JPH11116551A - Vitamin d3 derivative and its production - Google Patents
Vitamin d3 derivative and its productionInfo
- Publication number
- JPH11116551A JPH11116551A JP16064798A JP16064798A JPH11116551A JP H11116551 A JPH11116551 A JP H11116551A JP 16064798 A JP16064798 A JP 16064798A JP 16064798 A JP16064798 A JP 16064798A JP H11116551 A JPH11116551 A JP H11116551A
- Authority
- JP
- Japan
- Prior art keywords
- methyl
- compound
- vitamin
- dihydroxy
- yne
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、2位にメチル基を
有する新規なビタミンD3誘導体およびその製造法に関
する。さらに詳細には、骨粗鬆症の治療薬として有用な
1、25−ジヒドロキシ−2−メチルビタミンD3誘導
体およびその製造法、ならびにその鍵中間体、さらには
その鍵中間体の製造法に関する。TECHNICAL FIELD The present invention relates to a novel vitamin D 3 derivative having a methyl group at the 2-position and a method for producing the same. More specifically, the present invention relates to a 1,25-dihydroxy-2-methylvitamin D 3 derivative useful as a therapeutic agent for osteoporosis, a method for producing the derivative, a key intermediate thereof, and a method for producing the key intermediate.
【0002】[0002]
【従来の技術】活性型ビタミンD3が生体内のカルシウ
ムやリン酸塩などの代謝を制御する物質として、極めて
重要な働きをすることは、今までに特許公報や一般の科
学文献を通じて広く認知されている。また、種々のビタ
ミンD誘導体が、骨粗鬆症やクル病をはじめとするビタ
ミンD代謝異常症に対する治療薬として用いられている
ことも周知の事実である。BACKGROUND OF THE INVENTION active vitamin D 3 is a substance that controls metabolism such as calcium and phosphate in the body, very important to act is widely recognized throughout the scientific literature of patents and general ever Have been. It is also a well-known fact that various vitamin D derivatives are used as remedies for vitamin D metabolism disorders such as osteoporosis and rickets.
【0003】さらに、カルシウム調節作用やその他ビタ
ミンD3にみられる種々の生物活性は、ビタミンDレセ
プターへの結合親和性とビタミンD結合蛋白への結合親
和性の差異によってさまざまな作用選択性が発現してい
るためと解釈する報告もなされている。[0003] In addition, calcium-modulating action and various other biological activities observed in vitamin D 3 exhibit various action selectivities due to differences in binding affinity to vitamin D receptor and binding affinity to vitamin D binding protein. Some have interpreted that it is due to
【0004】公知の2位置換ビタミンD3誘導体として
は、1位の水酸基がα配位であり、2位にβ配位の置換
基(無置換もしくは末端が水酸基で置換されたC1〜C6
の直鎖状アルキル基、末端が水酸基で置換されたC1〜
C6の直鎖状アルキルオキシ基、C1〜C5のアルケニル
基、または水酸基)をもつ1、25−ジヒドロキシビタ
ミンD3誘導体が報告されている(小林ら、日本薬学会
第116年会(1996)、講演要旨要旨集3、p8
8)。[0004] Known 2-substituted vitamin D 3 derivatives include a hydroxyl group at the 1-position having an α-coordinate and a β-coordinate substituent at the 2-position (unsubstituted or substituted C 1 -C 3 -substituted hydroxyl group). 6
Linear alkyl group, C 1-
1,25-dihydroxyvitamin D 3 derivatives having a C 6 linear alkyloxy group, a C 1 -C 5 alkenyl group, or a hydroxyl group have been reported (Kobayashi et al., The 116th Annual Meeting of the Pharmaceutical Society of Japan ( 1996), Abstracts of Lectures 3, p8
8).
【0005】また、1位の水酸基がα配位であり、かつ
2位にα配位の置換基(3−ヒドロキシプロピル基また
は3−フルオロプロピル基)をもつ1、25−ジヒドロ
キシビタミンD3誘導体が知られている(Posner, G.
H., J. Org. Chem., 1995, 60,4617)が、1、25−ジ
ヒドロキシ−2−メチルビタミンD3誘導体について、
その1位、2位および3位の不斉炭素に関する各種立体
異性体を得たという報告はない。A 1,25-dihydroxyvitamin D 3 derivative in which the hydroxyl group at the 1-position is α-coordinate and the α-position at the 2-position has a substituent (3-hydroxypropyl group or 3-fluoropropyl group) Is known (Posner, G.
H., J. Org. Chem., 1995, 60, 4617) is 1,25 for dihydroxy-2-methyl-vitamin D 3 derivatives,
There are no reports that various stereoisomers related to the asymmetric carbon at the 1-, 2-, and 3-positions were obtained.
【0006】これらの2位置換ビタミンD3誘導体の製
造法も上記文献に示されているが、いずれも1位、2
位、および3位の不斉炭素についての立体異性体のう
ち、ある特定の組合せの異性体を製造できるのみであ
り、随意の組合せの異性体を効率的に製造できる方法は
示されていない。[0006] Methods for producing these 2-substituted vitamin D 3 derivatives are also disclosed in the above-mentioned documents, but all of them are in the 1-position and 2-position.
Among the stereoisomers for the asymmetric carbon at the 3-position and the 3-position, only a specific combination of isomers can be produced, and no method for efficiently producing an arbitrary combination of isomers is disclosed.
【0007】近年、一般式(II)In recent years, the general formula (II)
【0008】[0008]
【化6】 Embedded image
【0009】[式中、Xは臭素原子または沃素原子を表
す。]で表されるエキソメチレン化合物と、一般式(II
I)[Wherein, X represents a bromine atom or an iodine atom. And an exomethylene compound represented by the general formula (II
I)
【0010】[0010]
【化7】 Embedded image
【0011】[式中、R3およびR4はそれぞれ独立に、
水素原子またはトリ(C1〜C7炭化水素)シリル基を表
す。]において4位が無置換のエン−イン化合物を反応
させることにより活性型ビタミンD3を合成する新規な
方法が発表された。(Trost, B.M.; J. Am. Chem. So
c.,1992, 114, 9836)。しかし、4位にメチル基のよう
な置換基があるエン−イン化合物を用いた例は知られて
いない。Wherein R 3 and R 4 are each independently:
Represents a hydrogen atom or a tri (C 1 -C 7 hydrocarbon) silyl group. 4-position unsubstituted ene in - novel methods of synthesizing the activated vitamin D 3 by reacting an in-compound was announced. (Trost, BM; J. Am. Chem. So
c., 1992, 114 , 9836). However, there is no known example using an ene-yne compound having a substituent such as a methyl group at the 4-position.
【0012】また、4位無置換のエン−イン化合物は種
々の方法で、光学的に純粋な形で合成されている(Tros
t, B.M.; J. Am. Chem. Soc., 1992, 114, 9836、Tros
t, B.M.; Tetrahedron Lett., 1994, 35, 8119、Moriar
ty, R.M.; Tetrahedron Lett., 1995, 36, 51、Vandewa
lle, M.; Tetrahedron Lett., 1995, 36, 9023)。In addition, 4-substituted unsubstituted ene-yne compounds have been synthesized by various methods in optically pure form (Tros
t, BM; J. Am. Chem. Soc., 1992, 114 , 9836, Tros
t, BM; Tetrahedron Lett., 1994, 35 , 8119, Moriar
ty, RM; Tetrahedron Lett., 1995, 36 , 51, Vandewa
lle, M .; Tetrahedron Lett., 1995, 36 , 9023).
【0013】しかし、4位がメチル基で置換されてお
り、3位および5位に保護されていてもよい水酸基を持
もエン−イン化合物(III)は知られておらず、かつこ
のような3位、4位、および5位の連続した不斉炭素に
由来する立体異性体をそれぞれ光学的に純粋に合成する
方法は開示されていない。However, the ene-yne compound (III) is not known even though the 4-position is substituted with a methyl group and has a hydroxyl group which may be protected at the 3- and 5-positions. There is no disclosure of a method for optically pure synthesis of stereoisomers derived from consecutive asymmetric carbons at the 3-, 4-, and 5-positions.
【0014】[0014]
【発明が解決しようとする課題】本発明が解決しようと
する課題は、生物活性を有する新規な1、25−ジヒド
ロキシ−2−メチルビタミンD3誘導体およびその製造
法、ならびにそれを製造する際に用いられる鍵中間体、
さらにはその製造法を提供することにある。An object of the present invention is to provide a novel 1,25-dihydroxy-2-methylvitamin D 3 derivative having biological activity, a method for producing the same, and a process for producing the same. Key intermediate used,
Another object of the present invention is to provide a method for producing the same.
【0015】[0015]
【課題を解決するための手段】本発明者らは、上記目的
で鋭意研究した結果、以下の発明に到達した。すなわ
ち、本発明は一般式(I)Means for Solving the Problems The present inventors have intensively studied for the above-mentioned object, and as a result, have reached the following invention. That is, the present invention provides a compound represented by the general formula (I)
【0016】[0016]
【化8】 Embedded image
【0017】[式中、R1およびR2はそれぞれ独立に、
水素原子またはトリ(C1〜C7アルキル)シリル基を表
す。ここで、1位、2位、および3位の不斉炭素につい
ての立体配置は、それぞれ独立に、α配位またはβ配位
である(ただし、1位がα配位であり、2位がβ配位で
あり、3位がβ配位である立体異性体は除く)。]で表
される1,25−ジヒドロキシ−2−メチルビタミンD
3誘導体である。Wherein R 1 and R 2 are each independently
Represents a hydrogen atom or a tri (C 1 -C 7 alkyl) silyl group. Here, the steric configurations of the asymmetric carbons at the first, second, and third positions are each independently α-configuration or β-configuration (provided that 1-position is α-configuration and 2-position is β-coordination, excluding stereoisomers where the 3-position is β-coordination). 1,25-dihydroxy-2-methylvitamin D represented by the formula:
3 derivatives.
【0018】したがって、本発明のビタミンD3誘導体
には、その1位、2位、および3位についての立体配置
が、それぞれ (1) α配位、α配位、α配位の組合せ (2) α配位、α配位、β配位の組合せ (3) α配位、β配位、α配位の組合せ (4) β配位、α配位、α配位の組合せ (5) β配位、α配位、β配位の組合せ (6) β配位、β配位、α配位の組合せ (7) β配位、β配位、β配位の組合せ である7種類のものがいずれも含まれる。さらに、これ
ら7種類の立体異性体のうちのいずれかのもの複数を任
意の割合で含有する混合物も本発明の範囲に含まれる。Accordingly, the vitamin D 3 derivative of the present invention has three configurations at the first, second, and third positions, respectively: (1) α configuration, α configuration, and a combination of α configuration (2) ) Combination of α coordination, α coordination and β coordination (3) Combination of α coordination, β coordination and α coordination (4) Combination of β coordination, α coordination and α coordination (5) β Combination of coordination, α coordination and β coordination (6) Combination of β coordination, β coordination and α coordination Are included. Further, a mixture containing a plurality of any of these seven types of stereoisomers in an arbitrary ratio is also included in the scope of the present invention.
【0019】なお、ビタミンD類についての立体配置の
表記法は慣例によった。すなわち、ここでいう「α配
位」とは紙面の上方からの結合を意味し、「β配位」と
は紙面の下方からの結合を意味する。The notation of the configuration of vitamin D is in accordance with a common practice. That is, the term “α-coordinate” means a bond from above the paper surface, and the term “β-coordinate” means a bond from below the paper surface.
【0020】また、本発明は、上記式(I)で表される
ビタミンD3誘導体の製造法を包含する。すなわち、一
般式(II)The present invention also includes a method for producing the vitamin D 3 derivative represented by the above formula (I). That is, the general formula (II)
【0021】[0021]
【化9】 Embedded image
【0022】[式中、Xは臭素原子または沃素原子を表
す。]で表されるエキソメチレン化合物と、一般式(II
I)[Wherein, X represents a bromine atom or an iodine atom. And an exomethylene compound represented by the general formula (II
I)
【0023】[0023]
【化10】 Embedded image
【0024】[式中、R3およびR4はそれぞれ独立に、
水素原子またはトリ(C1〜C7炭化水素)シリル基を表
す。]で表されるエン−イン化合物とをパラジウム触媒
の存在下に反応させ、必要に応じてトリ(C1〜C7炭化
水素)シリル基を脱保護することによって、上記式
(I)で表される1,25−ジヒドロキシ−2メチルビ
タミンD3誘導体を製造する方法である。Wherein R 3 and R 4 are each independently:
Represents a hydrogen atom or a tri (C 1 -C 7 hydrocarbon) silyl group. With an ene-yne compound represented by the formula (I) by deprotecting the tri (C 1 -C 7 hydrocarbon) silyl group if necessary. To produce a 1,25-dihydroxy-2-methylvitamin D 3 derivative.
【0025】このほか、本発明には一般式(III)In addition, the present invention provides a compound of the general formula (III)
【0026】[0026]
【化11】 Embedded image
【0027】[式中、R3およびR4はそれぞれ独立に、
水素原子またはトリ(C1〜C7炭化水素)シリル基を表
す。ここで、3位、4位および5位の不斉炭素について
の立体配置は、それぞれ独立に、R配置またはS配置で
ある。]で表されるエン−イン化合物も含まれる。さら
に、これら8種類の立体異性体のうちのいずれかのもの
複数を任意の割合で含有する混合物も本発明の範囲に含
まれる。Wherein R 3 and R 4 are each independently:
Represents a hydrogen atom or a tri (C 1 -C 7 hydrocarbon) silyl group. Here, the configurations of the asymmetric carbons at the 3-, 4- and 5-positions are each independently R configuration or S configuration. And an ene-yne compound represented by the formula: Further, a mixture containing a plurality of any of these eight stereoisomers at an arbitrary ratio is also included in the scope of the present invention.
【0028】さらに、本発明は、下記反応式(スキーム
1)Further, the present invention provides the following reaction formula (Scheme 1)
【0029】[0029]
【化12】 Embedded image
【0030】[式中、R11はトリ(C1〜C7アルキル)
シリル基または(C1〜C7アルキル)ジ(C6〜C10ア
リール)シリル基を表し、R12は結合する酸素原子と共
にアセタールを形成する保護基を表し、TMSはトリメ
チルシリル基を表す。]に示す経路によって上記式(II
I)で表されるエン−イン化合物を光学的に純粋に製造
する方法である。Wherein R 11 is tri (C 1 -C 7 alkyl)
Represents a silyl group or a (C 1 -C 7 alkyl) di (C 6 -C 10 aryl) silyl group, R 12 represents a protecting group which forms an acetal together with a bonding oxygen atom, and TMS represents a trimethylsilyl group. [II]
This is a method for producing the ene-yne compound represented by I) optically pure.
【0031】[0031]
【発明の実施の形態】本発明おいて、トリ(C1〜C7ア
ルキル)シリル基とは、それぞれ独立な三つの直鎖状も
しくは分枝状のC1〜C7のアルキル基によって置換され
たシリル基を表し、なかでもトリメチルシリル基、トリ
エチルシリル基、t−ブチルジメチルシリル基、または
t−ブチルジフェニルシリル基が好ましい。また、(C
1〜C7アルキル)ジ(C6〜C10アリール)シリル基と
は、ひとつの直鎖状もしくは分枝状のC1〜C7アルキル
基とふたつのC6〜C10アリール基によって置換された
シリル基を表し、なかでもt−ブチルジフェニルシリル
基が好ましい。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a tri (C 1 -C 7 alkyl) silyl group is substituted by three independent linear or branched C 1 -C 7 alkyl groups. A trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, or a t-butyldiphenylsilyl group. Also, (C
The 1 -C 7 alkyl) di (C 6 -C 10 aryl) silyl group, substituted by one straight or branched C 1 -C 7 alkyl groups and two C 6 -C 10 aryl group Represents a silyl group, and among them, a t-butyldiphenylsilyl group is preferable.
