JPH11117711A - Gasification compound power generation plant - Google Patents

Gasification compound power generation plant

Info

Publication number
JPH11117711A
JPH11117711A JP9281584A JP28158497A JPH11117711A JP H11117711 A JPH11117711 A JP H11117711A JP 9281584 A JP9281584 A JP 9281584A JP 28158497 A JP28158497 A JP 28158497A JP H11117711 A JPH11117711 A JP H11117711A
Authority
JP
Japan
Prior art keywords
air
oxygen
plant
combined cycle
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9281584A
Other languages
Japanese (ja)
Inventor
Yasushi Iwai
康 岩井
Junichi Tanji
順一 丹治
Takashi Ikeguchi
隆 池口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9281584A priority Critical patent/JPH11117711A/en
Publication of JPH11117711A publication Critical patent/JPH11117711A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Abstract

PROBLEM TO BE SOLVED: To provide a plant having a configuration by which the plant can be operated so that the thermal efficiency is maximum in response to the operating state of the plant, in the gasification compound power generation plant. SOLUTION: In a gasification compound power generation plant which is provided with a compressor 15, a mechanism for extracting a part of discharge air from the compressor, a gas turbine 5 having a combustor 14 for supplying the compressordischarge air, nitrogen and fuel, and burning them, and a turbine 16, an oxygen manufacturing facility 1, a gasification device for generating flammable gas from coal, etc., using oxygen, or a mixture of oxygen and air, and a heat exchanger 9 for heat-exchanging the air extracted from the compressor 15 for nitrogen separated at the oxygen manufacturing facility 1, and which supplies the gas turbine combustor 14 with nitrogen after heat exchange, and flammable gas, equipment 17 for controlling the extracted air quantity so that the thermal efficiency is maximum in response to the state of the gasification compound power generation plant, is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンの抽
気空気量を制御する装置を備えたガス化複合発電プラン
トに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated gasification combined cycle power plant equipped with a device for controlling the amount of air extracted from a gas turbine.

【0002】[0002]

【従来の技術】従来のガス化複合発電プラントでは、起
動時の原空圧縮機単独運転からガスタービン圧縮機抽気
空気の供給運転への過渡期の切り替え動作としてしか、
抽気空気流量弁の操作による抽気空気量の制御を行って
いない(従来例1、特開平8−158890号)。さらに、ガ
ス化複合発電プラントの状態に応じて熱効率が最大とな
るように抽気空気量を制御することは、未だ行われてい
ない。
2. Description of the Related Art In a conventional integrated gasification combined cycle power plant, only an operation during a transition period from a single operation of a raw air compressor at the time of startup to a supply operation of bleed air of a gas turbine compressor is performed.
The control of the bleed air amount by operating the bleed air flow valve is not performed (conventional example 1, JP-A-8-158890). Further, the control of the amount of extracted air to maximize the thermal efficiency according to the state of the integrated gasification combined cycle power plant has not been performed yet.

【0003】従来技術によるガス化複合発電プラントの
例として、タービンの冷却に圧縮機抽気空気を用いる一
般的なシステム構成を図2に示す。この図は、ガス化炉
として酸素吹き石炭ガス化炉を、ガス精製設備として湿
式ガス精製設備を用いた場合の燃料およびガスの流れを
示す略示図であり、ボイラおよび補機動力系での水・蒸
気の流れは省略している。以下図2により、ガス化複合
発電プラントについて説明する。
[0003] As an example of a conventional integrated gasification combined cycle power plant, Fig. 2 shows a general system configuration using compressor bleed air for cooling a turbine. This figure is a schematic diagram showing the flow of fuel and gas when an oxygen-blown coal gasifier is used as a gasifier and a wet gas purifier is used as a gas purifier. Water and steam flows are omitted. Hereinafter, the integrated gasification combined cycle power plant will be described with reference to FIG.

