JPH11116029A - Method and device for driving and controlling electromagnetic vibration feeder - Google Patents

Method and device for driving and controlling electromagnetic vibration feeder

Info

Publication number
JPH11116029A
JPH11116029A JP29941997A JP29941997A JPH11116029A JP H11116029 A JPH11116029 A JP H11116029A JP 29941997 A JP29941997 A JP 29941997A JP 29941997 A JP29941997 A JP 29941997A JP H11116029 A JPH11116029 A JP H11116029A
Authority
JP
Japan
Prior art keywords
frequency
voltage
driving
electromagnetic vibration
drive control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29941997A
Other languages
Japanese (ja)
Other versions
JP4066480B2 (en
Inventor
Hirohiko Murata
裕彦 村田
Masanobu Tomita
昌伸 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP29941997A priority Critical patent/JP4066480B2/en
Publication of JPH11116029A publication Critical patent/JPH11116029A/en
Application granted granted Critical
Publication of JP4066480B2 publication Critical patent/JP4066480B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Jigging Conveyors (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform a desired resonance tracking control during driving with performing soft start, by gradually increasing voltage after starting of driving up to a given level and by setting a driving frequency to a constant frequency close to a resonance frequency. SOLUTION: A constant amplitude control circuit 22 is connected to a variable frequency power supply 10, with which an amplitude instructing circuit 21 for providing a given amplitude instruction is connected. The constant amplitude control circuit 22 is equipped with a circuit for linearly changing a voltage until a given time after starting of driving. The variable frequency power supply 10, after closing of a switch S, supplies a resonance frequency which is supplied from a memory circuit 15 and stored after previous finishing of driving, and during the closing of the switch S, supplies this frequency to the amplifier 12 side through the constant amplitude frequency control circuit 22. The variable frequency power supply 10 performs a constant amplitude action to the constant amplitude frequency control circuit 22 at a finishing time of a soft start, receives outputs from a phase detecting circuit 11, and performs original resonance tracking control.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電磁振動フィーダの
駆動制御方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive control method and apparatus for an electromagnetic vibration feeder.

【0002】[0002]

【従来の技術】この種の装置においては、電磁振動フィ
ーダ、例えば振動パーツフィーダの駆動開始時の立ち上
がり特性を図7に示すようにして行なっている。すなわ
ち、コイルにかかる電圧は時間t0 までほぼ直線的に上
昇させる。t0 以降を所定の振巾に対する電圧として一
定にしている。これにより振動パーツフィーダのボウル
内の部品、例えばチップ状の部品が駆動開始時に部品整
列手段、例えば板状の部品を単層にするためのワイパー
の近傍に位置する部品が駆動開始共に滑らかに下流側に
単層供給されるようにしている。しかしながら共振追尾
制御における振動パーツフィーダのボウルは駆動開始
後、図8に示すように周波数が変化する。すなわち、駆
動駆動開始時の周波数から最初は上昇し、ついで減少
し、時間t0 以降、図示のような経緯を示すのである
が、これは図10に示すような共振点変化に起因してい
る。
2. Description of the Related Art In an apparatus of this kind, a rising characteristic at the start of driving of an electromagnetic vibration feeder, for example, a vibration parts feeder is performed as shown in FIG. That is, the voltage applied to the coil to substantially linearly increase until time t 0. The voltage after t 0 is constant as a voltage for a predetermined amplitude. As a result, the parts in the bowl of the vibrating parts feeder, for example, the chip-shaped parts, at the start of driving, are positioned at the part alignment means, for example, the parts located in the vicinity of the wiper for making the plate-shaped parts into a single layer. A single layer is supplied to the side. However, the frequency of the bowl of the vibrating parts feeder in the resonance tracking control changes as shown in FIG. 8 after the start of driving. That is, the frequency initially rises from the frequency at the start of the driving, then decreases, and after time t 0, it shows the course as shown in the figure. This is due to the resonance point change as shown in FIG. .

