JPH11121741A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH11121741A
JPH11121741A JP9280543A JP28054397A JPH11121741A JP H11121741 A JPH11121741 A JP H11121741A JP 9280543 A JP9280543 A JP 9280543A JP 28054397 A JP28054397 A JP 28054397A JP H11121741 A JPH11121741 A JP H11121741A
Authority
JP
Japan
Prior art keywords
conductivity type
base layer
type base
gate
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9280543A
Other languages
Japanese (ja)
Inventor
Noboru Matsuda
昇 松田
Akihiko Osawa
明彦 大澤
Yoshiaki Baba
嘉朗 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9280543A priority Critical patent/JPH11121741A/en
Publication of JPH11121741A publication Critical patent/JPH11121741A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a reduction in a gate breakdown strength in a semiconductor device and to prevent the step cut of a metal for electrode use due to a step difference by a method wherein the end parts of grooves for gate use are connected with each other through each groove for wiring use and a gate electrode in each groove is formed so as to have a height roughly equal to that of an open part formed in each groove. SOLUTION: A connection structure, wherein the terminal parts of trenches (grooves for gate use) are connected with each other through each trench 21 for wiring use, is provided. Polysilicon layers in trenches for lead-out use are connected with pads on gate electrodes at the center parts thereof. In concrete terms, in the terminal parts of the trenches, the trenches 21 for wiring use, which have a depth equal with that of each trench 6 and have a prescribed width, are selectively formed in a P-type base layer 3 in such a way as to connect the end parts of the trenches 6 with each other. The polysilicon layers, which are used as the gate electrodes, are buried in the trenches 21 for wiring use via gate insulating films to a height roughly equal to that of opening parts formed in the trenches 21.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、縦型MOSFE
T、縦型IGBT及び縦型IEGT等の縦型トレンチ構
造の半導体装置に係わり、特に、ゲート耐圧の低下を阻
止でき、また、メタル段切れを阻止し得る半導体装置に
関する。
The present invention relates to a vertical MOSFE
The present invention relates to a semiconductor device having a vertical trench structure such as T, vertical IGBT, and vertical IEGT, and more particularly, to a semiconductor device that can prevent a decrease in gate withstand voltage and a metal step.

【0002】[0002]

【従来の技術】近年、少ない基板占有面積で高い駆動能
力を得られる縦型トレンチ構造の半導体装置が注目され
ている。この種の半導体装置としては、例えば大電力用
のスイッチング素子として使用可能な縦型MOSFE
T、縦型IGBT及び縦型IEGT等があり、これらの
半導体装置は夫々PEP(photo etching process) 工程
などにより高密度に集積化されて製造される。
2. Description of the Related Art In recent years, attention has been paid to a semiconductor device having a vertical trench structure capable of obtaining a high driving capability with a small substrate occupation area. As this type of semiconductor device, for example, a vertical MOSFE that can be used as a switching element for high power
T, vertical IGBT, vertical IEGT, and the like. These semiconductor devices are manufactured by being integrated at a high density by a PEP (photo etching process) process or the like.

【0003】図8〜図19はこの種の縦型MOSFET
の製造工程を説明するための斜視断面図、平面図及びそ
の線矢視断面図などである。なお、平面図では、矢印に
付された数字にて線矢視断面図の図番が示され、矢印の
向きにて視認される断面が示される。
FIGS. 8 to 19 show a vertical MOSFET of this type.
Are a perspective cross-sectional view, a plan view, and a cross-sectional view of the same taken along a line for explaining the manufacturing process. In the plan view, the figure number of the cross-sectional view taken along the line is indicated by the number attached to the arrow, and the cross section viewed in the direction of the arrow is indicated.

【0004】この縦型MOSFETは、CVD法によ
り、図8に示すように、n+ 型半導体基板1上にn- 型
ベース層2が形成され、n- 型ベース層2上に選択的に
2μm厚のp型ベース層3が形成される。p型ベース層
3表面には選択的に島状のp+型コンタクト層4がスト
ライプ状に並べられて形成され、各p+ 型コンタクト層
4間のp型ベース層3表面には選択的に深さ0.5μm
のn+ 型ソース層5が形成される。なお、各p+ 型コン
タクト層4間のn+ 型ソース層5の幅は2.6μmであ
る。n+ 型ソース層5には、図9及び図10に示すよう
に、その中央部に沿って選択的に0.6μm幅のストラ
イプ状の複数のトレンチ(溝)6がp型ベース層3を貫
通してn- 型ベース層2に達する深さ(d>2μm)ま
で4.6μm間隔で互いに略平行に形成される。
In this vertical MOSFET, as shown in FIG. 8, an n- type base layer 2 is formed on an n + type semiconductor substrate 1 by a CVD method, and a 2 .mu.m A thick p-type base layer 3 is formed. On the surface of the p-type base layer 3, p-type contact layers 4 in the form of islands are selectively arranged in stripes, and selectively on the surface of the p-type base layer 3 between the p + -type contact layers 4. 0.5 μm depth
N + type source layer 5 is formed. The width of the n + -type source layer 5 between each p + -type contact layer 4 is 2.6 μm. As shown in FIGS. 9 and 10, a plurality of stripe-shaped trenches (grooves) 6 each having a width of 0.6 .mu.m are selectively formed in the n @ + -type source layer 5 along the central portion thereof. It is formed substantially parallel to each other at 4.6 μm intervals to a depth (d> 2 μm) penetrating to the n − type base layer 2.

【0005】続いて、図11に示すように、トレンチ6
内壁を含めた全面に酸化膜7が形成され、この酸化膜7
上に各トレンチ6を埋込むようにゲート電極用の第一ポ
リシリコン層8が形成される。続いて、例えばCDE
(chemical dry etching)法により、第一ポリシリコン
層8が各トレンチ6の開口上面の高さにほぼ等しい高さ
までエッチングされる。
Subsequently, as shown in FIG.
An oxide film 7 is formed on the entire surface including the inner wall.
A first polysilicon layer 8 for a gate electrode is formed so as to fill each trench 6 thereon. Then, for example, CDE
The first polysilicon layer 8 is etched to a height substantially equal to the height of the upper surface of the opening of each trench 6 by a (chemical dry etching) method.

