JPH11118698A - Separation-type turbidity meter - Google Patents

Separation-type turbidity meter

Info

Publication number
JPH11118698A
JPH11118698A JP9286513A JP28651397A JPH11118698A JP H11118698 A JPH11118698 A JP H11118698A JP 9286513 A JP9286513 A JP 9286513A JP 28651397 A JP28651397 A JP 28651397A JP H11118698 A JPH11118698 A JP H11118698A
Authority
JP
Japan
Prior art keywords
turbidity
detection
fluid
section
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9286513A
Other languages
Japanese (ja)
Inventor
Hiroshi Noguchi
博史 野口
Tamio Ishihara
民雄 石原
Koji Saito
功治 斉藤
Katsutoshi Yamada
勝利 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9286513A priority Critical patent/JPH11118698A/en
Publication of JPH11118698A publication Critical patent/JPH11118698A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a separation-type turbidity meter by which a turbidity value can be measured stably even when a detection part and a conversion part are installed so as to be separated by a method wherein communication means are installed at the detection part and the conversion part and a detection signal is communicated between both. SOLUTION: A laser unit 16 and a light receiving unit 17 inside a detector 13 are operated respectively when a power supply is supplied from a converter 22. A pulse signal which is detected by the light receiving unit 17 is signal- processed by a communication driver 50 so as to be transmitted, via a communication line 52, to a communication receiver 51 which is provided inside the converter 22. In addition, the converter 22 performs a prescribed computing operation to the detection signal, it finds the turbidity value of a fluid, to be measured, so as to be displayed, and it outputs an output signal 23 corresponding to a display value. In addition, the converter 22 receives the supply of a power supply 24 from the outside. In this manner, the pulse signal as the detection signal from a detection part can be transmitted at a long distance. As a result, even when the detection part and the conversion part are installed so as to be separated, the turbidity value can be measured stably.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、浄水場などで使用
する水質計器に係わり、特に水中の微粒子を計数し濁度
を測定する高感度の濁度計に関するものであり、特に設
置環境の自由度を拡大し、適用範囲の拡大を勘案したも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality meter used in a water purification plant or the like, and more particularly to a high-sensitivity turbidity meter for counting fine particles in water and measuring turbidity. This is in consideration of expanding the scope and the scope of application.

【0002】[0002]

【従来の技術】浄水場などで使用されている水質計器
に、水の濁り具合を測定管理するための濁度計がある。
従来浄水場における給水の濁度は水道法により2度(pp
m )以下に管理することが求められており、その濁度測
定方式も表面散乱光方式,散乱光方式,積分球方式など
が規定されている。
2. Description of the Related Art A water quality meter used in a water purification plant or the like includes a turbidity meter for measuring and controlling the degree of turbidity of water.
The turbidity of water supply in conventional water treatment plants is 2 degrees (pp
m.

【0003】しかしながら、水道水に対する安全性の要
求は年々高まりを見せており、従来の管理水準では対応
できなくなってきている。特に水道原水に含まれる微生
物の毒性の問題は大きく、平成8年には国内でもクリプ
トスポリジウムと言う大きさ数μmの原虫による集団感
染症が発生したことを受けて、厚生省の暫定指針として
浄水場のろ過水の濁度を0.1 度以下に維持管理するよ
うに求められた。
[0003] However, the demand for safety of tap water is increasing year by year, and it is no longer possible to cope with the conventional management level. In particular, the problem of the toxicity of microorganisms contained in tap water is serious. In 1996, a water-supply plant was established as a provisional guideline of the Ministry of Health and Welfare in response to the outbreak of a multi-micron protozoan called cryptosporidium in Japan. Was required to maintain the turbidity of the filtered water below 0.1 degrees.

【0004】このように、濁度の管理基準が従来の1/
20に引き下げられたことにより、従来方式の濁度計で
は感度が不足してしまうため、新しい原理の高感度濁度
計の開発が求められてきた。
As described above, the turbidity management standard is 1 /
Since the sensitivity was insufficient with the conventional turbidimeter due to the reduction to 20, the development of a high-sensitivity turbidimeter based on a new principle has been demanded.