【0004】酸素製造設備1は、原料となる空気20を
圧縮機で加圧し、それにガスタービン5からの抽気空気
26を加えて得る加圧空気を取り込み、少量の不純物を
含む酸素ガスと窒素ガスに分解する。酸素ガスと窒素ガ
スは、ガス化炉やガスタービン等の使用に供するために
圧縮機により加圧され、酸素21,窒素22として出力
される。なお本図では、空気分離プロセスに加圧用の圧
縮機を加えた全体を、酸素製造設備1と簡単化して図示
している。石炭23は、石炭乾燥器11により乾燥さ
れ、ガス化炉2へ供給される。ガス化炉2は約20〜3
0気圧の加圧下にあり、酸化剤とする酸素21を取り込
んで石炭のガス化プロセスが進められると同時に、燃料
である石炭の一部が燃焼される。ガス化炉2内で発生し
た熱および生成したガスが保有する熱は、ガス化炉冷却
用熱交換器および熱回収ボイラ3により吸収され、それ
により発生した蒸気は排熱回収ボイラ8で発生した蒸気
に加え合わせ、さらに過熱蒸気とされて蒸気タービン6
へ送られる。これにより、ガス化炉2の出口で約110
0℃の生成ガス温度は、熱回収ボイラ3の出口で400℃
以下まで冷却され、ガス/ガス熱交13で約200℃以
下まで冷却され、湿式のガス精製設備4に送られる。生
成ガス24はガス精製設備4にて、脱塵,脱硫され、精
製プロセスにてガス温度が一旦常温程度まで下げられる
が、蒸気を用いた加熱器とガス/ガス熱交13により約
300℃まで温度回復して精製ガス25となる。なお、
ガス精製設備4が乾式の高温ガス精製プロセスによる場
合、ガス温度が約500℃以上の高温となり、生成ガス
の顕熱ロスはかなり減少する。精製ガス25は前記酸素
製造設備1から得る副生成の窒素22を熱交換器9で加
熱したものと共に、燃焼器14へ送られる。精製ガス2
5と加熱された窒素22は、燃焼器14へ入る前、又は
燃焼器14内で混合されて比較的低発熱量の燃料ガスと
なり、燃焼器14にてガスタービンの圧縮機15から送
られる圧縮空気により燃焼される。燃焼ガスはタービン
16にて膨脹しガスタービンを作動させる。タービン1
6の冷却には、ガスタービンの圧縮機15から送られる
圧縮空気を抽気してブースタ圧縮機で昇圧したものを用
い、冷却流路を経てタービン内へ戻される(オープン冷
却方式)か燃焼器へ送られる(クローズド冷却方式)。
ガスタービン5は蒸気タービン6と共に発電機7を駆動
して発電を行い、排気ガス27は排熱回収ボイラ8へ送
られ、熱回収後煙突から排出される。ガスタービンの圧
縮機15の圧縮空気は圧縮によって約400℃(ガスタ
ービンによって圧縮比などが違うのでそれに応じて異な
る)まで温度が上昇し、その一部が抽気されて抽気空気
26として熱交換器9に送られる。抽気空気26は、熱
交換器9で約100℃以下の比較的低温の窒素22と熱交
換した後、酸素製造設備1に送られ原料空気の全量また
は一部になる。
[0004] The oxygen production equipment 1 pressurizes air 20 as a raw material with a compressor, and takes in pressurized air obtained by adding bleed air 26 from the gas turbine 5 to oxygen gas and nitrogen gas containing a small amount of impurities. Decompose into The oxygen gas and the nitrogen gas are pressurized by a compressor for use in a gasifier, a gas turbine, or the like, and output as oxygen 21 and nitrogen 22. In this figure, the whole of the air separation process plus the compressor for pressurization is simplified and shown as the oxygen production equipment 1. The coal 23 is dried by the coal dryer 11 and supplied to the gasifier 2. Gasifier 2 is about 20-3
Under the pressurization of 0 atm, the gasification process of coal is carried out by taking in oxygen 21 as an oxidizing agent, and at the same time, a part of coal as fuel is burned. The heat generated in the gasifier 2 and the heat of the generated gas are absorbed by the gasifier cooling heat exchanger and the heat recovery boiler 3, and the steam generated thereby is generated in the exhaust heat recovery boiler 8. In addition to the steam, the steam is further converted into superheated steam to form a steam turbine 6
Sent to Thereby, about 110 at the outlet of the gasifier 2
The generated gas temperature of 0 ° C is 400 ° C at the outlet of the heat recovery boiler 3.
It is cooled to about 200 ° C. or less by gas / gas heat exchange 13 and sent to a wet gas purification facility 4. The generated gas 24 is dedusted and desulfurized in the gas refining facility 4, and the gas temperature is once reduced to about normal temperature in the refining process. The temperature recovers to become purified gas 25. In addition,
When the gas purification equipment 4 uses a dry high-temperature gas purification process, the gas temperature becomes a high temperature of about 500 ° C. or more, and the sensible heat loss of the produced gas is considerably reduced. The purified gas 25 is sent to the combustor 14 together with the by-product nitrogen 22 obtained from the oxygen production facility 1 heated by the heat exchanger 9. Purified gas 2
5 and the heated nitrogen 22 are mixed into the combustor 14 or mixed in the combustor 14 to form a fuel gas having a relatively low calorific value, and the compressed gas sent from the compressor 15 of the gas turbine in the combustor 14. Burned by air. The combustion gas expands in the turbine 16 to operate the gas turbine. Turbine 1
For cooling of 6, the compressed air sent from the compressor 15 of the gas turbine is extracted and the pressure is increased by the booster compressor. The compressed air is returned to the turbine through the cooling passage (open cooling system) or to the combustor. Sent (closed cooling system).
The gas turbine 5 drives the generator 7 together with the steam turbine 6 to generate electric power, and the exhaust gas 27 is sent to the exhaust heat recovery boiler 8 and discharged from the chimney after heat recovery. The temperature of the compressed air of the compressor 15 of the gas turbine rises to about 400 ° C. due to the compression (the compression ratio differs depending on the gas turbine, so it differs accordingly), and a part of the air is extracted and extracted as the heat exchanger 26 as the extracted air 26 9 The bleed air 26 exchanges heat with the relatively low-temperature nitrogen 22 having a temperature of about 100 ° C. or less in the heat exchanger 9, and is then sent to the oxygen production facility 1 to become the whole or a part of the raw air.

【0005】[0005]

【発明が解決しようとする課題】ガス化複合発電プラン
トでは、ガスタービン圧力比および出力が最大(また
は、許容限界)となるように設計していた。これは、抽
気比(酸素製造設備が処理する空気流量に対する抽気空
気流量の比)をパラメータとしてプラント熱効率をサー
ベイすると、ガスタービン圧力比および出力が最大の点
でプラント熱効率も最大となっていたためである(抽気
比が少ない時は、IGV(入口案内翼)開度制御により
圧縮機流入空気量を絞り、ガスタービン出力が最大(ま
たは、許容限界)以下になるようにしてサーベイし
た)。
The gasification combined cycle power plant has been designed so that the gas turbine pressure ratio and the output are maximized (or allowable limits). This is because when the plant thermal efficiency was surveyed using the extraction ratio (the ratio of the extraction air flow rate to the air flow rate processed by the oxygen production facility) as a parameter, the plant thermal efficiency was also maximum at the point where the gas turbine pressure ratio and output were the maximum. (When the bleed ratio was small, the amount of air flowing into the compressor was reduced by IGV (inlet guide vane) opening control, and the gas turbine output was surveyed so as to be less than the maximum (or allowable limit)).