【0032】一般式(I)で表される1,25−ジヒド
ロキシ−2−メチルビタミンD3誘導体の好適な具体例
としては、 1β、25−ジヒドロキシ−2β−メチル−3β−ビタミンD3 (1) 1α、25−ジヒドロキシ−2β−メチル−3α−ビタミンD3 (2) 1β、25−ジヒドロキシ−2β−メチル−3α−ビタミンD3 (3) 1α、25−ジヒドロキシ−2α−メチル−3β−ビタミンD3 (4) 1β、25−ジヒドロキシ−2α−メチル−3β−ビタミンD3 (5) 1α、25−ジヒドロキシ−2α−メチル−3α−ビタミンD3 (6) 1β、25−ジヒドロキシ−2α−メチル−3α−ビタミンD3 (7) 1β、25−ジヒドロキシ−2β−メチル−3β−ビタミンD3−1、3−ビス (トリメチルシリル)エーテル (8) 1α、25−ジヒドロキシ−2β−メチル−3α−ビタミンD3−1、3−ビス (トリメチルシリル)エーテル (9) 1β、25−ジヒドロキシ−2β−メチル−3α−ビタミンD3−1、3−ビス (トリメチルシリル)エーテル (10) 1α、25−ジヒドロキシ−2α−メチル−3β−ビタミンD3−1、3−ビス (トリメチルシリル)エーテル (11) 1β、25−ジヒドロキシ−2α−メチル−3β−ビタミンD3−1、3−ビス (トリメチルシリル)エーテル (12) 1α、25−ジヒドロキシ−2α−メチル−3α−ビタミンD3−1、3−ビス (トリメチルシリル)エーテル (13) 1β、25−ジヒドロキシ−2α−メチル−3α−ビタミンD3−1、3−ビス (トリメチルシリル)エーテル (14) 1β、25−ジヒドロキシ−2β−メチル−3β−ビタミンD3−1、3−ビス (t−ブチルジメチルシリル)エーテル (15) 1α、25−ジヒドロキシ−2β−メチル−3α−ビタミンD3−1、3−ビス (t−ブチルジメチルシリル)エーテル (16) 1β、25−ジヒドロキシ−2β−メチル−3α−ビタミンD3−1、3−ビス (t−ブチルジメチルシリル)エーテル (17) 1α、25−ジヒドロキシ−2α−メチル−3β−ビタミンD3−1、3−ビス (t−ブチルジメチルシリル)エーテル (18) 1β、25−ジヒドロキシ−2α−メチル−3β−ビタミンD3−1、3−ビス (t−ブチルジメチルシリル)エーテル (19) 1α、25−ジヒドロキシ−2α−メチル−3α−ビタミンD3−1、3−ビス (t−ブチルジメチルシリル)エーテル (20) 1β、25−ジヒドロキシ−2α−メチル−3α−ビタミンD3−1、3−ビス (t−ブチルジメチルシリル)エーテル (21) 等が挙げられる。Preferable specific examples of the 1,25-dihydroxy-2-methylvitamin D 3 derivative represented by the general formula (I) include 1β, 25-dihydroxy-2β-methyl-3β-vitamin D 3 (1 ) 1α, 25-dihydroxy-2β-methyl-3α-vitamin D 3 (2) 1β, 25-dihydroxy-2β-methyl-3α-vitamin D 3 (3) 1α, 25-dihydroxy-2α-methyl-3β-vitamin D 3 (4) 1β, 25-dihydroxy-2α-methyl-3β-vitamin D 3 (5) 1α, 25-dihydroxy-2α-methyl-3α-vitamin D 3 (6) 1β, 25-dihydroxy-2α-methyl -3α- vitamin D 3 (7) 1β, 25- dihydroxy -2β- methyl -3β- vitamin D 3-1,3-bis (trimethylsilyl) ether (8) l [alpha], 25- Hydroxy -2β- methyl -3α- vitamin D 3-1,3-bis (trimethylsilyl) ether (9) l [beta], 25-dihydroxy--2β- methyl -3α- vitamin D 3-1,3-bis (trimethylsilyl) ether ( 10) l [alpha], 25-dihydroxy--2α- methyl -3β- vitamin D 3-1,3-bis (trimethylsilyl) ether (11) l [beta], 25-dihydroxy--2α- methyl -3β- vitamin D 3-1,3- bis (trimethylsilyl) ether (12) l [alpha], 25-dihydroxy--2α- methyl -3α- vitamin D 3-1,3-bis (trimethylsilyl) ether (13) l [beta], 25-dihydroxy--2α- methyl -3α- vitamin D 3-1,3-bis (trimethylsilyl) ether (14) l [beta], 25-dihydroxy -2β- main Chill -3β- vitamin D 3-1,3-bis (t-butyldimethylsilyl) ether (15) 1α, 25- dihydroxy -2β- methyl -3α- vitamin D 3-1,3-bis (t-butyldimethyl silyl) ether (16) l [beta], 25-dihydroxy--2β- methyl -3α- vitamin D 3-1,3-bis (t-butyldimethylsilyl) ether (17) 1α, 25- dihydroxy -2α- methyl -3β- vitamin D 3-1,3-bis (t-butyldimethylsilyl) ether (18) l [beta], 25-dihydroxy--2α- methyl -3β- vitamin D 3-1,3-bis (t-butyldimethylsilyl) ether ( 19) l [alpha], 25-dihydroxy--2α- methyl -3α- vitamin D 3-1,3-bis (t-butyldimethylsilyl) ether (20) l [beta] , 25-dihydroxy -2α- methyl -3α- vitamin D 3-1,3-bis (t-butyldimethylsilyl) ether (21), and the like.
【0033】また、上記式(I)で表されるビタミンD
3誘導体の製造法において、出発原料である上記式(II
I)で表されるエン−イン化合物は、その3位、4位、
および5位の不斉炭素に由来するすべての立体異性体、
もしくはそれらの任意の割合の混合物であってもよい
が、反応中それらの立体配置は保存され、対応する立体
配置を有する1,25−ジヒドロキシ−2−メチルビタ
ミンD3誘導体が生成される。The vitamin D represented by the above formula (I)
In the method for producing the three derivatives, the starting material represented by the above formula (II
The ene-yne compound represented by I) has the 3-position, 4-position,
And all stereoisomers derived from the asymmetric carbon at position 5,
Alternatively, they may be a mixture of any ratio thereof, but their configuration is preserved during the reaction, and a 1,25-dihydroxy-2-methylvitamin D 3 derivative having a corresponding configuration is produced.
【0034】本製造法に用いるパラジウム触媒とは、0
価または2価の有機パラジウム化合物および三置換リン
化合物を組み合わせたものである。そのような有機パラ
ジウム化合物としては、テトラキス(トリフェニルホス
フィン)パラジウム、トリス(ジベンジリデンアセト
ン)パラジウム、トリス(ジベンジリデンアセトン)パ
ラジウムクロロホルム、酢酸パラジウム等が挙げられ
る。また、三置換リン化合物としては、例えばトリフェ
ニルホスフィン、トリブチルホスフィン等が挙げられ
る。両者を組み合わせたパラジウム触媒としては、トリ
ス(ジベンジリデンアセトン)パラジウムおよびトリフ
ェニルホスフィン、トリス(ジベンジリデンアセトン)
パラジウムクロロホルムおよびトリフェニルホスフィン
が好ましく、その混合比は1:1〜1:10が好まし
い。The palladium catalyst used in this production method is 0
It is a combination of a divalent or divalent organic palladium compound and a trisubstituted phosphorus compound. Examples of such an organic palladium compound include tetrakis (triphenylphosphine) palladium, tris (dibenzylideneacetone) palladium, tris (dibenzylideneacetone) palladium chloroform, and palladium acetate. Examples of the trisubstituted phosphorus compound include triphenylphosphine and tributylphosphine. As a palladium catalyst combining both, tris (dibenzylideneacetone) palladium and triphenylphosphine, tris (dibenzylideneacetone)
Palladium chloroform and triphenylphosphine are preferred, and the mixing ratio is preferably 1: 1 to 1:10.
【0035】ここで、上記式(II)で表されるエキソメ
チレン化合物と、上記式(III)で表されるエン−イン
化合物とのモル比は1:5〜5:1の範囲で行うことが
望ましい。また、パラジウム触媒はエキソメチレン化合
物に対して0.1〜100モル%、好ましくは1〜20
モル%の範囲で使用される。Here, the molar ratio of the exomethylene compound represented by the above formula (II) to the ene-yne compound represented by the above formula (III) is in the range of 1: 5 to 5: 1. Is desirable. The palladium catalyst is used in an amount of 0.1 to 100 mol%, preferably 1 to 20 mol%, based on the exomethylene compound.
It is used in the range of mol%.
【0036】また、上記式(II)で表されるエキソメチ
レン化合物と、上記式(III)で表されるエン−イン化
合物との反応において、反応溶媒はヘキサン、ヘプタ
ン、トルエン等の非極性系溶媒、ジエチルエーテル、テ
トラヒドロフラン、ジオキサン、ジメトキシエタンや
N、N−ジメチルホルムアミド、アセトニトリル等の極
性系溶媒、またはこれらの混合溶媒が挙げられる。この
なかでも、ヘプタン、トルエンが望ましい。さらに、こ
れらの溶媒を反応に使用する際、あらかじめ蒸留や窒素
置換などの処理を行うことが望ましい。反応は室温から
上記溶媒の沸点までの範囲で行う。In the reaction between the exomethylene compound represented by the above formula (II) and the ene-yne compound represented by the above formula (III), the reaction solvent is a non-polar solvent such as hexane, heptane, toluene and the like. Examples of the solvent include polar solvents such as a solvent, diethyl ether, tetrahydrofuran, dioxane, dimethoxyethane, N, N-dimethylformamide, and acetonitrile, and a mixed solvent thereof. Of these, heptane and toluene are preferred. Further, when these solvents are used in the reaction, it is desirable to carry out a treatment such as distillation or nitrogen substitution in advance. The reaction is carried out at a temperature ranging from room temperature to the boiling point of the solvent.
【0037】さらに、反応系中に生成するハロゲン化水
素等の酸を捕捉するために、例えば、トリエチルアミ
ン、ジイソプロピルエチルアミン等の塩基を加えて反応
させることが好ましい。加える塩基の量としては、上記
式(II)あるいは上記式(III)で表される反応物の
うち、過剰に用いられる方に対して1当量以上使用する
ことが好ましい。Further, in order to capture an acid such as hydrogen halide generated in the reaction system, it is preferable to add a base such as triethylamine or diisopropylethylamine for the reaction. As the amount of the base to be added, it is preferable to use at least one equivalent of the reactant represented by the above formula (II) or the above formula (III) which is used in excess.
【0038】上記反応によって得られる一般式(I)の
ビタミンD3誘導体は、さらに必要に応じて脱保護反応
に付す。かかる脱保護反応としては、公知の方法(例え
ば、Calveley, M. J.; Tetrahedron, 20, 4609, 1987、
Ho, P. T.; Tetrahedron letters, 1623, 1978)に準じ
て行うことができる。その場合の脱保護剤としては、例
えばテトラブチルアンモニウムフロリド、リチウムテト
ラフルオロボレート、ピリジウム−P−トロエンスルホ
ネートあるいはカンファースルホン酸等を挙げることが
できる。The vitamin D 3 derivative of the general formula (I) obtained by the above reaction is further subjected to a deprotection reaction, if necessary. As such a deprotection reaction, known methods (for example, Calveley, MJ; Tetrahedron, 20, 4609, 1987,
Ho, PT; Tetrahedron letters, 1623, 1978). In this case, examples of the deprotecting agent include tetrabutylammonium fluoride, lithium tetrafluoroborate, pyridium-P-troen sulfonate and camphorsulfonic acid.
【0039】なお、一般式(II)で表されるエキソメチ
レン化合物は、公知の方法によって合成される(山田
ら、J. Org. Chem., 1995, 60, 1828)。The exomethylene compound represented by the general formula (II) is synthesized by a known method (Yamada et al., J. Org. Chem., 1995, 60 , 1828).
【0040】一方、上記式(III)で表されるエン−イ
ン化合物の好適な具体例としては、 (3R,4R,5R)−3、5−ジヒドロキシ−4−メチル−1−オクテン−7 −イン (22) (3S,4R,5R)−3、5−ジヒドロキシ−4−メチル−1−オクテン−7 −イン (23) (3R,4R,5S)−3、5−ジヒドロキシ−4−メチル−1−オクテン−7 −イン (24) (3S,4R,5S)−3、5−ジヒドロキシ−4−メチル−1−オクテン−7 −イン (25) (3R,4S,5R)−3、5−ジヒドロキシ−4−メチル−1−オクテン−7 −イン (26) (3S,4S,5R)−3、5−ジヒドロキシ−4−メチル−1−オクテン−7 −イン (27) (3R,4S,5S)−3、5−ジヒドロキシ−4−メチル−1−オクテン−7 −イン (28) (3S,4S,5S)−3、5−ジヒドロキシ−4−メチル−1−オクテン−7 −イン (29) (3R、4R、5R)−3、5−ビス(トリメチルシリルオキシ)−4−メチル −1−オクテン−7−イン (30) (3S、4R、5R)−3、5−ビス(トリメチルシリルオキシ)−4−メチル −1−オクテン−7−イン (31) (3R、4R、5S)−3、5−ビス(トリメチルシリルオキシ)−4−メチル −1−オクテン−7−イン (32) (3S、4R、5S)−3、5−ビス(トリメチルシリルオキシ)−4−メチル −1−オクテン−7−イン (33) (3R、4S、5R)−3、5−ビス(トリメチルシリルオキシ)−4−メチル −1−オクテン−7−イン (34) (3S、4S、5R)−3、5−ビス(トリメチルシリルオキシ)−4−メチル −1−オクテン−7−イン (35) (3R、4S、5S)−3、5−ビス(トリメチルシリルオキシ)−4−メチル −1−オクテン−7−イン (36) (3S、4S、5S)−3、5−ビス(トリメチルシリルオキシ)−4−メチル −1−オクテン−7−イン (37) (3R、4R、5R)−3、5−ビス(t−ブチルジメチルシリルオキシ)−4 −メチル−1−オクテン−7−イン (38) (3S、4R、5R)−3、5−ビス(t−ブチルジメチルシリルオキシ)−4 −メチル−1−オクテン−7−イン (39) (3R、4R、5S)−3、5−ビス(t−ブチルジメチルシリルオキシ)−4 −メチル−1−オクテン−7−イン (40) (3S、4R、5S)−3、5−ビス(t−ブチルジメチルシリルオキシ)−4 −メチル−1−オクテン−7−イン (41) (3R、4S、5R)−3、5−ビス(t−ブチルジメチルシリルオキシ)−4 −メチル−1−オクテン−7−イン (42) (3S、4S、5R)−3、5−ビス(t−ブチルジメチルシリルオキシ)−4 −メチル−1−オクテン−7−イン (43) (3R、4S、5S)−3、5−ビス(t−ブチルジメチルシリルオキシ)−4 −メチル−1−オクテン−7−イン (44) (3S、4S、5S)−3、5−ビス(t−ブチルジメチルシリルオキシ)−4 −メチル−1−オクテン−7−イン (45) 等が挙げられる。On the other hand, preferred specific examples of the ene-yne compound represented by the above formula (III) include (3R, 4R, 5R) -3,5-dihydroxy-4-methyl-1-octene-7- In (22) (3S, 4R, 5R) -3,5-dihydroxy-4-methyl-1-octene-7-yne (23) (3R, 4R, 5S) -3,5-dihydroxy-4-methyl- 1-octen-7-yne (24) (3S, 4R, 5S) -3,5-dihydroxy-4-methyl-1-octen-7-yne (25) (3R, 4S, 5R) -3,5- Dihydroxy-4-methyl-1-octen-7-yne (26) (3S, 4S, 5R) -3,5-dihydroxy-4-methyl-1-octen-7-yne (27) (3R, 4S, 5S ) -3,5-Dihydroxy-4-methyl-1 -Octen-7-yne (28) (3S, 4S, 5S) -3,5-dihydroxy-4-methyl-1-octen-7-yne (29) (3R, 4R, 5R) -3,5-bis (Trimethylsilyloxy) -4-methyl-1-octene-7-yne (30) (3S, 4R, 5R) -3,5-bis (trimethylsilyloxy) -4-methyl-1-octene-7-yne (31) ) (3R, 4R, 5S) -3,5-bis (trimethylsilyloxy) -4-methyl-1-octene-7-yne (32) (3S, 4R, 5S) -3,5-bis (trimethylsilyloxy) -4-methyl-1-octen-7-yne (33) (3R, 4S, 5R) -3,5-bis (trimethylsilyloxy) -4-methyl-1-octen-7-yne (34) (3S, 4S, 5R -3,5-bis (trimethylsilyloxy) -4-methyl-1-octene-7-yne (35) (3R, 4S, 5S) -3,5-bis (trimethylsilyloxy) -4-methyl-1-octene -7-yne (36) (3S, 4S, 5S) -3,5-bis (trimethylsilyloxy) -4-methyl-1-octen-7-yne (37) (3R, 4R, 5R) -3,5 -Bis (t-butyldimethylsilyloxy) -4-methyl-1-octen-7-yne (38) (3S, 4R, 5R) -3,5-bis (t-butyldimethylsilyloxy) -4-methyl -1-octen-7-yne (39) (3R, 4R, 5S) -3,5-bis (t-butyldimethylsilyloxy) -4-methyl-1-octen-7-yne (40) (3S, 4R, 5S) -3 5-bis (t-butyldimethylsilyloxy) -4-methyl-1-octene-7-yne (41) (3R, 4S, 5R) -3,5-bis (t-butyldimethylsilyloxy) -4- Methyl-1-octen-7-yne (42) (3S, 4S, 5R) -3,5-bis (t-butyldimethylsilyloxy) -4-methyl-1-octen-7-yne (43) (3R 4,4S, 5S) -3,5-bis (t-butyldimethylsilyloxy) -4-methyl-1-octene-7-yne (44) (3S, 4S, 5S) -3,5-bis (t- Butyldimethylsilyloxy) -4-methyl-1-octen-7-yne (45).
【0041】さらに、本発明は上記式(III)で表され
るエン−イン化合物を光学的に純粋に製造する方法であ
る。上記スキーム1において、R11はトリ(C1〜C7ア
ルキル)シリル基もしくは(C1〜C7アルキル)ジ(C
6〜C10アリール)シリル基を表すが、好適な例として
はトリメチルシリル基、トリエチルシリル基、t−ブチ
ルジメチルシリル基、t−ブチルジフェニルシリル基が
挙げられる。また、R12は結合する酸素原子と共にアセ
タールを形成する保護基を表すが、メトキシメチル基、
メトキシエトキシメチル基、テトラヒドロピラニル基が
好適である。Further, the present invention is a method for producing the ene-yne compound represented by the formula (III) optically pure. In the above scheme 1, R 11 is a tri (C 1 -C 7 alkyl) silyl group or (C 1 -C 7 alkyl) di (C
Represents a 6 -C 10 aryl) silyl group, preferred examples are trimethylsilyl group, triethylsilyl group, t- butyl dimethyl silyl group, and a t-butyldiphenylsilyl group. R 12 represents a protecting group that forms an acetal together with a bonding oxygen atom, and a methoxymethyl group,
A methoxyethoxymethyl group and a tetrahydropyranyl group are preferred.
【0042】本製造方法は以下のようにして実施でき
る。すなわち、市販の光学活性エステル化合物(IV)の
水酸基を、塩基存在下にシリル保護して化合物(V)を
得る。ここでシリル化剤としては、トリエチルシリルク
ロリド、t−ブチルジメチルシリルクロリド、t−ブチ
ルジフェニルシリルクロリド、トリエチルシリルトリフ
ラート、t−ブチルジメチルシリルトリフラート等が好
ましく用いられる。また、塩基としてはトリエチルアミ
ン、2、6−ルチジン、イミダゾール等通常の塩基が用
いられる。This production method can be carried out as follows. That is, the hydroxyl group of a commercially available optically active ester compound (IV) is silyl protected in the presence of a base to obtain a compound (V). Here, as the silylating agent, triethylsilyl chloride, t-butyldimethylsilyl chloride, t-butyldiphenylsilyl chloride, triethylsilyl triflate, t-butyldimethylsilyl triflate and the like are preferably used. As the base, a usual base such as triethylamine, 2,6-lutidine and imidazole is used.
【0043】次いで化合物(V)をヒドリド還元剤で還
元しアルコール(VI)を得る。ヒドリド還元剤として
は、水素化リチウムアルミニウムや水素化ジイソブチル
アルミニウム等が好ましい。さらに生成した水酸基をジ
メチルスルホキシド/オキザリルクロリドやTPAP
(テトラプロピルアンモニウムペンタルテナート)/N
−メチルモルホリン−N−オキシド等で酸化してアルデ
ヒド(VII)とし、続いて通常のWittig反応に付してメ
チレン化体(VIII)を得る。Next, the compound (V) is reduced with a hydride reducing agent to obtain an alcohol (VI). As the hydride reducing agent, lithium aluminum hydride, diisobutyl aluminum hydride and the like are preferable. Further, the generated hydroxyl group is converted to dimethyl sulfoxide / oxalyl chloride or TPAP.