【0005】ここで登場してきたのが、超純水などの濁
度測定に使用されていた微粒子カウンタ方式の高感度濁
度計である。この濁度計の測定原理は所定流体中の微粒
子数を計数し、濁度に換算する方式を採用している。粒
子の検出には光源としてレーザ光を用い、これを測定セ
ル中を流れる一定流量の被測定流体に照射すると、該レ
ーザ光が流体中の微粒子に当たって散乱するので、この
散乱光又は散乱光と照射光との干渉光を光センサで検出
し、その検出光量の変化をパルス信号としてとらえるこ
とができる。該パルス信号を所定の単位時間カウントす
ることにより、測定セル中を通過した粒子数を計数して
さらに濁度に換算する物である。
What has appeared here is a high-sensitivity turbidity meter of a particle counter type used for turbidity measurement of ultrapure water or the like. The measurement principle of this turbidity meter employs a method of counting the number of fine particles in a predetermined fluid and converting it into turbidity. Laser light is used as a light source for the detection of particles, and when this is irradiated on a fluid to be measured at a constant flow rate flowing in the measurement cell, the laser light collides with fine particles in the fluid and is scattered. Interference light with light is detected by an optical sensor, and a change in the detected light amount can be detected as a pulse signal. By counting the pulse signal for a predetermined unit time, the number of particles passing through the measurement cell is counted and further converted to turbidity.

【0006】ここで、上記のパルス信号は、一般に使用
される濁度レンジの場合、通過した粒子数に比例して数
Hz〜数kHzの範囲で変化する。
Here, in the case of the turbidity range generally used, the above-mentioned pulse signal changes in the range of several Hz to several kHz in proportion to the number of passing particles.

【0007】[0007]

【発明が解決しようとする課題】上記従来技術による
と、レーザ光が流体中の微粒子に当たって散乱する散乱
光又は散乱光と照射光との干渉光を光センサで検出し、
その検出光量の変化をパルス信号としてとらえる検出部
と、該パルス信号を所定の単位時間カウントすることに
より測定セル中を通過した粒子数を計数してさらに濁度
に換算する変換部とを接続する伝送路は、パルス信号の
減衰やノイズ影響の問題からあまり伝送路長がとれない
ため、検出部と変換部を間近に設置する必要があった。
According to the above prior art, scattered light scattered by laser light hitting fine particles in a fluid or interference light between scattered light and irradiation light is detected by an optical sensor.
A detection unit that captures the change in the detected light amount as a pulse signal is connected to a conversion unit that counts the number of particles passing through the measurement cell by counting the pulse signal for a predetermined unit time and further converts the number of particles into turbidity. Since the transmission path cannot have a sufficient transmission path length due to the problems of pulse signal attenuation and noise effects, it is necessary to install the detection unit and the conversion unit close to each other.

【0008】このため、測定現場に設置しなくてはなら
ない要素が大形化し、設置スペースの点で問題があっ
た。また、変換部を構成する主要な要素は、演算回路な
どのエレクトロニクスが中心であり、そのような変換部
を水を取り扱う測定現場に設置しなくてはならないの
で、信頼性を維持するために防水処理などの十分な注意
が必要であった。
For this reason, elements that must be installed at the measurement site have become large, and there has been a problem in terms of installation space. In addition, the main elements that make up the conversion unit are mainly electronics such as arithmetic circuits, and such a conversion unit must be installed at the measurement site that handles water, so it is waterproof to maintain reliability. Sufficient attention such as processing was required.

【0009】本発明の目的は、上記欠点を無くし、検出
部と変換部を分離して設置しても安定した濁度計測が可
能な微粒子カウンタ方式の高感度濁度計を提供すること
にある。
It is an object of the present invention to provide a high-sensitivity turbidity meter of a fine particle counter type which can eliminate the above-mentioned drawbacks and can stably measure turbidity even when a detecting unit and a converting unit are separately installed. .

【0010】[0010]

【課題を解決するための手段】本発明は、流体をサンプ
リングし、該流体中に含まれる粒子数を計測し、流体濁
度を計測する濁度計において、前記サンプリング流体の
粒子数を検出する検出部と該検出部からの検出信号を濁
度に変換する変換部の各々に通信手段を設けたことであ
る。
According to the present invention, a fluid is sampled, the number of particles contained in the fluid is measured, and the number of particles of the sampled fluid is detected in a turbidimeter for measuring fluid turbidity. Communication means is provided in each of the detection unit and the conversion unit that converts the detection signal from the detection unit into turbidity.