【0006】しかし、圧力比の大きなガスタービンを用
いたガス化複合発電プラントの運転をする場合や、外部
環境(大気温度など)が変化して部分負荷運転をする場
合などにおいては、必ずしもガスタービン圧力比および
出力が最大の点でプラント熱効率も最大とはならない
(図3)。これは、熱交換器における熱交換が充分でな
く、無駄にエネルギーが捨てられるためと考えられる。
従来はこのような場合は、IGV開度制御しか行ってお
らず、圧力比を最大(または、許容限界)となるように
運転できても、ガスタービン出力を最大となるようには
運転できなかった。
However, in the case of operating a gasification combined cycle power plant using a gas turbine having a large pressure ratio, or in the case of performing a partial load operation due to a change in external environment (such as atmospheric temperature), the gas turbine is not necessarily used. At the point where the pressure ratio and output are at the maximum, the plant thermal efficiency is not at the maximum (FIG. 3). This is probably because heat exchange in the heat exchanger is not sufficient and energy is wasted.
Conventionally, in such a case, only the IGV opening degree control is performed. Even if the pressure ratio can be operated to be the maximum (or the allowable limit), the operation cannot be performed to maximize the gas turbine output. Was.

【0007】そこで、どのような条件においてもガスタ
ービン圧力比および出力が最大となるように、即ち、プ
ラント熱効率が最大となるように運転できるよう、制御
する必要がある。
Therefore, it is necessary to perform control so that the gas turbine pressure ratio and the output can be maximized under any conditions, that is, the operation can be performed so as to maximize the plant thermal efficiency.

【0008】本発明の目的は、上記課題を解決するよう
なガス化複合発電プラントを提供することである。
An object of the present invention is to provide a gasification combined cycle power plant that solves the above-mentioned problems.

【0009】[0009]

【課題を解決するための手段】上記目的は、以下の手段
によって達成される。
The above object is achieved by the following means.

【0010】ガス化複合発電プラントの状態に応じて、
抽気空気流量を制御する装置を備えて、プラント熱効率
が最大となるように抽気空気流量を制御する。
According to the state of the combined gasification combined cycle power plant,
A device for controlling the bleed air flow is provided to control the bleed air flow so that the plant thermal efficiency is maximized.

【0011】具体的には、圧縮機と、圧縮機吐出空気の
一部を抽気する機構と、圧縮機吐出空気と窒素と燃料と
を供給して燃焼させる燃焼器と、タービンとを有したガ
スタービンと、空気から酸素と窒素を分離する酸素製造
設備と、前記酸素または前記酸素と空気を混合した酸素
冨化空気を用いて石炭又は重質油などをガス化して可燃
ガスを生成するガス化装置と、前記ガスタービンの圧縮
機から抽気した空気と前記酸素製造設備で分離して昇圧
した前記窒素とを熱交換させる熱交換器を備え、熱交換
後の前記窒素を前記ガスタービン燃焼器に供給し、生成
された前記可燃ガスを前記燃料として前記ガスタービン
燃焼器に供給するガス化複合発電プラントにおいて、ガ
ス化複合発電プラントの状態に応じて熱効率が最大とな
るように抽気空気量を制御する装置を備えていることを
特徴とする。
Specifically, a gas having a compressor, a mechanism for extracting a part of the compressor discharge air, a combustor for supplying and discharging the compressor discharge air, nitrogen and fuel, and a turbine A turbine, an oxygen production facility for separating oxygen and nitrogen from air, and a gasification system for producing combustible gas by gasifying coal or heavy oil using the oxygen or oxygen-enriched air obtained by mixing the oxygen and air. An apparatus, comprising a heat exchanger for heat exchange between the air extracted from the compressor of the gas turbine and the nitrogen separated and pressurized in the oxygen production facility, and the nitrogen after the heat exchange is supplied to the gas turbine combustor. In the gasification combined cycle power plant that supplies and generates the combustible gas as the fuel to the gas turbine combustor, the bleed air is set so that the thermal efficiency is maximized according to the state of the gasification combined cycle plant. Characterized in that it comprises a control device.

【0012】または、圧縮機と、圧縮機吐出空気の一部
を抽気する機構と、圧縮機吐出空気と窒素と燃料とを供
給して燃焼させる燃焼器と、タービンとを有したガスタ
ービンと、空気から酸素と窒素を分離する酸素製造設備
と、前記酸素または前記酸素と空気を混合した酸素冨化
空気を用いて石炭又は重質油などをガス化して可燃ガス
を生成するガス化装置と、前記ガスタービンの圧縮機か
ら抽気した空気と前記ガス化装置で生成した前記可燃ガ
スとを熱交換させる熱交換器を備え、熱交換後の前記可
燃ガスを前記ガスタービン燃焼器に供給するガス化複合
発電プラントにおいて、ガス化複合発電プラントの状態
に応じて熱効率が最大となるように抽気空気量を制御す
る装置を備えていることを特徴とする。
A gas turbine having a compressor, a mechanism for bleeding a part of the compressor discharge air, a combustor for supplying and burning the compressor discharge air, nitrogen and fuel, and a turbine; An oxygen production facility for separating oxygen and nitrogen from air, and a gasifier that gasifies coal or heavy oil using the oxygen or the oxygen-enriched air obtained by mixing the oxygen and the air to generate a combustible gas, A gas exchanger for exchanging heat between the air extracted from the compressor of the gas turbine and the combustible gas generated by the gasifier, and supplying the combustible gas after heat exchange to the gas turbine combustor; The combined cycle power plant is characterized by including a device for controlling the amount of bleed air to maximize the thermal efficiency according to the state of the combined gasification combined cycle plant.

