機能ブロック図で
ある。受信アンテナ21により受信された受信信号は、
高周波部22により拡散帯域の信号に変換されて、逆拡
散部31〜33によりベースバンド信号として復号され
る。逆拡散部31〜33からの復号出力は、伝搬路予測
部41〜43及びスロット内干渉雑音電力算出部60へ
それぞれ入力される。信号電力算出部50は、伝搬路予
測部41〜43からそれぞれ出力される伝搬路予測値を
用いて信号電力推定値を演算する。スロット内干渉雑音
電力算出60はスロット内の干渉雑音電力を算出し、そ
の出力は、スロット間平均干渉雑音電力算出部70に入
力されて、最終的な干渉雑音電力推定値が算出される。FIG. 1 is a functional block diagram of a base station to which an SIR estimation method according to one embodiment of the present invention is applied. The received signal received by the receiving antenna 21 is
The signal is converted into a signal in a spread band by the high frequency unit 22 and decoded as a baseband signal by the despread units 31 to 33. The decoded outputs from the despreading units 31 to 33 are input to the propagation path prediction units 41 to 43 and the in-slot interference noise power calculation unit 60, respectively. The signal power calculation unit 50 calculates a signal power estimation value using the channel prediction values output from the channel prediction units 41 to 43, respectively. The intra-slot interference noise power calculation 60 calculates the inter-slot interference noise power, and its output is input to the inter-slot average interference noise power calculation unit 70 to calculate the final estimated interference noise power value.
【0009】次に、本実施形態の詳細を説明する。逆拡
散部31〜33は、伝搬路で生じる複数の遅延波の持つ
遅延に応じた遅延で拡散符号を遅らせて逆拡散する機能
をもつものであり、本実施形態においては遅延波が3つ
ある場合を示している(k=1,2,3)。逆拡散部3
1〜33からの復号出力をd(i,k) とする。ここでiは
第i番目の復号信号を表わし、kは第k番目の逆拡散部
を表わすものとする。Next, the details of this embodiment will be described. The despreading units 31 to 33 have a function of despreading by delaying a spreading code with a delay corresponding to a delay of a plurality of delayed waves generated in a propagation path. In the present embodiment, there are three delayed waves. The case is shown (k = 1, 2, 3). Despreading part 3
The decoded outputs from 1 to 33 are d (i, k). Here, i represents the i-th decoded signal, and k represents the k-th despreading unit.
【0010】伝搬路予測部41〜43は、各遅延波が無
線伝搬路で受ける振幅変化と位相変化を推定するもので
ある。本実施形態においては、予め定められた既知の符
号(パイロット信号)が送信信号の中に挿入されている
場合を想定する。既知符号の挿入間隔をTslot とし、こ
の周期間隔内の最初に挿入されているとする。送信符号
長をTdとして、Tslot =M・Tdとし、M個の内、最
初のm個が既知の符号であるとする(ここでは、m=1
とする)。そして、現在の送信電力制御周期(スロッ
ト)を第0番目の制御周期とする。まず、この制御周期
内の最初のm個の符号の複素包絡の平均値a(0,k) を次
式により算出する。The channel estimators 41 to 43 estimate the amplitude change and phase change that each delayed wave receives in the radio channel. In the present embodiment, it is assumed that a predetermined known code (pilot signal) is inserted into a transmission signal. It is assumed that the insertion interval of the known code is Tslot, and that the known code is inserted first in this periodic interval. Suppose that the transmission code length is Td, Tslot = M · Td, and the first m of M are known codes (here, m = 1
And). Then, the current transmission power control cycle (slot) is set as the 0th control cycle. First, the average value a (0, k) of the complex envelope of the first m codes in this control cycle is calculated by the following equation.
【0011】[0011]
【数1】 (Equation 1)
【0012】もし、次の制御周期(スロット)に対して
同様な値がえられたとすると、第0番目の平均複素包絡
A(0,k) に対しては次式のような近似が考えられる。If a similar value is obtained for the next control cycle (slot), the following approximation can be considered for the 0th average complex envelope A (0, k). .