【0011】また、検出部に設けた通信手段と変換部に
設けた通信手段により、検出部と変換部間で検出信号を
通信し、検出部と変換部を分離して設置可能としたこと
である。
[0011] Further, the detection signal is communicated between the detection unit and the conversion unit by the communication unit provided in the detection unit and the communication unit provided in the conversion unit, and the detection unit and the conversion unit can be installed separately. is there.

【0012】また、複数の検出部と単一の変換部をバス
状あるいはスター状の通信路に結線し、分散した複数の
濁度測定点の検出信号を単一の変換部で処理するように
したことである。
In addition, a plurality of detection units and a single conversion unit are connected to a bus-like or star-like communication path so that detection signals of a plurality of dispersed turbidity measurement points are processed by a single conversion unit. It was done.

【0013】また、検出部と変換部に設けた通信手段が
ディファレンシャルラインドライバ/レシーバから成る
平衡型伝送にしたことである。
[0013] Further, the communication means provided in the detection section and the conversion section is a balanced transmission comprising a differential line driver / receiver.

【0014】また、検出部を壁取付およびスタンション
取付が可能な構造としたことである。
[0014] Further, the detection section has a structure capable of being mounted on a wall and a stanchion.

【0015】[0015]

【発明の実施の形態】本発明の実施例を図1から図6で
説明する。先ず図1は本発明の要部構成図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. First, FIG. 1 is a configuration diagram of a main part of the present invention.

【0016】試料水入口1から供給される被測定流体2
は、配管3,減圧弁4,調整弁5,配管6を介して脱泡
槽7の下部に導かれる。該脱泡槽7は、短い内筒8と長
い外筒9からなり、さらに外筒9は、その外周面上部に
被測定流体の水面10の高さを一定に保つためのオーバ
フロー口11が、また外周面下部には、配管12を介し
て検出器13に前記被測定流体2を送り出す送出口14
がそれぞれ具備されている。
A fluid 2 to be measured supplied from a sample water inlet 1
Is led to the lower part of the defoaming tank 7 through a pipe 3, a pressure reducing valve 4, a regulating valve 5, and a pipe 6. The defoaming tank 7 is composed of a short inner cylinder 8 and a long outer cylinder 9. The outer cylinder 9 further has an overflow port 11 for maintaining the height of the water surface 10 of the fluid to be measured at an upper portion of its outer peripheral surface. Further, at the lower part of the outer peripheral surface, an outlet 14 for sending out the fluid to be measured 2 to the detector 13 through the pipe 12
Are provided respectively.

【0017】該検出器13の中には、被測定流体2を導
きその濁度を測定するための透明で円筒状をした測定セ
ル15と、これにレーザ光を照射する光学レンズ系を内
蔵したレーザユニット16と前記測定セル15を通過し
たレーザ光を受光する受光ユニット17が配置されてい
る。
The detector 13 incorporates a transparent and cylindrical measuring cell 15 for guiding the fluid 2 to be measured and measuring its turbidity, and an optical lens system for irradiating the measuring cell 15 with a laser beam. A laser unit 16 and a light receiving unit 17 for receiving the laser light passing through the measuring cell 15 are arranged.

【0018】また、測定セル15を通過した被測定流体
2は、配管18を経て放出口19から大気圧下に放出さ
れる。この放出口19と前記オーバフロー口11から溢
れた被測定流体2は配管20,排出口21を経て機外へ
排水される。
The fluid 2 to be measured having passed through the measuring cell 15 is discharged from a discharge port 19 through a pipe 18 under atmospheric pressure. The fluid 2 to be measured overflowing from the discharge port 19 and the overflow port 11 is drained out of the apparatus via a pipe 20 and a discharge port 21.