【0013】または、請求項1または請求項2記載のガ
ス化複合発電プラントにおいて、前記熱交換器で熱交換
した後の抽気空気温度がある目標値となるように、抽気
空気量を制御する装置を備えていることを特徴とする。
In the combined gasification combined cycle power plant according to claim 1 or 2, an apparatus for controlling the amount of extracted air so that the extracted air temperature after the heat exchange in the heat exchanger becomes a target value. It is characterized by having.

【0014】または、前記のガス化複合発電プラントに
おいて、ガス化複合発電プラントの状態を入力して熱効
率が最大となる抽気空気量を解析モデルにより算出し、
前記解析モデルにより算出された量に応じて抽気空気流
量を制御する装置を備えていることを特徴とする。
Alternatively, in the integrated gasification combined cycle plant, the state of the combined gasification combined cycle plant is input and the amount of extracted air at which the thermal efficiency is maximized is calculated by an analytical model.
An apparatus is provided for controlling a bleed air flow rate in accordance with the amount calculated by the analysis model.

【0015】ガス化複合発電プラントの状態に応じて抽
気空気流量を制御する装置を備えていると、ガスタービ
ンの圧力比が最大(または、許容限界)より小さい状態
で運転する場合でも、抽気空気流量を制御することによ
り、ガスタービン出力を最大(または、許容限界)とな
るように運転でき、熱交換器において充分な熱交換が可
能になり、抽気空気の保有するエネルギーを無駄に捨て
なくてすむので、プラント熱効率を高く保つことができ
る。
If an apparatus for controlling the bleed air flow rate according to the state of the integrated gasification combined cycle power plant is provided, even if the gas turbine is operated in a state where the pressure ratio is smaller than the maximum (or allowable limit), the bleed air is controlled. By controlling the flow rate, it is possible to operate the gas turbine at the maximum (or allowable limit), and to perform sufficient heat exchange in the heat exchanger, without wasting energy held by the extracted air. As a result, the plant thermal efficiency can be kept high.

【0016】熱交換器で熱交換した後の抽気空気温度に
応じて抽気空気流量を制御する装置を備えている場合
は、抽気空気量を制御することにより、熱交換後の抽気
空気温度を設定値に保つため、抽気空気の保有するエネ
ルギーを無駄に捨てなくてすむので、プラント熱効率を
高く保つことができる。
When a device for controlling the flow rate of the extracted air in accordance with the temperature of the extracted air after the heat exchange in the heat exchanger is provided, the temperature of the extracted air after the heat exchange is set by controlling the amount of the extracted air. In order to keep the value, the energy held by the bleed air need not be discarded, so that the plant thermal efficiency can be kept high.

【0017】ガス化複合発電プラントの状態を入力して
熱効率が最大となる抽気空気量を解析モデルにより算出
し、前記解析モデルにより算出された量に抽気空気流量
を制御する装置を備えている場合、時々刻々と変化する
状態を入力としてプラント熱効率が最大となる抽気空気
量を解析モデルにより算出していくので、常にプラント
熱効率を高く保つことができる。
In the case where a device for inputting the state of the gasification combined cycle power plant, calculating the amount of bleed air at which the thermal efficiency is maximized by an analytical model, and controlling the bleed air flow rate to the amount calculated by the analytical model is provided. Since the bleed air amount at which the plant thermal efficiency is maximized is calculated by the analysis model using the state that changes every moment as an input, the plant thermal efficiency can always be kept high.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施例を図面によ
り説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1は、本発明の第1の実施例を示す系統
図である。
FIG. 1 is a system diagram showing a first embodiment of the present invention.

【0020】本実施例では、図2に示したガス化複合発
電プラントに対して、抽気空気量を制御する装置が付加
されている点が異なる。
This embodiment differs from the combined gasification combined cycle plant shown in FIG. 2 in that a device for controlling the amount of extracted air is added.

【0021】本実施例で、抽気空気流量の流量制御を行
うべき理由は以下の通りである。
The reason why the flow rate of the bleed air should be controlled in the present embodiment is as follows.

【0022】ガス化複合発電プラントでは、ガスタービ
ン圧力比および出力が最大(または、許容限界)となる
ように設計していた。これは、抽気比をパラメータとし
てプラント熱効率をサーベイすると、ガスタービン圧力
比および出力が最大の点でプラント熱効率も最大となっ
ていたためである(抽気比が少ない時は、IGV(入口
案内翼)開度制御により圧縮機流入空気量を絞り、ガス
タービン出力が最大(または、許容限界)以下になるよ
うにしてサーベイした)。
In the integrated gasification combined cycle plant, the gas turbine pressure ratio and the output are designed to be maximum (or allowable limit). This is because, when the plant thermal efficiency was surveyed using the extraction ratio as a parameter, the plant thermal efficiency was also the maximum at the point where the gas turbine pressure ratio and output were the maximum (when the extraction ratio was low, the IGV (inlet guide vane) opened. The air flow rate of the compressor was reduced by degree control, and the gas turbine output was surveyed so as to be less than the maximum (or allowable limit)).