(Tetrapropylammonium pentaruthenate) / N
Oxidation with -methylmorpholine-N-oxide or the like to give the aldehyde (VII), followed by the usual Wittig reaction to give the methylene form (VIII).
【0044】次いで二重結合を過酸化水素やメタクロロ
過安息香酸等の過酸化試薬を用いてエポキシド化合物
(IX)とした後、スキームに示すアセチレン誘導体とア
ルキルリチウム等の塩基存在下に反応させ、化合物
(X)を得る。化合物(X)は水酸基の立体異性に基づ
く2種のジアステレオマーの混合物(1:1)として生
成するが、これらはカラムクロマトグラフィ等の通常の
分離操作で容易に分離・精製できる。また、分離したジ
アステレオマーの水酸基の立体配置は、それぞれ(R)
−と(S)−のMTPAエステルとし、1HNMRを測
定することで決定することができる(楠見ら、有機合成
化学協会誌、1996、51、462)。Next, the double bond is converted into an epoxide compound (IX) using a peroxide reagent such as hydrogen peroxide or metachloroperbenzoic acid, and then reacted with an acetylene derivative shown in the scheme in the presence of a base such as alkyllithium. Compound (X) is obtained. Compound (X) is produced as a mixture (1: 1) of two diastereomers based on the stereoisomerism of the hydroxyl group, and these can be easily separated and purified by ordinary separation operations such as column chromatography. The configuration of the hydroxyl group of the separated diastereomer is represented by (R)
It can be determined by measuring < 1 > H NMR using the-and (S)-MTPA esters (Kusumi et al., Journal of Synthetic Organic Chemistry, 1996, 51 , 462).
【0045】さらに、分離された化合物(X)をそれぞ
れ以下の反応に付すことによって、目的とする一般式
(III)で表されるエン−イン化合物を光学的に純粋に
製造することができる。すなわち、化合物(X)の水酸
基をアセタールで保護し、化合物(XI)を得る。アセタ
ール化剤としては、メトキシメチルクロリド、メトキシ
エトキシメチルクロリド、ジヒドロピラン等が用いられ
る。次いで、テトラブチルアンモニウムフルオリド等の
フルオリド試薬により脱シリル化し化合物(XII)とし
た後、生成した1級水酸基をジメチルスルホキシド/オ
キザリルクロリドやTPAP(テトラプロピルアンモニ
ウムペンタルテナート)/N−メチルモルホリン−N−
オキシド等で酸化して、アルデヒド(XIII)とする。さ
らに、このアルデヒド基に対してビニルグリニャール試
薬を反応させ、化合物(XIV)を得る。最後に、5位水
酸基のアセタール保護基を酸性条件下で除去すること
で、目的とするエン−イン化合物(III)を得ることが
できる。Further, by subjecting the separated compound (X) to the following reaction, the desired ene-yne compound represented by the general formula (III) can be produced optically pure. That is, the hydroxyl group of compound (X) is protected with acetal to obtain compound (XI). As the acetalizing agent, methoxymethyl chloride, methoxyethoxymethyl chloride, dihydropyran and the like are used. Next, after desilylation with a fluoride reagent such as tetrabutylammonium fluoride to give compound (XII), the generated primary hydroxyl group is converted to dimethylsulfoxide / oxalyl chloride or TPAP (tetrapropylammonium pentaruthenate) / N-methylmorpholine. -N-
Oxidized with an oxide or the like to form aldehyde (XIII). Further, the aldehyde group is reacted with a vinyl Grignard reagent to obtain a compound (XIV). Finally, the target en-yne compound (III) can be obtained by removing the acetal protecting group at the 5-position hydroxyl group under acidic conditions.
【0046】この化合物(III)は3位の水酸基の立体
異性に基づく2種のジアステレオマーの混合物(1:
1)として生成するが、これらはカラムクロマトグラフ
ィ等の通常の分離操作で容易に分離・精製できる。ま
た、分離したジアステレオマーの水酸基の立体配置は、
それぞれを3、5位水酸基によるアセトニドに変換し、
13CNMRを測定することで決定することができる(Ry
chnovsky, S. D.; J. Org.Chem., 1993, 58, 3511)。
さらに、必要に応じて3、5位水酸基のシリル保護体に
導くことができる。This compound (III) is a mixture of two diastereomers based on the stereoisomer of the hydroxyl group at the 3-position (1:
These are produced as 1) and can be easily separated and purified by ordinary separation operations such as column chromatography. The configuration of the hydroxyl group of the separated diastereomer is
Each is converted to an acetonide with a hydroxyl group at position 3 or 5,
It can be determined by measuring 13 C NMR (Ry
chnovsky, SD; J. Org. Chem., 1993, 58 , 3511).
Furthermore, it can be led to a protected silyl group at the 3- or 5-position hydroxyl group, if necessary.
【0047】ここで用いるシリル化剤としては、トリメ
チルシリルクロリド、トリエチルシリルクロリド、t−
ブチルジメチルシリルクロリド、t−ブチルジフェニル
シリルクロリド、トリエチルシリルトリフラート、t−
ブチルジメチルシリルトリフラート等が好ましく用いら
れ、また塩基としてはトリエチルアミン、2、6−ルチ
ジン、イミダゾール等通常の塩基が用いられる。上記反
応式の各反応工程における溶媒、反応温度等の反応条件
は、それぞれの反応に通常用いられる条件が適用され
る。The silylating agent used here includes trimethylsilyl chloride, triethylsilyl chloride, t-
Butyldimethylsilyl chloride, t-butyldiphenylsilyl chloride, triethylsilyl triflate, t-
Butyldimethylsilyl triflate and the like are preferably used, and as the base, ordinary bases such as triethylamine, 2,6-lutidine and imidazole are used. As a reaction condition such as a solvent and a reaction temperature in each reaction step of the above reaction formula, a condition usually used for each reaction is applied.
【0048】この製造方法においては、目的とするエン
−イン化合物(III)の4位メチル基の立体配置は出発
原料に用いた光学活性エステル化合物(IV)に由来して
おり、本合成ルートにおいては全反応を通してこの立体
配置が保持される。すなわち、本発明は出発原料に光学
活性エステル化合物(IV)を用い、その立体配置を維持
する反応を一貫して採用することにより、ビタミンD3
類合成の重要中間体(III)を光学的に純粋に製造する
方法を提供する。In this production method, the steric configuration of the 4-position methyl group of the desired ene-yne compound (III) is derived from the optically active ester compound (IV) used as a starting material. Maintains this configuration throughout the entire reaction. That is, the present invention uses an optically active ester compound (IV) as a starting material, and consistently employs a reaction for maintaining its steric configuration, whereby vitamin D 3
A process for the optically pure preparation of key intermediates (III) of the class of syntheses is provided.
【0049】本法による光学的に純粋なエン−イン化合
物製造の1例として、(3R、4R、5R)−3、5−
ビス(t−ブチルジメチルシリルオキシ)−4−メチル
−1−オクテン−7−イン(38)および(3S、4
R、5R)−3、5−ビス(t−ブチルジメチルシリル
オキシ)−4−メチル−1−オクテン−7−イン(3
9)の合成法を下記スキーム2およびスキーム3に示
す。As an example of the production of an optically pure ene-yne compound according to the present method, (3R, 4R, 5R) -3,5-
Bis (t-butyldimethylsilyloxy) -4-methyl-1-octen-7-yne (38) and (3S, 4
R, 5R) -3,5-bis (t-butyldimethylsilyloxy) -4-methyl-1-octen-7-yne (3
The synthesis method of 9) is shown in the following schemes 2 and 3.
【0050】[0050]
【化13】 Embedded image
【0051】[0051]
【化14】 Embedded image
【0052】[上記スキーム中、TBDPSClはt−
ブチルジフェニルシリルクロリド、DIBAL−Hは水
素化ジイソブチルアルミニウム、TPAPはテトラプロ
ピルアンモニウムペンタルテナート、NMOはN−メチ
ルモルホリン−N−オキシド、mCPBAはメタクロロ
過安息香酸、MTPAClはα−メトキシ−α−(トリ
フルオロメチル)フェニルアセチルクロリド、DMAP
は4−ジメチルアミノピリジン、DHPはジヒドロピラ
ン、TsOHはトシル酸、TBAFはテトラブチルアン
モニウムフルオリド、TBSOTfはt−ブチルジメチ
ルシリルトリフラートを表し、TBDPSはt−ブチル
ジフェニルシリル基、TBSはt−ブチルジメチルシリ
ル基、THPはテトラヒドロピラニル基を表す。][In the above scheme, TBDPSCl is t-
Butyldiphenylsilyl chloride, DIBAL-H is diisobutylaluminum hydride, TPAP is tetrapropylammonium pentaruthenate, NMO is N-methylmorpholine-N-oxide, mCPBA is metachloroperbenzoic acid, MTPACl is α-methoxy-α- ( Trifluoromethyl) phenylacetyl chloride, DMAP
Is 4-dimethylaminopyridine, DHP is dihydropyran, TsOH is tosylic acid, TBAF is tetrabutylammonium fluoride, TBSOTf is t-butyldimethylsilyl triflate, TBDPS is t-butyldiphenylsilyl group, and TBS is t-butyl. A dimethylsilyl group and THP represent a tetrahydropyranyl group. ]
【0053】この例のほか、例えば(4R、5S)シリ
ーズは上記スキーム2で得られる化合物(52)を用い
た同様な製造法により、(4S)シリーズは出発原料に
下記光学活性エステル化合物(64)を用いた同様な製
造法により合成することができる。In addition to this example, for example, the (4R, 5S) series is prepared by a similar production method using the compound (52) obtained in the above-mentioned scheme 2, and the (4S) series is obtained by using the following optically active ester compound (64) as a starting material. ) Can be synthesized by a similar production method.
【0054】[0054]
【化15】 Embedded image
【0055】[0055]
[実施例1]メチル−(S)−3−(t−ブチルジフェ
ニルシリルオキシ)−2−メチルプロピオナート(4
7)の合成 Example 1 Methyl- (S) -3- (t-butyldiffee)
Nylsilyloxy) -2-methylpropionate (4
Synthesis of 7)
【0056】[0056]
【化16】 Embedded image
【0057】アルゴン雰囲気下、メチル−(S)−3−
ヒドロキシ−2−メチルプロピオナート(46)(1.
9ml,2.0g,16.9mmol)をジクロロメタ
ン100mlに溶解し、イミダゾール(2.3g,3
2.5mmol)、TBDPSCl(4.3ml,1
6.9mmol)を加え、5分間撹拌した。H2Oを加
え、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水
で洗浄し、硫酸マグネシウムで乾燥した後、溶媒を留去
した。粗生成物をカラムクロマトグラフィ(60g,2
%AcOEt−ヘキサン)で精製し、無色油状の(4
7)(6.5g,quant)を得た。1 HNMR (400MHz,CDCl3/TMS)
δ:1.04(9H,s), 1.15(3H,d,J
=7.0Hz), 2.72(1H,dquin,J=
5.8, 7.0Hz), 3.67(3H,s),
3.73(1H,dd,J=6.4, 9.8Hz),
3.83(1H,dd,J=9.8, 6.4Hz),
7.35−7.44(6H,m), 7.64−7.6
8(4H,m) MS m/z 325(M+−Me−Me), 299
(M+−tBu)Under an argon atmosphere, methyl- (S) -3-
Hydroxy-2-methyl propionate (46) (1.
9 ml, 2.0 g, 16.9 mmol) was dissolved in 100 ml of dichloromethane, and imidazole (2.3 g, 3
2.5 mmol), TBDPSCl (4.3 ml, 1
6.9 mmol) and stirred for 5 minutes. H 2 O was added and extracted with ethyl acetate. The ethyl acetate layer was washed with a saturated saline solution, dried over magnesium sulfate, and the solvent was distilled off. The crude product was subjected to column chromatography (60 g, 2
% AcOEt-hexane) to give a colorless oil (4%).
7) (6.5 g, quant) was obtained. 1 H NMR (400 MHz, CDCl 3 / TMS)
δ: 1.04 (9H, s), 1.15 (3H, d, J
= 7.0 Hz), 2.72 (1H, dquin, J =
5.8, 7.0 Hz), 3.67 (3H, s),
3.73 (1H, dd, J = 6.4, 9.8 Hz),
3.83 (1H, dd, J = 9.8, 6.4 Hz),
7.35-7.44 (6H, m), 7.64-7.6
8 (4H, m) MS m / z 325 (M <+> -Me-Me), 299.
(M + -tBu)
【0058】[実施例2](R)−3−(t−ブチルジフェニルシリルオキシ)−
2−メチルプロパノール(48)の合成 Example 2 (R) -3- (t-butyldiphenylsilyloxy)-
Synthesis of 2-methylpropanol (48)
【0059】[0059]
【化17】 Embedded image
【0060】アルゴン雰囲気下、メチル−(S)−3−
(t−ブチルジフェニルシリルオキシ)−2−メチルプ
ロピオナート(47)(1.0g,2.7mmol)を
乾燥トルエン50mlに溶解し、0℃で1M DIBA
L−H/ヘキサン(5.7ml,5.7mmol)を加
えて15分間撹拌し、室温に戻して45分間撹拌した。
反応液に酢酸エチルを加えて過剰のDIBAL−Hを分
解し、0.5N HClで反応液を抽出した。酢酸エチ
ル層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥し
た後、溶媒を留去した。粗生成物をカラムクロマトグラ
フィ(30g,4−10%AcOEt−ヘキサン)で精
製し、無色油状の(48)(968mg,quant)
を得た。1 HNMR(400MHz,CDCl3/TMS) δ:
0.83(3H,d,J=7.0Hz), 1.06
(9H,s), 1.99(1H,ddddq,J=
4.6, 5.2, 6.2, 7.0Hz), 2.58
(1H,bs), 3.60(1H,dd,J=7.
6, 10.1Hz), 3.97(2H,d,J=6.
4Hz), 3.72(1H,dd,J=4.6,1
0.1Hz), 7.37−7.46(6H,m),
7.67−7.69(4H,m) MS m/z 328(M+), 271(M+−tB
u)Under an argon atmosphere, methyl- (S) -3-
(T-Butyldiphenylsilyloxy) -2-methylpropionate (47) (1.0 g, 2.7 mmol) was dissolved in 50 ml of dry toluene, and the solution was dissolved in 1M DIBA at 0 ° C.
LH / hexane (5.7 ml, 5.7 mmol) was added, and the mixture was stirred for 15 minutes, returned to room temperature, and stirred for 45 minutes.
Ethyl acetate was added to the reaction solution to decompose excess DIBAL-H, and the reaction solution was extracted with 0.5N HCl. The ethyl acetate layer was washed with a saturated saline solution, dried over magnesium sulfate, and the solvent was distilled off. The crude product was purified by column chromatography (30 g, 4-10% AcOEt-hexane) to give (48) as a colorless oil (968 mg, quant).
I got 1 H NMR (400 MHz, CDCl 3 / TMS) δ:
0.83 (3H, d, J = 7.0 Hz), 1.06
(9H, s), 1.99 (1H, dddddq, J =
4.6, 5.2, 6.2, 7.0 Hz), 2.58
(1H, bs), 3.60 (1H, dd, J = 7.
6, 10.1 Hz), 3.97 (2H, d, J = 6.
4Hz), 3.72 (1H, dd, J = 4.6, 1)
0.1Hz), 7.37-7.46 (6H, m),
7.67-7.69 (4H, m) MS m / z 328 (M + ), 271 (M + -tB
u)
【0061】[実施例3](S)−3−(t−ブチルジフェニルシリルオキシ)−
2−メチルプロパナール(49)の合成 Example 3 (S) -3- (t-butyldiphenylsilyloxy)-
Synthesis of 2-methylpropanal (49)
【0062】[0062]
【化18】 Embedded image
【0063】アルゴン雰囲気下(R)−3−(t−ブチ
ルジフェニルシリルオキシ)−2−メチルプロパノール
(48)(725mg,2.2mmol)を乾燥ジクロ
ロメタン40mlに溶解し、0℃でMS−4A(30m
g)、NMO(862mg,11.1mmol)、TP
AP(cat)を加えて15分間撹拌し、室温に戻して
一晩撹拌した。つぎにH2Oを加え、酢酸エチルで抽出
した。これを酢酸エチル層飽和食塩水で洗浄し、硫酸マ
グネシウムで乾燥した後、溶媒を留去した。粗生成物を
カラムクロマトグラフィ(21g,4%AcOEt−ヘ
キサン)で精製し、無色油状の(49)(700mg,
97%)を得た。1 HNMR(400MHz,CDCl3/TMS) δ:
1.04(9H,s), 1.10(3H,d,J=
7.0Hz), 2.56(1H,ddddq,J=
1.3, 4.8, 6.1, 7.0Hz), 3.87
(2H,ddd,J=4.8, 6.1, 10.0H
z), 7.36−7.46(6H,m), 7.63−
7.67(4H,m), 9.77(1H,d,J=
1.5Hz) MS m/z 325(M+−H), 269(M+−t
Bu)Under an argon atmosphere, (R) -3- (t-butyldiphenylsilyloxy) -2-methylpropanol (48) (725 mg, 2.2 mmol) was dissolved in 40 ml of dry dichloromethane, and MS-4A (0 ° C.) was dissolved at 0 ° C. 30m
g), NMO (862 mg, 11.1 mmol), TP
AP (cat) was added, and the mixture was stirred for 15 minutes, returned to room temperature, and stirred overnight. Next, H 2 O was added, and the mixture was extracted with ethyl acetate. This was washed with a saturated sodium chloride solution in an ethyl acetate layer, dried over magnesium sulfate, and the solvent was distilled off. The crude product was purified by column chromatography (21 g, 4% AcOEt-hexane) to give colorless oil (49) (700 mg,
97%). 1 H NMR (400 MHz, CDCl 3 / TMS) δ:
1.04 (9H, s), 1.10 (3H, d, J =
7.0 Hz), 2.56 (1H, ddddq, J =
1.3, 4.8, 6.1, 7.0 Hz), 3.87
(2H, ddd, J = 4.8, 6.1, 10.0H
z), 7.36-7.46 (6H, m), 7.63-
7.67 (4H, m), 9.77 (1H, d, J =
1.5 Hz) MS m / z 325 (M + -H), 269 (M + -t
Bu)
【0064】[実施例4](S)−4−(t−ブチルジフェニルシリルオキシ)−
3−メチル−1−ブテン(50)の合成 Example 4 (S) -4- (t-butyldiphenylsilyloxy)-
Synthesis of 3-methyl-1-butene (50)
【0065】[0065]
【化19】 Embedded image
【0066】アルゴン雰囲気下、Ph3P+CH3Br
-(2.2g,7.4mmol)をTHF15mlに懸
濁し、0℃でブチルリチウム(5.2ml,9.3mm
ol)を加え、20分間撹拌した。これを(S)−3−
(t−ブチルジフェニルシリルオキシ)−2−メチルプ
ロパナール(49)(1.2g,3.7mmol)のT
HF溶液15mlに0℃で加え、15分間撹拌し、室温
に戻して45分間撹拌した。飽和塩化アンモニウム水溶
液を加え、酢酸エチルで抽出した。酢酸エチル層を飽和
食塩水で洗浄し、硫酸マグネシウムで乾燥した後、溶媒
を留去した。粗生成物をカラムクロマトグラフィ(12
g,2%AcOEt−ヘキサン)で精製し、無色油状の
(50)(1.1g,92%)を得た。1 HNMR(400MHz,CDCl3/TMS) δ:
1.03(3H,d,J=7.0Hz), 1.05
(9H,s), 2.39(1H,ddq,J=6.