【0006】次に、酸化膜7上及び第一ポリシリコン8
上の全面に第二ポリシリコン層が形成される。図12及
び図13に示すように、この第二ポリシリコン層9は、
PEP工程により、トレンチ6の終端部において、0.
6μm幅の各トレンチ6内の各第一ポリシリコン層8に
1.6μm幅の歯を重ねた櫛歯状の平面形状に形成され
る。
Next, on the oxide film 7 and the first polysilicon 8
A second polysilicon layer is formed on the entire upper surface. As shown in FIGS. 12 and 13, the second polysilicon layer 9
Due to the PEP process, 0.
A 1.6 μm-wide tooth is formed on each first polysilicon layer 8 in each 6 μm-wide trench 6 in a comb-like planar shape.

【0007】しかる後、図14に示すように、CVD法
により、基板全面に絶縁層10が形成される。図15及
び図16に示すように、この絶縁層10は、PEP工程
により、各トレンチ6の終端部に位置する第二ポリシリ
コン層9を櫛歯状に露出させるように第一開口部11が
形成されると共に、各トレンチ6間の中央領域(FET
領域)に位置する各n+ 型ソース層5及び各p+ 型コン
タクト層4を露出させるように3μm幅の第二開口部1
2が形成される。
After that, as shown in FIG. 14, an insulating layer 10 is formed on the entire surface of the substrate by the CVD method. As shown in FIGS. 15 and 16, the insulating layer 10 has a first opening 11 formed by a PEP process such that the second polysilicon layer 9 located at the terminal end of each trench 6 is exposed in a comb shape. And a central region between each trench 6 (FET
Region) so as to expose each of the n + -type source layers 5 and each of the p + -type contact layers 4.
2 are formed.

【0008】続いて、Al金属などにより、図17乃至
図19に示すように、各第一開口部内の第二ポリシリコ
ン層9を電気的に接続するようにゲートAl電極13が
ゲート電極パット部14と共に選択形成される。また、
これと同時に、図17に示すように、各第二開口部12
内の各n+ 型ソース層5及び各p+ 型コンタクト層4を
電気的に接続するようにソース電極15が選択形成され
る。
Subsequently, as shown in FIGS. 17 to 19, the gate Al electrode 13 is electrically connected to the gate electrode pad portion by using Al metal or the like so as to electrically connect the second polysilicon layer 9 in each first opening. 14 is selectively formed. Also,
At the same time, as shown in FIG.
The source electrode 15 is selectively formed so as to electrically connect each of the n + -type source layers 5 and each of the p + -type contact layers 4.

【0009】以下、図示しないが、ゲートAl電極13
及びソース電極15を除く素子の表面に保護層が形成さ
れ、基板の裏面にドレイン電極が形成されて縦型MOS
FETが製造される。なお、縦型MOSFETを例に挙
げて説明したが、n+ 型半導体基板1とn- 型ベース層
2との間にp+ 型エミッタ層を設けたIGBTとしても
同様に製造可能である。また、p+ 型エミッタ層をもつ
IGBTの構造において、トレンチ6の深さや幅などを
最適化して正孔の蓄積を図ったIEGTとしても同様に
製造可能である。
Hereinafter, although not shown, the gate Al electrode 13
A protective layer is formed on the surface of the device except for the source electrode 15 and a drain electrode is formed on the back surface of the substrate.
An FET is manufactured. Although the vertical MOSFET has been described as an example, an IGBT in which a p + type emitter layer is provided between the n + type semiconductor substrate 1 and the n− type base layer 2 can be similarly manufactured. Further, in the structure of the IGBT having the p @ + -type emitter layer, an IEGT in which holes are accumulated by optimizing the depth and width of the trench 6 can be similarly manufactured.

【0010】[0010]

【発明が解決しようとする課題】しかしながら以上のよ
うな半導体装置では、トレンチ終端部において、図18
及び図20に示すように、トレンチ6内の各第一ポリシ
リコン層8を第二ポリシリコン層9で接続したゲート引
出し構造を有している。このため、トレンチ終端部で
は、第二ポリシリコン層9が絶縁層7を介してトレンチ
6上部の角のp型ベース層3を覆う構造となる。従っ
て、トレンチ終端部のゲート引出し構造において、トレ
ンチ上部の角に電界が集中し、ゲート耐圧を低下させる
問題が発生する。
However, in the above-described semiconductor device, at the trench end portion, FIG.
As shown in FIG. 20, a gate lead structure is provided in which each first polysilicon layer 8 in the trench 6 is connected by a second polysilicon layer 9. Therefore, at the trench end portion, the second polysilicon layer 9 has a structure that covers the p-type base layer 3 at the upper corner of the trench 6 via the insulating layer 7. Therefore, in the gate lead-out structure at the end of the trench, the electric field is concentrated at the upper corner of the trench, causing a problem of lowering the gate breakdown voltage.

【0011】さらに、このゲート引出し構造では、図1
8に示すように、トレンチ6内の第一ポリシリコン層8
上に第二ポリシリコン層9を重ねるためにポリシリコン
の段差を生じることから、後工程でのPEP寸法合せズ
レや電極用金属の段切れを発生させる場合があり、問題
となっている。
Further, in this gate lead-out structure, FIG.
8, the first polysilicon layer 8 in the trench 6
Since the second polysilicon layer 9 is superimposed on the second polysilicon layer 9 to cause a step in the polysilicon, there is a case where a PEP dimension misalignment or a step disconnection of the electrode metal occurs in a later step, which is a problem.

【0012】本発明は上記実情を考慮してなされたもの
で、ゲート耐圧の低下を阻止し得る半導体装置を提供す
ることを目的とする。また、本発明の他の目的は、PE
P工程時の寸法合せのズレや、段差による電極用金属の
段切れを阻止し得る半導体装置を提供することにある。
The present invention has been made in view of the above circumstances, and has as its object to provide a semiconductor device capable of preventing a decrease in gate breakdown voltage. Another object of the present invention is to provide PE
It is an object of the present invention to provide a semiconductor device capable of preventing a displacement of dimensions in a P step and disconnection of a metal for an electrode due to a step.