【0023】しかし、ガスタービン圧力比および出力が
最大の点でプラント熱効率も最大とはならない場合があ
る(図3)。これには、(1)圧力比の大きなガスター
ビンを用いたガス化複合発電プラントの運転をする場合
や、(2)外部環境(大気温度など)が変化して部分負
荷運転をする場合、(3)窒素冷却ガスタービンを用い
たガス化複合発電プラントの運転をする場合などが考え
られる。
However, the plant thermal efficiency may not be maximized at the point where the gas turbine pressure ratio and the output are maximum (FIG. 3). This includes (1) the case of operating a gasification combined cycle power plant using a gas turbine having a large pressure ratio, or (2) the case of performing partial load operation when the external environment (such as the atmospheric temperature) changes. 3) The case of operating a combined gasification combined cycle power plant using a nitrogen-cooled gas turbine may be considered.

【0024】(1)圧力比の大きなガスタービンを用い
たガス化複合発電プラントの運転をする場合は、圧力比
が大きいため抽気空気温度が上昇し、圧力比が最大(ま
たは、許容限界)となる抽気比が大きいと、熱交換器9
の出口窒素温度が抽気空気温度に達してしまい、窒素に
抽気空気の熱エネルギーを充分回収出来なくなり、熱交
換器9の出口抽気空気温度が上昇し、酸素製造設備1で
捨てられる熱エネルギーが増加して、プラント熱効率が
低下すると考えられる。
(1) When operating a gasification combined cycle power plant using a gas turbine having a large pressure ratio, the bleed air temperature rises because the pressure ratio is large, and the pressure ratio reaches a maximum (or allowable limit). Is large, the heat exchanger 9
The nitrogen temperature at the outlet reaches the temperature of the bleed air, and the thermal energy of the bleed air cannot be sufficiently recovered by nitrogen. As a result, the thermal efficiency of the plant is considered to decrease.

【0025】(2)外部環境(大気温度など)が変化し
て部分負荷運転をする場合は、定格運転時と比較して、
抽気空気量の減少よりも窒素流量の減少の方が大きい
と、(1)と同様の現象が生じる。
(2) When an external environment (atmospheric temperature or the like) changes and a partial load operation is performed, compared with the rated operation,
If the decrease in the nitrogen flow rate is greater than the decrease in the bleed air amount, the same phenomenon as (1) occurs.

【0026】(3)窒素冷却ガスタービンを用いたガス
化複合発電プラントの運転をする場合は、タービン冷却
に熱交換器9で加熱した窒素を用いるが、この冷却用窒
素温度に上限があるので、熱交換器9で抽気空気の熱エ
ネルギーを充分回収出来なくなり、熱交換器9の出口抽
気空気温度が上昇し、酸素製造設備1で捨てられる熱エ
ネルギーが増加して、プラント熱効率が低下すると考え
られる。
(3) When operating an integrated gasification combined cycle power plant using a nitrogen-cooled gas turbine, nitrogen heated by the heat exchanger 9 is used for cooling the turbine. However, there is an upper limit to this cooling nitrogen temperature. It is considered that the heat energy of the bleed air cannot be sufficiently recovered by the heat exchanger 9, the temperature of the bleed air at the outlet of the heat exchanger 9 increases, the heat energy discarded by the oxygen production equipment 1 increases, and the thermal efficiency of the plant decreases. Can be

【0027】従来は以上のような場合は、IGV開度制
御しか行っておらず、圧力比を最大(または、許容限
界)となるように運転できても、ガスタービン出力を最
大となるようには運転できなかった。
Conventionally, in the above case, only the IGV opening control is performed, and even if the pressure ratio can be operated to the maximum (or the allowable limit), the gas turbine output can be maximized. Could not drive.

【0028】そこで、どのような条件においてもガスタ
ービン圧力比および出力が最大となるように、即ち、プ
ラント熱効率が最大となるように運転できるよう、抽気
空気量を制御する必要がある。
Therefore, it is necessary to control the amount of extracted air so that the gas turbine pressure ratio and the output can be maximized under any conditions, that is, the operation can be performed so as to maximize the plant thermal efficiency.

【0029】抽気空気量の制御は、ガス化複合発電プラ
ントの状態に応じて行う。
The control of the amount of extracted air is performed in accordance with the state of the combined gasification combined cycle plant.

【0030】詳細には以下の方法が考えられる。More specifically, the following method can be considered.

【0031】1)熱交換器9で熱交換した後の抽気空気
温度(点Aの温度)がある目標値となるように制御す
る。抽気空気の熱エネルギーを最大限回収することによ
り、プラント熱効率が最大になると考えられるが、抽気
空気の熱エネルギー回収の指標としては、熱交換器9で
熱交換した後の抽気空気温度(点Aの温度)が考えられ
る。この温度を低く抑えれば、それだけプラント熱効率
が向上すると考えられる。そこで、抽気空気温度(点A
の温度)がある目標値となるように抽気空気量を制御す
る。この場合、酸素製造設備1に供給している原料空気
20の圧縮機出口で、抽気空気と合流する前の点(点
B)の原料空気温度や、熱交換器9の入口窒素温度(点
Cの温度)を参照値として用い、これと抽気空気温度
(点Aの温度)との差に応じて目標値を設定することが
考えられる。
1) The temperature of the bleed air (the temperature at the point A) after the heat exchange in the heat exchanger 9 is controlled to be a target value. It is considered that by maximally recovering the heat energy of the extracted air, the plant thermal efficiency is maximized. However, as an index of the heat energy recovery of the extracted air, the extracted air temperature after the heat exchange in the heat exchanger 9 (point A) Temperature) can be considered. It is considered that if the temperature is kept low, the thermal efficiency of the plant is improved accordingly. Therefore, the bleed air temperature (point A
The temperature of the air is controlled to be a target value. In this case, at the compressor outlet of the raw material air 20 supplied to the oxygen production equipment 1, the raw material air temperature at a point (point B) before merging with the bleed air or the nitrogen temperature at the inlet of the heat exchanger 9 (point C) Is used as a reference value, and a target value may be set in accordance with the difference between the reference value and the bleed air temperature (the temperature at point A).