【数2】 A(0,k) =(1/2){a(0,k) +a(1,k) } …(2) 実際にこのa(1,k) を算出してしまうと、制御遅延をも
たらしてしまう。そこで、a(0,k) の算出と同様の処理
がこれまでの制御周期で行うことが出来るので、これら
の過去の制御周期内の複素包絡a(i,k) を用いて、a
(1,k) を以下のようにして予測する(予測値をa′(1,
k) と記す。)。この予測には線形予測分析に基づく手
法を用いる。線形予測は、過去のデータが隣接するデー
タとどのような関連をもっていたかを分析し、その関係
を将来の値の適用するものである。その算出を次式に示
す。A (0, k) = (1/2) {a (0, k) + a (1, k)} (2) When a (1, k) is actually calculated, This results in a control delay. Then, since the same processing as the calculation of a (0, k) can be performed in the previous control cycle, a complex envelope a (i, k) in the past control cycle is used to calculate a (0, k).
(1, k) is predicted as follows (the predicted value is a ′ (1,
k). ). For this prediction, a method based on linear prediction analysis is used. Linear prediction analyzes the relationship between past data and adjacent data, and applies the relationship to future values. The calculation is shown in the following equation.
【0013】[0013]
【数3】 (Equation 3)
【0014】Pは予測次数、w(j,k) は予測係数であ
る。予測係数の算出はPeを予測誤差として以下の式か
ら求められる。P is a prediction order, and w (j, k) is a prediction coefficient. The calculation of the prediction coefficient is obtained from the following equation using Pe as a prediction error.
【数4】 W=R-1・E …(4) ここで、W=(1,w(1) ,w(2) ,…,w(p) ),E
=(Pe,0,0,…0),Rは行列で、そのm行n列
の値r(m,n) は、W = R −1 · E (4) where W = (1, w (1), w (2),..., W (p)), E
= (Pe, 0,0, ... 0), R is a matrix, and the value r (m, n) of m rows and n columns is
【0015】[0015]
【数5】 (Equation 5)
【0016】で算出される(*は複素共役を示す)。こ
こでLは分析に用いるa(i,k) の数である。(4)式の
求解は既に知られている方法(レビンソン−ダービン法
や最大エントロピー法など)で効率的に算出できる。(* Indicates complex conjugate). Here, L is the number of a (i, k) used in the analysis. The solution of equation (4) can be efficiently calculated by a known method (such as the Levinson-Durbin method or the maximum entropy method).
【0017】以上のようにしてa′(1,k) が求められる
と、第0番目の平均複素包絡A(0,k) が算出可能とな
る。When a '(1, k) is obtained as described above, the 0th average complex envelope A (0, k) can be calculated.
【数6】 A(0,k) =(1/2){a(0,k) +a′(1,k) } …(6) 受信電力算出部50では、A(0,k) を用いて現在の制御
周期(スロット)の信号電力推定値p(0)を次式によ
り算出する。A (0, k) = (1 /) {a (0, k) + a ′ (1, k)} (6) The reception power calculation unit 50 uses A (0, k). Then, the signal power estimation value p (0) of the current control cycle (slot) is calculated by the following equation.
【0018】[0018]
【数7】 (Equation 7)
【0019】スロット内干渉雑音電力算出部60では、
まず、現在の制御周期(スロット)内のm個の既知の符
号の合成値dsum(i)を算出し、その合成値の分散Pn
(0) を計算する。In the in-slot interference noise power calculation section 60,
First, a composite value dsum (i) of m known codes in the current control cycle (slot) is calculated, and the variance Pn of the composite value is calculated.
Calculate (0).
【0020】[0020]
【数8】 (Equation 8)
【0021】スロット間平均干渉雑音電力算出部70は
Pn(0) を過去の値と平均することで、干渉雑音電力推
定値として出力する。そして、SIR算出部80は、受
信電力算出部50により算出された信号電力推定値を所
望の信号成分の平均電力Sとし、この平均電力Sとスロ
ット間平均干渉雑音電力算出部70により算出された干
渉雑音電力推定値Iとの比(SIR)を求めて出力す
る。The inter-slot average interference noise power calculation section 70 outputs Pn (0) as an interference noise power estimation value by averaging Pn (0) with a past value. Then, the SIR calculating section 80 sets the signal power estimated value calculated by the received power calculating section 50 as the average power S of the desired signal component, and calculates the average power S and the inter-slot average interference noise power calculating section 70. A ratio (SIR) to the interference noise power estimation value I is obtained and output.
【0022】本実施形態においては、上記のようにして
所望の信号成分の平均電力Sを求めていることから、現
在の制御周期(スロット)内の全データを用いずとも、
現在の制御周期(スロット)内の所望の信号成分の平均
受信電力を算出でき、遅延を伴わなくしかもフェージン
グの変動を考慮したSIRの測定が可能となっている。In the present embodiment, since the average power S of the desired signal component is obtained as described above, even if all data in the current control cycle (slot) is not used,
The average received power of the desired signal component within the current control cycle (slot) can be calculated, and the SIR can be measured without delay and in consideration of fading fluctuation.