【0013】[0013]

【課題を解決するための手段】請求項1に対応する発明
は、前記基板上に形成された第1導電型ベース層と、前
記第1導電型ベース層上に形成された第2導電型ベース
層と、前記第2導電型ベース層表面に選択的に形成され
た複数の第1導電型ソース層と、前記各第1導電型ソー
ス層内に互いに略平行に形成され、前記第1導電型ソー
ス層及び前記第2導電型ベース層を貫通して前記第1導
電型ベース層に達する深さを有する複数のゲート用溝
と、前記各ゲート用溝の深さに等しい深さを有し、前記
各ゲート用溝の端部を互いに接続するように前記第2導
電型ベース層内に形成された複数の配線用溝と、前記各
溝の開口部の高さにほぼ等しい高さまで前記各溝内にゲ
ート絶縁膜を介して埋込み形成されたゲート電極と、前
記第1導電型ソース層上に形成されたソース電極と、前
記第1導電型ベース層とは反対面の前記基板上に形成さ
れたドレイン電極とを備えた半導体装置である。
According to a first aspect of the present invention, a first conductive type base layer formed on the substrate and a second conductive type base formed on the first conductive type base layer are provided. A plurality of first conductivity type source layers selectively formed on the surface of the second conductivity type base layer; and a plurality of first conductivity type source layers formed substantially parallel to each other in each of the first conductivity type source layers. A plurality of gate grooves having a depth reaching the first conductivity type base layer through the source layer and the second conductivity type base layer; and a depth equal to the depth of each of the gate grooves, A plurality of wiring grooves formed in the second conductivity type base layer so as to connect the ends of the respective gate grooves to each other, and the respective grooves to a height substantially equal to the height of the opening of each of the grooves. A gate electrode buried therein via a gate insulating film, and a source of the first conductivity type. A source electrode formed on the upper, wherein the first conductivity type base layer which is a semiconductor device that includes a drain electrode formed on the substrate on the opposite side.

【0014】また、請求項2に対応する発明は、基板
と、前記基板上に形成された第1導電型ベース層と、前
記第1導電型ベース層上に形成された第2導電型ベース
層と、前記第2導電型ベース層表面に選択的に形成され
た複数の第1導電型ソース層と、前記第2導電型ベース
層内に前記第1導電型ベース層に達する深さまで選択的
に形成され、所定の幅W1を有する配線用溝と、前記配
線用溝の一部に接続されるように前記第2導電型ベース
層内に選択的に形成され、前記幅W1よりも太い幅W2
を有する引出し用溝と、前記各溝内にゲート絶縁膜を介
して埋込み形成されたゲート電極と、前記引出し用溝内
のゲート電極の中心部を露出させるように前記引出し用
溝の縁に沿って前記ゲート電極上に形成された層間膜
と、前記露出されたゲート電極に接して前記層間膜上に
形成された引出し電極と、前記第1導電型ソース層上に
形成されたソース電極と、前記第1導電型ベース層とは
反対面の前記基板上に形成されたドレイン電極とを備え
た半導体装置である。
According to a second aspect of the present invention, there is provided a substrate, a first conductive type base layer formed on the substrate, and a second conductive type base layer formed on the first conductive type base layer. And a plurality of first conductivity type source layers selectively formed on the surface of the second conductivity type base layer; and selectively in the second conductivity type base layer to a depth reaching the first conductivity type base layer. A wiring groove having a predetermined width W1 and a width W2 which is selectively formed in the second conductivity type base layer so as to be connected to a part of the wiring groove and which is wider than the width W1.
And a gate electrode buried in each groove via a gate insulating film, and along an edge of the lead groove so as to expose a central portion of the gate electrode in the groove. An interlayer film formed on the gate electrode, a lead electrode formed on the interlayer film in contact with the exposed gate electrode, and a source electrode formed on the first conductivity type source layer. A semiconductor device comprising: a drain electrode formed on the substrate on a surface opposite to the first conductivity type base layer.

【0015】さらに、請求項3に対応する発明は、基板
と、前記基板上に形成された第1導電型ベース層と、前
記第1導電型ベース層上に形成された第2導電型ベース
層と、前記第2導電型ベース層表面に選択的に形成され
た複数の第1導電型ソース層と、前記各第1導電型ソー
ス層内に互いに略平行に形成され、前記第1導電型ソー
ス層及び前記第2導電型ベース層を貫通して前記第1導
電型ベース層に達する深さを有する複数のゲート用溝
と、前記各ゲート用溝の深さに等しい深さを有し、且つ
所定の幅W1を有して前記各ゲート用溝の端部を互いに
接続するように前記第2導電型ベース層内に選択的に形
成された配線用溝と、前記配線用溝の一部に接続される
ように前記第2導電型ベース層内に選択的に形成され、
前記幅W1よりも太い幅W2を有する引出し用溝と、前
記各溝の開口部の高さにほぼ等しい高さまで前記各溝内
にゲート絶縁膜を介して埋込み形成されたゲート電極
と、前記引出し用溝内のゲート電極の中心部を露出させ
るように前記引出し用溝の縁に沿って前記ゲート電極上
に形成された層間膜と、前記露出されたゲート電極に接
して前記層間膜上に形成された引出し電極と、前記第1
導電型ソース層上に形成されたソース電極と、前記第1
導電型ベース層とは反対面の前記基板上に形成されたド
レイン電極とを備えた半導体装置である。 (作用)従って、請求項1に対応する発明は以上のよう
な手段を講じたことにより、各ゲート用溝の端部を各配
線用溝で接続し、且つ各溝内のゲート電極を各溝の開口
部の高さにほぼ等しい高さをもつように形成している。
Further, the invention according to claim 3 is a substrate, a first conductivity type base layer formed on the substrate, and a second conductivity type base layer formed on the first conductivity type base layer. A plurality of first conductivity type source layers selectively formed on the surface of the second conductivity type base layer; and a plurality of first conductivity type source layers formed substantially parallel to each other in each of the first conductivity type source layers. A plurality of gate grooves having a depth reaching the first conductivity type base layer through the layer and the second conductivity type base layer; and a depth equal to the depth of each of the gate grooves, and A wiring groove having a predetermined width W1 and selectively formed in the second conductivity type base layer so as to connect ends of the gate grooves to each other, and a part of the wiring groove. Selectively formed in the second conductivity type base layer to be connected,
A lead groove having a width W2 larger than the width W1, a gate electrode buried in each groove via a gate insulating film to a height substantially equal to the height of the opening of each groove, and the lead An interlayer film formed on the gate electrode along an edge of the extraction groove so as to expose a central portion of the gate electrode in the groove, and an interlayer film formed on the interlayer film in contact with the exposed gate electrode. Drawn out electrode and the first
A source electrode formed on a conductive type source layer;
A semiconductor device comprising: a drain electrode formed on the substrate on the opposite side to the conductive type base layer. (Operation) Therefore, in the invention corresponding to claim 1, by taking the above means, the ends of the respective gate grooves are connected by the respective wiring grooves, and the gate electrodes in the respective grooves are connected to the respective grooves. Is formed so as to have a height substantially equal to the height of the opening.