【0032】2)ガス化複合発電プラントの状態を入力
して熱効率が最大となる抽気空気量を解析モデルにより
算出して制御する。解析モデルを用いれば、稼働中のガ
ス化複合発電プラントのその時点における、抽気比をパ
ラメータとしたプラント熱効率が解析でき、プラント熱
効率最大となる抽気比から抽気空気流量の制御目標値を
設定することができる。
2) The state of the combined gasification combined cycle power plant is input, and the amount of extracted air at which the thermal efficiency is maximized is calculated and controlled by an analytical model. By using the analysis model, the plant thermal efficiency of the operating integrated gasification combined cycle power plant at that time can be analyzed with the extraction ratio as a parameter, and the control target value of the extraction air flow rate can be set from the extraction ratio at which the plant thermal efficiency becomes maximum. Can be.

【0033】なお、熱交換器9の出口抽気空気を、ボト
ミングサイクルの給水加熱などに用いてさらに熱効率を
高めることも可能であるが、この場合でも同様の運転を
行うことが考えられる。抽気空気温度を計測する場合に
は、熱交換器9の出口抽気空気温度(点Aの温度)の他
に、ボトミングサイクルの給水加熱などを行った後の抽
気空気温度も計測して制御に用いることが考えられる。
Although it is possible to further improve the thermal efficiency by using the extracted air at the outlet of the heat exchanger 9 for heating the feed water in the bottoming cycle, the same operation may be performed in this case. When measuring the bleed air temperature, in addition to the bleed air temperature at the outlet of the heat exchanger 9 (the temperature at the point A), the bleed air temperature after water supply heating in the bottoming cycle is measured and used for control. It is possible.

【0034】[0034]

【発明の効果】以上説明したように本発明によれば、抽
気空気量の制御を行う制御装置を備えることにより、外
部環境(大気温度など)が変化したり、部分負荷運転を
行ったり、設計燃料以外の燃料での運転など、設計定格
点と異なる条件においてもガス化複合発電プラントのプ
ラント熱効率が最大となるように運転できる。
As described above, according to the present invention, by providing a control device for controlling the amount of extracted air, the external environment (atmospheric temperature, etc.) can be changed, partial load operation can be performed, and design can be performed. Even under conditions different from the design rated point, such as operation with fuel other than fuel, operation can be performed to maximize the plant thermal efficiency of the combined gasification combined cycle plant.

【0035】ガス化複合発電プラントの構成が、できる
だけ抽気空気の保有するエネルギーをガスタービン側で
回収出来るような構成にしてあるので、ボトミングサイ
クルの給水加熱などにより蒸気タービン側で熱回収する
場合よりも、プラント熱効率を向上できる。ただし、制
御によってもガスタービン側で熱回収しきれないエネル
ギーを蒸気タービン側で熱回収できる構成であれば、さ
らにプラント熱効率を向上できる。
Since the gasification combined cycle power plant is configured so that the energy held by the extracted air can be recovered on the gas turbine side as much as possible, the heat recovery on the steam turbine side by heating the feed water in the bottoming cycle, etc. Also, the thermal efficiency of the plant can be improved. However, plant heat efficiency can be further improved if the steam turbine side can recover energy that cannot be completely recovered by the gas turbine even under control.

【0036】また、熱交換器出口抽気空気温度と抽気空
気量だけをガス化複合発電プラントの状態入力として制
御することも可能なので、制御を簡素化できる。
Also, since only the temperature of the extracted air at the heat exchanger outlet and the amount of the extracted air can be controlled as the state inputs of the combined gasification combined cycle plant, the control can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す系統図である。FIG. 1 is a system diagram showing a first embodiment of the present invention.

【図2】ガス化複合発電プラントを示す系統図である。FIG. 2 is a system diagram showing an integrated gasification combined cycle power plant.

【図3】抽気比をパラメータとしたガスタービン(G
T)圧力比とガス化複合発電プラントの送電端効率(H
HV)の解析例を示す図である。
FIG. 3 shows a gas turbine (G
T) Pressure ratio and transmission end efficiency (H
It is a figure which shows the example of an analysis of HV).

【符号の説明】[Explanation of symbols]

1…酸素製造設備、2…ガス化炉、3…熱回収ボイラ、
4…ガス精製設備、5…ガスタービン、6…蒸気タービ
ン、7…発電機、8…排熱回収ボイラ、9…熱交換器、
11…石炭乾燥器、12…蒸気ドラム、13…ガス/ガ
ス熱交、14…燃焼器、15…圧縮機、16…タービ
ン、17…抽気制御装置、20…空気、21…酸素、2
2…窒素、23…石炭、24…生成ガス、25…精製ガ
ス、26…抽気空気。
1. Oxygen production equipment 2. Gasification furnace 3. Heat recovery boiler
4 gas purification equipment, 5 gas turbine, 6 steam turbine, 7 generator, 8 heat recovery boiler, 9 heat exchanger,
DESCRIPTION OF SYMBOLS 11 ... Coal dryer, 12 ... Steam drum, 13 ... Gas / gas heat exchange, 14 ... Combustor, 15 ... Compressor, 16 ... Turbine, 17 ... Extraction control device, 20 ... Air, 21 ... Oxygen, 2
2 ... nitrogen, 23 ... coal, 24 ... product gas, 25 ... purified gas, 26 ... bleed air.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02C 7/08 F02C 7/08 Z 9/18 9/18 9/52 9/52 F23L 7/00 F23L 7/00 A B F25J 3/04 101 F25J 3/04 101 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F02C 7/08 F02C 7/08 Z 9/18 9/18 9/52 9/52 F23L 7/00 F23L 7/00 A B F25J 3/04 101 F25J 3/04 101