【0003】図10は振動パーツフィーダのコイルの電
圧が20ボルト、30ボルト、40ボルト、50ボル
ト、60ボルト及び70ボルトと変化させた場合の周波
数−振巾(振動変位)特性を示すものであるが、同一の
振動パーツフィーダに対し、電圧を大とする、すなわち
振巾を一定の周波数に対し大とする。振巾が大きくなる
程、共振周波数が低下する。例えば図10に示すように
コイル電圧が70ボルトの場合には共振点が約54.2
ヘルツであるのに対して、コイル電圧が20ボルトの場
合には約55.8ヘルツとなっている。このような共振
点変化を示すのであるが、これは振動パーツフィーダは
公知のようにボウルとベースとが、等角度間隔に配列さ
れた傾斜板ばねにより、結合されており、これは一般に
重ね板ばねとして用いられる。捩り振巾が大となれば、
この上下端部を固定しているボルト間の振動に供する有
効長が増大する。これにより板ばねのばね常数が低下す
る。すなわち。共振周波数が低下する。これが一因であ
ると考えられる。図10は上述したようにコイル電圧が
20ボルトから70ボルトまで変化させた場合に共振周
波数の推移を示している。これは実験例であるが、図7
に示すようにコイル電圧を時間t0 まで徐々に変化させ
ているときに共振周波数が振巾の共振時における増大と
共に低下しているので、共振点推移の速さにもよるが例
えば図8に示すような駆動周波数の時間的変化が見られ
る。共振点近傍では周波数がわずかに変化しただけで大
きく振巾が変動する。いわば不安定な領域であるが、こ
のためにボウルの振動変位は図9に示すように変化す
る。すなわち、最初は図7のコイル電圧の上昇に近似し
た振動の変位の変化を得られるのであるが、図8に示す
ような現象のために振動変位は時間t0 至るまでに、急
激に増大する時間域があり、時刻t0 を経過したのちも
急激に低下し、また増大するといういわゆるハンチング
現象を示し、制御を不安定にする。
FIG. 10 shows frequency-amplitude (vibration displacement) characteristics when the voltage of the coil of the vibration parts feeder is changed to 20 volts, 30 volts, 40 volts, 50 volts, 60 volts and 70 volts. However, for the same vibrating parts feeder, the voltage is increased, that is, the amplitude is increased for a certain frequency. As the amplitude increases, the resonance frequency decreases. For example, as shown in FIG. 10, when the coil voltage is 70 volts, the resonance point is about 54.2.
It is about 55.8 Hertz when the coil voltage is 20 volts compared to Hertz. Such a change in the resonance point is caused by the fact that, as is known, the vibrating parts feeder is composed of a bowl and a base connected by inclined leaf springs arranged at equal angular intervals. Used as a spring. If the torsional amplitude becomes large,
The effective length provided for vibration between the bolts fixing the upper and lower ends increases. Thereby, the spring constant of the leaf spring decreases. That is. The resonance frequency decreases. This is considered to be one factor. FIG. 10 shows the transition of the resonance frequency when the coil voltage is changed from 20 volts to 70 volts as described above. This is an experimental example.
As shown in FIG. 8, when the coil voltage is gradually changed until time t 0 , the resonance frequency decreases as the amplitude increases at the time of resonance. The temporal change of the driving frequency as shown is seen. In the vicinity of the resonance point, the amplitude fluctuates greatly even if the frequency slightly changes. Although this is an unstable area, the vibration displacement of the bowl changes as shown in FIG. That is, at first, the change in the displacement of the vibration approximated to the rise of the coil voltage in FIG. 7 can be obtained, but due to the phenomenon shown in FIG. 8, the vibration displacement rapidly increases until time t 0. There is a time range, and a so-called hunting phenomenon that the temperature rapidly decreases and increases after the time t 0 is exhibited, and the control becomes unstable.

【0004】[0004]

【発明が解決しようとする課題】本発明は上述の問題点
に鑑みてなされ、本来のソフトスタートを行ないなが
ら、駆動中所望の共振追尾制御を行なうことができる電
磁振動フィーダの駆動制御方法及びその装置を提供する
ことを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and a drive control method of an electromagnetic vibration feeder capable of performing desired resonance tracking control during driving while performing an original soft start, and a method thereof. It is an object to provide a device.

【0005】[0005]

【課題を解決するための手段】以上の課題は、可動部と
基台とをばねで結合し、前記可動部か前記基台に電磁石
を取付け、該電磁石のコイルに印加される電圧と前記可
動部の振動変位との位相差を検出して、該位相差が18
0度となるように前記コイルに印加される電圧の周波数
を増減させて共振振動させるようにし、駆動開始時には
前記電圧を所定の高さにまで徐々に上昇させて、以後一
定とするようにした電磁振動フィーダの駆動制御方法に
おいて、駆動開始後の前記電圧が前記所定の高さになる
までは駆動周波数は共振周波数に近い一定周波数とした
ことを特徴とする電磁振動フィーダの駆動制御方法によ
って解決される。又は可動部と基台とをばねで結合し、
前記可動部か前記基台に電磁石を取付け、該電磁石のコ
イルに印加される電圧と前記可動部の振動変位との位相
差を位相差検出器により検出して、該位相差が180度
となるように前記コイルに印加されるべき可変周波数電
源の電圧の周波数を増減させて共振振動させるように
し、かつ前記可変周波数電源の電圧を受ける電圧調節手
段により、駆動開始時には前記電圧を所定の高さにまで
徐々に上昇させて、以後一定とするようにした電磁振動
フィーダの駆動制御装置において、駆動開始後の前記電
圧が前記所定の高さになるまでは駆動周波数は共振周波
数に近い一定周波数としたことを特徴とする電磁振動フ
ィーダの駆動制御装置によって解決される。
The above object is achieved by connecting a movable part and a base with a spring, attaching an electromagnet to the movable part or the base, and applying a voltage applied to a coil of the electromagnet and the movable The phase difference from the vibration displacement of the part is detected, and the phase difference is 18
The frequency of the voltage applied to the coil was increased or decreased so as to be 0 degrees, so that resonance oscillation was performed. At the start of driving, the voltage was gradually increased to a predetermined height, and was thereafter kept constant. In the drive control method for an electromagnetic vibration feeder, the drive frequency is set to a constant frequency close to a resonance frequency until the voltage after the start of driving reaches the predetermined height. Is done. Or, connect the movable part and the base with a spring,
An electromagnet is attached to the movable part or the base, and a phase difference between a voltage applied to a coil of the electromagnet and a vibration displacement of the movable part is detected by a phase difference detector, and the phase difference becomes 180 degrees. As described above, the frequency of the voltage of the variable frequency power supply to be applied to the coil is increased / decreased so as to cause resonance oscillation, and the voltage adjusting means for receiving the voltage of the variable frequency power supply causes the voltage to have a predetermined height at the start of driving. In the drive control device of the electromagnetic vibration feeder, which is gradually increased to a constant frequency thereafter, the drive frequency is a constant frequency close to the resonance frequency until the voltage after the start of driving reaches the predetermined height. The problem is solved by a drive control device for an electromagnetic vibration feeder characterized by the above.

