JPH11117387A - Column and beam construction for building - Google Patents

Column and beam construction for building

Info

Publication number
JPH11117387A
JPH11117387A JP28154797A JP28154797A JPH11117387A JP H11117387 A JPH11117387 A JP H11117387A JP 28154797 A JP28154797 A JP 28154797A JP 28154797 A JP28154797 A JP 28154797A JP H11117387 A JPH11117387 A JP H11117387A
Authority
JP
Japan
Prior art keywords
column
frame
building
contact
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28154797A
Other languages
Japanese (ja)
Inventor
Hideki Kimura
秀樹 木村
Susumu Hiraide
享 平出
Haruhiko Okamoto
晴彦 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP28154797A priority Critical patent/JPH11117387A/en
Publication of JPH11117387A publication Critical patent/JPH11117387A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce an operation effect of base isolation or vibration control of a building by a method wherein construction of a column and a beam for a building forms structure that columns and beams for constituting column and beam construction have sides joined together through contact-bonding and a contact bonding force large enough to generate a shearing force in a frictional resistance surface within a contact bonding joining surface. SOLUTION: A column 1 and a beam 2 have respective sides joined together and are structured such that frictional resistance is generated on a contact bonding joint surface 4 to apply a vertical contact-bonding force on a joint surface. Concretely, column and beam construction is structured such that a fundamental shape consisting of four columns 1 and four beams 2 is irregularly continuously and joined with a plane. The fundamental shape is formed such that a horizontal section for four columns 1 is formed in a square shape, four beams 2 are arranged at the outer side of each of the columns 1, and the two end parts of each beam 2 are contact-bonded and joined with the side of the column 1 brought into contact therewith. Answer is effected through deformation of an elastic area wherein bending moment by the frictional force of a shearing force in frictional resistance of a contact-bonding joining surface 4 is balanced with bending moment applied from an external part. This constitution produces an operation effect of base isolation and earthquake control of a building.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、大きな水平変形
を繰り返し受ける建築物の柱梁架構の接合部に実施され
る免震ないし制振の技術であって、安定した層せん断力
を生じさせ、それによって大きな履歴吸収エネルギーを
生じさせることより、建築物に入る地震入力エネルギー
等を吸収させる建築物の柱梁架構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology of seismic isolation or vibration suppression applied to a joint of a beam-column frame of a building which is repeatedly subjected to large horizontal deformation. The present invention relates to a beam-column structure of a building for absorbing seismic input energy and the like entering a building by generating a large hysteretic absorption energy.

【0002】[0002]

【従来の技術】従来、建築物の柱梁架構として、鉄筋コ
ンクリート造では、図7のようにプレキャストコンクリ
ート部材aをプレストレス(PC鋼材)bにより圧着し
たり、部材間にコンクリートやモルタルを充填し一体化
を図る構造が知られている。この場合、柱梁架構を構成
する柱1と梁2の接合部は、通常、図8に示したように
柱1と梁2とを面内で接合し剛接合として設計されてい
る。また、鉄骨造では、図示は省略したが、柱と梁とを
ボルトあるいは溶接などによって面内で接合することも
広く行われている。
2. Description of the Related Art Conventionally, in a reinforced concrete construction, as a pillar-column structure of a building, as shown in FIG. 7, a precast concrete member a is pressure-bonded with a prestress (PC steel material) b, or concrete or mortar is filled between members. A structure for achieving integration is known. In this case, the joint between the column 1 and the beam 2 constituting the column-beam frame is usually designed as a rigid joint by joining the column 1 and the beam 2 in a plane as shown in FIG. Although not shown, in steel structures, columns and beams are widely joined in-plane by bolts or welding.

【0003】[0003]