0, 6.7, 7.0Hz), 3.49(1H,d
d,J=6.7, 9.7Hz), 3.57(1H,d
d,J=6.1, 9.7Hz), 5.01(3H,
m), 7.35−7.44(6H,m), 7.65−
7.68(4H,m), 9.77(1H,d,J=
1.5Hz) MS m/z 267(M+−tBu)Under an argon atmosphere, Ph 3 P + CH 3 Br
- (2.2 g, 7.4 mmol) was suspended in 15 ml of THF, and butyllithium (5.2 ml, 9.3 mm) was added at 0 ° C.
ol) and stirred for 20 minutes. This is called (S) -3-
T of (t-butyldiphenylsilyloxy) -2-methylpropanal (49) (1.2 g, 3.7 mmol)
It was added to 15 ml of the HF solution at 0 ° C., stirred for 15 minutes, returned to room temperature, and stirred for 45 minutes. A saturated aqueous ammonium chloride solution was added, and the mixture was extracted with ethyl acetate. The ethyl acetate layer was washed with a saturated saline solution, dried over magnesium sulfate, and the solvent was distilled off. The crude product was subjected to column chromatography (12
g, 2% AcOEt-hexane) to give (50) (1.1 g, 92%) as a colorless oil. 1 H NMR (400 MHz, CDCl 3 / TMS) δ:
1.03 (3H, d, J = 7.0 Hz), 1.05
(9H, s), 2.39 (1H, ddq, J = 6.
0, 6.7, 7.0 Hz), 3.49 (1H, d
d, J = 6.7, 9.7 Hz), 3.57 (1H, d
d, J = 6.1, 9.7 Hz), 5.01 (3H,
m), 7.35-7.44 (6H, m), 7.65-
7.68 (4H, m), 9.77 (1H, d, J =
1.5 Hz) MS m / z 267 (M + -tBu)
【0067】[実施例5](3S)−4−(t−ブチルジフェニルシリルオキシ)
−3−メチル−1−ブテンオキシド(51)の合成 Example 5 (3S) -4- (t-butyldiphenylsilyloxy)
Synthesis of -3-methyl-1-butene oxide (51)
【0068】[0068]
【化20】 Embedded image
【0069】アルゴン雰囲気下(50)(1.0g,
3.1mmol)を乾燥ジクロロメタン25mlに溶解
し、0℃でmCPBA(1.4g,7.4mmol)を
加え、15分間撹拌した。これを室温に戻してさらに一
晩撹拌した。H2Oを加え、酢酸エチルで抽出した。こ
の酢酸エチル層を飽和食塩水で洗浄し、硫酸マグネシウ
ムで乾燥した。粗生成物をカラムクロマトグラフィ(3
0g,2%Et2O−ヘキサン)で精製し、無色油状の
(51)(1.1g,quant)を得た。1 HNMR(400MHz,CDCl3/TMS) δ:
0.99(3H,d,J=6.8Hz), 1.05
(5H,s), 1.07(4H,s), 1.58(1
H,dtq,J=5.0, 6.7, 7.0Hz),
2.57(4/9H,m), 2.60(8/9H,d
d,J=2.7, 5.0Hz), 2.73(4/9
H,dd,J=4.3, 5.0Hz), 2.76(5
/9H,dd,J=4.3, 5.0Hz), 2.85
(5/9H,ddd,J=2.7, 4.3, 7.0H
z), 2.97(4/9H,ddd,J=2.7,
4.3, 7.0Hz), 3.49(1H,dd,J=
6.7,9.7Hz), 3.62(1H,dd,J=
7.0, 9.7Hz), 3.70(1H,dd,J=
5.0, 9.7Hz), 4.02(3H,m),
7.39(6H,m), 7.67(4H,m) MS m/z 283(M+−tBu)Under an argon atmosphere (50) (1.0 g,
3.1 mmol) was dissolved in 25 ml of dry dichloromethane, mCPBA (1.4 g, 7.4 mmol) was added at 0 ° C., and the mixture was stirred for 15 minutes. This was returned to room temperature and further stirred overnight. H 2 O was added and extracted with ethyl acetate. The ethyl acetate layer was washed with a saturated saline solution and dried over magnesium sulfate. The crude product was subjected to column chromatography (3
0 g, and purified by 2% Et 2 O-hexane) to afford a colorless oil (51) (1.1g, quant) . 1 H NMR (400 MHz, CDCl 3 / TMS) δ:
0.99 (3H, d, J = 6.8 Hz), 1.05
(5H, s), 1.07 (4H, s), 1.58 (1
H, dtq, J = 5.0, 6.7, 7.0 Hz),
2.57 (4 / 9H, m), 2.60 (8 / 9H, d)
d, J = 2.7, 5.0 Hz), 2.73 (4/9
H, dd, J = 4.3, 5.0 Hz), 2.76 (5
/ 9H, dd, J = 4.3, 5.0Hz), 2.85
(5 / 9H, ddd, J = 2.7, 4.3, 7.0H
z), 2.97 (4 / 9H, ddd, J = 2.7,
4.3, 7.0 Hz), 3.49 (1H, dd, J =
6.7, 9.7 Hz), 3.62 (1H, dd, J =
7.0, 9.7 Hz), 3.70 (1H, dd, J =
5.0, 9.7 Hz), 4.02 (3H, m),
7.39 (6H, m), 7.67 (4H, m) MS m / z 283 (M + -tBu)
【0070】[実施例6](2S,3S)−1−(t−ブチルジフェニルシリルオ
キシ)−2−メチル−6−トリメチルシリル−5−ヘキ
シン−3−オール(52)および(2S,3R)−1−
(t−ブチルジフェニルシリルオキシ)−2−メチル−
6−トリメチルシリル−5−ヘキシン−3−オール(5
3)の合成 Example 6 (2S, 3S) -1- (t-butyldiphenylsilylthio)
Xy) -2-methyl-6-trimethylsilyl-5-hex
Syn-3-ol (52) and (2S, 3R) -1-
(T-butyldiphenylsilyloxy) -2-methyl-
6-trimethylsilyl-5-hexyn-3-ol (5
Synthesis of 3)
【0071】[0071]
【化21】 Embedded image
【0072】アルゴン雰囲気下、エチニルトリメチルシ
ラン(780ml,5.0mmol)をTHF40ml
に溶解し、0℃でブチルリチウム(4.5ml,5.0
mmol)を加え、20分間撹拌した。これを−78℃
に冷却し、化合物(51)(1.7g,5.0mmo
l)のTHF溶液40mlに加え、BF3・Et2O
(9.5ml,5.0mmol)を加えて15分間攪拌
し、室温に戻してからさらに2時間撹拌した。これに飽
和塩化アンモニウム水溶液を加え、酢酸エチルで抽出し
た。この酢酸エチル層を飽和食塩水で洗浄し、硫酸マグ
ネシウムで乾燥した後、溶媒を留去した。粗生成物をカ
ラムクロマトグラフィ(51g,2%Et2O−ヘキサ
ン)で精製し、(52)(1.2g,52%)、(5
3)(1.1g,49%)をいずれも無色油状物として
得た。(52) 1 HNMR(400MHz,CDCl3/TMS) δ:
0.14(9H,s), 1.00(3H,d,J=
7.0Hz), 1.06(9H,s), 1.92−
1.99(1H,m), 2.42(1H,dd,J=
7.0, 10.1Hz), 2.50(1H,dd,J
=6.7, 10.1Hz), 2.84(1H,d,J
=3.1Hz), 3.67(1H,dd,J=6.
4, 10.2Hz), 3.75(1H,dd,J=
4.2, 10.2Hz), 3.79(1H,dd,J
=4.3, 10.4Hz), 7.37−7.46(6
H,m), 7.65−7.68(4H,m) MS m/z 381(M+−tBu), 269(M+
−Me−2Ph),239(M+−2Ph−3Me)(53) 1 HNMR(400MHz,CDCl3/TMS) δ:
0.15(9H,s), 0.91(3H,d,J=
7.1Hz), 1.07(9H,s), 1.93−
1.99(1H,m), 2.46(1H,dd,J=
6.4, 10.6Hz), 2.54(1H,dd,J
=6.4, 10.6Hz), 2.84(1H,d,J
=3.1Hz), 3.67(1H,dd,J=6.
4, 10.4Hz), 3.74−3.76(1H,
m), 3.79(1H,dd,J=4.3, 10.4
Hz), 7.37−7.46(6H,m),7.65
−7.68(4H,m) MS m/z 423(M+−Me), 365(M+−
TMS),308(M+−TMS−tBu)Under an argon atmosphere, ethynyltrimethylsilane (780 ml, 5.0 mmol) was added to 40 ml of THF.
Butyllithium (4.5 ml, 5.0 ml) at 0 ° C.
mmol) and stirred for 20 minutes. This is -78 ° C
The compound (51) (1.7 g, 5.0 mmol)
l) in 40 ml of THF solution, and add BF 3 .Et 2 O
(9.5 ml, 5.0 mmol), and the mixture was stirred for 15 minutes. After returning to room temperature, the mixture was further stirred for 2 hours. To this was added a saturated aqueous ammonium chloride solution, and the mixture was extracted with ethyl acetate. The ethyl acetate layer was washed with saturated saline, dried over magnesium sulfate, and the solvent was distilled off. The crude product was purified by column chromatography (51 g, 2% Et 2 O-hexane) to give (52) (1.2 g, 52%), (5
3) (1.1 g, 49%) were obtained as colorless oils. (52) 1 H NMR (400 MHz, CDCl 3 / TMS) δ:
0.14 (9H, s), 1.00 (3H, d, J =
7.0Hz), 1.06 (9H, s), 1.92-
1.99 (1H, m), 2.42 (1H, dd, J =
7.0, 10.1 Hz), 2.50 (1H, dd, J
= 6.7, 10.1 Hz), 2.84 (1H, d, J)
= 3.1 Hz), 3.67 (1H, dd, J = 6.
4, 10.2 Hz), 3.75 (1H, dd, J =
4.2, 10.2 Hz), 3.79 (1H, dd, J
= 4.3, 10.4 Hz), 7.37-7.46 (6
H, m), 7.65-7.68 (4H, m) MS m / z 381 (M + -tBu), 269 (M +
-Me-2Ph), 239 (M + -2Ph-3Me) (53) 1 H NMR (400 MHz, CDCl 3 / TMS) δ:
0.15 (9H, s), 0.91 (3H, d, J =
7.1 Hz), 1.07 (9H, s), 1.93-
1.99 (1H, m), 2.46 (1H, dd, J =
6.4, 10.6 Hz), 2.54 (1H, dd, J
= 6.4, 10.6 Hz), 2.84 (1H, d, J)
= 3.1 Hz), 3.67 (1H, dd, J = 6.
4, 10.4 Hz), 3.74-3.76 (1H,
m), 3.79 (1H, dd, J = 4.3, 10.4)
Hz), 7.37-7.46 (6H, m), 7.65
-7.68 (4H, m) MS m / z 423 (M + -Me), 365 (M + -
TMS), 308 (M + -TMS-tBu)
【0073】[実施例7]MTPAエステルの合成(アルコール(X)の絶対構造
の決定) アルゴン雰囲気下、上記アルコールをそれぞれ乾燥ジク
ロロメタンに溶解し、DMAP(2当量)、(R)−も
しくは(S)−MTPACl(2当量)を加え、室温で
4時間撹拌した。反応液をそのままTLC(10%Ac
OEt−ヘキサン)で精製し、MTPAエステルを得
た。Example 7 Synthesis of MTPA Ester (Absolute Structure of Alcohol (X))
Determination) Under an argon atmosphere, each of the above alcohols was dissolved in dry dichloromethane, DMAP (2 equivalents), (R)-or (S) -MTPACl (2 equivalents) was added, and the mixture was stirred at room temperature for 4 hours. The reaction solution was directly used in TLC (10% Ac
OEt-hexane) to give MTPA ester.
【0074】化合物(52)から化合物(54)、(5
5)の合成 Compounds (52) to (54), (5
Synthesis of 5)
【0075】[0075]
【化22】 Embedded image
【0076】(54)(R) 収率:30%(無色オイル)1 HNMR(400MHz,CDCl3/TMS) δ:
0.12(9H,s), 0.80(3H,d,J=
6.7Hz), 1.06(9H,s), 2.17(1
H,q,J=6.7Hz), 2.68(1H,t,J
=6.7Hz), 3.41(2H,dd,J=3.
0, 10.3Hz),3.58(3H,s), 5.4
6(1H,dd,J=6.1, 10.3Hz), 7.
28−7.46(9H,m), 7.49−7.55
(2H,m), 7.61−7.65(4H,m)(55)(S) 収率:25%(無色オイル)1 HNMR(400MHz,CDCl3/TMS) δ:
0.12(9H,s), 0.86(3H,d,J=
7.0Hz), 1.07(9H,s), 2.28(1
H,q,J=6.1Hz), 2.57(1H,dd,
J=5.8, 10.6Hz), 2.71(1H,d
d,J=6.1, 10.6Hz), 3.46(3H,
s), 3.48(2H,m), 5.49(1H,d
d,J=5.8, 9.8Hz), 7.28−7.46
(9H,m),7.49−7.56(3H,m),
7.60−7.69(4H,m)化合物(53)から化合物(56)、(57)の合成 (54) (R) Yield: 30% (colorless oil) 1 HNMR (400 MHz, CDCl 3 / TMS) δ:
0.12 (9H, s), 0.80 (3H, d, J =
6.7 Hz), 1.06 (9H, s), 2.17 (1
H, q, J = 6.7 Hz), 2.68 (1H, t, J)
= 6.7 Hz), 3.41 (2H, dd, J = 3.
0, 10.3 Hz), 3.58 (3H, s), 5.4
6. (1H, dd, J = 6.1, 10.3 Hz);
28-7.46 (9H, m), 7.49-7.55
(2H, m), 7.61-7.65 (4H, m) (55) (S) Yield: 25% (colorless oil) 1 H NMR (400 MHz, CDCl 3 / TMS) δ:
0.12 (9H, s), 0.86 (3H, d, J =
7.0 Hz), 1.07 (9H, s), 2.28 (1
H, q, J = 6.1 Hz), 2.57 (1H, dd,
J = 5.8, 10.6 Hz), 2.71 (1H, d
d, J = 6.1, 10.6 Hz), 3.46 (3H,
s), 3.48 (2H, m), 5.49 (1H, d
d, J = 5.8, 9.8 Hz), 7.28-7.46
(9H, m), 7.49-7.56 (3H, m),
7.60-7.69 (4H, m) Synthesis of Compounds (56) and (57) from Compound (53)
【0077】[0077]
【化23】 Embedded image
【0078】(56)(R) 収率:13%(無色オイル)1 HNMR(400MHz,CDCl3/TMS) δ:
0.07(9H,s), 0.95(3H,d,J=
7.0Hz), 1.05(9H,s), 2.26(1
H,q,J=6.7Hz), 2.55(1H,dd,
J=6.1, 11.6Hz), 2.75(1H,d
d,J=5.2, 11.6Hz), 3.42(3H,
s), 3.56(1H,dd,J=5.8,10.7
Hz), 3.64(1H,dd,J=6.5, 10.
7Hz), 5.27(1H,dd,J=5.8, 1
1.6Hz), 7.28−7.45(9H,m),
7.50−7.56(2H,m), 7.59−7.6
5(4H,m)(57)(S) 収率:17%(無色オイル)1 HNMR(400MHz,CDCl3/TMS) δ:
0.11(9H,s), 0.82(3H,d,J=
7.0Hz), 1.05(9H,s), 2.19(1
H,q,J=6.1Hz), 2.58(1H,dd,
J=6.7, 11.0Hz), 2.75(1H,d
d,J=6.7, 11.0Hz), 3.49(1H,
dd,J=5.4, 10.3Hz), 3.54(1
H,dd,J=5.8, 10.3Hz), 3.57
(3H,s), 5.32(1H,dd,J=6.7,
10.3Hz), 7.28−7.45(9H,m),
7.59−7.54(2H,m), 7.59−7.6
5(4H,m) (56) (R) Yield: 13% (colorless oil) 1 HNMR (400 MHz, CDCl 3 / TMS) δ:
0.07 (9H, s), 0.95 (3H, d, J =
7.0 Hz), 1.05 (9H, s), 2.26 (1
H, q, J = 6.7 Hz), 2.55 (1H, dd,
J = 6.1, 11.6 Hz), 2.75 (1H, d
d, J = 5.2, 11.6 Hz), 3.42 (3H,
s), 3.56 (1H, dd, J = 5.8, 10.7
Hz), 3.64 (1H, dd, J = 6.5, 10.