【0006】以上の構成により、駆動開始時には所定の
駆動周波数でコイル電圧を図7に示すように変化させ
る。この間、駆動周波数は一定であるために、所望の振
動変位の変化が得られ、ボウル内の部品に衝撃的な移送
力が加わることなく、円滑に、例えば部品の単層供給を
行なうことができる。ソフトスタートの設定時間以降は
従来と同様に共振追尾制御を行ない、時間的な共振周波
数の変動に追従して、常に共振周波数で移送され、この
特性を発揮させることができる。
With the above configuration, at the start of driving, the coil voltage is changed at a predetermined driving frequency as shown in FIG. During this time, since the driving frequency is constant, a desired change in vibration displacement is obtained, and a single-layer supply of components can be performed smoothly, for example, without applying a shocking transfer force to components in the bowl. . After the set time of the soft start, the resonance tracking control is performed in the same manner as in the related art, and the transfer is always performed at the resonance frequency following the fluctuation of the resonance frequency over time, so that this characteristic can be exhibited.

【0007】[0007]

【発明の実施の形態】図1及び図2は、本発明の実施の
形態による共振追尾制御回路のブロック図を示すもので
あるが、以下、本発明の実施の形態において、図面を参
照して説明する。
1 and 2 show block diagrams of a resonance tracking control circuit according to an embodiment of the present invention. Hereinafter, embodiments of the present invention will be described with reference to the drawings. explain.

【0008】本発明の実施の形態では、電磁振動パーツ
フィーダとして、振動パーツフィーダが適用され、図1
においてボウル1内にはその内周壁部にスパイラル状に
トラックが形成されており、これは下方のベース2と等
角度間隔で配設された傾斜板ばね5により、結合されて
いる。ベース2には電磁石3が固定されており、これに
は電磁コイル4が巻装されている。振動パーツフィーダ
全体は防振ゴム6により、床上に設置されている。
In the embodiment of the present invention, a vibration parts feeder is applied as the electromagnetic vibration parts feeder.
In the bowl 1, a track is formed in a spiral shape on an inner peripheral wall portion thereof, and is connected to a lower base 2 by an inclined leaf spring 5 disposed at an equal angular interval. An electromagnet 3 is fixed to the base 2, and an electromagnetic coil 4 is wound around the electromagnet 3. The whole vibrating parts feeder is installed on the floor by the vibration isolating rubber 6.

【0009】板ばね5に近接して振動ピックアップPが
配設されている。このピックアップPは図示しない支柱
により床上を支持されている。これは本発明に係る共振
点追尾制御回路7に電線路W1 を介して接続されてい
る。更に共振点追尾制御回路7から電磁石3の電磁コイ
ル4に出力が加えられている。
A vibration pickup P is provided near the leaf spring 5. The pickup P is supported on the floor by a support (not shown). Which is connected to the resonance point tracking control circuit 7 according to the present invention via the electric line W 1. Further, an output is applied from the resonance point tracking control circuit 7 to the electromagnetic coil 4 of the electromagnet 3.

【0010】図2は図1における共振点追尾制御回路7
の詳細を示すものであるが、主として可変周波数電源1
0、位相検出回路11、メモリ15及び定振巾制御回路
22からなっている。可変周波数電源10には図1にも
示されるように交流電源8がスイッチSを介して接続さ
れており、この出力は定振巾制御回路22及び増巾器1
2を介して電磁石3の電磁コイル4に接続されている。
また図1におけるピックアップPの出力は電線路W1
介して増巾器13に接続される。この増巾出力は位相検
出回路11に供給される。この位相検出回路11には、
更に増巾器12の出力が供給され、電線路W3 を介して
供給されており、この位相検出出力が可変周波数電源1
0に供給されている。これは例えばインバータであって
よい。
FIG. 2 shows a resonance point tracking control circuit 7 shown in FIG.
Of the variable frequency power supply 1
0, a phase detection circuit 11, a memory 15, and a constant amplitude control circuit 22. As shown in FIG. 1, an AC power supply 8 is connected to the variable frequency power supply 10 via a switch S. The output of the AC power supply 8 is supplied to a constant amplitude control circuit 22 and an amplifier 1.
2 is connected to the electromagnetic coil 4 of the electromagnet 3.
The output of the pickup P in FIG. 1 is connected to the increasing width 13 via electric lines W 1. This amplified output is supplied to the phase detection circuit 11. This phase detection circuit 11 includes:
Is further supplied the output of Zohaba 12, is supplied via the electric line W 3, the phase detection output variable frequency power supply 1
0 is supplied. This may be, for example, an inverter.