【本発明が解決しようとする課題】従来の建築物の柱梁
架構は、上述したように、面内で接合されるのが前提
で、通常、図9に誇張した模式図を示したように、建物
1階の柱脚および各梁端部に降伏ヒンジ3を計画し、柱
梁架構が大地震等の大きな水平変形を受けた場合は、こ
の降伏ヒンジ3の部分で地震エネルギー等を吸収する構
成である。よって、柱梁架構の接合部はヒンジ形成前に
は破壊しないように設計される。そして、設計入力エネ
ルギー以上の地震エネルギー等が柱梁架構に入ると、必
ず柱梁架構の接合部が崩壊することを前提とする降伏ヒ
ンジ3であるから、大地震等の大きな水平変形を受けた
後の柱梁架構は梁2の端部にはひび割れが生じたり、鉄
筋が降伏したりする現象が起こり、以後柱梁架構の使用
は不可能に近い。
As described above, the conventional beam-column structure of a building is presumed to be joined in a plane, and as shown in FIG. 9, an exaggerated schematic diagram is usually used. The yield hinges 3 are planned on the column base and each beam end of the first floor of the building, and when the beam-column frame undergoes a large horizontal deformation such as a large earthquake, the yield hinges 3 absorb the seismic energy and the like. Configuration. Therefore, the joint of the beam-column frame is designed so as not to be broken before the hinge is formed. When the seismic energy or the like exceeding the design input energy enters the beam-column frame, the yield hinge 3 is based on the premise that the joint of the beam-column frame is necessarily collapsed. In the later column / beam frame, cracks occur at the ends of the beam 2 or a phenomenon in which the rebar yields occurs, so that it is almost impossible to use the column / column frame thereafter.

【0004】従って、本発明の目的は、弾塑性履歴によ
る減衰効果(履歴吸収エネルギー)が大きく、それだけ
建物等に入る地震入力エネルギー等を大きく吸収して免
震ないし制振の作用効果を発揮する、建築物の柱梁架構
を提供することである。本発明の次の目的は、大地震の
後も、ジャッキ等で残留変形を復元させることにより柱
梁架構を構造躯体としては再生することができる、建築
物の柱梁架構を提供することである。
Accordingly, an object of the present invention is to provide a large damping effect (history absorption energy) due to the elasto-plastic history, which greatly absorbs the seismic input energy and the like entering a building or the like, and exerts the effect of seismic isolation or vibration suppression. , To provide a column-beam structure of a building. A second object of the present invention is to provide a column-column structure of a building, which can regenerate a column-column structure as a structural frame by restoring residual deformation with a jack or the like even after a large earthquake. .

【0005】本発明の更なる目的は、設計のコストダウ
ンと設計期間の短縮、施工のコストダウンと工期の短
縮、意匠設計の自由度の拡大等々を可能にする、建築物
の柱梁架構を提供することである。
It is a further object of the present invention to provide a column and beam frame for a building which enables a reduction in design cost and a shortening of a design period, a reduction in construction cost and a shortening of a construction period, an increase in the degree of freedom in design design, and the like. To provide.

【0006】[0006]

【課題を解決するための手段】上述の課題を解決するた
めの手段として、請求項1に記載した発明に係る建築物
の柱梁架構は、柱梁架構を構成する柱1と梁2が、その
側面同士を圧着接合され、前記の圧着接合面4に摩擦抵
抗面内せん断力を生じさせる大きさの圧着力が付与され
ていることを特徴とする。
Means for Solving the Problems As means for solving the above-mentioned problems, a column-beam frame of a building according to the first aspect of the present invention comprises a column 1 and a beam 2 constituting the column-beam frame. The side surfaces thereof are pressure-bonded to each other, and the pressure-bonding surface 4 is provided with a pressure-bonding force large enough to generate a frictional resistance in-plane shear force.

【0007】請求項2に記載した発明に係る建築物の柱
梁架構は、柱梁架構を構成する柱1と梁2が、その側面
同士を圧着接合され、前記の圧着接合面4に摩擦抵抗面
内せん断力を生じさせる大きさの圧着力が付与されてい
る架構部分と、前記柱梁架構を構成する柱1と梁2’
が、面内で接合されている架構部分との組み合わせから
成ることを特徴とする。
According to a second aspect of the present invention, there is provided a pillar-to-column frame for a building, in which the columns 1 and 2 constituting the column-to-column frame are crimp-joined on their side surfaces, and a frictional resistance is formed on the crimp-joining surface 4. A frame portion to which a crimping force large enough to generate an in-plane shear force is provided, and columns 1 and beams 2 ′ constituting the column-beam frame
Is characterized by a combination with a frame portion joined in a plane.