【0016】これにより、まず、従来の第二ポリシリコ
ン層の如き導電性材料が溝の上部でゲート電極を覆わな
いことから、溝上部の角部の電界集中を解消してゲート
耐圧の低下を阻止することができる。また、段差をもた
ずにゲート電極を配線することから、段差に起因したP
EP工程時の寸法合せのズレや電極用金属の段切れを阻
止することができる。
As a result, first, since the conductive material such as the conventional second polysilicon layer does not cover the gate electrode at the upper portion of the groove, the electric field concentration at the corner at the upper portion of the groove is eliminated, and the reduction of the gate breakdown voltage is reduced. Can be blocked. In addition, since the gate electrode is wired without any step, P
It is possible to prevent misalignment of dimensions during the EP process and disconnection of the electrode metal.

【0017】また、請求項2に対応する発明は、層間膜
が引出し用溝の縁に沿ってゲート電極を覆うことによ
り、引出し電極がゲート電極の中央部に接する構造であ
るので、請求項1と同様の作用をゲートの引出し構造部
においても奏することができる。
According to a second aspect of the present invention, since the interlayer film covers the gate electrode along the edge of the extraction groove, the extraction electrode is in contact with the center of the gate electrode. The same effect as described above can be obtained also in the lead-out structure of the gate.

【0018】また、引出し用溝の幅W2が配線用溝の幅
W1よりも太いため、引出し部の高抵抗化を阻止でき、
良好な引出し構造を実現することができる。さらに、請
求項3に対応する発明は、各ゲート用溝の端部を各配線
用溝で接続し、且つ各溝内のゲート電極を各溝の開口部
の高さにほぼ等しい高さをもつように形成した構造に加
え、層間膜が引出し用溝の縁に沿ってゲート電極を覆う
ことにより、ゲート電極の中心部を露出させ、引出し電
極が露出されたゲート電極の中央部に接する構造を備え
ているので、請求項1及び請求項2の両者に対応する作
用を同時に奏することができる。
Further, since the width W2 of the lead groove is larger than the width W1 of the wiring groove, it is possible to prevent the lead portion from having a high resistance.
A good drawer structure can be realized. Further, in the invention corresponding to claim 3, the end of each gate groove is connected by each wiring groove, and the gate electrode in each groove has a height substantially equal to the height of the opening of each groove. In addition to the structure formed as described above, the interlayer film covers the gate electrode along the edge of the extraction groove, thereby exposing the center portion of the gate electrode and bringing the extraction electrode into contact with the exposed central portion of the gate electrode. Since it is provided, the functions corresponding to both the first and second aspects can be achieved at the same time.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。 (第1の実施の形態)図1は本発明の第1の実施の形態
に係る縦型MOSFETの構成を示す平面図であり、図
2は図1の2−2線矢視断面図である。図3は引出し構
造の一部を示す平面図であり、図4は図3の4−4線矢
視断面図である。各図について図1乃至図20と同一部
分には同一符号を付してその詳しい説明を省略し、ここ
では異なる部分について述べる。また、各図において
は、説明の簡素化のため、従来と同様のソース電極並び
にその周辺構成と基板裏面のドレイン電極を省略し、ま
た、配線用トレンチ内のゲート電極上の保護層を省略し
て示している。なお、以下の実施形態の図面も同様な省
略が行なわれるものとする。
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 is a plan view showing a configuration of a vertical MOSFET according to a first embodiment of the present invention, and FIG. 2 is a sectional view taken along line 2-2 of FIG. . FIG. 3 is a plan view showing a part of the drawer structure, and FIG. 4 is a sectional view taken along line 4-4 in FIG. In each figure, the same parts as those in FIGS. 1 to 20 are denoted by the same reference numerals, detailed description thereof will be omitted, and different parts will be described here. In each figure, for simplicity of description, the same source electrode as in the related art, its peripheral configuration and the drain electrode on the back surface of the substrate are omitted, and the protective layer on the gate electrode in the wiring trench is omitted. Is shown. Note that similar omissions are made in the drawings of the following embodiments.

【0020】すなわち、本実施の形態は、トレンチ終端
部における各ゲート電極の接続構造と、パッド部領域に
おけるゲート電極の引出し構造とを改善したものであ
り、図1及び図2に示すように、トレンチ終端部におけ
るゲート引出し構造に代えて、各トレンチ6(ゲート用
溝)の終端部を配線用トレンチ21によって接続する接
続構造を設けている。また、図1、図3及び図4に示す
ように、パッド部領域22のゲート引出し構造は、配線
用トレンチ21よりも太い幅の引出し用トレンチ23を
設け、絶縁性の層間膜24により引出し用トレンチ23
の縁を覆った引出し構造を設けている。引出し用トレン
チ23内のポリシリコン層8は、その中央部にてゲート
電極パッド部25に接続される。
That is, the present embodiment is an improvement of the connection structure of each gate electrode at the end of the trench and the lead-out structure of the gate electrode in the pad region, as shown in FIGS. Instead of the gate lead-out structure at the trench end portion, a connection structure for connecting the end portion of each trench 6 (gate groove) by a wiring trench 21 is provided. As shown in FIGS. 1, 3 and 4, the gate lead-out structure in the pad region 22 is provided with a lead-out trench 23 having a width wider than the wiring trench 21, and a lead-out structure formed by an insulating interlayer film 24. Trench 23
Is provided with a drawer structure that covers the edge of. The polysilicon layer 8 in the extraction trench 23 is connected to the gate electrode pad 25 at the center.