【0011】本発明の実施の形態によれば、可変周波数
電源10には定振巾制御回路22が接続されているので
あるが、これには所定の振巾指令を与えるための振巾指
令回路21が接続されている。更に振動ピックアップP
の出力が電線路W1 、増巾器13を介して供給されてい
る。また、定振巾制御回路22には駆動開始後所定の時
間に達するまでは電圧を直線的に変化させる回路を備え
ている。更に可変周波数電源10はスイッチSを閉じた
後、メモリ回路15から供給される前回の駆動終了後に
記憶した共振周波数が供給されており、スイッチSの閉
と共にこの周波数を定振巾周波数制御回路22を介して
増巾器12側に供給する。定振巾周波数制御回路22に
ソフトスタートの終了時間に達すると共に定振巾作用を
行ない、可変周波数電源10は位相検出回路11の出力
を受けて本来の共振追尾制御を行なう。
According to the embodiment of the present invention, the variable frequency power supply 10 is connected to the constant amplitude control circuit 22. The constant amplitude control circuit 22 is provided with a constant amplitude control circuit for giving a predetermined amplitude command. 21 are connected. Vibration pickup P
Is supplied via an electric wire W 1 and an amplifier 13. Further, the constant amplitude control circuit 22 includes a circuit that changes the voltage linearly until a predetermined time is reached after the start of driving. Further, after the switch S is closed, the variable frequency power supply 10 is supplied with the resonance frequency supplied from the memory circuit 15 and stored after the previous drive, and this frequency is changed to the constant amplitude frequency control circuit 22 when the switch S is closed. To the amplifier 12 side. When the end time of the soft start is reached, the constant amplitude operation is performed on the constant amplitude frequency control circuit 22, and the variable frequency power supply 10 receives the output of the phase detection circuit 11 and performs the original resonance tracking control.

【0012】また本発明の実施の形態による位相検出回
路11は図3、図4に示されるような方法で位相検出を
行う。これは以下の作用において詳細を説明する。
The phase detection circuit 11 according to the embodiment of the present invention performs phase detection by a method as shown in FIGS. This will be explained in detail in the following operation.

【0013】以上、本発明の実施の形態の構成について
説明したが、次にこの作用について説明する。
The configuration of the embodiment of the present invention has been described above. Next, this operation will be described.

【0014】スイッチSを閉じると交流電源8が可変周
波数電源10に接続され、駆動状態となる。この出力電
圧は増巾器12を介して電磁石3の電磁コイル4に供給
される。これにより、振動パーツフィーダのボウル1は
捩り振動を行う。ピックアップPはこの振動変位を検出
し、増巾器13により増巾されて、位相検出回路11に
加えられる。他方、これにはこの時の電磁コイル4に印
加されている電圧が供給されている。
When the switch S is closed, the AC power supply 8 is connected to the variable frequency power supply 10 and is driven. This output voltage is supplied to the electromagnetic coil 4 of the electromagnet 3 via the amplifier 12. Thereby, the bowl 1 of the vibrating parts feeder performs torsional vibration. The pickup P detects this vibration displacement, is amplified by the amplifier 13, and is applied to the phase detection circuit 11. On the other hand, it is supplied with the voltage applied to the electromagnetic coil 4 at this time.

【0015】図4Aはこの印加電圧Vの時間的変化を示
すものであるが、この電磁コイル4により、一時遅れが
生じ、これに流れる電流Iは図4Bに示すように変化す
る。この電流により、電磁石3とボウル1との間に交番
磁気吸引力が発生し、ボウル1は捩り振動を行うのであ
るが、この振動変位が図4Cに示すように、コイル4に
かかる電圧Vと90度遅れている場合にはすなわちコイ
ル電圧Vが正から負に変わるゼロクロスポイントにおい
て振動変位S1 が正であれば図3に示すように、共振点
ω0 (角周波数)では位相差φは90度であるので、ω
0 よりは小さく周波数を上昇させるべきであると位相検
出回路11で判断して可変周波数電源10の出力周波数
を上昇させる。これが増巾器12で増巾されて電磁石3
のコイル4に流され、より周波数の高い電流でボウル1
を振動させる。共振点ω0 に前回より近づいたことによ
り、振巾は上昇する。可変周波数電源10の出力周波数
が更に高くなってついにω0 を越えて、これより高くな
ると図4A、Dに示すように振動変位S2 とコイル電圧
Vとの関係は位相差で270度となる。
FIG. 4A shows the temporal change of the applied voltage V. The electromagnetic coil 4 causes a temporary delay, and the current I flowing through the electromagnetic coil 4 changes as shown in FIG. 4B. Due to this current, an alternating magnetic attraction force is generated between the electromagnet 3 and the bowl 1, and the bowl 1 performs torsional vibration. As shown in FIG. In the case of a delay of 90 degrees, that is, if the vibration displacement S 1 is positive at the zero cross point where the coil voltage V changes from positive to negative, as shown in FIG. 3, the phase difference φ at the resonance point ω 0 (angular frequency) becomes 90 degrees, so ω
The phase detection circuit 11 determines that the frequency should be increased below 0 , and the output frequency of the variable frequency power supply 10 is increased. This is amplified by the amplifier 12 and the electromagnet 3
Bowl 4 with a higher frequency current
Vibrates. By approaching the resonance point ω 0 from the previous time, the amplitude increases. When the output frequency of the variable frequency power supply 10 further increases and finally exceeds ω 0 and becomes higher than this, the relationship between the vibration displacement S 2 and the coil voltage V becomes 270 degrees in phase difference as shown in FIGS. 4A and 4D. .