【0008】請求項3に記載した発明に係る建築物の柱
梁架構は、請求項1又は2に記載した圧着力はプレスト
レスにより付与されていることを特徴とする。請求項4
に記載した発明に係る建築物の柱梁架構は、請求項1又
は2に記載した柱1と梁2の圧着接合面4の摩擦抵抗面
内せん断力の摩擦力による曲げモーメントと外部から作
用する曲げモーメントとを釣り合わせ、外部から作用す
る曲げモーメントが降伏モーメント以上になったとき圧
着接合面4に滑りが発生して塑性ヒンジ3が形成される
ことを特徴とする。
According to a third aspect of the present invention, there is provided a column-beam frame for a building, wherein the crimping force according to the first or second aspect is applied by prestress. Claim 4
The column-beam frame of the building according to the invention described in (1) acts on the bending moment due to the frictional force of the in-plane shear force of the frictional resistance of the pressure-bonded joint surface (4) between the column (1) and the beam (2) described in (1) or (2). When the bending moment is balanced with the bending moment and the externally applied bending moment is equal to or higher than the yield moment, slippage occurs on the press-bonded joint surface 4 to form the plastic hinge 3.

【0009】[0009]

【発明の実施の形態及び実施例】請求項1に記載した発
明に係る建築物の柱梁架構は、図1及び図2に代表的な
実施形態を例示したように、柱梁架構を構成する柱1と
梁2とが、その側面同士を圧着接合され、前記の圧着接
合面4に摩擦抵抗面内せん断力を生じさせる大きさの圧
着力が付与された構成を特徴とする。要するに、柱1と
梁2は、お互いの側面同士を接合され、その接合面に垂
直な圧着力を付与した圧着接合面4に摩擦抵抗面内せん
断力を生じさせる構成で実施される。柱梁架構は、具体
的には、4本の柱1と4本の梁2から成る図3に示した
ような基本形を変則的に平面に連続して接合した構造で
ある。前記基本形は、4本の柱1をそれぞれ水平断面が
四角形状に形成し、4本の柱1それぞれが形成する外側
面に梁2を4本配置し、各梁2の両端部をそれぞれ当接
する柱1の側面に圧着接合する。但し、図2に示した柱
梁架構のように、その構造上、梁2の略中央の側面を柱
1の側面に圧着接合する場合もある。なお、柱梁架構の
形状はこれに限らず、柱梁架構を構成する柱1と梁2と
がその側面同士を圧着接合されていれば良い。前記柱
1、梁2の材質は、鉄筋コンクリート造、鉄骨造、その
他柱や梁に耐力的に使用できるものであれば良い。例え
ば、柱が鉄筋コンクリート造、梁が鉄骨造のような異材
種の組み合わせも可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The pillar-to-column frame of a building according to the first aspect of the present invention constitutes a beam-to-column frame as illustrated in a typical embodiment in FIGS. The column 1 and the beam 2 are characterized in that the side surfaces thereof are pressure-bonded to each other, and the pressure-bonding surface 4 is provided with a pressure-bonding force of a magnitude that generates a frictional resistance in-plane shear force. In short, the column 1 and the beam 2 are configured such that the side surfaces thereof are joined to each other, and a frictional resistance in-plane shear force is generated on the crimping joint surface 4 to which a crimping force perpendicular to the joint surface is applied. Specifically, the column-beam frame is a structure in which the basic shape as shown in FIG. 3 composed of four columns 1 and four beams 2 is irregularly and continuously joined to a plane. In the basic form, four pillars 1 are each formed in a rectangular cross section in a horizontal section, and four beams 2 are arranged on an outer surface formed by each of the four pillars 1, and both ends of each beam 2 are in contact with each other. It is pressure-bonded to the side surface of the pillar 1. However, due to its structure, a substantially central side surface of the beam 2 may be pressure-bonded to the side surface of the column 1 as in the column-beam frame shown in FIG. Note that the shape of the beam-column structure is not limited to this, and the columns 1 and the beams 2 constituting the beam-column frame may be any shape as long as their side surfaces are crimped. The material of the column 1 and the beam 2 may be reinforced concrete, steel frame, or any other material that can be used for columns and beams. For example, a combination of different materials such as a reinforced concrete pillar and a steel beam can be used.