【0021】具体的には、トレンチ終端部では、各トレ
ンチ6の深さに等しい深さを有し、且つ所定の幅W1を
有する配線用トレンチ21が各トレンチ6の端部を互い
に接続するようにp型ベース層3内に選択的に形成され
ている。なお、幅W1は、例えば0.5〜1μmの範囲
内で適宜設定可能であるが、ここではW1=1μmとす
る。配線用トレンチ21内には、ゲート電極としてのポ
リシリコン層8がトレンチ21の開口部の高さにほぼ等
しい高さまでゲート絶縁膜7を介して埋込み形成されて
いる。
More specifically, at the trench end, a wiring trench 21 having a depth equal to the depth of each trench 6 and having a predetermined width W1 connects the ends of the trenches 6 to each other. Are selectively formed in the p-type base layer 3. The width W1 can be set as appropriate within a range of, for example, 0.5 to 1 μm. Here, it is assumed that W1 = 1 μm. In the wiring trench 21, a polysilicon layer 8 as a gate electrode is buried through the gate insulating film 7 to a height substantially equal to the height of the opening of the trench 21.

【0022】一方、パッド部領域22のゲート引出し構
造では、配線用トレンチ21の幅W1よりも太い幅W2
を有する引出し用トレンチ23が配線用トレンチ21の
一部に接続されるようにp型ベース層3内に選択的に形
成されている。幅W2は、W1<W2の関係を満たしつ
つ、1〜2μmの範囲内で適宜設定可能であるが、ここ
ではW2=2μmとする。引出し用トレンチ23内に
は、ポリシリコン層8がトレンチ23の開口部の高さに
ほぼ等しい高さまでゲート絶縁膜7を介して埋込み形成
されている。また、引出し用トレンチ23の開口部及び
その周辺の絶縁膜7の領域上には、層間膜24が開口幅
W3にてポリシリコン層8の中心部を露出させるように
引出し用トレンチ23の縁に沿って形成されている。な
お、開口幅W3は、W3<W2の関係を満たす範囲内で
適宜設定可能であるが、ここではW3=1μmとする。
層間膜24上には、ゲート電極パッド部25が、層間膜
24の開口部から露出されたポリシリコン層8に接して
形成されている。
On the other hand, in the gate lead-out structure of the pad portion region 22, the width W2 is larger than the width W1 of the wiring trench 21.
Is selectively formed in the p-type base layer 3 so as to be connected to a part of the wiring trench 21. The width W2 can be appropriately set within the range of 1 to 2 μm while satisfying the relationship of W1 <W2. Here, W2 = 2 μm. The polysilicon layer 8 is buried in the extraction trench 23 through the gate insulating film 7 to a height substantially equal to the height of the opening of the trench 23. In addition, on the opening of the extraction trench 23 and the region of the insulating film 7 around the opening, the interlayer film 24 is formed on the edge of the extraction trench 23 so as to expose the center of the polysilicon layer 8 with the opening width W3. It is formed along. The opening width W3 can be appropriately set within a range satisfying the relationship of W3 <W2. Here, W3 = 1 μm.
On the interlayer film 24, a gate electrode pad portion 25 is formed in contact with the polysilicon layer 8 exposed from the opening of the interlayer film 24.

【0023】なお、配線用トレンチ21及び引出し用ト
レンチ23は、FET領域のトレンチ6の形成と同時に
形成されている。また、各トレンチ6,21,23内の
ゲート絶縁膜7及びポリシリコン層8も同様である。
The wiring trench 21 and the extraction trench 23 are formed simultaneously with the formation of the trench 6 in the FET region. The same applies to the gate insulating film 7 and the polysilicon layer 8 in each of the trenches 6, 21, 23.

【0024】次に、このような縦型MOSFETの作用
について説明する。FET領域のトレンチ終端部におい
ては、各トレンチの端部を各配線用トレンチで接続し、
且つ各トレンチ内のゲート電極を各トレンチの開口部の
高さにほぼ等しい高さをもつように形成している。
Next, the operation of such a vertical MOSFET will be described. At the end of the trench in the FET region, the end of each trench is connected by each wiring trench,
Further, the gate electrode in each trench is formed to have a height substantially equal to the height of the opening of each trench.

【0025】これにより、まず、従来の第二ポリシリコ
ン層の如き導電性材料がトレンチの上部でポリシリコン
層8を覆わないことから、トレンチ上部の角部の電界集
中を解消してゲート耐圧の低下を阻止することができ
る。また、段差をもたずにゲート電極を配線することか
ら、段差に起因したPEP工程時の寸法合せのズレや電
極用金属の段切れを阻止することができる。
As a result, first, since the conductive material such as the conventional second polysilicon layer does not cover the polysilicon layer 8 at the upper part of the trench, the electric field concentration at the corner at the upper part of the trench is eliminated and the gate breakdown voltage is reduced. The decline can be prevented. In addition, since the gate electrode is wired without any step, it is possible to prevent the dimensional deviation and the disconnection of the electrode metal due to the step during the PEP process.

【0026】また、層間膜24が引出し用トレンチ23
の縁に沿ってポリシリコン層8を覆うことにより、ゲー
ト電極パッド部25がポリシリコン層8の中央部に接す
る構造としている。すなわち、ゲート電極パッド部25
が引出し用トレンチ23の上部の角部を覆わない構造で
ある。このため、引出し用のパッド部領域22において
も、トレンチ上部の角部の電界集中を解消してゲート耐
圧の低下を阻止することができる。
Further, the interlayer film 24 is formed by the extraction trench 23.
, The gate electrode pad portion 25 is in contact with the central portion of the polysilicon layer 8. That is, the gate electrode pad 25
Has a structure that does not cover the upper corner of the extraction trench 23. For this reason, also in the extraction pad portion region 22, concentration of the electric field at the upper corner portion of the trench can be eliminated, and a decrease in gate breakdown voltage can be prevented.

【0027】なお、トレンチ終端部及びパッド部領域2
2の電界集中を解消したことによるゲート耐圧の向上効
果を図5のI−V特性図に比較して示す。図示するよう
に、本実施形態に係る縦型MOSFETは、ドレイン電
流ID =1μAカットレベルでゲート電圧VG =75V
を得た。一方、従来構造は、ID =1μAにてゲート電
圧VG =50Vであった。すなわち、本実施形態は、従
来と比較して大幅にゲート耐圧を向上することができ
た。
The trench end portion and the pad region 2
The effect of improving the gate breakdown voltage by eliminating the electric field concentration of FIG. 2 is shown in comparison with the IV characteristic diagram of FIG. As shown in the figure, the vertical MOSFET according to the present embodiment has a gate voltage V G = 75 V at a drain current ID = 1 μA cut level.
I got On the other hand, in the conventional structure, the gate voltage V G = 50 V at I D = 1 μA. That is, in the present embodiment, the gate withstand voltage can be significantly improved as compared with the related art.