【0023】なお、SIR算出部80により求められた
SIRは、図示は省略したが図1の後段において、基準
値と比較され、その比較結果に応じて、移動局の送信電
力を或る一定の割合だけ下げ或いは上げるような指示情
報(送信電力制御ビット)が一定の周期で下り回線(基
地局から移動局への通信)の通話チャネルに挿入されて
移動局に通知される。移動局は基地局からのその指示情
報を受け取るたびに一定の割合ずつ送信電力を減少又は
増加させることで、基地局におけるSIRが一定の値に
なるように制御している。Although not shown, the SIR calculated by the SIR calculation section 80 is compared with a reference value in a later stage of FIG. 1, and according to the comparison result, the transmission power of the mobile station is reduced to a certain value. Instruction information (transmission power control bits) that decreases or increases by the ratio is inserted into the downlink (communication from the base station to the mobile station) communication channel at a fixed cycle and is notified to the mobile station. Each time the mobile station receives the instruction information from the base station, it decreases or increases the transmission power by a fixed ratio, thereby controlling the SIR at the base station to a constant value.
【0024】[0024]
【発明の効果】以上のように本発明によれば、所定の周
期内の所望の信号成分の平均受信電力を求める際に、所
定の周期内の既知の信号とそれ以前の既知信号とで1つ
の時系列信号を形成し、この時間系列信号を線形予測分
析して所定の周期内の信号の平均電力を算出し、その平
均電力を所望の信号成分の平均受信電力とするようにし
たので、SIRの測定のための演算遅延を伴わず、この
ため、フェージング変動の速さや移動局の移動速度に依
存せずに、より好適な送信電力制御を行うのに適したS
IR測定方法が実現されている。As described above, according to the present invention, when the average received power of a desired signal component within a predetermined cycle is obtained, the known signal within the predetermined cycle and the known signal before it are equal to one another. Since one time-series signal is formed, the time-series signal is subjected to linear prediction analysis to calculate an average power of a signal within a predetermined period, and the average power is set as an average reception power of a desired signal component. Without an operation delay for the measurement of SIR, the S suitable for performing more suitable transmission power control without depending on the speed of fading fluctuation or the moving speed of the mobile station.
An IR measurement method has been implemented.
【図1】本発明の一実施形態に係るSIR推定方法が適
用され基地局の機能ブロック図である。FIG. 1 is a functional block diagram of a base station to which an SIR estimation method according to an embodiment of the present invention is applied.
【図2】従来のSIR推定方法が適用され基地局の機能
ブロック図である。FIG. 2 is a functional block diagram of a base station to which a conventional SIR estimation method is applied.
10 送受信アンテナ 11 高周波部 12 RAKE受信部 13 スロット内信号電力算出部 14 スロット内干渉雑音電力算出部 15 スロット間平均干渉雑音電力算出部 21 送受信アンテナ 22 高周波部 31〜33 逆拡散部 41〜43 伝搬路予測部 50 信号電力算出部 60 スロット内干渉雑音電力算出部 70 スロット間平均干渉雑音電力算出部 80 SIR算出部 REFERENCE SIGNS LIST 10 transmission / reception antenna 11 high frequency unit 12 rake reception unit 13 in-slot signal power calculation unit 14 in-slot interference noise power calculation unit 15 inter-slot average interference noise power calculation unit 21 transmission / reception antenna 22 high frequency unit 31 to 33 despreading unit 41 to 43 propagation Road prediction unit 50 signal power calculation unit 60 intra-slot interference noise power calculation unit 70 inter-slot average interference noise power calculation unit 80 SIR calculation unit
Claims (1)
を含んだ信号が送信され、その受信信号に含まれる所望
の信号成分の電力とそれ以外の干渉雑音信号との比を求
めるSIR推定方法において、 所定の周期内の所望の信号成分の平均受信電力を求める
際に、前記所定の周期内の既知の信号とそれ以前の既知
信号とで1つの時系列信号を形成し、この時間系列信号
を線形予測分析して前記所定の周期内の信号の平均電力
を算出し、その平均電力を前記所望の信号成分の平均受
信電力とすることを特徴とするSIR推定方法。1. A signal containing a known signal is transmitted from a mobile station at predetermined intervals, and SIR estimation for obtaining a ratio between the power of a desired signal component contained in the received signal and other interference noise signals is performed. In the method, when obtaining an average received power of a desired signal component within a predetermined period, a known signal within the predetermined period and a known signal before the same are formed into one time-series signal, A SIR estimation method, wherein a signal is subjected to linear prediction analysis to calculate an average power of a signal within the predetermined period, and the average power is used as an average received power of the desired signal component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9277180A JPH11122212A (en) | 1997-10-09 | 1997-10-09 | Sir estimation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9277180A JPH11122212A (en) | 1997-10-09 | 1997-10-09 | Sir estimation method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11122212A true JPH11122212A (en) | 1999-04-30 |