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】圧縮機と、圧縮機吐出空気の一部を抽気す
る機構と、圧縮機吐出空気と窒素と燃料とを供給して燃
焼させる燃焼器と、タービンとを有したガスタービン
と、空気から酸素と窒素を分離する酸素製造設備と、前
記酸素または前記酸素と空気を混合した酸素冨化空気を
用いて石炭又は重質油などをガス化して可燃ガスを生成
するガス化装置と、前記ガスタービンの圧縮機から抽気
した空気と前記酸素製造設備で分離して昇圧した前記窒
素とを熱交換させる熱交換器を備え、熱交換後の前記窒
素を前記ガスタービン燃焼器に供給し、生成された前記
可燃ガスを前記燃料として前記ガスタービン燃焼器に供
給するガス化複合発電プラントにおいて、ガス化複合発
電プラントの状態に応じて熱効率が最大となるように抽
気空気量を制御する装置を備えていることを特徴とする
ガス化複合発電プラント。
A gas turbine having a compressor, a mechanism for extracting a part of the compressor discharge air, a combustor for supplying and burning the compressor discharge air, nitrogen and fuel, and a turbine; An oxygen production facility for separating oxygen and nitrogen from air, and a gasifier that gasifies coal or heavy oil using the oxygen or the oxygen-enriched air obtained by mixing the oxygen and the air to generate a combustible gas, A heat exchanger for exchanging heat between the air extracted from the compressor of the gas turbine and the nitrogen that has been separated and pressurized in the oxygen production facility, and supplies the nitrogen after the heat exchange to the gas turbine combustor, In the gasification combined cycle power plant that supplies the generated combustible gas as the fuel to the gas turbine combustor, the amount of extracted air is controlled so that the thermal efficiency is maximized in accordance with the state of the gasification combined cycle power plant. Gasification combined cycle power plant, characterized in that it comprises location.
【請求項2】圧縮機と、圧縮機吐出空気の一部を抽気す
る機構と、圧縮機吐出空気と窒素と燃料とを供給して燃
焼させる燃焼器と、タービンとを有したガスタービン
と、空気から酸素と窒素を分離する酸素製造設備と、前
記酸素または前記酸素と空気を混合した酸素冨化空気を
用いて石炭又は重質油などをガス化して可燃ガスを生成
するガス化装置と、前記ガスタービンの圧縮機から抽気
した空気と前記ガス化装置で生成した前記可燃ガスとを
熱交換させる熱交換器を備え、熱交換後の前記可燃ガス
を前記ガスタービン燃焼器に供給するガス化複合発電プ
ラントにおいて、ガス化複合発電プラントの状態に応じ
て熱効率が最大となるように抽気空気量を制御する装置
を備えていることを特徴とするガス化複合発電プラン
ト。
A gas turbine having a compressor, a mechanism for extracting a part of the compressor discharge air, a combustor for supplying and burning the compressor discharge air, nitrogen, and fuel; and a turbine. An oxygen production facility for separating oxygen and nitrogen from air, and a gasifier that gasifies coal or heavy oil using the oxygen or the oxygen-enriched air obtained by mixing the oxygen and the air to generate a combustible gas, A gas exchanger for exchanging heat between the air extracted from the compressor of the gas turbine and the combustible gas generated by the gasifier, and supplying the combustible gas after heat exchange to the gas turbine combustor; An integrated gasification combined cycle power plant comprising a device for controlling the amount of bleed air to maximize thermal efficiency according to the state of the combined gasification combined cycle plant.
【請求項3】請求項1または請求項2記載のガス化複合
発電プラントにおいて、前記熱交換器で熱交換した後の
抽気空気温度がある目標値となるように、抽気空気量を
制御する装置を備えていることを特徴とするガス化複合
発電プラント。
3. An apparatus for controlling the amount of bleed air so that the temperature of bleed air after heat exchange in the heat exchanger becomes a target value in the integrated gasification combined cycle power plant according to claim 1 or 2. A combined gasification combined cycle plant characterized by comprising:
【請求項4】請求項1または請求項2記載のガス化複合
発電プラントにおいて、ガス化複合発電プラントの状態
を入力して熱効率が最大となる抽気空気量を解析モデル
により算出し、前記解析モデルにより算出された量に応
じて抽気空気流量を制御する装置を備えていることを特
徴とするガス化複合発電プラント。
4. An integrated gasification combined cycle plant according to claim 1 or 2, wherein the state of the combined gasification combined cycle plant is input, and the amount of extracted air at which the thermal efficiency is maximized is calculated by an analysis model. A combined gasification power plant comprising a device for controlling the bleed air flow rate according to the amount calculated by
JP9281584A 1997-10-15 1997-10-15 Gasification compound power generation plant Pending JPH11117711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9281584A JPH11117711A (en) 1997-10-15 1997-10-15 Gasification compound power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9281584A JPH11117711A (en) 1997-10-15 1997-10-15 Gasification compound power generation plant

Publications (1)