【0028】また、本実施形態によれば、引出し用トレ
ンチ23の幅W2が配線用トレンチ21の幅W1よりも
太いため、パッド部領域22の高抵抗化を阻止でき、良
好な引出し構造を実現することができる。
Further, according to the present embodiment, since the width W2 of the extraction trench 23 is larger than the width W1 of the wiring trench 21, it is possible to prevent the pad region 22 from increasing in resistance, and to realize a good extraction structure. can do.

【0029】さらに、配線用トレンチ21及び引出し用
トレンチ23にてゲート配線及びパッドを形成すること
により、従来の第二ポリシリコン層を省略するので、1
つのPEP工程を削減することができる。 (第2の実施形態)図6は本発明の第2の実施形態に係
る縦型MOSFETのトレンチ終端部における構成を示
す平面図であり、図7は図6の7−7線矢視断面図であ
る。なお、図6の2−2線矢視断面は図2に示す通りで
ある。
Further, by forming a gate wiring and a pad in the wiring trench 21 and the extraction trench 23, the conventional second polysilicon layer is omitted.
One PEP process can be reduced. (Second Embodiment) FIG. 6 is a plan view showing a configuration of a vertical MOSFET according to a second embodiment of the present invention at a trench termination portion, and FIG. 7 is a sectional view taken along line 7-7 in FIG. It is. The cross section taken along line 2-2 in FIG. 6 is as shown in FIG.

【0030】すなわち、本実施形態は、図2に示す構造
の変形形態であり、配線抵抗の増加の阻止を図るもので
ある。具体的には、図6及び図7に示すように、FET
領域のトレンチの終端部が複数本の配線用トレンチ21
aにて接続されている。
That is, the present embodiment is a modification of the structure shown in FIG. 2, and aims at preventing an increase in wiring resistance. Specifically, as shown in FIG. 6 and FIG.
The end portion of the trench in the region has a plurality of wiring trenches 21
a.

【0031】ここで、各配線用トレンチ21aは、それ
らの配線抵抗の合計を従来のゲートポリシリコン層によ
る配線抵抗と同等の値とするように、トレンチ開口幅及
び本数が設定されている。
Here, the trench opening width and the number of each wiring trench 21a are set so that the sum of the wiring resistances thereof is equivalent to the value of the conventional wiring resistance of the gate polysilicon layer.

【0032】以上のような構成により、第1の実施形態
の効果に加え、配線抵抗の増加を阻止でき、また、配線
抵抗の低減を図ることができる。 (他の実施形態)上記第1及び第2の実施形態では、縦
型MOSFETの場合を説明したが、これに限らず、縦
型IGBT又は縦型IEGTとしても、本発明と同様の
効果を得ることができる。
With the above configuration, in addition to the effects of the first embodiment, an increase in wiring resistance can be prevented, and a reduction in wiring resistance can be achieved. (Other Embodiments) In the first and second embodiments, the case of a vertical MOSFET has been described. However, the present invention is not limited to this, and a vertical IGBT or a vertical IEGT can obtain the same effect as the present invention. be able to.

【0033】また、上記第1及び第2の実施形態では、
第1導電型をn型とし、第2導電型をp型とした場合を
説明したが、これに限らず、夫々導電型を逆にしても、
本発明を同様に実施して同様の効果を得ることができ
る。その他、本発明はその要旨を逸脱しない範囲で種々
変形して実施できる。
In the first and second embodiments,
The case where the first conductivity type is n-type and the second conductivity type is p-type has been described. However, the present invention is not limited to this.
The present invention can be implemented in a similar manner to obtain similar effects. In addition, the present invention can be implemented with various modifications without departing from the scope of the invention.

【0034】[0034]

【発明の効果】上述したように本発明によれば、ゲート
耐圧の低下を阻止できる半導体装置を提供できる。ま
た、PEP工程時の寸法合せのズレや、段差による電極
用金属の段切れを阻止できる。
As described above, according to the present invention, it is possible to provide a semiconductor device capable of preventing a decrease in gate breakdown voltage. In addition, it is possible to prevent misalignment of the dimensions during the PEP step and disconnection of the metal for the electrode due to a step.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る縦型MOSF
ETの構成を示す平面図
FIG. 1 is a vertical MOSF according to a first embodiment of the present invention.
Plan view showing the configuration of ET

【図2】図1の2−2線矢視断面図FIG. 2 is a sectional view taken along line 2-2 of FIG. 1;

【図3】同実施の形態における引出し構造の一部を示す
平面図
FIG. 3 is a plan view showing a part of the drawer structure in the embodiment.

【図4】図3の4−4線矢視断面図FIG. 4 is a sectional view taken along line 4-4 of FIG. 3;

【図5】同実施の形態におけるゲート耐圧の向上効果を
従来と比較して示すI−V特性図
FIG. 5 is an IV characteristic diagram showing an improvement effect of a gate withstand voltage in the embodiment in comparison with a conventional example.

【図6】本発明の第2の実施形態に係る縦型MOSFE
Tのトレンチ終端部における構成を示す平面図
FIG. 6 is a vertical MOSFET according to a second embodiment of the present invention;
FIG. 2 is a plan view showing a configuration at a trench termination portion of T.

【図7】図6の7−7線矢視断面図FIG. 7 is a sectional view taken along line 7-7 in FIG. 6;

【図8】従来の縦型MOSFETの製造工程を説明する
ための斜視断面図
FIG. 8 is a perspective cross-sectional view for explaining a manufacturing process of a conventional vertical MOSFET.

【図9】従来の製造工程を説明するための斜視断面図FIG. 9 is a perspective sectional view for explaining a conventional manufacturing process.

【図10】従来の製造工程を説明するための平面図FIG. 10 is a plan view for explaining a conventional manufacturing process.

【図11】従来の製造工程を説明するための斜視断面図FIG. 11 is a perspective sectional view for explaining a conventional manufacturing process.