7 Hz), 5.27 (1H, dd, J = 5.8, 1
1.6Hz), 7.28-7.45 (9H, m),
7.50-7.56 (2H, m), 7.59-7.6
5 (4H, m) (57) (S) Yield: 17% (colorless oil) 1 H NMR (400 MHz, CDCl 3 / TMS) δ:
0.11 (9H, s), 0.82 (3H, d, J =
7.0 Hz), 1.05 (9H, s), 2.19 (1
H, q, J = 6.1 Hz), 2.58 (1H, dd,
J = 6.7, 11.0 Hz), 2.75 (1H, d
d, J = 6.7, 11.0 Hz), 3.49 (1H,
dd, J = 5.4, 10.3 Hz), 3.54 (1
H, dd, J = 5.8, 10.3 Hz), 3.57
(3H, s), 5.32 (1H, dd, J = 6.7,
10.3 Hz), 7.28-7.45 (9H, m),
7.59-7.54 (2H, m), 7.59-7.6
5 (4H, m)
【0079】[実施例8](4R,5S)−6−(t−ブチルジフェニルシリルオ
キシ)−5メチル−4−テトラヒドロピラニルオキシ−
1−トリメチルシリル−1−ヘキシン(58)の合成 Example 8 (4R, 5S) -6- (t-butyldiphenylsilylthio)
Xy) -5 methyl-4-tetrahydropyranyloxy-
Synthesis of 1-trimethylsilyl-1-hexyne (58)
【0080】[0080]
【化24】 Embedded image
【0081】アルコール(53)(1.07g,2.5
0mmol)のジクロロメタン溶液(10ml)にDH
P(0.34ml,3.75mmol,1.05当量)
とTsOH(72mg,0.375mmol,0.15
当量)を加え、室温に一晩放置した。反応液に飽和重曹
水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水
で洗い、硫酸マグネシウムで乾燥後、溶媒を留去した。
得られた粗生成物をシリカゲルカラムクロマトグラフィ
(100g,1%AcOEt−ヘキサン)で精製し、無
色油状の(58)(1.26g,98%)を得た。1 HNMR(400MHz,CDCl3/TMS) δ:
0.127(9/2H,s), 0.135(9/2
H,s), 0.95(3H,d,J=7.0Hz),
1.058(9/2H,s), 1.061(9/2
H,s), 1.41−1.62(4H,m), 1.6
9−1.81(2H,m), 2.09−2.17(1
H,m), 2.38(1/2H,dd,J=7.3,
17.1Hz), 2.46(1/2H,dd,J=
4.6, 17.1Hz), 2.54(1/2H,d
d,J=5.5, 17.1Hz), 2.66(1/2
H,dd,J=5.8, 17.1Hz), 3.38−
3.49(1H,m), 3.58−3.71(2H,
m), 3.75−3.81(1H,m), 3.88−
3.91(1/2H,m), 3.92−4.06(1
/2H,m), 4.66(1/2H,dd,J=3.
1, 3.4Hz), 4.86(1/2H,dd,J=
2.7, 4.3Hz), 7.35−7.44(6H,
m), 7.65−7.70(4H,m)Alcohol (53) (1.07 g, 2.5
0 mmol) in a dichloromethane solution (10 ml).
P (0.34 ml, 3.75 mmol, 1.05 equivalent)
And TsOH (72 mg, 0.375 mmol, 0.15
Equivalent) and left at room temperature overnight. A saturated aqueous sodium hydrogen carbonate solution was added to the reaction solution, and the mixture was extracted with ethyl acetate. The extract was washed with saturated saline, dried over magnesium sulfate, and the solvent was distilled off.
The obtained crude product was purified by silica gel column chromatography (100 g, 1% AcOEt-hexane) to obtain colorless oil (58) (1.26 g, 98%). 1 H NMR (400 MHz, CDCl 3 / TMS) δ:
0.127 (9 / 2H, s), 0.135 (9/2
H, s), 0.95 (3H, d, J = 7.0 Hz),
1.058 (9 / 2H, s), 1.061 (9/2
H, s), 1.41-1.62 (4H, m), 1.6.
9-1.81 (2H, m), 2.09-2.17 (1
H, m), 2.38 (1 / 2H, dd, J = 7.3,
17.1 Hz), 2.46 (1 / 2H, dd, J =
4.6, 17.1 Hz), 2.54 (1 / 2H, d
d, J = 5.5, 17.1 Hz), 2.66 (1/2)
H, dd, J = 5.8, 17.1 Hz), 3.38−
3.49 (1H, m), 3.58-3.71 (2H,
m), 3.75-3.81 (1H, m), 3.88-
3.91 (1 / 2H, m), 3.92-4.06 (1
/ 2H, m), 4.66 (1 / 2H, dd, J = 3.
1, 3.4 Hz), 4.86 (1 / 2H, dd, J =
2.7, 4.3 Hz), 7.35-7.44 (6H,
m), 7.65-7.70 (4H, m)
【0082】[実施例9](2S,3R)−2−メチル−3−テトラヒドロピラニ
ルオキシ−5−ヘキシン−1−オール(59)の合成 Example 9 (2S, 3R) -2-methyl-3-tetrahydropyrani
Synthesis of Luoxy-5-hexyn-1-ol (59)
【0083】[0083]
【化25】 Embedded image
【0084】化合物(58)(1.13g,2.20m
mol)のTHF溶液(20ml)に1M nBu4NF
/THF(8.8ml,8.80mmol,4当量)を
加え、室温で4時間撹拌した。反応液に水を加え、酢酸
エチルで抽出した。抽出液を飽和食塩水で洗い、硫酸マ
グネシウムで乾燥後、溶媒を留去した。得られた粗生成
物をシリカゲルカラムクロマトグラフィ(35g,20
%AcOEt−ヘキサン)で精製し、無色油状の(5
9)(450mg,96%)を得た。1 HNMR(400MHz,CDCl3/TMS) δ:
0.99(3/2H,d,J=6.7Hz), 1.0
1(3/2H,d,J=7.0Hz), 1.41−
1.89(6H+1/2H,m), 1.99(1/2
H,t,J=2.7Hz), 2.00(1/2H,
t,J=2.7Hz),2.13−2.19(1/2
H,m), 2.33(1/2H,bs), 2.38
(1/2H,ddd,J=2.4, 6.1, 17.1
Hz), 2.57(1/2H,ddd,J=2.4,
4.0, 17.1Hz), 2.63(1/2H,dd
d,J=2.8, 4.0, 17.1Hz), 2.7
2(1/2H,ddd,J=2.8, 7.0, 17.
1Hz), 3.30−3.31(1/2H,m),
3.41−3.56(3/2H,m), 3.60−
3.81(2H,m), 3.95−4.01(3/2
H,m), 4.69−4.71(1H,m)Compound (58) (1.13 g, 2.20 m)
mol) in a THF solution (20 ml) in 1M nBu 4 NF.
/ THF (8.8 ml, 8.80 mmol, 4 equivalents) was added and stirred at room temperature for 4 hours. Water was added to the reaction solution, which was extracted with ethyl acetate. The extract was washed with saturated saline, dried over magnesium sulfate, and the solvent was distilled off. The resulting crude product was subjected to silica gel column chromatography (35 g, 20 g).
% AcOEt-hexane) to give a colorless oil (5%).
9) (450 mg, 96%) was obtained. 1 H NMR (400 MHz, CDCl 3 / TMS) δ:
0.99 (3 / 2H, d, J = 6.7 Hz), 1.0
1 (3 / 2H, d, J = 7.0 Hz), 1.41-
1.89 (6H + 1 / 2H, m), 1.99 (1/2)
H, t, J = 2.7 Hz), 2.00 (1 / 2H,
t, J = 2.7 Hz), 2.13 to 2.19 (1/2)
H, m), 2.33 (1 / 2H, bs), 2.38
(1 / 2H, ddd, J = 2.4, 6.1, 17.1)
Hz), 2.57 (1 / 2H, ddd, J = 2.4,
4.0, 17.1 Hz), 2.63 (1 / 2H, dd)
d, J = 2.8, 4.0, 17.1 Hz), 2.7
2 (1 / 2H, ddd, J = 2.8, 7.0, 17.
1Hz), 3.30-3.31 (1 / 2H, m),
3.41-3.56 (3 / 2H, m), 3.60-
3.81 (2H, m), 3.95-4.01 (3/2
H, m), 4.69-4.71 (1H, m)
【0085】[実施例10](4R,5R)−3−ヒドロヒシ−4−メチル−5−テ
トラヒドロピラニルオキシ−1−オクテ ン−7−イン
(61)の合成Example 10 (4R, 5R) -3-Hydroxy-4-methyl-5-te
Tiger Synthesis of tetrahydropyranyl-1-oct emissions 7--in (61)
【0086】[0086]
【化26】 Embedded image
【0087】DMSO(0.92ml,12.5mmo
l,6当量)のジクロロメタン溶液(4ml)にオキサ
リルクロリド(0.56ml,6.30mmol,3当
量)を加え、アルゴン雰囲気下、−78℃で1時間撹拌
した。得られた溶液に化合物(59)(440mg,
2.08mmol)のジクロロメタン溶液(10ml)
を−78℃で加えて30分撹拌後、Et3N(3.2m
l,24mmol,12当量)を加え、−78〜0℃で
1時間撹拌した。反応液に水を加え、酢酸エチルで抽出
した。抽出液を飽和食塩水で洗い、硫酸マグネシウムで
乾燥後、溶媒を留去した。粗生成物を少量のシリカゲル
を通してろ過し、溶媒を留去して無色油状のアルデヒド
(60)を得た。この生成物はさらに精製することなく
そのまま次の反応に使った。DMSO (0.92 ml, 12.5 mmol
Oxalyl chloride (0.56 ml, 6.30 mmol, 3 equivalents) was added to a dichloromethane solution (4 ml) of 1,6 equivalents), and the mixture was stirred at -78 ° C for 1 hour under an argon atmosphere. Compound (59) (440 mg,
2.08 mmol) in dichloromethane solution (10 ml)
Was added at −78 ° C. and stirred for 30 minutes, and then Et 3 N (3.2 m) was added.
1, 24 mmol, 12 equivalents) and stirred at -78 to 0 ° C for 1 hour. Water was added to the reaction solution, which was extracted with ethyl acetate. The extract was washed with saturated saline, dried over magnesium sulfate, and the solvent was distilled off. The crude product was filtered through a small amount of silica gel, and the solvent was distilled off to obtain aldehyde (60) as a colorless oil. This product was used for the next reaction without further purification.
【0088】アルデヒド(60)(426mg,2.0
2mmol)のTHF溶液(10ml)に0℃で1M
ビニルマグネシウムブロミド/THF(4.0ml,
4.00mmol,2当量)を加え、0℃で1時間撹拌
した。反応液に水を加え、酢酸エチルで抽出した。抽出
液を飽和食塩水で洗い、硫酸マグネシウムで乾燥後、溶
媒を留去した。得られた粗生成物をシリカゲルカラムク
ロマトグラフィ(55g,20%AcOEt−ヘキサ
ン)で精製し、無色油状のアリルアルコール(61)
(329mg,68%)を得た。1 HNMR(400MHz,CDCl3/TMS) δ:
0.85(3/4H,d,J=7.0Hz), 0.8
8(3/4H,d,J=7.3Hz), 0.90(3
/4H,d,J=7.0Hz), 0.93(3/4
H,d,J=7.0Hz), 1.47−1.87(6
H,m), 1.98−2.05(1H,m), 2.1
5−2.19(1H,m), 2.37−2.89(2
H,m), 3.37−4.15(4.5H,m),
4.51−4.84(1.5H,m), 5.13−
5.35(2H,m), 5.83−5.94(1H,
m)Aldehyde (60) (426 mg, 2.0
2 mmol) in THF (10 ml) at 0 ° C. at 1M
Vinylmagnesium bromide / THF (4.0 ml,
4.00 mmol, 2 equivalents) and stirred at 0 ° C. for 1 hour. Water was added to the reaction solution, which was extracted with ethyl acetate. The extract was washed with saturated saline, dried over magnesium sulfate, and the solvent was distilled off. The obtained crude product was purified by silica gel column chromatography (55 g, 20% AcOEt-hexane) to obtain a colorless oily allyl alcohol (61).
(329 mg, 68%). 1 H NMR (400 MHz, CDCl 3 / TMS) δ:
0.85 (3 / 4H, d, J = 7.0 Hz), 0.8
8 (3 / 4H, d, J = 7.3 Hz), 0.90 (3
/ 4H, d, J = 7.0 Hz), 0.93 (3/4
H, d, J = 7.0 Hz), 1.47-1.87 (6
H, m), 1.98-2.05 (1H, m), 2.1
5-2.19 (1H, m), 2.37-1.89 (2
H, m), 3.37-4.15 (4.5H, m),
4.51-4.84 (1.5H, m), 5.13-
5.35 (2H, m), 5.83-5.94 (1H,
m)
【0089】[実施例11](3R,4R,5R)−3,5−ジヒドロキシ−4−メ
チル−1−オクテン−7−イン(22)および(3S,
4R,5R)−3,5−ジヒドロキシ−4−メチル−1
−オクテン−7−イン(23)の合成 Example 11 (3R, 4R, 5R) -3,5-dihydroxy-4-meth
Cyl-1-octen-7-yne (22) and (3S,
4R, 5R) -3,5-dihydroxy-4-methyl-1
Synthesis of octen-7-yne (23)
【0090】[0090]
【化27】 Embedded image
【0091】アリルアルコール(61)(315mg,
1.32mmol)のメタノール溶液10mlにTsO
H(25mg,0.13mmol,0.1当量)を加
え、室温に1時間放置した。反応液に飽和重曹水を加
え、Et2Oで抽出した。抽出液を飽和食塩水で洗い、
硫酸マグネシウムで乾燥後、溶媒を留去した。得られた
粗生成物をシリカゲルカラムクロマトグラフィ(55
g,10%AcOEt−ヘキサン)で精製し、無色油状
のエン−イン化合物(22)(79mg,39%)、
(23)(75mg,37%)を得た。(22) 1 HNMR(400MHz,CDCl3/TMS) δ:
0.90(3H,d,J=7.0Hz), 1.95
(1H,dquin,J=2.8,7.0Hz),
2.08(1H,t,J=2.8Hz), 2.43
(1H,ddd,J=2.8, 7.0, 17.1H
z), 2.54(1H,ddd,J=2.8, 4.
6, 17.1Hz), 2.72(1H,d,J=5.
5Hz), 2.96(1H,d,J=4.6Hz),
3.79(1H,tt,J=4.6, 7.0Hz),
4.44(1H,dtt,J=7.0, 1.5, 5.
5Hz), 5.23(1H,dt,J=10.7,
1.5Hz),5.32(1H,dt,J=17.1,
1.5Hz), 5.94(1H,ddd,J=5.
5, 10.7, 17.1Hz)(23) 1 HNMR(400MHz,CDCl3/TMS) δ:
0.83(3H,d,J=7.0Hz), 1.83
(1H,dquin,J=7.0, 7.9Hz),
2.07(1H,t,J=2.8Hz), 2.41
(1H,ddd,J=2.8, 6.7, 16.8H
z), 2.58(1H,ddd,J=2.8, 4.
0, 16.8Hz), 2.88(1H,bs),3.
41(1H,bs), 3.74(1H,m), 4.1
4(1H,tt,J=1.2, 7.3Hz), 5.1
9(1H,dt,J=10.4, 1.2Hz), 5.
27(1H,dt,J=17.1, 1.2Hz),
5.88(1H,ddd,J=7.3, 10.4, 1
7.1Hz)Allyl alcohol (61) (315 mg,
1.32 mmol) in 10 ml of methanol solution
H (25 mg, 0.13 mmol, 0.1 eq) was added and left at room temperature for 1 hour. A saturated aqueous sodium hydrogen carbonate solution was added to the reaction solution, and the mixture was extracted with Et 2 O. Wash the extract with saturated saline,
After drying over magnesium sulfate, the solvent was distilled off. The obtained crude product is subjected to silica gel column chromatography (55
g, 10% AcOEt-hexane) to give a colorless oily en-yne compound (22) (79 mg, 39%),
(23) (75 mg, 37%) was obtained. (22) 1 H NMR (400 MHz, CDCl 3 / TMS) δ:
0.90 (3H, d, J = 7.0 Hz), 1.95
(1H, dquin, J = 2.8, 7.0 Hz),
2.08 (1H, t, J = 2.8 Hz), 2.43
(1H, ddd, J = 2.8, 7.0, 17.1H
z), 2.54 (1H, ddd, J = 2.8, 4.
6, 17.1 Hz), 2.72 (1H, d, J = 5.
5 Hz), 2.96 (1H, d, J = 4.6 Hz),
3.79 (1H, tt, J = 4.6, 7.0 Hz),
4.44 (1H, dtt, J = 7.0, 1.5, 5.
5Hz), 5.23 (1H, dt, J = 10.7,
1.5Hz), 5.32 (1H, dt, J = 17.1,
1.5 Hz), 5.94 (1H, ddd, J = 5.
5, 10.7, 17.1 Hz) (23) 1 H NMR (400 MHz, CDCl 3 / TMS) δ:
0.83 (3H, d, J = 7.0 Hz), 1.83
(1H, dquin, J = 7.0, 7.9 Hz),
2.07 (1H, t, J = 2.8 Hz), 2.41
(1H, ddd, J = 2.8, 6.7, 16.8H
z), 2.58 (1H, ddd, J = 2.8, 4.
0, 16.8 Hz), 2.88 (1H, bs), 3.
41 (1H, bs), 3.74 (1H, m), 4.1
4 (1H, tt, J = 1.2, 7.3 Hz), 5.1
4. 9 (1H, dt, J = 10.4, 1.2 Hz);
27 (1H, dt, J = 17.1, 1.2 Hz),
5.88 (1H, ddd, J = 7.3, 10.4, 1
7.1 Hz)
【0092】[実施例12](3R,4R,5R)−3,5−ジ(t−ブチルジメチ
ルシリルオキシ)−4−メチル−1−オクテン−7−イ
ン(38)の合成 Example 12 (3R, 4R, 5R) -3,5-di (t-butyl dimethyl)
Lucylyloxy) -4-methyl-1-octene-7-i
Synthesis of (38)
【0093】[0093]
【化28】 Embedded image
【0094】化合物(22)(58mg,0.376m
mol)のジクロロメタン溶液(5ml)に2,6−ル
チジン(0.18ml,1.5mmol,4当量)、次
いでTBSOTf(0.34ml,1.5mmol,4
当量)を加え、0℃で1時間撹拌した。反応液に飽和重
曹水を加え、酢酸エチルで抽出した。抽出液を飽和食塩
水で洗い、硫酸マグネシウムで乾燥後、溶媒を留去し
た。得られた粗生成物をシリカゲルカラムクロマトグラ
フィ(10g,2%AcOEt−ヘキサン)で精製し、
無色油状の(38)(141mg,98%)を得た。1 HNMR(400MHz,CDCl3/TMS) δ:
0.01(3H,s), 0.5(3H,s), 0.0
7(3H,s), 0.11(3H,s), 0.89
(9H,s), 0.90(9H,s), 0.90(3
H,d,J=7.0Hz), 1.78(1H,dqu
in,J=4.9, 7.0Hz), 1.93(1H,
t,J=2.8Hz), 2.26(1H,ddd,J
=2.8, 7.0, 16.8Hz), 2.40(1
H,ddd,J=2.8, 4.3, 16.8Hz),
3.86(1H,dtJ=7.0, 4.3Hz),
4.11(1H,ddt,J=5.8, 7.3, 1.