Publication Number Publication Date
JPH11117711A true JPH11117711A (en) 1999-04-27

Family

ID=17641201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9281584A Pending JPH11117711A (en) 1997-10-15 1997-10-15 Gasification compound power generation plant

Country Status (1)

Country Link
JP (1) JPH11117711A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231949A (en) * 2006-02-28 2007-09-13 General Electric Co <Ge> Variable extraction method for control of gas turbine
JP2009530528A (en) * 2006-03-14 2009-08-27 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Multistage compressor, air separation apparatus and equipment equipped with this compressor
JP2009216091A (en) * 2008-03-10 2009-09-24 General Electric Co <Ge> Method for injecting diluent to gas turbine assembly
WO2012051315A2 (en) * 2010-10-12 2012-04-19 Gtlpetrol, Llc Generating power using an ion transport membrane
US8539776B2 (en) 2010-07-14 2013-09-24 Gtlpetrol Llc Generating power using an ion transport membrane
WO2014175404A1 (en) * 2013-04-26 2014-10-30 三菱日立パワーシステムズ株式会社 Gasification power plant control device, gasification power plant, and gasification power plant control method
CN105143638A (en) * 2013-04-26 2015-12-09 三菱日立电力系统株式会社 Gasification power plant control device, gasification power plant, and gasification power plant control method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231949A (en) * 2006-02-28 2007-09-13 General Electric Co <Ge> Variable extraction method for control of gas turbine
JP2009530528A (en) * 2006-03-14 2009-08-27 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Multistage compressor, air separation apparatus and equipment equipped with this compressor
JP2009216091A (en) * 2008-03-10 2009-09-24 General Electric Co <Ge> Method for injecting diluent to gas turbine assembly
US8539776B2 (en) 2010-07-14 2013-09-24 Gtlpetrol Llc Generating power using an ion transport membrane
US8850825B2 (en) 2010-07-14 2014-10-07 Gtlpetrol Llc Generating power using an ion transport membrane
US9273607B2 (en) 2010-10-12 2016-03-01 Gtlpetrol Llc Generating power using an ion transport membrane
US8459039B2 (en) 2010-10-12 2013-06-11 Gtlpetrol Llc Generating power using an ion transport membrane
WO2012051315A3 (en) * 2010-10-12 2012-08-09 Gtlpetrol, Llc Generating power using an ion transport membrane
WO2012051315A2 (en) * 2010-10-12 2012-04-19 Gtlpetrol, Llc Generating power using an ion transport membrane
WO2014175404A1 (en) * 2013-04-26 2014-10-30 三菱日立パワーシステムズ株式会社 Gasification power plant control device, gasification power plant, and gasification power plant control method
JP2014214705A (en) * 2013-04-26 2014-11-17 三菱重工業株式会社 Gasification power generating plant controlling device, gasification power generating plant, and gasification power generating plant controlling method
CN105143638A (en) * 2013-04-26 2015-12-09 三菱日立电力系统株式会社 Gasification power plant control device, gasification power plant, and gasification power plant control method
CN105164386A (en) * 2013-04-26 2015-12-16 三菱日立电力系统株式会社 Gasification power plant control device, gasification power plant, and gasification power plant control method
CN105164386B (en) * 2013-04-26 2017-07-21 三菱日立电力系统株式会社 The control method of the control device of gasification power generation plant, gasification power generation plant and gasification power generation plant
CN105143638B (en) * 2013-04-26 2017-08-11 三菱日立电力系统株式会社 The control method of the control device of gasification power generation plant, gasification power generation plant and gasification power generation plant
US10113124B2 (en) 2013-04-26 2018-10-30 Mitsubishi Hitachi Power Systems, Ltd. Control unit for gasification power generation plant, gasification power generation plant, and control method for gasification power generation plant
US10233835B2 (en) 2013-04-26 2019-03-19 Mitsubishi Hitachi Power Systems, Ltd. Gasification power plant control device, gasification power plant, and gasification power plant control method

Similar Documents

Publication Publication Date Title
US6684643B2 (en) Process for the operation of a gas turbine plant
EP1872002B1 (en) Energy recovery system
US8152874B2 (en) Systems and methods for integration of gasification and reforming processes
US8833080B2 (en) Arrangement with a steam turbine and a condenser
JPH06323161A (en) Generating method of energy by using gas turbine
GB2075124A (en) Integrated gasification-methanol synthesis-combined cycle plant
Ishii et al. Critical assessment of oxy-fuel integrated coal gasification combined cycles
EP0686231B1 (en) New power process
WO2003021702A1 (en) A power generation apparatus
JPS61155493A (en) Synthetic composite cycle system
JP2870232B2 (en) Coal gasification power plant
KR20040067952A (en) Generating method and system of MHD
JPH11117711A (en) Gasification compound power generation plant
US8733109B2 (en) Combined fuel and air staged power generation system
US8414667B2 (en) Supercritical pressurization of fuel slurry
JPS6232181A (en) Device for energy recovery from gas generated in regeneration tower of fluid catalytic cracking equipment
JP3709669B2 (en) Gasification integrated combined power plant
JPH10231736A (en) Gasification composite power plant
JP2001221058A (en) Gasification combined power generation plant
JP3223434U (en) Coal gasification combined power generation facility
JPH04321704A (en) Fuel cell compound generating plant
JP5412205B2 (en) Gas turbine plant and gasification fuel power generation facility equipped with the same
JP2001090550A (en) Gasifying combined-cycle power generation plant
JPS63285230A (en) Coal gasifying type composite power plant
JPH11343863A (en) Gasifying compound generating plant