【図12】従来の製造工程を説明するための斜視断面図FIG. 12 is a perspective sectional view for explaining a conventional manufacturing process.

【図13】従来の製造工程を説明するための平面図FIG. 13 is a plan view for explaining a conventional manufacturing process.

【図14】従来の製造工程を説明するための斜視断面図FIG. 14 is a perspective sectional view for explaining a conventional manufacturing process.

【図15】従来の製造工程を説明するための斜視断面図FIG. 15 is a perspective sectional view for explaining a conventional manufacturing process.

【図16】従来の製造工程を説明するための平面図FIG. 16 is a plan view for explaining a conventional manufacturing process.

【図17】従来の製造工程を説明するための斜視断面図FIG. 17 is a perspective sectional view for explaining a conventional manufacturing process.

【図18】図17の18−18線矢視断面図18 is a sectional view taken along line 18-18 of FIG. 17;

【図19】従来の製造工程を説明するための平面図FIG. 19 is a plan view for explaining a conventional manufacturing process.

【図20】従来の課題を説明するための模式図FIG. 20 is a schematic view for explaining a conventional problem.

【符号の説明】[Explanation of symbols]

1…n+ 型半導体基板 2…n- 型ベース層 3…p型ベース層 4…p+ 型コンタクト層 5…n+ 型ソース層 6…トレンチ 7…酸化膜 8…ポリシリコン層 21,21a…配線用トレンチ 22…パッド部領域 23…引出し用トレンチ 24…層間膜 25…ゲート電極パッド部 W1〜W3…幅 DESCRIPTION OF SYMBOLS 1 ... n + type semiconductor substrate 2 ... n- type base layer 3 ... p type base layer 4 ... p + type contact layer 5 ... n + type source layer 6 ... trench 7 ... oxide film 8 ... polysilicon layer 21, 21a ... Wiring trench 22 Pad area 23 Extracting trench 24 Interlayer film 25 Gate electrode pad W1 to W3 Width

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板と、 前記基板上に形成された第1導電型ベース層と、 前記第1導電型ベース層上に形成された第2導電型ベー
ス層と、 前記第2導電型ベース層表面に選択的に形成された複数
の第1導電型ソース層と、 前記各第1導電型ソース層内に互いに略平行に形成さ
れ、前記第1導電型ソース層及び前記第2導電型ベース
層を貫通して前記第1導電型ベース層に達する深さを有
する複数のゲート用溝と、 前記各ゲート用溝の深さに等しい深さを有し、前記各ゲ
ート用溝の端部を互いに接続するように前記第2導電型
ベース層内に形成された複数の配線用溝と、 前記各溝の開口部の高さにほぼ等しい高さまで前記各溝
内にゲート絶縁膜を介して埋込み形成されたゲート電極
と、 前記第1導電型ソース層上に形成されたソース電極と、 前記第1導電型ベース層とは反対面の前記基板上に形成
されたドレイン電極とを備えたことを特徴とする半導体
装置。
A first conductive type base layer formed on the substrate; a second conductive type base layer formed on the first conductive type base layer; and a second conductive type base layer. A plurality of first conductivity type source layers selectively formed on the surface; and a first conductivity type source layer and a second conductivity type base layer formed substantially parallel to each other in each of the first conductivity type source layers. And a plurality of gate grooves having a depth reaching the first conductivity type base layer, and having a depth equal to the depth of each of the gate grooves, and connecting the ends of the gate grooves to each other. A plurality of wiring grooves formed in the second conductivity type base layer so as to be connected to each other; and buried in each of the grooves via a gate insulating film to a height substantially equal to the height of the opening of each of the grooves. A gate electrode, and a source electrode formed on the first conductivity type source layer. It said semiconductor device being characterized in that a drain electrode formed on the substrate surface opposite to the first conductivity type base layer.
【請求項2】 基板と、 前記基板上に形成された第1導電型ベース層と、 前記第1導電型ベース層上に形成された第2導電型ベー
ス層と、 前記第2導電型ベース層表面に選択的に形成された複数
の第1導電型ソース層と、 前記第2導電型ベース層内に前記第1導電型ベース層に
達する深さまで選択的に形成され、所定の幅W1を有す
る配線用溝と、 前記配線用溝の一部に接続されるように前記第2導電型
ベース層内に選択的に形成され、前記幅W1よりも太い
幅W2を有する引出し用溝と、 前記各溝内にゲート絶縁膜を介して埋込み形成されたゲ
ート電極と、 前記引出し用溝内のゲート電極の中心部を露出させるよ
うに前記引出し用溝の縁に沿って前記ゲート電極上に形
成された層間膜と、 前記露出されたゲート電極に接して前記層間膜上に形成
された引出し電極と、 前記第1導電型ソース層上に形成されたソース電極と、 前記第1導電型ベース層とは反対面の前記基板上に形成
されたドレイン電極とを備えたことを特徴とする半導体
装置。
2. A substrate, a first conductivity type base layer formed on the substrate, a second conductivity type base layer formed on the first conductivity type base layer, and the second conductivity type base layer. A plurality of first conductivity type source layers selectively formed on the surface; and a plurality of first conductivity type source layers selectively formed in the second conductivity type base layer to a depth reaching the first conductivity type base layer, and having a predetermined width W1. A wiring groove; a lead groove selectively formed in the second conductivity type base layer so as to be connected to a part of the wiring groove, and having a width W2 larger than the width W1; A gate electrode buried in the groove via a gate insulating film, and formed on the gate electrode along an edge of the extraction groove so as to expose a central portion of the gate electrode in the extraction groove. An interlayer film, the interlayer film being in contact with the exposed gate electrode; A source electrode formed on the first conductivity type source layer, and a drain electrode formed on the substrate opposite to the first conductivity type base layer. A semiconductor device characterized by the above-mentioned.
【請求項3】 基板と、 前記基板上に形成された第1導電型ベース層と、 前記第1導電型ベース層上に形成された第2導電型ベー
ス層と、 前記第2導電型ベース層表面に選択的に形成された複数
の第1導電型ソース層と、 前記各第1導電型ソース層内に互いに略平行に形成さ
れ、前記第1導電型ソース層及び前記第2導電型ベース
層を貫通して前記第1導電型ベース層に達する深さを有
する複数のゲート用溝と、 前記各ゲート用溝の深さに等しい深さを有し、且つ所定
の幅W1を有して前記各ゲート用溝の端部を互いに接続
するように前記第2導電型ベース層内に選択的に形成さ
れた配線用溝と、 前記配線用溝の一部に接続されるように前記第2導電型
ベース層内に選択的に形成され、前記幅W1よりも太い
幅W2を有する引出し用溝と、 前記各溝の開口部の高さにほぼ等しい高さまで前記各溝
内にゲート絶縁膜を介して埋込み形成されたゲート電極
と、 前記引出し用溝内のゲート電極の中心部を露出させるよ
うに前記引出し用溝の縁に沿って前記ゲート電極上に形
成された層間膜と、 前記露出されたゲート電極に接して前記層間膜上に形成
された引出し電極と、 前記第1導電型ソース層上に形成されたソース電極と、 前記第1導電型ベース層とは反対面の前記基板上に形成
されたドレイン電極とを備えたことを特徴とする半導体
装置。
3. A substrate, a first conductivity type base layer formed on the substrate, a second conductivity type base layer formed on the first conductivity type base layer, and a second conductivity type base layer. A plurality of first conductivity type source layers selectively formed on the surface; and a first conductivity type source layer and a second conductivity type base layer formed substantially parallel to each other in each of the first conductivity type source layers. A plurality of gate grooves having a depth reaching the first conductivity type base layer through the first conductive type base layer; and having a depth equal to the depth of each of the gate grooves, and having a predetermined width W1. A wiring groove selectively formed in the second conductivity type base layer so as to connect the ends of the respective gate grooves to each other; and the second conductive groove so as to be connected to a part of the wiring groove. A drawing groove selectively formed in the mold base layer and having a width W2 larger than the width W1; A gate electrode buried in each of the trenches through a gate insulating film to a height substantially equal to the height of the opening of each of the trenches, and the gate electrode is exposed so as to expose a central portion of the gate electrode in the lead-out trench. An interlayer film formed on the gate electrode along an edge of the lead groove; a lead electrode formed on the interlayer film in contact with the exposed gate electrode; and a first conductive type source layer. A semiconductor device comprising: a formed source electrode; and a drain electrode formed on the substrate on a surface opposite to the first conductivity type base layer.
JP9280543A 1997-10-14 1997-10-14 Semiconductor device Pending JPH11121741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9280543A JPH11121741A (en) 1997-10-14 1997-10-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9280543A JPH11121741A (en) 1997-10-14 1997-10-14 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH11121741A true JPH11121741A (en) 1999-04-30