【0016】図3の力の周波数と振動変位との位相差の
関係から明らかなように共振点ω0を通過したので可変
周波数電源10の出力周波数を減少させる。なお、図3
において、C1 、C2 、C3 は振動系の粘性係数を表わ
し、C3 >C2 >C1 である。
As is clear from the relationship between the frequency of the force and the phase difference between the vibration displacement shown in FIG. 3, the output frequency of the variable frequency power supply 10 is reduced because it has passed the resonance point ω 0 . Note that FIG.
, C 1 , C 2 , and C 3 represent viscosity coefficients of the vibration system, and C 3 > C 2 > C 1 .

【0017】以上のようにして可変周波数電源10の出
力周波数の増減を行ってついにはこの振動パーツフィー
ダは共振周波数で駆動するようになる。振動パーツフィ
ーダのボウル1内の図示しないスパイラルトラックでは
部品が所定の姿勢になるように部品整列手段により整列
される。この姿勢で次工程に供給される。
As described above, the output frequency of the variable frequency power supply 10 is increased or decreased, and finally the vibrating parts feeder is driven at the resonance frequency. In a spiral track (not shown) in the bowl 1 of the vibrating parts feeder, parts are aligned by a part aligning means so as to have a predetermined posture. It is supplied to the next process in this posture.

【0018】振動パーツフィーダの駆動を停止させるべ
くスイッチSを開くと可変周波数電源10からの出力は
なくなり、ボウル1の駆動は停止する。不揮発性のメモ
リ15にはスイッチSを切る前の可変周波数電源10の
出力周波数が記憶されている。すなわち、駆動中あるい
は駆動中の一定時間毎に、可変周波数10の出力周波数
がメモリ15に記憶される。
When the switch S is opened to stop the driving of the vibrating parts feeder, the output from the variable frequency power supply 10 is stopped, and the driving of the bowl 1 is stopped. The output frequency of the variable frequency power supply 10 before the switch S is turned off is stored in the nonvolatile memory 15. That is, the output frequency of the variable frequency 10 is stored in the memory 15 during driving or at regular intervals during driving.

【0019】振動パーツフィーダを再び駆動開始させる
べく、スイッチSを閉じるとメモリ15でこの時記憶さ
れている共振周波数を出力すべく可変周波数電源10が
駆動される。従って振動パーツフィーダのボウル1は最
初から一定の共振周波数で駆動される。従って従来のよ
うに強制振動から共振周波数に移るときのショックがな
くなり、また電源容量を小とすることができる。更に本
発明の実施形態ではソフトスタートが行なわれる。
When the switch S is closed to restart the driving of the vibrating parts feeder, the variable frequency power supply 10 is driven to output the resonance frequency stored in the memory 15 at this time. Therefore, the bowl 1 of the vibrating parts feeder is driven at a constant resonance frequency from the beginning. Therefore, there is no shock when shifting from the forced vibration to the resonance frequency as in the related art, and the power supply capacity can be reduced. Further, in the embodiment of the present invention, a soft start is performed.

【0020】以下、駆動停止、駆動開始を繰り返すごと
に、停止ごとにメモリ15の内容が書き換えられるので
あるが、1か月単位、1年単位では振動パーツフィーダ
の共振周波数が変動する。したがって従来のように共振
周波数をその追尾制御して得ていたのでは上記のように
強制振動から共振振動に移るために多くの電流を流さね
ばならないのであるが、年単位では強制振動に移る程、
共振周波数の変動が大きくとも前回の共振周波数で駆動
を開始することができるので、常に振動パーツフィーダ
をショックなく電源容量を小として駆動することができ
る。
In the following, the contents of the memory 15 are rewritten every time the driving is stopped and the driving is repeated, but the resonance frequency of the vibrating parts feeder fluctuates in units of one month or one year. Therefore, if the resonance frequency is obtained by controlling the tracking as in the past, a large amount of current must flow to shift from the forced oscillation to the resonance oscillation as described above. ,
Even if the fluctuation of the resonance frequency is large, the driving can be started at the previous resonance frequency, so that the vibration parts feeder can always be driven with a small power supply capacity without a shock.

【0021】以上のような構成により、共振追尾制御は
ソフトスタート終了時点以降行なわれるので、この駆動
開始後の設定時間までは一定の駆動周波数すなわち、本
実施形態では共振周波数で振動変位は所望どおり徐々に
上昇し、従って、振動パーツフィーダのボウル内の部品
が整列手段、例えばワイパーに急速に進行して、部品詰
まりを生ずることはなく、以後、本来の部品整列作用を
行なうことができる。
With the above configuration, the resonance tracking control is performed after the end of the soft start. Therefore, the drive frequency is constant until the set time after the start of the drive. The parts in the bowl of the vibrating parts feeder are gradually raised, so that the parts in the bowl of the vibrating parts feeder do not rapidly advance to the aligning means, for example, the wiper, so that the parts are not clogged, and thereafter the original part aligning operation can be performed.