【0019】一方、前記検出器13内のレーザユニット
16及び受光ユニット17は、それぞれ変換器22から
の電源供給により動作する。受光ユニット17で検出し
たパルス信号は通信ドライバ50により信号処理され、
通信路52を介して変換器22内に具備した通信レシー
バ51へ伝送される。さらに変換器22は、検出信号を
所定の演算を行い被測定流体の濁度値を求めこれを表示
し、表示値に対応した出力信号23を出力する。又変換
器22は外部から電源24の供給を受けている。
On the other hand, the laser unit 16 and the light receiving unit 17 in the detector 13 are operated by power supply from the converter 22, respectively. The pulse signal detected by the light receiving unit 17 is processed by the communication driver 50,
The signal is transmitted via a communication path 52 to a communication receiver 51 provided in the converter 22. Further, the converter 22 performs a predetermined operation on the detection signal to obtain a turbidity value of the fluid to be measured, displays the turbidity value, and outputs an output signal 23 corresponding to the displayed value. The converter 22 receives a power supply 24 from outside.

【0020】一方前記脱泡槽7の上端には蓋25がはめ
込まれ更に該蓋には熱電対や測温抵抗体などからなる温
度センサ26が保持されその先端は脱泡槽7内の被測定
流体2内に挿入されており、被測定流体2の温度を変換
器に伝えている。
On the other hand, a lid 25 is fitted on the upper end of the defoaming tank 7, and a temperature sensor 26 such as a thermocouple or a resistance temperature detector is held on the lid. It is inserted into the fluid 2 and transmits the temperature of the fluid 2 to be measured to the converter.

【0021】本構成において、脱泡槽7の内筒8に導か
れた被測定流体2には、外気温や管路抵抗による温度・
圧力の変化などから多くの気泡が含まれており、この気
泡は成長しながら内筒8内を上昇し大気開放されている
水面10から大気中に放散される。内筒8と外筒9との
間には気泡の少ない被測定流体が溜り送出口14から検
出器13に送り出され、気泡の影響が少ない測定が可能
となる。このとき測定セル15内を流れる被測定流体2
の流速は水面10と放出口19との水頭差ΔHと管路抵
抗によって定まる。
In this configuration, the fluid 2 to be measured guided to the inner cylinder 8 of the defoaming tank 7 has a temperature
Many bubbles are contained due to a change in pressure and the like, and the bubbles rise in the inner cylinder 8 while growing and are diffused into the atmosphere from a water surface 10 that is open to the atmosphere. A fluid to be measured having few air bubbles is collected between the inner cylinder 8 and the outer cylinder 9 and sent out from the outlet 14 to the detector 13, so that measurement with less influence of the air bubbles can be performed. At this time, the fluid 2 to be measured flowing in the measurement cell 15
Is determined by the head difference ΔH between the water surface 10 and the discharge port 19 and the pipe resistance.

【0022】次に、検出器13内の測定原理について図
2で説明する。
Next, the principle of measurement in the detector 13 will be described with reference to FIG.

【0023】図1のレーザユニット16は、光源である
半導体レーザ31と集光レンズ32から構成され、発生
したレーザ光33が被測定流体2が矢印方向に流れる石
英ガラスなどからなる測定セル15内に焦点を結ぶよう
配置されている。前記被測定流体2内には多数の微粒子
34が含まれ一定流速で矢印方向に流れていく。この微
粒子34に前記レーザ光が照射されると散乱現象が起き
散乱光35が発生する。前記レーザ光33(透過光)と
散乱光34は測定セル15の背方で干渉縞を発生する。
その干渉縞(透過光の濃淡)を複数個の受光素子からな
る受光ユニット17で検出し、増幅器36で差動増幅す
る。
The laser unit 16 shown in FIG. 1 is composed of a semiconductor laser 31 as a light source and a condenser lens 32, and a laser beam 33 generated in a measuring cell 15 made of quartz glass or the like in which the fluid 2 to be measured flows in the direction of the arrow. It is arranged to focus on. A large number of fine particles 34 are contained in the fluid 2 to be measured and flow at a constant flow rate in the direction of the arrow. When the fine particles 34 are irradiated with the laser light, a scattering phenomenon occurs and scattered light 35 is generated. The laser light 33 (transmitted light) and the scattered light 34 generate interference fringes behind the measurement cell 15.
The interference fringes (shading of transmitted light) are detected by the light receiving unit 17 including a plurality of light receiving elements, and differentially amplified by the amplifier 36.