Family
ID=17579930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9277180A Pending JPH11122212A (en) | 1997-10-09 | 1997-10-09 | Sir estimation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11122212A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001003334A1 (en) * | 1999-07-01 | 2001-01-11 | Matsushita Electric Industrial Co., Ltd. | Method of controlling transmission power and apparatus for transmission and reception |
WO2001026406A1 (en) * | 1999-10-07 | 2001-04-12 | Matsushita Electric Industrial Co., Ltd. | Wireless communication device and transmission power control method |
US6999427B1 (en) | 1999-07-21 | 2006-02-14 | Ntt Docomo, Inc. | CDMA reception apparatus and received signal power measuring apparatus in CDMA mobile communication system |
-
1997
- 1997-10-09 JP JP9277180A patent/JPH11122212A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001003334A1 (en) * | 1999-07-01 | 2001-01-11 | Matsushita Electric Industrial Co., Ltd. | Method of controlling transmission power and apparatus for transmission and reception |
US6999427B1 (en) | 1999-07-21 | 2006-02-14 | Ntt Docomo, Inc. | CDMA reception apparatus and received signal power measuring apparatus in CDMA mobile communication system |
US7649859B2 (en) | 1999-07-21 | 2010-01-19 | Ntt Docomo, Inc. | Channel identifier assigning method and mobile communications system |
WO2001026406A1 (en) * | 1999-10-07 | 2001-04-12 | Matsushita Electric Industrial Co., Ltd. | Wireless communication device and transmission power control method |
US6983165B1 (en) | 1999-10-07 | 2006-01-03 | Matsushita Electric Industrial Co., Ltd. | Radio communication apparatus and transmission power control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040203397A1 (en) | Signal-to-noise ratio estimation of CDMA signals | |
US6834197B2 (en) | Base station apparatus, mobile communication system, and method of controlling transmission power | |
EP1719258B1 (en) | Method and apparatus for finger placement in a rake receiver | |
US5559790A (en) | Spread spectrum communication system and transmission power control method therefor | |
CN101048949B (en) | Method and apparatus for parameter estimation in a generalized RAKE receiver | |
US5974057A (en) | Method and apparatus for correcting a measured round-trip delay time in a wireless communication system | |
EP1643790A2 (en) | Wireless base station device and path search method | |
JP3891373B2 (en) | Demodulator and demodulation method | |
US6229839B1 (en) | Method and apparatus for time tracking | |
JP2000049689A (en) | Interference signal power measuring method | |
US7231184B2 (en) | Low overhead transmit channel estimation | |
EP0808031A2 (en) | Spread spectrum multi-path demodulator | |
GB2268365A (en) | Improvements in or relating to cellular mobile radio systems | |
JP2000151465A (en) | Radio communication equipment and radio communication method | |
JP2001036952A (en) | Cdma receiving device in cdma mobile communication system and reception signal power measuring method | |
CN100486127C (en) | Channel evaluation method in wide band CDMA communication system | |
JP2003018081A (en) | Mobile radio terminal | |
KR20010101042A (en) | Radio transmitter and transmission diversity | |
JPH11122212A (en) | Sir estimation method | |
KR20040022971A (en) | Apparatus And Method For Tracking Phase Of Pseudo Random Sequence Based On Pilot Signal In Mobile Device | |
KR100504360B1 (en) | Receiver and reception method | |
EP0924875A2 (en) | Diversity reception method and apparatus in a CDMA system | |
US20100142596A1 (en) | Synchronization error tracking device and method thereof | |
JP2004080191A (en) | Weight estimate method, weight estimate apparatus, interference elimination apparatus provided with the same, and receiver | |
US20080031390A1 (en) | Antenna diversity receiver |