【0022】すなわち、図5に示すように駆動開始後、
時間t0 までは駆動周波数はf1 で一定であり、設定時
間t0 以降、追尾制御を行なうのであるが、図示するよ
うに増減量はわずかであり、短時間で一定の駆動周波数
1 にすなわち共振点に近付く。これにより図6で示す
ように設定時間t0 までは振動変位は0からaまでリニ
アに上昇し、時間t0 以降、わずかな振動変位の増減を
繰り返した後、短時間で所定の振動にaとなる。
That is, as shown in FIG.
The driving frequency until time t 0 is constant at f 1, the set time after t 0, but of performing the tracking control, increase or decrease the amount as shown is only, fixed in a short time the driving frequency f 1 That is, it approaches the resonance point. Thereby the vibration displacement to the set time t 0 as shown in FIG. 6 rises linearly from zero to a, after repeated increase and decrease of time after t 0, slight vibration displacement, a the predetermined vibration in a short time Becomes

【0023】以上、本発明の実施の形態について説明し
たが、勿論、本発明はこれに限定されることなく、本発
明の技術的思想に基づいて種々の変形が可能である。
Although the embodiment of the present invention has been described above, the present invention is, of course, not limited to this, and various modifications can be made based on the technical idea of the present invention.

【0024】例えば、以上の実施例では電磁振動フィー
ダとして直線的ねじり振動を行なう振動パーツフィーダ
を説明したが、楕円振動パーツフィーダにも本発明は適
用可能である。この場合には、垂直加振用板ばね、水平
用加振板ばね及び垂直加振用電磁石及び水平加振用電磁
石を有し、両加振力で得られる両振動変位の間に所定の
位相差をもたせて楕円振動を行なわせるのであるが、こ
の一方の駆動部、例えば水平加振力側に本発明を適用し
てもよい。
For example, in the above embodiment, the vibration parts feeder which performs linear torsional vibration has been described as the electromagnetic vibration feeder, but the present invention is also applicable to an elliptical vibration parts feeder. In this case, a vertical vibration plate spring, a horizontal vibration plate spring, a vertical vibration electromagnet and a horizontal vibration electromagnet are provided, and a predetermined position is provided between both vibration displacements obtained by both vibration forces. Although the elliptical vibration is performed with a phase difference, the present invention may be applied to one of the driving units, for example, the horizontal vibration force side.

【0025】また、直線的な振動を行なうリニア振動フ
ィーダにも本発明は適用可能である。
The present invention is also applicable to a linear vibration feeder that performs linear vibration.

【0026】また、以上の実施形態では、駆動開始後一
定とする駆動周波数を前回の駆動終了時に記憶した共振
周波数としたが、これに限ることなく、予想される共振
周波数の近傍の共振周波数を、一定とする周波数として
用いてもよい。
In the above-described embodiment, the drive frequency that is constant after the start of driving is the resonance frequency stored at the end of the previous drive. However, the present invention is not limited to this. May be used as a constant frequency.

【0027】[0027]

【発明の効果】以上述べたように本発明の電磁振動フィ
ーダの駆動制御方法及びその装置によれば駆動開始後コ
イル電圧を徐々に上昇させて、振動変位もこれに追随さ
せるようにすることができ、振動変位が急激に上昇した
り、あるいはソフトスタート終了後に駆動周波数が変動
するとしても、電磁振動フィーダの本来の共振追尾制御
を確実に行なわせることができる。
As described above, according to the method and the apparatus for controlling the drive of the electromagnetic vibration feeder of the present invention, the coil voltage is gradually increased after the start of the drive so that the vibration displacement can follow this. Even if the vibration displacement suddenly rises or the drive frequency fluctuates after the soft start, the original resonance tracking control of the electromagnetic vibration feeder can be reliably performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による振動パーツフィーダ
及びこの駆動制御用の共振点追尾制御回路と共に示すブ
ロック図である。
FIG. 1 is a block diagram showing a vibration parts feeder and a resonance point tracking control circuit for drive control according to an embodiment of the present invention.

【図2】図1における共振点追尾制御回路の詳細を示す
ブロック図である。
FIG. 2 is a block diagram showing details of a resonance point tracking control circuit in FIG. 1;

【図3】本発明の実施の形態の作用を示すための力の角
周波数−振動変位との位相差の関係を示すチャートであ
る。
FIG. 3 is a chart showing the relationship between the angular frequency of force and the phase difference between vibration displacement and force for illustrating the operation of the embodiment of the present invention.

【図4】本発明の実施の形態の作用を示すチャートで、
Aはコイル電圧の時間的変化、Bはコイル電流の時間的
変化、Cは振動変位の共振周波数より低い周波数で駆動
されるときの時間的変化、Dは共振周波数より高い周波
数で駆動されるときの振動変位の時間的変化である。
FIG. 4 is a chart showing the operation of the embodiment of the present invention;
A is a time change of the coil voltage, B is a time change of the coil current, C is a time change when driven at a frequency lower than the resonance frequency of the vibration displacement, and D is a time change at a frequency higher than the resonance frequency. Is a temporal change of the vibration displacement of the radiator.

【図5】本発明の実施の形態によるソフトスタートの作
用を示す駆動周波数の時間的変化を示すチャートであ
る。
FIG. 5 is a chart showing a temporal change of a driving frequency showing an operation of a soft start according to the embodiment of the present invention.

【図6】同ソフトスタートの作用を示す振動変位の時間
的変化を示すチャートである。
FIG. 6 is a chart showing a temporal change of a vibration displacement showing an operation of the soft start.

【図7】ソフトスタート用のコイル電圧の時間的変化を
示すチャートである。
FIG. 7 is a chart showing a temporal change of a coil voltage for soft start.