8Hz), 5.09(1H,dt,J=10.1,
1.8Hz), 5.14(1H,dt,J=17.
4, 1.8Hz), 5.84(1H,ddd,J=
7.3, 10.1, 17.4Hz)Compound (22) (58 mg, 0.376 m
mol) in dichloromethane solution (5 ml), 2,6-lutidine (0.18 ml, 1.5 mmol, 4 equiv.) followed by TBSOTf (0.34 ml, 1.5 mmol, 4 equivalents).
Was added and stirred at 0 ° C. for 1 hour. A saturated aqueous sodium hydrogen carbonate solution was added to the reaction solution, and the mixture was extracted with ethyl acetate. The extract was washed with saturated saline, dried over magnesium sulfate, and the solvent was distilled off. The obtained crude product was purified by silica gel column chromatography (10 g, 2% AcOEt-hexane).
A colorless oil (38) (141 mg, 98%) was obtained. 1 H NMR (400 MHz, CDCl 3 / TMS) δ:
0.01 (3H, s), 0.5 (3H, s), 0.0
7 (3H, s), 0.11 (3H, s), 0.89
(9H, s), 0.90 (9H, s), 0.90 (3
H, d, J = 7.0 Hz), 1.78 (1H, dqu)
in, J = 4.9, 7.0 Hz), 1.93 (1H,
t, J = 2.8 Hz), 2.26 (1H, ddd, J)
= 2.8, 7.0, 16.8 Hz), 2.40 (1
H, ddd, J = 2.8, 4.3, 16.8 Hz),
3.86 (1H, dtJ = 7.0, 4.3 Hz),
4.11 (1H, ddt, J = 5.8, 7.3, 1.
8 Hz), 5.09 (1H, dt, J = 10.1,
1.8 Hz), 5.14 (1H, dt, J = 17.
4, 1.8 Hz), 5.84 (1H, ddd, J =
7.3, 10.1, 17.4 Hz)
【0095】[実施例13]アセトニドの合成(エン−イン化合物(III)の絶対配
置の決定) 上記エン−イン化合物(5mg)をそれぞれアセトン
0.4mlに溶液し、ジメトキシプロパン0.1mlと
CSA(1.5mg,0.2当量)を加えて室温に5時
間放置した。溶媒を留去し、得られた粗生成物をシリカ
ゲルカラムクロマトグラフィ(6g,5%AcOEt−
ヘキサン)で精製し、アセトニドを得た。Example 13 Synthesis of acetonide (absolute configuration of ene-yne compound (III)
Determination of the position) The above ene-yne compound (5 mg) was dissolved in acetone (0.4 ml), dimethoxypropane (0.1 ml) and CSA (1.5 mg, 0.2 equivalent) were added, and the mixture was allowed to stand at room temperature for 5 hours. The solvent was distilled off, and the obtained crude product was subjected to silica gel column chromatography (6 g, 5% AcOEt-
Hexane) to give acetonide.
【0096】化合物(22)から化合物(62)の合成 Synthesis of Compound (62) from Compound (22)
【0097】[0097]
【化29】 Embedded image
【0098】収率:80%(無色オイル)1 HNMR(400MHz,CDCl3/TMS) δ:
0.90(3H,d,J=7.0Hz), 1.39
(3H,s), 1.40(3H,s), 1.86−
1.92(1H,m), 2.01(1H,t,J=
2.8Hz), 2.44(1H,ddd,J=2.
8, 6.1, 17.4Hz), 2.48(1H,d
dd,J=2.8, 5.5, 17.4Hz), 3.
49(1H,dt,J=7.6, 5.8Hz), 4.
43(1H,ddt,J=6.1, 5.2, 1.5H
z), 5.17(1H,dt,J=10.7,1.2
Hz), 5.26(1H,dt,J=17.4, 1.
2Hz), 5.79(1H,ddd,J=6.1, 1
0.7, 17.4Hz)13 CNMR(100MHz,CDCl3/TMS) δ:
12.89(q), 24.10(q), 25.24
(q), 29.70(t), 39.76(d), 6
9.66(s), 70.61(d), 73.02
(d), 80.96(d), 100.88(s),
115.77(t), 135.59(t)化合物(23)から化合物(63)の合成 Yield: 80% (colorless oil) 1 H NMR (400 MHz, CDCl 3 / TMS) δ:
0.90 (3H, d, J = 7.0 Hz), 1.39
(3H, s), 1.40 (3H, s), 1.86-
1.92 (1H, m), 2.01 (1H, t, J =
2.8 Hz), 2.44 (1H, ddd, J = 2.
8, 6.1, 17.4 Hz), 2.48 (1H, d
dd, J = 2.8, 5.5, 17.4 Hz);
3. 49 (1H, dt, J = 7.6, 5.8 Hz);
43 (1H, ddt, J = 6.1, 5.2, 1.5H
z), 5.17 (1H, dt, J = 10.7, 1.2
Hz), 5.26 (1H, dt, J = 17.4, 1.
2 Hz), 5.79 (1H, ddd, J = 6.1, 1
0.7, 17.4 Hz) 13 C NMR (100 MHz, CDCl 3 / TMS) δ:
12.89 (q), 24.10 (q), 25.24
(Q), 29.70 (t), 39.76 (d), 6
9.66 (s), 70.61 (d), 73.02
(D), 80.96 (d), 100.88 (s),
115.77 (t), 135.59 (t) Synthesis of compound (63) from compound (23)
【0099】[0099]
【化30】 Embedded image
【0100】収率:80%(無色オイル)1 HNMR(400MHz,CDCl3/TMS) δ:
0.82(3H,d,J=6.7Hz), 1.45
(3H,s), 1.49(3H,s), 1.51−
1.61(1H,m), 2.01(1H,t,J=
2.7Hz), 2.42(1H,ddd,J=2.
7, 5.5, 17.4Hz), 2.52(1H,d
dd,J=2.7, 4.0, 17.4Hz), 3.
68(1H,ddd,J=4.0, 5.8, 10.1
Hz), 3.91(1H,ddt,J=7.3, 1
0.1, 1.5Hz), 5.24(1H,dd,J=
1.5, 7.3Hz), 5.29(1H,dd,J=
1.5, 17.4Hz), 5.76(1H,ddd,
J=7.3, 10.1, 17.4Hz)13 CNMR(100MHz,CDCl3/TMS)
δ:12.15(q), 19.71(q), 29.7
0(t), 30.04(q), 39.76(d),
69.66(s), 70.61(d), 73.02
(d), 80.96(d), 100.88(s),
115.77(t), 135.59(t)Yield: 80% (colorless oil) 1 H NMR (400 MHz, CDCl 3 / TMS) δ:
0.82 (3H, d, J = 6.7 Hz), 1.45
(3H, s), 1.49 (3H, s), 1.51-
1.61 (1H, m), 2.01 (1H, t, J =
2.7 Hz), 2.42 (1H, ddd, J = 2.
7, 5.5, 17.4 Hz), 2.52 (1H, d
dd, J = 2.7, 4.0, 17.4 Hz);
68 (1H, ddd, J = 4.0, 5.8, 10.1)
Hz), 3.91 (1H, ddt, J = 7.3, 1
0.1, 1.5 Hz), 5.24 (1H, dd, J =
1.5, 7.3 Hz), 5.29 (1H, dd, J =
1.5, 17.4 Hz), 5.76 (1H, ddd,
J = 7.3, 10.1, 17.4 Hz) 13 C NMR (100 MHz, CDCl 3 / TMS)
δ: 12.15 (q), 19.71 (q), 29.7
0 (t), 30.04 (q), 39.76 (d),
69.66 (s), 70.61 (d), 73.02
(D), 80.96 (d), 100.88 (s),
115.77 (t), 135.59 (t)
【0101】適当な原料を用い、同様な製造法を適用す
ることによって、以下のエン−イン化合物を合成した。The following en-yne compounds were synthesized by using a suitable raw material and applying the same production method.
【0102】[実施例14](3S、4R、5R)−3、5−ビス(t−ブチルジメ
チルシリルオキシ)−4−メチル−1−オクテン−7−
イン(39) Example 14 (3S, 4R, 5R) -3,5-bis (t-butyldimethyl)
Tylsilyloxy) -4-methyl-1-octene-7-
Inn (39)
【0103】[0103]
【化31】 Embedded image
【0104】1HNMR(400MHz,CDCl3/T
MS) δ:0.02(3H,s), 0.057(3
H,s), 0.063(3H,s),0.11(3
H,s), 0.78(3H,d,J=7.0Hz),
0.86(9H,s), 0.90(9H,s), 1.
89(1H,dquin,J=5.5, 7.0H
z), 1.93(1H,t,J=2.8Hz), 2.
26(1H,ddd,J=2.8, 7.0, 16.8
Hz), 2.39(1H,ddd,J=2.8, 4.
0, 16.8Hz), 3.97(1H,ddd,J=
4.0, 5.2, 6.7Hz), 4.12(1H,
ddt,J=6.4,6.7, 1.2Hz), 5.0
9(1H,dt,J=10.4, 1.2Hz), 5.
16(1H,dt,J=17.1, 1.2Hz),
5.75(1H,ddd,J=6.1, 10.4, 1
7.1Hz) MS m/z 382(M+),367(M+−Me),
325(M+−tBu) 1 H NMR (400 MHz, CDCl 3 / T
MS) δ: 0.02 (3H, s), 0.057 (3
H, s), 0.063 (3H, s), 0.11 (3
H, s), 0.78 (3H, d, J = 7.0 Hz),
0.86 (9H, s), 0.90 (9H, s),
89 (1H, dquin, J = 5.5, 7.0H
z), 1.93 (1H, t, J = 2.8 Hz), 2.
26 (1H, ddd, J = 2.8, 7.0, 16.8
Hz), 2.39 (1H, ddd, J = 2.8, 4.
0, 16.8 Hz), 3.97 (1H, ddd, J =
4.0, 5.2, 6.7 Hz), 4.12 (1H,
ddt, J = 6.4, 6.7, 1.2 Hz), 5.0
4. 9 (1H, dt, J = 10.4, 1.2 Hz);
16 (1H, dt, J = 17.1, 1.2 Hz),
5.75 (1H, ddd, J = 6.1, 10.4, 1
7.1 Hz) MS m / z 382 (M + ), 367 (M + -Me),
325 (M + -tBu)
【0105】[実施例15](3R、4R、5S)−3、5−ビス(t−ブチルジメ
チルシリルオキシ)−4−メチル−1−オクテン−7−
イン(40) Example 15 (3R, 4R, 5S) -3,5-bis (t-butyldimethyl)
Tylsilyloxy) -4-methyl-1-octene-7-
Inn (40)
【0106】[0106]
【化32】 Embedded image
【0107】1HNMR(400MHz,CDCl3/T
MS) δ:0.01(3H,s), 0.049(3
H,s), 0.051(3H,s),0.08(3
H,s), 0.89(18H,s), 0.92(3
H,d,J=7.0Hz), 1.86(1H,dqu
in,J=4.0, 6.7Hz),1.95(1H,
t,J=2.8Hz), 2.38(2H,dd,J=
2.7, 5.8Hz), 3.88(1H,ddd,J
=4.0, 6.1, 6.4Hz), 4.09(1
H,t,7.0), 5.10(1H,dt,J=1
0.4, 1.5Hz), 5.14(1H,dt,J=
17.4, 1.5Hz), 5.81(1H,ddd,
J=7.0, 10.4, 17.4) MS m/z 382(M+),367(M+−Me),
325(M+−tBu) 1 H NMR (400 MHz, CDCl 3 / T
MS) δ: 0.01 (3H, s), 0.049 (3
H, s), 0.051 (3H, s), 0.08 (3
H, s), 0.89 (18H, s), 0.92 (3
H, d, J = 7.0 Hz), 1.86 (1H, dqu)
in, J = 4.0, 6.7 Hz), 1.95 (1H,
t, J = 2.8 Hz), 2.38 (2H, dd, J =
2.7, 5.8 Hz), 3.88 (1H, ddd, J)
= 4.0, 6.1, 6.4 Hz), 4.09 (1
H, t, 7.0), 5.10 (1H, dt, J = 1)
0.4, 1.5 Hz), 5.14 (1H, dt, J =
17.4, 1.5 Hz), 5.81 (1H, ddd,
J = 7.0, 10.4, 17.4) MS m / z 382 (M + ), 367 (M + -Me),
325 (M + -tBu)
【0108】[実施例16] (3S、4R、5S)−3、5−ビス(t−ブチルジメ
チルシリルオキシ)−4−メチル−1−オクテン−7−
イン(41) Example 16 ( 3S, 4R, 5S) -3,5-bis (t-butyldimethyl)
Tylsilyloxy) -4-methyl-1-octene-7-
Inn (41)
【0109】[0109]
【化33】 Embedded image
【0110】1HNMR(400MHz,CDCl3/T
MS) δ:0.03(3H,s), 0.06(3
H,s), 0.07(3H,s), 0.08(3H,
s), 0.76(3H,d,J=7.0Hz), 0.
889(9H,s), 0.892(9H,s), 1.
91(1H,dquin,J=3.7, 7.0H
z), 1.97(1H,t,J=2.8Hz), 2.
36−2.40(2H,m), 3.99−4.05
(2H,m), 5.09(1H,dt,J=10.
4, 0.9Hz), 5.13(1H,dt,J=1
7.1,0.9Hz), 5.73(1H,ddd,J
=7.6, 10.1, 17.1Hz) MS m/z 382(M+),367(M+−Me),
325(M+−tBu) 1 H NMR (400 MHz, CDCl 3 / T
MS) δ: 0.03 (3H, s), 0.06 (3
H, s), 0.07 (3H, s), 0.08 (3H,
s), 0.76 (3H, d, J = 7.0 Hz), 0.
889 (9H, s), 0.892 (9H, s),
91 (1H, dquin, J = 3.7, 7.0H
z), 1.97 (1H, t, J = 2.8 Hz), 2.
36-2.40 (2H, m), 3.99-4.05
(2H, m), 5.09 (1H, dt, J = 10.
4, 0.9 Hz), 5.13 (1H, dt, J = 1)
7.1, 0.9 Hz), 5.73 (1H, ddd, J
= 7.6, 10.1, 17.1 Hz) MS m / z 382 (M + ), 367 (M + -Me),
325 (M + -tBu)
【0111】[実施例17](3R、4S、5R)−3、5−ビス(t−ブチルジメ
チルシリルオキシ)−4−メチル−1−オクテン−7−
イン(42) Example 17 (3R, 4S, 5R) -3,5-bis (t-butyldimene)
Tylsilyloxy) -4-methyl-1-octene-7-
Inn (42)
【0112】[0112]
【化34】 Embedded image
【0113】1HNMR(400MHz,CDCl3/T
MS) δ:0.03(3H,s), 0.06(3
H,s), 0.07(3H,s), 0.08(3H,
s), 0.76(3H,d,J=7.0Hz), 0.
889(9H,s), 0.891(9H,s), 1.
91(1H,dquin,J=3.7, 7.0H
z), 1.97(1H,t,J=2.8Hz), 2.
31−2.43(2H,m), 3.98−4.04
(2H,m), 5.10(1H,dt,J=10.
1, 1.5Hz), 5.13(1H,dt,J=1
7.1,1.5Hz), 5.74(1H,ddd,J
=7.6, 10.1, 17.1Hz) MS m/z 382(M+),367(M+−Me),
325(M+−tBu) 1 H NMR (400 MHz, CDCl 3 / T
MS) δ: 0.03 (3H, s), 0.06 (3
H, s), 0.07 (3H, s), 0.08 (3H,
s), 0.76 (3H, d, J = 7.0 Hz), 0.
889 (9H, s), 0.891 (9H, s),
91 (1H, dquin, J = 3.7, 7.0H
z), 1.97 (1H, t, J = 2.8 Hz), 2.
31-2.43 (2H, m), 3.98-4.04
(2H, m), 5.10 (1H, dt, J = 10.
1, 1.5 Hz), 5.13 (1H, dt, J = 1
7.1, 1.5 Hz), 5.74 (1H, ddd, J
= 7.6, 10.1, 17.1 Hz) MS m / z 382 (M + ), 367 (M + -Me),
325 (M + -tBu)
【0114】[実施例18](3S、4S、5R)−3、5−ビス(t−ブチルジメ
チルシリルオキシ)−4−メチル−1−オクテン−7−
イン(43) Example 18 (3S, 4S, 5R) -3,5-bis (t-butyldimene)
Tylsilyloxy) -4-methyl-1-octene-7-
Inn (43)
【0115】[0115]
【化35】 Embedded image
【0116】1HNMR(400MHz,CDCl3/T
MS) δ:0.01(3H,s), 0.049(3
H,s), 0.051(3H,s),0.08(3
H,s), 0.89(18H,s), 0.92(3
H,d,J=7.0Hz), 1.85(1H,dqu
in,J=3.7, 6.7Hz),1.96(1H,
t,J=2.8Hz), 2.39(2H,dd,J=
2.8, 6.7Hz), 3.88(1H,ddd,J
=4.0, 6.1, 6.4Hz), 4.07(1
H,t,J=6.7Hz), 5.10(1H,dt,
J=10.1, 1.8Hz), 5.14(1H,d
t,J=18.3, 1.8Hz), 5.81(1H,
ddd,J=7.0, 10.4, 17.4Hz) MS m/z 367(M+−Me), 325(M+−
tBu) 1 H NMR (400 MHz, CDCl 3 / T
MS) δ: 0.01 (3H, s), 0.049 (3
H, s), 0.051 (3H, s), 0.08 (3
H, s), 0.89 (18H, s), 0.92 (3
H, d, J = 7.0 Hz), 1.85 (1H, dqu)
in, J = 3.7, 6.7 Hz), 1.96 (1H,
t, J = 2.8 Hz), 2.39 (2H, dd, J =
2.8, 6.7 Hz), 3.88 (1H, ddd, J)
= 4.0, 6.1, 6.4 Hz), 4.07 (1
H, t, J = 6.7 Hz), 5.10 (1H, dt,
J = 10.1, 1.8 Hz), 5.14 (1H, d
t, J = 18.3, 1.8 Hz), 5.81 (1H,
ddd, J = 7.0, 10.4, 17.4 Hz) MS m / z 367 (M + -Me), 325 (M + -
tBu)
【0117】[実施例19](3R、4S、5S)−3、5−ビス(t−ブチルジメ
チルシリルオキシ)−4−メチル−1−オクテン−7−
イン(44) Example 19 (3R, 4S, 5S) -3,5-bis (t-butyldimene)
Tylsilyloxy) -4-methyl-1-octene-7-
Inn (44)
【0118】[0118]
【化36】 Embedded image
【0119】1HNMR(400MHz,CDCl3/T
MS) δ:0.01(3H,s), 0.057(3
H,s), 0.063(3H,s),0.11(3
H,s), 0.78(3H,d,J=7.0Hz),
0.86(9H,s), 0.90(9H,s), 1.