【0010】柱1と梁2の接合面(圧着接合面4)に所
望大きさの摩擦抵抗面内せん断力を生じさせる圧着力の
付与手段は、柱1と梁2が場所打ちコンクリート製であ
るかプレキャストコンクリート製であるかを問わず、当
業技術者に種々公知、周知の技術を臨機応変に採用し実
施することができる。例えば、アースアンカーの設置又
はプレストレストコンクリートの実施に多用されるよう
に、柱1と梁2の圧着接合面4と垂直な方向に1本以上
複数本(本実施例では2本)のシース付きPC鋼より線
5を図1及び図2に示したように配置し、固定用及び緊
張用の定着具を使用してそれぞれ定着処理を行うと共
に、緊張側の定着具には緊張用ジャッキを設置して所要
大きさの引っ張り力をPC鋼より線5へ導入して圧着接
合を行う(請求項3記載の発明)。
The means for applying a crimping force for generating a desired amount of frictional in-plane shearing force at the joint surface (compression joint surface 4) between the column 1 and the beam 2 is that the column 1 and the beam 2 are made of cast-in-place concrete. Regardless of whether it is made of precast concrete or made of precast concrete, various techniques known and known to those skilled in the art can be employed as needed. For example, one or more (two in this embodiment) sheathed PCs in a direction perpendicular to the crimping joint surface 4 of the column 1 and the beam 2 so as to be frequently used for installing an earth anchor or performing prestressed concrete. The steel strands 5 are arranged as shown in FIG. 1 and FIG. 2, the fixing process is performed using fixing and tension fixing devices, and a tension jack is installed on the tension side fixing device. A required amount of tensile force is introduced into the PC steel strand 5 to perform pressure bonding (the invention according to claim 3).

【0011】上述した柱1と梁2の圧着接合面4の摩擦
抵抗面内せん断力の摩擦力による曲げモーメントと外部
から作用する曲げモーメントとを釣り合わせると、所謂
「中小地震時」には、圧着接合面4の静止摩擦係数に対
応する摩擦力により面内回転滑りを起こさせないで、残
留変形を残さない弾性域の変形で応答する。しかし、外
部から作用する曲げモーメントが降伏モーメント以上に
なったときは、圧着接合面4に滑り(塑性変形)が発生
し、図4に示したように降伏ヒンジ(塑性ヒンジ)3が
形成され、地震時の入力エネルギーを吸収する(請求項
4記載の発明)。
When the bending moment due to the frictional force of the in-plane shear force of the frictional resistance of the pressure bonding surface 4 of the column 1 and the beam 2 and the bending moment acting from the outside are balanced, a so-called “medium-to-small earthquake” Responds with deformation in an elastic region that does not leave residual deformation without causing in-plane rotational slip due to the frictional force corresponding to the static friction coefficient of the pressure bonding surface 4. However, when the bending moment acting from the outside becomes equal to or greater than the yield moment, slippage (plastic deformation) occurs on the pressure-bonded joint surface 4, and the yield hinge (plastic hinge) 3 is formed as shown in FIG. Absorbs input energy during an earthquake (the invention of claim 4).

【0012】請求項2に記載した発明に係る建築物の柱
梁架構は、図5に実施形態を例示したように、柱梁架構
を構成する柱1と梁2が、その側面同士を圧着接合さ
れ、前記の圧着接合面4に摩擦抵抗面内せん断力を生じ
させる大きさの圧着力が付与されている架構部分と、前
記柱梁架構を構成する柱1と梁2’が、面内で接合され
ている架構部分との組み合わせから成る構成を特徴とす
る。要するに、前記請求項1記載の発明に係る柱梁架構
と従来型架構とを併用した構成である。この実施例につ
いても、柱1と梁2の接合面(圧着接合面4)に所望大
きさの摩擦抵抗面内せん断力を生じさせる圧着力の付与
手段は、上記請求項1に記載した発明に係る建築物の柱
梁架構で説明したと同様な手段で行う(請求項3記載の
発明)。また、本実施例中、柱梁架構を構成する柱1と
梁2とが、その側面同士を圧着接合された部分は、やは
り上記請求項1に記載した発明に係る建築物の柱梁架構
で説明したと同様な効果がある(請求項4記載の発
明)。
As shown in FIG. 5, an embodiment of a pillar-to-column frame of a building according to the present invention is a column-to-column structure, in which columns 1 and beams 2 are joined by pressure bonding. Then, the frame portion in which the pressure bonding force having a magnitude that generates the frictional resistance in-plane shear force is applied to the pressure bonding surface 4, and the columns 1 and 2 ′ constituting the column-beam frame are formed in a plane. It is characterized by a configuration consisting of a combination with a joined frame part. In short, the present invention is a configuration in which the column-beam frame according to the first aspect of the invention and the conventional frame are used together. Also in this embodiment, the means for applying a crimping force for generating a desired amount of frictional resistance in-plane shearing force on the joint surface (the crimping joint surface 4) between the column 1 and the beam 2 is the same as that of the first embodiment. This is performed by the same means as described in the column-beam frame of the building (the invention according to claim 3). Further, in this embodiment, the portion where the side surfaces of the columns 1 and 2 constituting the column-beam frame are joined by pressure bonding is also the column-beam frame of the building according to the invention described in claim 1 above. The same effect as described above is obtained (the invention according to claim 4).