【0024】その出力波形37を図3に示す。図2の微
粒子34が1個ずつ通過する度に、ピーク波形41を出
力する。このピーク波形41が所定のしきい値42を超
えた回数を計数し、通過した微粒子34の数を測定する
物である。ここで、上記のパルス信号は、一般に使用さ
れる濁度レンジの場合、通過した粒子数に比例して数H
z〜数kHzの範囲で変化する。
The output waveform 37 is shown in FIG. Each time the fine particles 34 shown in FIG. 2 pass one by one, a peak waveform 41 is output. The number of times that the peak waveform 41 exceeds a predetermined threshold value 42 is counted, and the number of the passing fine particles 34 is measured. Here, in the case of a commonly used turbidity range, the pulse signal has a number H in proportion to the number of passing particles.
It changes in the range of z to several kHz.

【0025】図4は検出信号を検出器13から変換器2
2へ伝送する通信路の接続形態の一例を示した図であ
る。図4では、1〜n個ある検出器13と1個の変換器
22をバス状の通信路52で接続している。各検出器に
具備した通信ドライバ50は、例えば、RS−485に
代表されるディファレンシャルラインドライバで構成
し、通信路52のa線,b線をGND線に対して差動平
衡にドライブする。変換器22に具備した通信レシーバ
51は、同様にRS−485に代表されるディファレン
シャルラインレシーバで構成し、差動入力により伝送さ
れた検出信号を復元する。
FIG. 4 shows that the detection signal is transmitted from the detector 13 to the converter 2.
FIG. 2 is a diagram illustrating an example of a connection form of a communication path for transmitting data to a communication path 2; In FIG. 4, 1 to n detectors 13 and one converter 22 are connected by a bus-shaped communication path 52. The communication driver 50 provided in each detector is constituted by, for example, a differential line driver typified by RS-485, and drives the lines a and b of the communication path 52 in a differential balance with respect to the GND line. The communication receiver 51 provided in the converter 22 is similarly constituted by a differential line receiver represented by RS-485, and restores a detection signal transmitted by a differential input.

【0026】このような平衡形伝送では、数kHzの信
号周波数の場合、1km程度の伝送距離が得られる事が
知られている。また、通信路52に印加されるノイズに
対してもa線,b線には同位相でノイズ電圧が印加され
るため、ディファレンシャルラインレシーバが感知せ
ず、ノイズ影響に対しても強い方式である。なお、図4
では、複数個の検出器と1個の変換器をバス状の通信路
で接続しているため、検出器同士の通信衝突が問題とな
るが、各検出器に対して順次通信タイムスロットを与え
る手段を設けておけば、問題とならない。また、スター
状の通信路で複数個の検出器と1個の変換器を接続する
場合も同様である。
In such balanced transmission, it is known that a transmission distance of about 1 km can be obtained at a signal frequency of several kHz. In addition, since a noise voltage is applied to the a-line and the b-line in the same phase with respect to the noise applied to the communication path 52, the differential line receiver does not sense the noise voltage and is a method strong against the noise influence. . FIG.
In this example, since a plurality of detectors and one converter are connected by a bus-like communication path, communication collision between the detectors becomes a problem, but a communication time slot is sequentially given to each detector. There is no problem if a means is provided. The same applies to the case where a plurality of detectors and one converter are connected via a star-shaped communication path.

【0027】図5は検出信号41が通信路52を介して
変換器の通信レシーバ51から出力されるまでの過程の
信号波形の一例を示した図である。
FIG. 5 is a diagram showing an example of a signal waveform in a process until the detection signal 41 is output from the communication receiver 51 of the converter via the communication path 52.

【0028】図6は本実施例の外観イメージを示した図
である。検出器と変換器を分離して設置できるため、測
定現場には検出器のみの設置となり、小形化ができ、図
のように、スタンション取付用の穴と壁取付用の穴を設
けておけば双方の取付構造が容易にとることができる。
FIG. 6 is a diagram showing an appearance image of this embodiment. Since the detector and converter can be installed separately, only the detector needs to be installed at the measurement site, making it possible to reduce the size.If the stanchion mounting hole and the wall mounting hole are provided as shown in the figure, Both mounting structures can be easily obtained.

【0029】[0029]

【発明の効果】本発明によれば、検出部からの検出信号
であるパルス信号を長距離伝送できるため、検出部と変
換部を分離して設置しても安定な濁度計測が可能な濁度
計を提供できるという効果がある。
According to the present invention, since a pulse signal, which is a detection signal from a detection unit, can be transmitted over a long distance, stable turbidity measurement can be performed even if the detection unit and the conversion unit are installed separately. There is an effect that a degree meter can be provided.