88(1H,dquin,J=5.5, 6.7H
z), 1.93(1H,t,J=2.8Hz), 2.
26(1H,ddd,J=2.8, 7.0, 16.8
Hz), 2.39(1H,ddd,J=2.8, 4.
0, 16.8Hz), 3.97(1H,dt,J=
4.0, 5.5Hz), 4.12(1H,ddt,J
=5.2, 6.7, 1.2Hz), 5.09(1
H,dt,J=10.4, 1.2Hz), 5.15
(1H,dt,J=17.1, 1.2Hz), 5.7
5(1H,ddd,J=6.7, 10.4, 17.4
Hz) MS m/z 382(M+),367(M+−Me),
325(M+−tBu) 1 H NMR (400 MHz, CDCl 3 / T
MS) δ: 0.01 (3H, s), 0.057 (3
H, s), 0.063 (3H, s), 0.11 (3
H, s), 0.78 (3H, d, J = 7.0 Hz),
0.86 (9H, s), 0.90 (9H, s),
88 (1H, dquin, J = 5.5, 6.7H
z), 1.93 (1H, t, J = 2.8 Hz), 2.
26 (1H, ddd, J = 2.8, 7.0, 16.8
Hz), 2.39 (1H, ddd, J = 2.8, 4.
0, 16.8 Hz), 3.97 (1H, dt, J =
4.0, 5.5 Hz), 4.12 (1H, ddt, J
= 5.2, 6.7, 1.2 Hz), 5.09 (1
H, dt, J = 10.4, 1.2 Hz), 5.15
(1H, dt, J = 17.1, 1.2 Hz), 5.7
5 (1H, ddd, J = 6.7, 10.4, 17.4)
Hz) MS m / z 382 (M + ), 367 (M + -Me),
325 (M + -tBu)
【0120】[実施例20](3S、4S、5S)−3、5−ビス(t−ブチルジメ
チルシリルオキシ)−4−メチル−1−オクテン−7−
イン(45) Example 20 (3S, 4S, 5S) -3,5-bis (t-butyldimethyl)
Tylsilyloxy) -4-methyl-1-octene-7-
Inn (45)
【0121】[0121]
【化37】 Embedded image
【0122】1HNMR(400MHz,CDCl3/T
MS) δ:0.01(3H,s), 0.05(3
H,s), 0.07(3H,s), 0.10(3H,
s), 0.88(3H,d,J=7.0Hz), 0.
89(9H,s), 0.90(9H,s), 1.76
−1.80(1H,m), 1.93(1H,t,J=
2.8Hz), 2.26(1H,ddd,J=2.
7,7.0, 16.8Hz), 2.40(1H,dd
d,J=2.7, 4.3,16.8Hz), 3.85
(1H,dt,J=7.0, 4.3Hz), 4.11
(1H,ddt,J=5.8, 7.3, 1.8H
z), 5.10(1H,dt,J=10.1, 1.8
Hz), 5.14(1H,dt,J=17.4, 1.
8Hz), 5.84(1H,ddd,J=7.3, 1
0.1, 17.4Hz) MS m/z 382(M+),367(M+−Me),
325(M+−tBu) 1 H NMR (400 MHz, CDCl 3 / T
MS) δ: 0.01 (3H, s), 0.05 (3
H, s), 0.07 (3H, s), 0.10 (3H,
s), 0.88 (3H, d, J = 7.0 Hz), 0.
89 (9H, s), 0.90 (9H, s), 1.76
-1.80 (1H, m), 1.93 (1H, t, J =
2.8 Hz), 2.26 (1H, ddd, J = 2.
7, 7.0, 16.8 Hz), 2.40 (1H, dd)
d, J = 2.7, 4.3, 16.8 Hz), 3.85
(1H, dt, J = 7.0, 4.3 Hz), 4.11
(1H, ddt, J = 5.8, 7.3, 1.8H
z), 5.10 (1H, dt, J = 10.1, 1.8
Hz), 5.14 (1H, dt, J = 17.4, 1.
8 Hz), 5.84 (1H, ddd, J = 7.3, 1
0.1, 17.4 Hz) MS m / z 382 (M + ), 367 (M + -Me),
325 (M + -tBu)
【0123】[参考例1]1α、25−ジヒドロキシ−2β−メチル−3β−ビタ
ミンD 3(65)の合成 Reference Example 1 1α, 25-dihydroxy-2β-methyl-3β-vita
Synthesis of Min D 3 (65)
【0124】[0124]
【化38】 Embedded image
【0125】エキソメチレン化合物(66)(44m
g)とエン−イン化合物(38)(61mg,1.5当
量)のトルエン溶液3mlにPd2(dba)3.CHC
l3(13mg、0.1当量)、PPh3(30mg、1
当量)、Et3N(1.5ml)を加え、室温で10分
間撹拌し、次いで120℃で6時間反応させた。冷却
後、反応液を水に注ぎ、Et2Oで抽出した.抽出液を
飽和食塩水で洗い、硫酸マグネシウムで乾燥後、溶媒を
留去した。得られた粗生成物をシリカゲルクロマトグラ
フィ(10%AcOEt−ヘキサン)で精製し、化合物
(67)を得た。Exomethylene compound (66) (44 m
g) and 3 ml of a toluene solution of the ene-yne compound (38) (61 mg, 1.5 equivalents) in Pd 2 (dba) 3 . CHC
l 3 (13mg, 0.1 equiv), PPh 3 (30mg, 1
Eq.) And Et 3 N (1.5 ml) were added, and the mixture was stirred at room temperature for 10 minutes and then reacted at 120 ° C. for 6 hours. After cooling, the reaction mixture was poured into water and extracted with Et 2 O. The extract was washed with saturated saline, dried over magnesium sulfate, and the solvent was distilled off. The obtained crude product was purified by silica gel chromatography (10% AcOEt-hexane) to obtain compound (67).
【0126】得られた化合物(67)をメタノール3m
lに溶解し、CSA(28mg,1当量)を加え、室温
で16時間反応させた。反応液を飽和重曹水に注ぎ、E
t2Oで抽出した。抽出液を飽和食塩水で洗い、硫酸マ
グネシウムで乾燥後、溶媒を留去した。得られた粗生成
物をシリカゲルクロマトグラフィ(10g,50%Ac
OEt−ヘキサン)で精製し、さらにリサイクル分取H
PLC(Lichrosorb RP−18,70%
MeCN/H2O)で精製し、白色固体(65)(20
mg,41%)を得た。1 HNMR(400MHz,CDCl3/TMS) δ:
0.55(3H,s), 0.94(3H,d,J=
6.3Hz), 1.15(3H,d,J=7.0H
z), 1.22(6H,s), 2.42(1H,d
d,J=4.9, 14.0Hz), 2.52(1H,
d,J=14.0Hz),2.82(1H,dd,J=
3.7, 11.9Hz), 3.99−4.04(2
H,m), 5.02(1H,t,J=1.8Hz),
5.37(1H,t,J=1.8Hz), 6.03
(1H,d,J=11.6Hz), 6.35(1H,
d,J=11.6Hz) UV(EtOH)λmax 263nm MS m/z 430(M+), 412(M+−H2O) 394(M+−2H2O), 376(M+−3H2O) 参考例1と同様の反応条件を用いることで、以下の1,
25−ジヒドロキシ−2−メチルビタミンD3誘導体を
製造した。The obtained compound (67) was treated with methanol 3m
, and added CSA (28 mg, 1 equivalent), and reacted at room temperature for 16 hours. The reaction solution was poured into saturated aqueous sodium hydrogen carbonate,
and extracted with t 2 O. The extract was washed with saturated saline, dried over magnesium sulfate, and the solvent was distilled off. The obtained crude product is subjected to silica gel chromatography (10 g, 50% Ac
OEt-hexane).
PLC (Lichrosorb RP-18, 70%
(MeCN / H 2 O) to give a white solid (65) (20
mg, 41%). 1 H NMR (400 MHz, CDCl 3 / TMS) δ:
0.55 (3H, s), 0.94 (3H, d, J =
6.3 Hz), 1.15 (3H, d, J = 7.0H)
z), 1.22 (6H, s), 2.42 (1H, d
d, J = 4.9, 14.0 Hz), 2.52 (1H,
d, J = 14.0 Hz), 2.82 (1H, dd, J =
3.7, 11.9 Hz), 3.99-4.04 (2
H, m), 5.02 (1H, t, J = 1.8 Hz),
5.37 (1H, t, J = 1.8 Hz), 6.03
(1H, d, J = 11.6 Hz), 6.35 (1H,
d, J = 11.6Hz) UV ( EtOH) λmax 263nm MS m / z 430 (M +), 412 (M + -H 2 O) 394 (M + -2H 2 O), 376 (M + -3H 2 O) By using the same reaction conditions as in Reference Example 1,
It was prepared 25-dihydroxy-2-methyl-vitamin D 3 derivatives.
【0127】[実施例21]1β、25−ジヒドロキシ−2β−メチル−3β−ビタ
ミンD 3(1) Example 21 1β, 25-dihydroxy-2β-methyl-3β-bita
Min D 3 (1)
【0128】[0128]
【化39】 Embedded image
【0129】1HNMR(400MHz,CDCl3/T
MS) δ:0.56(3H,s), 0.94(3
H,d,J=6.2Hz), 1.22(6H,s),
1.24(3H,d,J=7.0Hz), 2.49
(1H,d,J=14.0Hz), 2.57(1H,
dd,J=3.4, 14.0Hz),2.85(1
H,dd,J=7.2, 14.0Hz), 3.91
(1H,m), 4.17(1H,bs), 5.01
(1H,d,J=2.1Hz), 5.25(1H,
d,J=2.1Hz), 6.01(1H,d,J=1
1.3Hz), 6.48(1H,d,J=11.3H
z) UV(EtOH)λmax 264nm MS m/z 430(M+), 412(M+−H2O) 394(M+−2H2O), 376(M+−3H2O) 1 H NMR (400 MHz, CDCl 3 / T
MS) δ: 0.56 (3H, s), 0.94 (3
H, d, J = 6.2 Hz), 1.22 (6H, s),
1.24 (3H, d, J = 7.0 Hz), 2.49
(1H, d, J = 14.0 Hz), 2.57 (1H,
dd, J = 3.4, 14.0 Hz), 2.85 (1
H, dd, J = 7.2, 14.0 Hz), 3.91
(1H, m), 4.17 (1H, bs), 5.01
(1H, d, J = 2.1 Hz), 5.25 (1H,
d, J = 2.1 Hz), 6.01 (1H, d, J = 1)
1.3 Hz), 6.48 (1H, d, J = 11.3H)
z) UV (EtOH) λmax 264nm MS m / z 430 (M +), 412 (M + -H 2 O) 394 (M + -2H 2 O), 376 (M + -3H 2 O)
【0130】[実施例22]1α、25−ジヒドロキシ−2β−メチル−3α−ビタ
ミンD 3(2) Example 22 1α, 25-dihydroxy-2β-methyl-3α-bita
Min D 3 (2)
【0131】[0131]
【化40】 Embedded image
【0132】1HNMR(400MHz,CDCl3/T
MS) δ:0.54(3H,s), 0.94(3
H,d,J=6.4Hz), 1.06(3H,d,J
=7.0Hz), 1.22(6H,s), 2.34
(1H,dd,J=6.4, 13.7Hz), 2.6
4(1H,dd,J=3.7, 13.7Hz), 2.
83(1H,dd,J=4.0, 12.2Hz),
3.65(1H,quin,J=6.1Hz), 3.
90(1H,t,J=5.5Hz), 5.05(1
H,d,J=1.2Hz), 5.30(1H,d,J
=1.2Hz), 6.02(1H,d,J=11.3
Hz), 6.41(1H,d,J=11.3Hz) UV(EtOH)λmax 261nm MS m/z 430(M+), 412(M+−H2O) 394(M+−2H2O), 376(M+−3H2O) 1 H NMR (400 MHz, CDCl 3 / T
MS) δ: 0.54 (3H, s), 0.94 (3
H, d, J = 6.4 Hz), 1.06 (3H, d, J
= 7.0 Hz), 1.22 (6H, s), 2.34
(1H, dd, J = 6.4, 13.7 Hz), 2.6
4 (1H, dd, J = 3.7, 13.7 Hz);
83 (1H, dd, J = 4.0, 12.2 Hz),
3.65 (1H, quin, J = 6.1 Hz);
90 (1H, t, J = 5.5 Hz), 5.05 (1
H, d, J = 1.2 Hz), 5.30 (1H, d, J)
= 1.2 Hz), 6.02 (1H, d, J = 11.3)
Hz), 6.41 (1H, d, J = 11.3 Hz) UV (EtOH) λmax 261 nm MS m / z 430 (M + ), 412 (M + -H 2 O) 394 (M + -2H 2 O) ), 376 (M + -3H 2 O)
【0133】[実施例23]1β、25−ジヒドロキシ−2β−メチル−3α−ビタ
ミンD 3(3) Example 23 1β, 25-dihydroxy-2β-methyl-3α-vita
Min D 3 (3)
【0134】[0134]
【化41】 Embedded image
【0135】1HNMR(400MHz,CDCl3/T
MS) δ:0.54(3H,s), 0.94(3
H,d,J=6.4Hz), 1.10(3H,d,J
=7.2Hz), 1.22(6H,s), 2.24
(1H,dd,J=8.9, 13.3Hz), 2.6
6(1H,dd,J=4.4, 13.3Hz), 2.
82(1H,dd,J=4.1, 13.1Hz),
3.82(1H,dq,J=8.5, 4.3Hz),
4.27(1H,bs), 5.01(1H,d,J=
1.7Hz), 5.28(1H,d,J=1.7H
z), 6.01(1H,d,J=11.3Hz),
6.40(1H,d,J=11.3Hz) UV(EtOH)λmax 265nm MS m/z 430(M+), 412(M+−H2O) 394(M+−2H2O), 376(M+−3H2O) 1 H NMR (400 MHz, CDCl 3 / T
MS) δ: 0.54 (3H, s), 0.94 (3
H, d, J = 6.4 Hz), 1.10 (3H, d, J)
= 7.2 Hz), 1.22 (6H, s), 2.24
(1H, dd, J = 8.9, 13.3 Hz), 2.6
6 (1H, dd, J = 4.4, 13.3 Hz);
82 (1H, dd, J = 4.1, 13.1 Hz),
3.82 (1H, dq, J = 8.5, 4.3 Hz),
4.27 (1H, bs), 5.01 (1H, d, J =
1.7Hz), 5.28 (1H, d, J = 1.7H)
z), 6.01 (1H, d, J = 11.3 Hz),
6.40 (1H, d, J = 11.3 Hz) UV (EtOH) λmax 265 nm MS m / z 430 (M + ), 412 (M + -H 2 O) 394 (M + -2H 2 O), 376 (M + -3H 2 O)
【0136】[実施例24]1α、25−ジヒドロキシ−2α−メチル−3β−ビタ
ミンD 3(4) Example 24 1α, 25-dihydroxy-2α-methyl-3β-bita
Min D 3 (4)
【0137】[0137]
【化42】 Embedded image
【0138】1HNMR(400MHz,CDCl3/T
MS) δ:0.53(3H,s), 0.93(3
H,d,J=6.4Hz), 1.08(3H,d,J
=6.7Hz), 1.22(6H,s), 2.23
(1H,dd,J=7.6,13.4Hz), 2.6
7(1H,dd,J=4.0, 13.4Hz), 2.
82(1H,dd,J=4.0, 12.5Hz),
3.84(1H,bs), 4.30(1H,bs),
5.01(1H,d,J=1.4Hz), 5.28
(1H,d,J=1.4Hz), 6.01(1H,
d,J=11.3Hz), 6.39(1H,d,J=
11.3Hz) UV(EtOH)λmax 265nm MS m/z 430(M+), 412(M+−H2O) 394(M+−2H2O), 376(M+−3H2O) 376(M+−3H2O−Me) 1 H NMR (400 MHz, CDCl 3 / T
MS) δ: 0.53 (3H, s), 0.93 (3
H, d, J = 6.4 Hz), 1.08 (3H, d, J
= 6.7 Hz), 1.22 (6H, s), 2.23
(1H, dd, J = 7.6, 13.4 Hz), 2.6
7 (1H, dd, J = 4.0, 13.4 Hz);
82 (1H, dd, J = 4.0, 12.5 Hz),
3.84 (1H, bs), 4.30 (1H, bs),
5.01 (1H, d, J = 1.4 Hz), 5.28
(1H, d, J = 1.4 Hz), 6.01 (1H,
d, J = 11.3 Hz), 6.39 (1H, d, J =
11.3Hz) UV (EtOH) λmax 265nm MS m / z 430 (M +), 412 (M + -H 2 O) 394 (M + -2H 2 O), 376 (M + -3H 2 O) 376 ( M + -3H 2 O-Me)
【0139】[実施例25]1β、25−ジヒドロキシ−2α−メチル−3β−ビタ
ミンD 3(5) Example 25 1β, 25-dihydroxy-2α-methyl-3β-bita
Min D 3 (5)
【0140】[0140]
【化43】 Embedded image
【0141】1HNMR(400MHz,CDCl3/T
MS) δ:0.55(3H,s), 0.94(3
H,d,J=6.4Hz), 1.02(3H,d,J
=7.0Hz), 1.22(6H,s), 2.36
(1H,dd,J=5.5, 14.1Hz), 2.6
5(1H,dd,J=2.8, 14.1Hz), 2.
83(1H,dd,J=4.3, 12.5Hz),
3.72(1H,bs), 3.97(1H,d,J=
3.0Hz), 5.07(1H,d,J=1.8H
z), 5.30(1H,d,J=1.8Hz), 6.
05(1H,d,J=11.3Hz), 6.43(1
H,d,J=11.3Hz)UV(EtOH)λmax
262nm MS m/z 430(M+), 412(M+−H2O) 394(M+−2H2O), 376(M+−3H2O) 361(M+−3H2O−Me) HR−MS m/z 430.3447 calcd
for C28H46O3 430.3447 1 H NMR (400 MHz, CDCl 3 / T
MS) δ: 0.55 (3H, s), 0.94 (3
H, d, J = 6.4 Hz), 1.02 (3H, d, J
= 7.0 Hz), 1.22 (6H, s), 2.36
(1H, dd, J = 5.5, 14.1 Hz), 2.6
5 (1H, dd, J = 2.8, 14.1 Hz);
83 (1H, dd, J = 4.3, 12.5 Hz),
3.72 (1H, bs), 3.97 (1H, d, J =
3.0 Hz), 5.07 (1H, d, J = 1.8H)
z), 5.30 (1H, d, J = 1.8 Hz), 6.