【図8】同従来例における駆動開始後の駆動周波数の時
間的変化を示すチャートである。
FIG. 8 is a chart showing a temporal change of a driving frequency after driving is started in the conventional example.

【図9】同従来例における駆動開始後振動変位の時間的
変化を示すチャートである。
FIG. 9 is a chart showing a temporal change of a vibration displacement after the start of driving in the conventional example.

【図10】振動パーツフィーダのコイル電圧による共振
点の変化を示すチャートである。
FIG. 10 is a chart showing a change in a resonance point according to a coil voltage of a vibrating parts feeder.

【符号の説明】[Explanation of symbols]

7 共振点追尾制御回路 10 可変周波数電源 11 位相検出回路 21 振巾指令回路 22 定振巾制御回路 7 Resonance point tracking control circuit 10 Variable frequency power supply 11 Phase detection circuit 21 Amplitude command circuit 22 Constant amplitude control circuit

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 可動部と基台とをばねで結合し、前記可
動部か前記基台に電磁石を取付け、該電磁石のコイルに
印加される電圧と前記可動部の振動変位との位相差を検
出して、該位相差が180度となるように前記コイルに
印加される電圧の周波数を増減させて共振振動させるよ
うにし、駆動開始時には前記電圧を所定の高さにまで徐
々に上昇させて、以後一定とするようにした電磁振動フ
ィーダの駆動制御方法において、駆動開始後の前記電圧
が前記所定の高さになるまでは駆動周波数は共振周波数
に近い一定周波数としたことを特徴とする電磁振動フィ
ーダの駆動制御方法。
1. A movable part and a base are connected by a spring, an electromagnet is attached to the movable part or the base, and a phase difference between a voltage applied to a coil of the electromagnet and a vibration displacement of the movable part is determined. Detecting and increasing or decreasing the frequency of the voltage applied to the coil so that the phase difference becomes 180 degrees so as to cause resonance oscillation, and at the start of driving, gradually increase the voltage to a predetermined height. In the drive control method for an electromagnetic vibration feeder that is made constant thereafter, the drive frequency is set to a constant frequency close to a resonance frequency until the voltage after the start of driving reaches the predetermined height. Drive control method for vibration feeder.
【請求項2】 前回の駆動時の前記電圧の周波数を記憶
し、再駆動時には該記憶した周波数を前記一定周波数と
したことを特徴とする請求項1に記載の電磁振動フィー
ダの駆動制御方法。
2. The drive control method for an electromagnetic vibration feeder according to claim 1, wherein the frequency of the voltage at the time of previous driving is stored, and the stored frequency is set to the constant frequency at the time of re-driving.
【請求項3】 前記記憶される前記前回の駆動時の前記
電圧の周波数は、駆動毎に書き変えられるようにしたこ
とを特徴とする請求項2に記載の電磁振動フィーダの駆
動制御方法。
3. The drive control method for an electromagnetic vibration feeder according to claim 2, wherein the stored frequency of the voltage at the time of the previous drive is rewritten for each drive.
【請求項4】 前記位相差の検出は前記電圧の負から正
へ又は正から負へのゼロクロスポイントにおいて前記振
動変位が正か負かによって行うようにした請求項1〜3
のいづれかに記載の電磁振動フィーダの駆動制御方法。
4. The detection of the phase difference according to whether the vibration displacement is positive or negative at a zero cross point of the voltage from negative to positive or from positive to negative.
The drive control method of the electromagnetic vibration feeder according to any one of the above.
【請求項5】 駆動開始後の前記電圧は所定の勾配で直
線的に上昇させることにより、前記徐々に上昇させるよ
うにしたことを特徴とする電磁振動フィーダの駆動制御
方法。
5. A drive control method for an electromagnetic vibration feeder, wherein the voltage after the start of driving is gradually increased by linearly increasing the voltage at a predetermined gradient.
【請求項6】 前記電圧が所定の高さに達した後は、所
定の振巾で前記可動部が振動するように前記電圧を調節
して定振巾制御するようにしたことを特徴とする電磁振
動フィーダの駆動制御方法。
6. After the voltage reaches a predetermined height, the voltage is adjusted so that the movable portion vibrates at a predetermined amplitude, and the constant amplitude control is performed. Drive control method for electromagnetic vibration feeder.
【請求項7】 可動部と基台とをばねで結合し、前記可
動部か前記基台に電磁石を取付け、該電磁石のコイルに
印加される電圧と前記可動部の振動変位との位相差を位
相差検出器により検出して、該位相差が180度となる
ように前記コイルに印加されるべき可変周波数電源の電
圧の周波数を増減させて共振振動させるようにし、かつ
前記可変周波数電源の電圧を受ける電圧調節手段によ
り、駆動開始時には前記電圧を所定の高さにまで徐々に
上昇させて、以後一定とするようにした電磁振動フィー
ダの駆動制御装置において、駆動開始後の前記電圧が前
記所定の高さになるまでは駆動周波数は共振周波数に近
い一定周波数としたことを特徴とする電磁振動フィーダ
の駆動制御装置。
7. A movable part and a base are connected by a spring, an electromagnet is attached to the movable part or the base, and a phase difference between a voltage applied to a coil of the electromagnet and a vibration displacement of the movable part is determined. The frequency of the voltage of the variable frequency power supply to be applied to the coil is increased or decreased so that the phase difference is detected by the phase difference detector and becomes 180 degrees, so that resonance oscillation occurs, and the voltage of the variable frequency power supply is In the drive control device of the electromagnetic vibration feeder, the voltage is gradually increased to a predetermined height at the start of driving by the voltage adjusting means receiving the voltage, and thereafter the voltage is fixed. The drive frequency of the electromagnetic vibration feeder is controlled to a constant frequency close to the resonance frequency until the height of the electromagnetic vibration feeder is reached.
【請求項8】 前回駆動時の前記電圧の周波数を記憶
し、再駆動時には該記憶した周波数を前記一定周波数と
したことを特徴とする請求項7に記載の電磁振動フィー
ダの駆動制御装置。
8. The drive control device for an electromagnetic vibration feeder according to claim 7, wherein the frequency of the voltage at the time of previous driving is stored, and the stored frequency is set to the constant frequency at the time of re-driving.
【請求項9】 前記記憶される前記前回駆動時の前記電
圧の周波数は、駆動毎に書き変えられるようにしたこと
を特徴とする請求項8に記載の電磁振動フィーダの駆動
制御装置。
9. The drive control device for an electromagnetic vibration feeder according to claim 8, wherein the stored frequency of the voltage at the time of the previous drive is rewritten for each drive.
【請求項10】 前記位相差の検出は前記電圧の負から
正へ又は正から負へのゼロクロスポイントにおいて前記
振動変位が正か負かによって行うようにした請求項7又
は8に記載の電磁振動フィーダの駆動制御装置。
10. The electromagnetic vibration according to claim 7, wherein the detection of the phase difference is performed depending on whether the vibration displacement is positive or negative at a zero cross point of the voltage from negative to positive or from positive to negative. Drive control device for feeder.
JP29941997A 1997-10-16 1997-10-16 Driving control method and apparatus for electromagnetic vibration feeder Expired - Fee Related JP4066480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29941997A JP4066480B2 (en) 1997-10-16 1997-10-16 Driving control method and apparatus for electromagnetic vibration feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29941997A JP4066480B2 (en) 1997-10-16 1997-10-16 Driving control method and apparatus for electromagnetic vibration feeder