【0030】また、濁度計測が必要な測定ポイントに
は、壁取付が可能な検出部のみを設置すれば良く、一般
にスペースが限られた測定現場への設置が容易になると
いう効果がある。
Further, it is sufficient to install only a detection unit that can be mounted on a wall at a measurement point where turbidity measurement is required, and there is an effect that installation at a measurement site where space is generally limited becomes easy.

【0031】また、濁度計を構成する要素の中で、演算
回路など主要なエレクトロニクスを収めた変換部を、水
を取り扱う測定現場に比べて設置環境の良い計器室内に
設置することが可能なため、信頼性の維持が容易になる
という効果がある。
Further, among the elements constituting the turbidity meter, the conversion section containing the main electronics such as an arithmetic circuit can be installed in an instrument room having a better installation environment than the measurement site where water is measured. Therefore, there is an effect that maintenance of reliability is facilitated.

【0032】また、複数ポイントの濁度計測が必要な場
合、検出部のみを必要な測定ポイントに設置し、各検出
部からの検出信号を単一の変換部で処理できるため、安
価な濁度計を提供できるという効果がある。
When turbidity measurement at a plurality of points is required, only the detection unit is installed at the required measurement point, and the detection signal from each detection unit can be processed by a single conversion unit. This has the effect of providing a total meter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例である分離形濁度計の要部構成
図。
FIG. 1 is a configuration diagram of a main part of a separation turbidity meter according to an embodiment of the present invention.

【図2】図1の原理を説明する図。FIG. 2 is a view for explaining the principle of FIG. 1;

【図3】本発明の実施例の検出信号を説明する特性図。FIG. 3 is a characteristic diagram illustrating a detection signal according to the embodiment of the present invention.

【図4】本発明の実施例である信号接続を説明する図。FIG. 4 is a diagram illustrating signal connection according to an embodiment of the present invention.

【図5】本発明の実施例である伝送信号を説明する図。FIG. 5 is a diagram illustrating a transmission signal according to an embodiment of the present invention.

【図6】本発明の実施例である分離形濁度計の外観イメ
ージを示す図。
FIG. 6 is a view showing an appearance image of a separation type turbidimeter which is an example of the present invention.

【符号の説明】[Explanation of symbols]

2…被測定流体、7…脱泡槽、10…水面、13…検出
器、15…測定セル、16…レーザユニット、17…受
光ユニット、19…放出口、22…変換器、26…温度
センサ、50…通信ドライバ、51…通信レシーバ、5
2…通信路、ΔH…水頭差。
2 ... fluid to be measured, 7 ... degassing tank, 10 ... water surface, 13 ... detector, 15 ... measuring cell, 16 ... laser unit, 17 ... light receiving unit, 19 ... emission port, 22 ... converter, 26 ... temperature sensor .. 50 communication driver, 51 communication receiver, 5
2: Communication channel, ΔH: Head difference.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 勝利 茨城県ひたちなか市大字市毛882番地 株 式会社日立製作所計測器事業部内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Katsutoshi Yamada 882 Momo, Oaza-shi, Hitachinaka-shi, Ibaraki Pref.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】流体をサンプリングし、該流体中に含まれ
る粒子数を計測し、流体濁度を計測する濁度計におい
て、前記サンプリング流体の粒子数を検出する検出部と
該検出部からの検出信号を濁度に変換する変換部の各々
に通信手段を設けたことを特徴とする分離形濁度計。
1. A turbidity meter for sampling a fluid, measuring the number of particles contained in the fluid, and measuring the turbidity of the fluid, comprising: a detection unit for detecting the number of particles of the sampled fluid; A separation type turbidimeter, wherein a communication unit is provided in each of the conversion units for converting a detection signal into turbidity.
【請求項2】請求項1において、検出部に設けた通信手
段と変換部に設けた通信手段により、検出部と変換部間
で検出信号を通信し、検出部と変換部を分離して設置可
能としたことを特徴とする分離形濁度計。
2. A detecting means according to claim 1, wherein the detecting section and the converting section communicate a detection signal by a communicating section provided in the detecting section and a communicating section provided in the converting section, and the detecting section and the converting section are separately installed. A separation type turbidity meter characterized by being made possible.
【請求項3】請求項1,2において、複数の検出部と単
一の変換部をバス状あるいはスター状の通信路に結線
し、分散した複数の濁度測定点の検出信号を単一の変換
部で処理することを特徴とする分離形濁度計。
3. The method according to claim 1, wherein the plurality of detection units and a single conversion unit are connected to a bus-like or star-like communication path, and the detection signals of the plurality of dispersed turbidity measurement points are converted into a single signal. A separation type turbidimeter characterized by being processed by a conversion unit.
【請求項4】請求項1,2において、検出部と変換部に
設けた通信手段がディファレンシャルラインドライバ/
レシーバから成る平衡型伝送であることを特徴とする分
離形濁度計。
4. A communication system according to claim 1, wherein the communication means provided in the detection section and the conversion section includes a differential line driver /
A separation type turbidimeter characterized by balanced transmission comprising a receiver.
【請求項5】請求項1,2において、検出部を壁取付お
よびスタンション取付が可能な構造としたことを特徴と
する分離形濁度計。
5. A turbidity meter according to claim 1, wherein said detecting portion is structured to be mounted on a wall and a stanchion.
JP9286513A 1997-10-20 1997-10-20 Separation-type turbidity meter Pending JPH11118698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9286513A JPH11118698A (en) 1997-10-20 1997-10-20 Separation-type turbidity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9286513A JPH11118698A (en) 1997-10-20 1997-10-20 Separation-type turbidity meter