【0013】その他、梁2の側面に圧着接合するという
観点から、図6に示したように、通常の建築物に間柱6
を梁2に側面圧着し、エネルギー吸収ダンパーとして用
いることもできる。
In addition, from the viewpoint of pressure bonding to the side surface of the beam 2, as shown in FIG.
Can be side-pressed to the beam 2 and used as an energy absorbing damper.

【0014】[0014]

【本発明が奏する効果】本発明の建築物の柱梁架構によ
れば、地震エネルギー等の入力に対して、弾塑性履歴に
よる大きな減衰効果が奏される。また、大地震の後も部
材端のコンクリートは圧壊しないので、ジャッキで残留
変形を戻せば、構造躯体としては再生できる。従って、
本発明の建築物の柱梁架構は、地震の再現周期ごとにス
クラップアンドビルドが繰り返される建物と異なり、世
紀単位のストックとなりうる。
[Effects of the present invention] According to the column-beam frame of the building of the present invention, a large damping effect is obtained by the elasto-plastic history with respect to the input of seismic energy and the like. In addition, the concrete at the end of the member does not collapse even after a large earthquake, so if the residual deformation is restored with a jack, it can be regenerated as a structural frame. Therefore,
The column-beam frame of the building according to the present invention can be a stock in units of centuries, unlike a building in which scrap and build are repeated for each earthquake reproduction cycle.

【0015】更に、通常のPC圧着接合と比較すると、
ジョイントモルタルが不要なので、ジョイントシースの
接合工程、モルタルの片枠建て込み工程、モルタル注入
工程、モルタルの養生期間、及び、型枠脱型工程が無く
なり、すぐに圧着工程に移れるため、この点では施工の
コストダウンと工程短縮になる。
[0015] Further, when compared with ordinary PC pressure bonding,
Since joint mortar is not required, the joint sheath joining process, mortar single-frame building process, mortar injecting process, mortar curing period, and mold release process are eliminated, and the process can immediately proceed to the crimping process. The cost of construction and the process are shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Aは、請求項1に記載した発明に係る建築物の
柱梁架構の一例を示した平面図、Bは、同正面図であ
る。
FIG. 1A is a plan view showing an example of a beam-column frame of a building according to the invention described in claim 1, and FIG. 1B is a front view thereof.

【図2】Aは、請求項1に記載した発明に係る建築物の
柱梁架構の一例を示した平面図、Bは、同正面図であ
る。
FIG. 2A is a plan view showing an example of a beam-column frame of a building according to the invention described in claim 1, and FIG. 2B is a front view of the same.

【図3】柱梁架構の基本形を示した原理図である。FIG. 3 is a principle view showing a basic form of a beam-column structure.

【図4】柱梁架構の水平変形の状態を示した立面図であ
る。
FIG. 4 is an elevation view showing a horizontal deformation state of the column-beam frame.

【図5】Aは、請求項2に記載した発明に係る建築物の
柱梁架構の一例を示した平面図、Bは、同正面図であ
る。
FIG. 5A is a plan view showing an example of a beam-column frame of a building according to the second aspect of the invention, and FIG. 5B is a front view of the same.

【図6】その他の実施例を示した正面図である。FIG. 6 is a front view showing another embodiment.

【図7】従来の柱梁架構を示した部分断面図である。FIG. 7 is a partial sectional view showing a conventional beam-column structure.

【図8】従来の柱梁架構を示した平面図である。FIG. 8 is a plan view showing a conventional beam-column structure.

【図9】従来の柱梁架構の水平変形の状態を示した立面
図である。
FIG. 9 is an elevation view showing a state in which a conventional beam-column structure is horizontally deformed.

【符号の説明】[Explanation of symbols]

1 柱 2 梁 2’ 梁 3 塑性ヒンジ(降伏ヒンジ) 4 圧着接合面 5 PC鋼より線 6 間柱 Reference Signs List 1 pillar 2 beam 2 'beam 3 plastic hinge (yield hinge) 4 crimping joint surface 5 PC steel strand 6 stud