05 (1H, d, J = 11.3 Hz), 6.43 (1
H, d, J = 11.3 Hz) UV (EtOH) λmax
262nm MS m / z 430 (M +), 412 (M + -H 2 O) 394 (M + -2H 2 O), 376 (M + -3H 2 O) 361 (M + -3H 2 O-Me) HR-MS m / z 430.3447 calcd
for C 28 H 46 O 3 430.3447
【0142】[実施例26]1α、25−ジヒドロキシ−2α−メチル−3α−ビタ
ミンD 3(6) Example 26 1α, 25-dihydroxy-2α-methyl-3α-bita
Min D 3 (6)
【0143】[0143]
【化44】 Embedded image
【0144】1HNMR(400MHz,CDCl3/T
MS) δ:0.54(3H,s), 0.93(3
H,d,J=6.4Hz), 1.22(6H,s),
1.24(3H,d,J=7.0Hz), 2.50
(1H,d,J=14.2Hz), 2.56(1H,
dd,J=3.7, 14.2Hz),2.85(1
H,dd,J=3.4, 12.2Hz), 3.90−
3.93(1H,m), 4.17(1H,bs),
4.98(1H,d,J=1.8Hz), 5.23
(1H,d,J=1.8Hz), 6.03(1H,
d,J=11.6Hz), 6.48(1H,d,J=
11.6Hz) UV(EtOH)λmax 265nm MS m/z 430(M+), 412(M+−H2O) 394(M+−2H2O), 376(M+−3H2O) 1 H NMR (400 MHz, CDCl 3 / T
MS) δ: 0.54 (3H, s), 0.93 (3
H, d, J = 6.4 Hz), 1.22 (6H, s),
1.24 (3H, d, J = 7.0 Hz), 2.50
(1H, d, J = 14.2 Hz), 2.56 (1H,
dd, J = 3.7, 14.2 Hz), 2.85 (1
H, dd, J = 3.4, 12.2 Hz), 3.90 −
3.93 (1H, m), 4.17 (1H, bs),
4.98 (1H, d, J = 1.8 Hz), 5.23
(1H, d, J = 1.8 Hz), 6.03 (1H,
d, J = 11.6 Hz), 6.48 (1H, d, J =
11.6Hz) UV (EtOH) λmax 265nm MS m / z 430 (M +), 412 (M + -H 2 O) 394 (M + -2H 2 O), 376 (M + -3H 2 O)
【0145】[実施例27]1β、25−ジヒドロキシ−2α−メチル−3α−ビタ
ミンD 3(7) Example 27 1β, 25-dihydroxy-2α-methyl-3α-bita
Min D 3 (7)
【0146】[0146]
【化45】 Embedded image
【0147】1HNMR(400MHz,CDCl3/T
MS) δ:0.54(3H,s), 0.93(3
H,d,J=6.4Hz), 1.12(3H,d,J
=6.7Hz), 1.22(6H,s), 2.42
(1H,dd,J=5.5, 13.7Hz), 2.5
2(1H,dd,J=2.8, 13.7Hz), 2.
82(1H,dd,J=2.4, 12.2Hz),
4.03−4.08(2H,m), 5.01(1H,
t,J=1.8Hz), 5.35(1H,t,J=
1.8Hz), 6.01(1H,d,J=11.3H
z), 6.36(1H,d,J=11.3Hz) UV(EtOH)λmax 264nm MS m/z 430(M+), 412(M+−H2O) 394(M+−2H2O) 1 H NMR (400 MHz, CDCl 3 / T
MS) δ: 0.54 (3H, s), 0.93 (3
H, d, J = 6.4 Hz), 1.12 (3H, d, J)
= 6.7 Hz), 1.22 (6H, s), 2.42
(1H, dd, J = 5.5, 13.7 Hz), 2.5
2 (1H, dd, J = 2.8, 13.7 Hz);
82 (1H, dd, J = 2.4, 12.2 Hz),
4.03-4.08 (2H, m), 5.01 (1H,
t, J = 1.8 Hz), 5.35 (1H, t, J =
1.8 Hz), 6.01 (1H, d, J = 11.3H)
z), 6.36 (1H, d, J = 11.3 Hz) UV (EtOH) λmax 264 nm MS m / z 430 (M + ), 412 (M + -H 2 O) 394 (M + -2H 2 O) )
【0148】[実施例28]ウシ胸腺1α,25−ジヒドロキシビタミンD 3レセプ
ター(VDR)に対する本発明化合物の結合親和性 ヤマサ醤油株式会社製ウシ胸腺ビタミンDレセプターキ
ット1アンプル(約25mg)を0.05Mリン酸0.
5Mカリウム緩衝液(pH7.4)55mlに溶解し
た。被験化合物のエタノール溶液50μlとレセプター
溶液500μlを室温で1時間プレインキュベートした
後、[26,27−メチル−3H]1α,25−ジヒド
ロキシビタミンD3溶液50μl(131Ci/mmo
l、16,000dpm)を最終濃度0.1nMとなる
ように加えて4℃で一晩インキュベートした。結合と非
結合の[26,27−メチル−3H]1α,25−ジヒ
ドロキシビタミンD3は200μlのデキストラン−コ
ーテド−チャコールを加えて遠心分離し、500μlの
上澄みに液体シンチレーションカクテル(ACS−I
I)9.5mlを加え、液体シンチレーションカウンタ
ーでその放射活性を測定した。[Example 28] Bovine thymus 1α, 25-dihydroxyvitamin D 3 receptor
Affinity of the Compound of the Present Invention for VDR (Bottle Thymus Vitamin D Receptor Kit 1 ampoule (about 25 mg) manufactured by Yamasa Shoyu Co., Ltd.) in 0.05M phosphoric acid.
It was dissolved in 55 ml of a 5M potassium buffer (pH 7.4). After pre-incubating 50 μl of an ethanol solution of the test compound and 500 μl of the receptor solution for 1 hour at room temperature, 50 μl of [26,27-methyl- 3 H] 1α, 25-dihydroxyvitamin D 3 solution (131 Ci / mmo)
l, 16,000 dpm) to a final concentration of 0.1 nM and incubated overnight at 4 ° C. Binding and non-binding of [26,27- methyl - 3 H] 1α, 25- dihydroxyvitamin D 3 is dextran 200 [mu] l - Kotedo - adding charcoal was centrifuged, liquid scintillation cocktail (ACS-I in 500μl of supernatant
I) 9.5 ml was added, and the radioactivity was measured with a liquid scintillation counter.
【0149】被験化合物のD3レセプター(VDR)に
対する結合親和性は、[26,27−メチル−3H]1
α,25−ジヒドロキシビタミンD3の結合を50%阻
害する濃度を求め、1α,25−ジヒドロキシビタミン
D3を100としたときの相対強度比で表した。その結
果を、表1に示す。[0149] The binding affinity for the D 3 receptor of the test compound (VDR) is [26,27- methyl - 3 H] 1
The concentration that inhibits the binding of α, 25-dihydroxyvitamin D 3 by 50% was determined and expressed as a relative intensity ratio when 1α, 25-dihydroxyvitamin D 3 was taken as 100. Table 1 shows the results.
【0150】[0150]
【表1】 [Table 1]
【0151】[実施例29]HL−60細胞の分化誘導作用に対する本発明化合物の
効果 HL−60細胞は細胞バンク(ジャパニーズ キャンサ
ー リサーチ リソース バンク、細胞番号:JCB0
085)から購入したものを用いた。細胞は、継代培養
による細胞特性の変化を防ぐため凍結保存ストックと
し、実験開始前に解凍して継代培養を始めたものを使用
した。実験には継代1ヶ月から半年程度のものを用い
た。継代は浮遊培養状態の細胞を遠心回収して、新鮮な
培養液に1/100程度(1−2x10-5 cells
/ml)の濃度に希釈することで実施した。培養液とし
て10%牛胎児血清を含むRPMI−1640培地を用
いた。継代培養していた細胞を遠心回収して培養液に2
x104 cells/mlに分散させ、24ウエル培
養シャーレに1ml/ウエルで播種した。この系に、本
発明化合物のエタノール溶液(1x10-7M〜1x10
-4M)をウエルあたり1mlで添加した。コントロール
にはエタノールをウエルあたり1mlで添加した。37
℃、5%CO2下で4日間培養した後、細胞遠心回収し
た。ニトロブルーテトラゾリウム(以下NBT)還元活
性の測定は以下の手順に従って実施した。すなわち、遠
心回収した細胞を新鮮な培養液に浮遊させた後、NBT
0.1%、12−O−テトラデカノイルホルボール−
13−アセテート(以下TPO) 100nMとなるよ
うに添加し、37℃で25分間インキュベートした後、
サイトスピン標本を作製した。風乾後、ケルネヒトロー
ト染色を行い、光学顕微鏡下でNBT還元活性陽性細胞
の比率を求めた。結果を表2に示す。[Example 29] The effect of the compound of the present invention on the differentiation inducing action of HL-60 cells
The effect of HL-60 cells is a cell bank (Japanese Cancer Research Resource Bank, cell number: JCB0).
085). The cells were used as cryopreserved stocks to prevent changes in cell characteristics due to subculture, and thawed before the start of the experiment to start subculture. For the experiment, a passage from one month to half a year was used. For the subculture, cells in a suspension culture are collected by centrifugation and added to a fresh culture solution at about 1/100 (1-2 × 10 −5 cells
/ Ml). RPMI-1640 medium containing 10% fetal calf serum was used as a culture solution. The subcultured cells are collected by centrifugation and added to the culture solution.
The cells were dispersed in x10 4 cells / ml and seeded at 1 ml / well in a 24-well culture dish. In this system, an ethanol solution of the compound of the present invention (1 × 10 −7 M to 1 × 10 7
-4 M) was added at 1 ml per well. As a control, ethanol was added at 1 ml per well. 37
After culturing at 5 ° C. under 5% CO 2 for 4 days, the cells were collected by centrifugation. The measurement of nitro blue tetrazolium (hereinafter NBT) reducing activity was carried out according to the following procedure. That is, after the cells collected by centrifugation are suspended in a fresh culture solution, NBT
0.1%, 12-O-tetradecanoylphorbol-
13-acetate (TPO) was added to 100 nM and incubated at 37 ° C. for 25 minutes.
A cytospin specimen was prepared. After air-drying, the cells were stained with Kernetchroth, and the ratio of NBT-reducing activity-positive cells was determined under an optical microscope. Table 2 shows the results.
【0152】[0152]
【表2】 [Table 2]
【0153】[0153]
【発明の効果】本発明により提供される上記式(I)で
表される1、25−ジヒドロキシ−2−メチルビタミン
D3誘導体は、その1位、2位、および3位に由来する
立体異性体の種類によって、ある異性体はビタミンDレ
セプターに高親和性でかつビタミンD結合蛋白にも高親
和性を示し、またある異性体はビタミンDレセプターに
高親和性でかつビタミンD結合蛋白には低親和性を示す
など両蛋白質に対する親和性に差異を示し、それぞれの
作用特性に適したビタミンD代謝異常症の治療薬として
用いることができる。The 1,25-dihydroxy-2-methylvitamin D 3 derivative represented by the above formula (I) provided by the present invention has a stereoisomer derived from the 1-, 2- and 3-positions. Depending on the body type, some isomers have high affinity for vitamin D receptor and also have high affinity for vitamin D binding protein, and some isomers have high affinity for vitamin D receptor and vitamin D binding protein. It shows a difference in affinity for both proteins, such as low affinity, and can be used as a therapeutic drug for vitamin D metabolism disorder suitable for each action characteristic.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // A61K 31/59 A61K 31/59 C07B 61/00 300 C07B 61/00 300 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI // A61K 31/59 A61K 31/59 C07B 61/00 300 C07B 61/00 300
Claims (4)
はトリ(C1〜C7アルキル)シリル基を表す。ここで、
1位、2位、および3位の不斉炭素についての立体配置
は、それぞれ独立に、α配位またはβ配位である(ただ
し、1位がα配位であり、2位がβ配位であり、3位が
β配位である立体異性体は除く)。]で表される1,2
5−ジヒドロキシ−2−メチルビタミンD3誘導体。1. A compound of the general formula (I) [Wherein R 1 and R 2 each independently represent a hydrogen atom or a tri (C 1 -C 7 alkyl) silyl group. here,
The configuration of the asymmetric carbon at the 1-, 2-, and 3-positions is independently α-configuration or β-configuration (provided that the 1-position is α-configuration and the 2-position is β-configuration). And the stereoisomer where the 3-position is β-coordinate is excluded). 1, 2
5-dihydroxy-2-methyl-vitamin D 3 derivatives.
るエキソメチレン化合物と、一般式(III) 【化3】 [式中、R3およびR4はそれぞれ独立に、水素原子また
はトリ(C1〜C7炭化水素)シリル基を表す。]で表さ
れるエン−イン化合物とをパラジウム触媒の存在下に反
応させ、必要に応じてトリ(C1〜C7炭化水素)シリル
基を脱保護することを特徴とする、請求項1に記載のビ
タミンD3誘導体の製造法。2. A compound of the general formula (II) [In the formula, X represents a bromine atom or an iodine atom. And an exomethylene compound represented by the general formula (III): [Wherein, R 3 and R 4 each independently represent a hydrogen atom or a tri (C 1 -C 7 hydrocarbon) silyl group. Wherein the tri (C 1 -C 7 hydrocarbon) silyl group is deprotected, if necessary, with an ene-yne compound represented by the following formula: A method for producing the vitamin D 3 derivative according to the above.
はトリ(C1〜C7炭化水素)シリル基を表す。ここで、
3位、4位、および5位の不斉炭素についての立体配置
は、それぞれ独立に、R配置またはS配置である。]で
表されるエン−イン化合物。3. A compound of the general formula (III) [Wherein, R 3 and R 4 each independently represent a hydrogen atom or a tri (C 1 -C 7 hydrocarbon) silyl group. here,
The configurations for the asymmetric carbons at the 3-, 4-, and 5-positions are each independently an R configuration or an S configuration. And an ene-yne compound represented by the formula:
くは(C1〜C7アルキル)ジ(C6〜C10アリール)シ
リル基を表し、R12は結合する酸素原子と共にアセター
ルを形成する保護基を表し、TMSはトリメチルシリル
基を表す。]に示す経路によって上記式(III)で表さ
れるエン−イン化合物を光学的に純粋に製造する方法。4. The following reaction formula: [In the formula, R 11 represents a tri (C 1 -C 7 alkyl) silyl group or a (C 1 -C 7 alkyl) di (C 6 -C 10 aryl) silyl group, and R 12 is an acetal together with a bonding oxygen atom. And TMS represents a trimethylsilyl group. ] The method of producing an ene-yne compound represented by the above formula (III) optically pure by the route shown in the above [1].
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23514496 | 1996-09-05 | ||
JP8-235144 | 1996-11-26 | ||
JP31469396 | 1996-11-26 | ||
JP8-314693 | 1996-11-26 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09114695 Division | 1997-05-02 | 1997-05-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11116551A true JPH11116551A (en) | 1999-04-27 |
Family
ID=26531973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16064798A Pending JPH11116551A (en) | 1996-09-05 | 1998-06-09 | Vitamin d3 derivative and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11116551A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004067525A1 (en) | 2003-01-30 | 2004-08-12 | Teijin Pharma Limited | Vitamin d3 lactone derivative |
-
1998
- 1998-06-09 JP JP16064798A patent/JPH11116551A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004067525A1 (en) | 2003-01-30 | 2004-08-12 | Teijin Pharma Limited | Vitamin d3 lactone derivative |
AU2004207719B2 (en) * | 2003-01-30 | 2009-08-06 | Teijin Limited | Vitamin D3 lactone derivative |
AU2004207719B9 (en) * | 2003-01-30 | 2009-10-01 | Teijin Limited | Vitamin D3 lactone derivative |
US9073885B2 (en) | 2003-01-30 | 2015-07-07 | Teijin Pharma Limited | Vitamin D3 lactone derivatives |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2015500210A (en) | Method for preparing (3R) -2,4-di-leaving group-3-methylbut-1-ene | |
EP0854138B1 (en) | Vitamin D3 derivative and production process thereof | |
JP3923090B2 (en) | Vitamin D3 derivative and process for producing the same | |
JP2003176250A (en) | Synthesis of a-ring synthon of 19-nor-1-alfa, 25- dihydroxyvitamin d3 from (d)-glucose | |
JPS61129178A (en) | Hmg-coa reductase inhibitor and manufacture of intermediate compound therefor | |
US6043385A (en) | Vitamin D derivatives | |
JPH11116551A (en) | Vitamin d3 derivative and its production | |
JPH0141142B2 (en) | ||
US4100192A (en) | Inter-phenylene-PG amides | |
EP0338796A2 (en) | 2-Substituted-2-cyclopentenones | |
US4681951A (en) | Bicyclo(3.3.0)octene derivatives | |
EP0209694B1 (en) | Novel prostacyclins | |
US4958037A (en) | Precursors and synthesis of methyl-9-oxo-11α, 16-dihydroxy-16-vinyl-5-cis-13-trans-prostadienoates | |
JP2003506435A (en) | New vitamin D analogs | |
JP2503073B2 (en) | 2-Substituted-2-cyclopentenones and osteogenic promoters or anticancer agents containing the same | |
JP3595025B2 (en) | Vitamin D3 derivative and method for producing the same | |
JP7164901B2 (en) | Process for producing latanoprosten-bunod and its intermediates, and compositions containing them | |
JPH10182597A (en) | Isomerized vitamin d derivative | |
JP3608843B2 (en) | Vitamin D3 derivative and process for producing the same | |
SE431090B (en) | OPTICAL ACTIVE OR RACEMIC FLUOR-PROSTAGLAND INCORPORATION FOR USE AS A LUTEOLYTIC AND ABORTIVE AGENT | |
JP2860506B2 (en) | Halogenoallyl alcohol derivatives | |
US4808734A (en) | 16-cycloalkyl-7-fluoro-prostacyclins | |
JP2848937B2 (en) | Process for producing substituted methylenecyclopentanes | |
US20050113349A1 (en) | 2-Alpha vitamin D derivatives having substituents | |
JP3590450B2 (en) | Vitamin D3 derivative and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060919 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070320 |