Publications (1)

Publication Number Publication Date
JPH11118698A true JPH11118698A (en) 1999-04-30

Family

ID=17705390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9286513A Pending JPH11118698A (en) 1997-10-20 1997-10-20 Separation-type turbidity meter

Country Status (1)

Country Link
JP (1) JPH11118698A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002207001A (en) * 2001-01-11 2002-07-26 Nikkiso Co Ltd Multi-point particle size distribution measuring system
JP2020020668A (en) * 2018-08-01 2020-02-06 株式会社Jvcケンウッド Analyzer and analysis method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002207001A (en) * 2001-01-11 2002-07-26 Nikkiso Co Ltd Multi-point particle size distribution measuring system
JP2020020668A (en) * 2018-08-01 2020-02-06 株式会社Jvcケンウッド Analyzer and analysis method

Similar Documents

Publication Publication Date Title
CA1130604A (en) Oil-in-water method and detector
KR100808729B1 (en) Simultaneous determination of multiphase flowrates and concentrations
KR100896044B1 (en) Apparatus for automatically measuring quality of water
KR101490324B1 (en) Particulate Matter Remotely Measuring System
GB2325736A (en) Characterising oil well effluents by attentuation of gamma rays of two energy levels
US3861198A (en) Fluid analyzer with self-cleaning viewing windows
CA2106472A1 (en) Organic pollutant monitor
US20060005611A1 (en) Ultrasonic measurement of the running time and quantity for detecting the concentration of particles in a flowing fluid
WO1982001703A1 (en) Apparatus for disinfection of liquids
JPH04218779A (en) Method and apparatus for monitoring flow speed of fluid
CN202735253U (en) Laser source water quality monitoring system based on Internet of things
JPH11118698A (en) Separation-type turbidity meter
CN102004067A (en) Detection system and method of particles in liquid
JP4831290B2 (en) Activated sludge monitoring method and activated sludge monitoring device
KR101990784B1 (en) Multi-channel turbidity meter and turbidity system using the meter
JPH11118699A (en) Calibration method for installation-type turbidity meter
GB2408100A (en) Acoustic detection of foam formation in pipe flows
US20220155116A1 (en) Optical fluid flow velocity measurement
JPH11230889A (en) Fine particle counter type turbidimeter
RU193689U1 (en) Laser device for measuring the attenuation coefficient of the aquatic environment
JP2632040B2 (en) Current meter
CN112946067A (en) Ultrasonic wave ore pulp concentration on-line detector and intelligent control terminal
JPH11230905A (en) Turbidimeter
JP2632041B2 (en) Current meter
GB1471527A (en) On-line system for monitoring particles in fluids