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】柱梁架構を構成する柱と梁が、その側面同
士を圧着接合され、前記の圧着接合面に摩擦抵抗面内せ
ん断力を生じさせる大きさの圧着力が付与されているこ
とを特徴とする、建築物の柱梁架構。
A side wall of a column and a beam constituting a column-beam frame are crimped to each other, and a crimping force large enough to generate a frictional resistance in-plane shear force is applied to the crimped joint surface. A column-beam structure for buildings.
【請求項2】柱梁架構を構成する柱と梁が、その側面同
士を圧着接合され、前記の圧着接合面に摩擦抵抗面内せ
ん断力を生じさせる大きさの圧着力が付与されている架
構部分と、前記柱梁架構を構成する柱と梁が、面内で接
合されている架構部分との組み合わせから成ることを特
徴とする、建築物の柱梁架構。
2. A frame having a column and a beam constituting a column-and-beam frame, the side surfaces of which are crimp-bonded to each other, and a crimping force large enough to generate a frictional resistance in-plane shear force is applied to the crimping joint surface. A beam and column structure of a building, characterized in that the portion and a column and a beam constituting the beam and beam frame are composed of a combination of frame portions joined in a plane.
【請求項3】圧着力はプレストレスにより付与されてい
ることを特徴とする、請求項1又は2に記載した建築物
の柱梁架構。
3. The column-beam frame of a building according to claim 1, wherein the crimping force is given by prestress.
【請求項4】柱と梁の圧着接合面の摩擦抵抗面内せん断
力の摩擦力による曲げモーメントと外部から作用する曲
げモーメントとを釣り合わせ、外部から作用する曲げモ
ーメントが降伏モーメント以上になったとき圧着接合面
に滑りが発生して塑性ヒンジが形成されることを特徴と
する、請求項1又は2に記載した建築物の柱梁架構。
4. The bending moment due to frictional force of the in-plane shear force of the frictional resistance of the pressure-bonded joint surface of the column and the beam and the bending moment acting from the outside are balanced, and the bending moment acting from the outside becomes greater than the yield moment. 3. The column-beam frame of a building according to claim 1, wherein a slippage occurs on the pressure-bonded joint surface to form a plastic hinge. 4.
JP28154797A 1997-10-15 1997-10-15 Column and beam construction for building Pending JPH11117387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28154797A JPH11117387A (en) 1997-10-15 1997-10-15 Column and beam construction for building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28154797A JPH11117387A (en) 1997-10-15 1997-10-15 Column and beam construction for building

Publications (1)

Publication Number Publication Date
JPH11117387A true JPH11117387A (en) 1999-04-27

Family

ID=17640709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28154797A Pending JPH11117387A (en) 1997-10-15 1997-10-15 Column and beam construction for building

Country Status (1)

Country Link
JP (1) JPH11117387A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528200A (en) * 2007-05-22 2010-08-19 スキッドモア オーウィングス アンド メリル リミテッド ライアビリティ パートナーシップ Earthquake structural equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528200A (en) * 2007-05-22 2010-08-19 スキッドモア オーウィングス アンド メリル リミテッド ライアビリティ パートナーシップ Earthquake structural equipment

Similar Documents

Publication Publication Date Title
JP2014077248A (en) Seismic strengthening structure and seismic strengthening method
JP2000336971A (en) Vibration energy absorber for tension structure and method for constructing the same
JP6647721B1 (en) Tensionless PC steel bar concrete beam-column structure
JP2007092301A (en) Structure for connecting column and beam together
JP6765735B1 (en) Steel structure having a 3-axis compression beam-beam joint and its construction method
JP3297413B2 (en) Damping frame with friction damping mechanism
JPH11117387A (en) Column and beam construction for building
JP2002285708A (en) Frame reinforcing structure
JPH11172762A (en) Joining structure for column and beam of prestressed concrete structure
JP2011064012A (en) Brace, aseismatic structure and building
JPH11172761A (en) Rc-based vibration control structure
JP7045780B2 (en) Reinforcement structure of wooden building
JP6388738B1 (en) Seismic reinforcement structure for concrete structures
JP4861792B2 (en) Pressure bonding method and pressure bonding structure for precast concrete column / beam joint
JP2008127941A (en) Structure and method for joining column and beam together
JP2016186223A (en) Seismic strengthening structure and method
JP7276568B2 (en) wooden structure
JP3877741B2 (en) Joint structure between precast concrete columns and precast concrete beams
JP2968952B2 (en) Column and beam joint structure and joining method
JPH11350593A (en) Vibration control frame by unbonding
JP2018123662A (en) Vibration controller
JP7243037B2 (en) wooden structure
JPH0732005U (en) Joint structure of precast prestressed concrete frame
JP3096664B2 (en) Concrete member joining structure
JPH10220027A (en) Aseismatic reinforced construction