Family

ID=17626540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9280543A Pending JPH11121741A (en) 1997-10-14 1997-10-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH11121741A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085689A (en) * 1999-09-17 2001-03-30 Toyota Motor Corp Power semiconductor device
JP2002368221A (en) * 2001-06-08 2002-12-20 Nec Corp Semiconductor device equipped with longitudinal mosfet and manufacturing method therefor
JP2003309263A (en) * 2002-03-22 2003-10-31 Siliconix Inc Structure of trench gate mis device and its manufacturing method
US6642600B2 (en) 2002-03-07 2003-11-04 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device having first trench and second trench connected to the same
JP2005191487A (en) * 2003-12-26 2005-07-14 Seiko Instruments Inc Semiconductor device and manufacturing method for the same
JP4491875B2 (en) * 1999-12-13 2010-06-30 富士電機システムズ株式会社 Trench type MOS semiconductor device
JP2015082632A (en) * 2013-10-24 2015-04-27 住友電気工業株式会社 Silicon carbide semiconductor device and method of manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085689A (en) * 1999-09-17 2001-03-30 Toyota Motor Corp Power semiconductor device
JP4491875B2 (en) * 1999-12-13 2010-06-30 富士電機システムズ株式会社 Trench type MOS semiconductor device
JP2002368221A (en) * 2001-06-08 2002-12-20 Nec Corp Semiconductor device equipped with longitudinal mosfet and manufacturing method therefor
US6642600B2 (en) 2002-03-07 2003-11-04 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device having first trench and second trench connected to the same
JP2003309263A (en) * 2002-03-22 2003-10-31 Siliconix Inc Structure of trench gate mis device and its manufacturing method
JP2005191487A (en) * 2003-12-26 2005-07-14 Seiko Instruments Inc Semiconductor device and manufacturing method for the same
JP2015082632A (en) * 2013-10-24 2015-04-27 住友電気工業株式会社 Silicon carbide semiconductor device and method of manufacturing the same
WO2015060027A1 (en) * 2013-10-24 2015-04-30 住友電気工業株式会社 Silicon carbide semiconductor device and method for manufacturing same
US9728633B2 (en) 2013-10-24 2017-08-08 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US6737704B1 (en) Transistor and method of manufacturing the same
US11075297B2 (en) Semiconductor device and method of manufacturing semiconductor device
US8168498B2 (en) Insulated gate type semiconductor device and method for fabricating the same
JP3307785B2 (en) Insulated gate semiconductor device
JP2893554B2 (en) Trench DMOS transistor having channel blocking means at corners of cell trench
JP6666671B2 (en) Semiconductor device
JP4754353B2 (en) Vertical trench gate semiconductor device and manufacturing method thereof
US9614073B2 (en) Semiconductor device, and manufacturing method for same
CN109659351B (en) Insulated gate bipolar transistor
JP2002314080A (en) Semiconductor device and its manufacturing method
JP2002110978A (en) Power semiconductor element
JPH0817233B2 (en) Insulated gate bipolar transistor
US6777783B2 (en) Insulated gate bipolar transistor
JP2003101027A (en) Semiconductor device and method of manufacturing the same
US7385273B2 (en) Power semiconductor device
JPH11121741A (en) Semiconductor device
JP2960506B2 (en) Turn-off type semiconductor device
US8564051B2 (en) Power semiconductor device with buried source electrode
JP5502468B2 (en) Semiconductor device manufacturing method and semiconductor device
JP3646343B2 (en) Manufacturing method of semiconductor device
JPH10294456A (en) Semiconductor device
JP4521643B2 (en) Fabrication of high density trench DMOS using sidewall spacers
WO2022202088A1 (en) Semiconductor device
JP5166940B2 (en) Fabrication of high-density trench DMOS using sidewall spacers
JP2024008494A (en) Semiconductor device and method of manufacturing the same