Publications (2)

Publication Number Publication Date
JPH11116029A true JPH11116029A (en) 1999-04-27
JP4066480B2 JP4066480B2 (en) 2008-03-26

Family

ID=17872325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29941997A Expired - Fee Related JP4066480B2 (en) 1997-10-16 1997-10-16 Driving control method and apparatus for electromagnetic vibration feeder

Country Status (1)

Country Link
JP (1) JP4066480B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049551A (en) * 2011-08-31 2013-03-14 Sinfonia Technology Co Ltd Drive control method and device of electromagnetic vibration feeder
JP2013252961A (en) * 2012-06-08 2013-12-19 Sinfonia Technology Co Ltd Workpiece sorting system
CN107428476A (en) * 2015-03-05 2017-12-01 昕芙旎雅有限公司 Vibrating feeder control device and vibrating feeder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049551A (en) * 2011-08-31 2013-03-14 Sinfonia Technology Co Ltd Drive control method and device of electromagnetic vibration feeder
JP2013252961A (en) * 2012-06-08 2013-12-19 Sinfonia Technology Co Ltd Workpiece sorting system
CN107428476A (en) * 2015-03-05 2017-12-01 昕芙旎雅有限公司 Vibrating feeder control device and vibrating feeder

Also Published As

Publication number Publication date
JP4066480B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
KR101173807B1 (en) Linear vibration motor drive controlling apparatus
JP5915428B2 (en) Driving circuit and driving method
JPH11116029A (en) Method and device for driving and controlling electromagnetic vibration feeder
JP4211082B2 (en) Drive control method and apparatus for vibration feeder
JP4211073B2 (en) Drive control method and apparatus for elliptical vibration feeder
JP4078694B2 (en) Oval vibration parts feeder drive control method and elliptic vibration parts feeder
JP5843142B2 (en) Electromagnetic vibration feeder drive control method and apparatus, and electromagnetic vibration feeder
JP3912562B2 (en) Elliptical vibration parts feeder
JP3944757B2 (en) Elliptical vibration parts feeder
JPH11193124A (en) Drive controlling method for ollipitical vibration feeder and device thereof
JP2893917B2 (en) Drive control device for vibrator
JP4168464B2 (en) Driving control method and apparatus for electromagnetic vibration feeder
JPH11180529A (en) Method of drivingly controlling elliptical vibration parts feeder
JPS63217288A (en) Electromagnetic driving circuit
JPS627083B2 (en)
JPH11189323A (en) Method and device for controlling operation of elliptical vibrating parts feeder
MXPA05011564A (en) Assembly for moving a barrier and method of controlling the same.
JPH11189324A (en) Drive control method of elliptical vibration feeder and device thereof
JPH11130229A (en) Method for controlling drive of elliptic vibrating part feeder and device therefor
JPH11199027A (en) Carrying speed control method of ellipse vibrator
JPH09271174A (en) Power supply equipment and control equipment of vibration wave actuator
JP2019134633A (en) Vibration type driving device, driving method of vibration type actuator, and electronic apparatus
JPH10252930A (en) Solenoid valve drive device
JPS61169629A (en) Electronic governor for diesel engine
JPH10201230A (en) Dc high voltage power supply drive circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070907

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees