JP4066480B2 - Driving control method and apparatus for electromagnetic vibration feeder - Google Patents

Driving control method and apparatus for electromagnetic vibration feeder Download PDF

Info

Publication number
JP4066480B2
JP4066480B2 JP29941997A JP29941997A JP4066480B2 JP 4066480 B2 JP4066480 B2 JP 4066480B2 JP 29941997 A JP29941997 A JP 29941997A JP 29941997 A JP29941997 A JP 29941997A JP 4066480 B2 JP4066480 B2 JP 4066480B2
Authority
JP
Japan
Prior art keywords
voltage
frequency
drive
vibration feeder
electromagnetic vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29941997A
Other languages
Japanese (ja)
Other versions
JPH11116029A (en
Inventor
裕彦 村田
昌伸 冨田
Original Assignee
神鋼電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神鋼電機株式会社 filed Critical 神鋼電機株式会社
Priority to JP29941997A priority Critical patent/JP4066480B2/en
Publication of JPH11116029A publication Critical patent/JPH11116029A/en
Application granted granted Critical
Publication of JP4066480B2 publication Critical patent/JP4066480B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Jigging Conveyors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電磁振動フィーダの駆動制御方法及びその装置に関する。
【0002】
【従来の技術】
この種の装置においては、電磁振動フィーダ、例えば振動パーツフィーダの駆動開始時の立ち上がり特性を図7に示すようにして行なっている。すなわち、コイルにかかる電圧は時間t0 までほぼ直線的に上昇させる。t0 以降を所定の振巾に対する電圧として一定にしている。これにより振動パーツフィーダのボウル内の部品、例えばチップ状の部品が駆動開始時に部品整列手段、例えば板状の部品を単層にするためのワイパーの近傍に位置する部品が駆動開始共に滑らかに下流側に単層供給されるようにしている。しかしながら共振追尾制御における振動パーツフィーダのボウルは駆動開始後、図8に示すように周波数が変化する。すなわち、駆動駆動開始時の周波数から最初は上昇し、ついで減少し、時間t0 以降、図示のような経緯を示すのであるが、これは図10に示すような共振点変化に起因している。
【0003】
図10は振動パーツフィーダのコイルの電圧が20ボルト、30ボルト、40ボルト、50ボルト、60ボルト及び70ボルトと変化させた場合の周波数−振巾(振動変位)特性を示すものであるが、同一の振動パーツフィーダに対し、電圧を大とする、すなわち振巾を一定の周波数に対し大とする。振巾が大きくなる程、共振周波数が低下する。例えば図10に示すようにコイル電圧が70ボルトの場合には共振点が約54.2ヘルツであるのに対して、コイル電圧が20ボルトの場合には約55.8ヘルツとなっている。このような共振点変化を示すのであるが、これは振動パーツフィーダは公知のようにボウルとベースとが、等角度間隔に配列された傾斜板ばねにより、結合されており、これは一般に重ね板ばねとして用いられる。捩り振巾が大となれば、この上下端部を固定しているボルト間の振動に供する有効長が増大する。これにより板ばねのばね常数が低下する。すなわち。共振周波数が低下する。これが一因であると考えられる。図10は上述したようにコイル電圧が20ボルトから70ボルトまで変化させた場合に共振周波数の推移を示している。これは実験例であるが、図7に示すようにコイル電圧を時間t0 まで徐々に変化させているときに共振周波数が振巾の共振時における増大と共に低下しているので、共振点推移の速さにもよるが例えば図8に示すような駆動周波数の時間的変化が見られる。共振点近傍では周波数がわずかに変化しただけで大きく振巾が変動する。いわば不安定な領域であるが、このためにボウルの振動変位は図9に示すように変化する。すなわち、最初は図7のコイル電圧の上昇に近似した振動の変位の変化を得られるのであるが、図8に示すような現象のために振動変位は時間t0 至るまでに、急激に増大する時間域があり、時刻t0 を経過したのちも急激に低下し、また増大するといういわゆるハンチング現象を示し、制御を不安定にする。
【0004】
【発明が解決しようとする課題】
本発明は上述の問題点に鑑みてなされ、本来のソフトスタートを行ないながら、駆動中所望の共振追尾制御を行なうことができる電磁振動フィーダの駆動制御方法及びその装置を提供することを課題とする。
【0005】
【課題を解決するための手段】
以上の課題は、可動部と基台とをばねで結合し、前記可動部か前記基台に電磁石を取付け、該電磁石のコイルに印加される電圧と前記可動部の振動変位との位相差を検出して、該位相差が180度となるように前記コイルに印加される電圧の周波数を増減させて共振振動させるようにし、駆動開始時には前記電圧を所定の高さにまで徐々に上昇させて、以後一定とするようにした電磁振動フィーダの駆動制御方法において、前回の駆動時の前記電圧の周波数を記憶し、再駆動時には駆動開始後の前記電圧が前記所定の高さになるまでは駆動周波数は前記記憶した周波数を共振周波数に近い一定周波数としたことを特徴とする電磁振動フィーダの駆動制御方法によって解決される。又は、可動部と基台とをばねで結合し、前記可動部か前記基台に電磁石を取付け、該電磁石のコイルに印加される電圧と前記可動部の振動変位との位相差を位相差検出器により検出して、該位相差が180度となるように前記コイルに印加されるべき可変周波数電源の電圧の周波数を増減させて共振振動させるようにし、かつ前記可変周波数電源の電圧を受ける電圧調節手段により、駆動開始時には前記電圧を所定の高さにまで徐々に上昇させて、以後一定とするようにした電磁振動フィーダの駆動制御装置において、前回駆動時の前記電圧の周波数を記憶し、再駆動時には駆動開始後の前記電圧が前記所定の高さになるまでは前記記憶した周波数を共振周波数に近い一定周波数としたことを特徴とする電磁振動フィーダの駆動制御装置によって解決される。
【0006】
以上の構成により、駆動開始時には所定の駆動周波数でコイル電圧を図7に示すように変化させる。この間、駆動周波数は一定であるために、所望の振動変位の変化が得られ、ボウル内の部品に衝撃的な移送力が加わることなく、円滑に、例えば部品の単層供給を行なうことができる。ソフトスタートの設定時間以降は従来と同様に共振追尾制御を行ない、時間的な共振周波数の変動に追従して、常に共振周波数で移送され、この特性を発揮させることができる。
【0007】
【発明の実施の形態】
図1及び図2は、本発明の実施の形態による共振追尾制御回路のブロック図を示すものであるが、以下、本発明の実施の形態において、図面を参照して説明する。
【0008】
本発明の実施の形態では、電磁振動パーツフィーダとして、振動パーツフィーダが適用され、図1においてボウル1内にはその内周壁部にスパイラル状にトラックが形成されており、これは下方のベース2と等角度間隔で配設された傾斜板ばね5により、結合されている。ベース2には電磁石3が固定されており、これには電磁コイル4が巻装されている。振動パーツフィーダ全体は防振ゴム6により、床上に設置されている。
【0009】
板ばね5に近接して振動ピックアップPが配設されている。このピックアップPは図示しない支柱により床上を支持されている。これは本発明に係る共振点追尾制御回路7に電線路W1 を介して接続されている。更に共振点追尾制御回路7から電磁石3の電磁コイル4に出力が加えられている。
【0010】
図2は図1における共振点追尾制御回路7の詳細を示すものであるが、主として可変周波数電源10、位相検出回路11、メモリ15及び定振巾制御回路22からなっている。可変周波数電源10には図1にも示されるように交流電源8がスイッチSを介して接続されており、この出力は定振巾制御回路22及び増巾器12を介して電磁石3の電磁コイル4に接続されている。また図1におけるピックアップPの出力は電線路W1 を介して増巾器13に接続される。この増巾出力は位相検出回路11に供給される。この位相検出回路11には、更に増巾器12の出力が供給され、電線路W3 を介して供給されており、この位相検出出力が可変周波数電源10に供給されている。これは例えばインバータであってよい。
【0011】
本発明の実施の形態によれば、可変周波数電源10には定振巾制御回路22が接続されているのであるが、これには所定の振巾指令を与えるための振巾指令回路21が接続されている。更に振動ピックアップPの出力が電線路W1 、増巾器13を介して供給されている。また、定振巾制御回路22には駆動開始後所定の時間に達するまでは電圧を直線的に変化させる回路を備えている。更に可変周波数電源10はスイッチSを閉じた後、メモリ回路15から供給される前回の駆動終了後に記憶した共振周波数が供給されており、スイッチSの閉と共にこの周波数を定振巾周波数制御回路22を介して増巾器12側に供給する。定振巾周波数制御回路22にソフトスタートの終了時間に達すると共に定振巾作用を行ない、可変周波数電源10は位相検出回路11の出力を受けて本来の共振追尾制御を行なう。
【0012】
また本発明の実施の形態による位相検出回路11は図3、図4に示されるような方法で位相検出を行う。これは以下の作用において詳細を説明する。
【0013】
以上、本発明の実施の形態の構成について説明したが、次にこの作用について説明する。
【0014】
スイッチSを閉じると交流電源8が可変周波数電源10に接続され、駆動状態となる。この出力電圧は増巾器12を介して電磁石3の電磁コイル4に供給される。これにより、振動パーツフィーダのボウル1は捩り振動を行う。ピックアップPはこの振動変位を検出し、増巾器13により増巾されて、位相検出回路11に加えられる。他方、これにはこの時の電磁コイル4に印加されている電圧が供給されている。
【0015】
図4Aはこの印加電圧Vの時間的変化を示すものであるが、この電磁コイル4により、一時遅れが生じ、これに流れる電流Iは図4Bに示すように変化する。この電流により、電磁石3とボウル1との間に交番磁気吸引力が発生し、ボウル1は捩り振動を行うのであるが、この振動変位が図4Cに示すように、コイル4にかかる電圧Vと90度遅れている場合にはすなわちコイル電圧Vが正から負に変わるゼロクロスポイントにおいて振動変位S1 が正であれば図3に示すように、共振点ω0 (角周波数)では位相差φは90度であるので、ω0 よりは小さく周波数を上昇させるべきであると位相検出回路11で判断して可変周波数電源10の出力周波数を上昇させる。これが増巾器12で増巾されて電磁石3のコイル4に流され、より周波数の高い電流でボウル1を振動させる。共振点ω0 に前回より近づいたことにより、振巾は上昇する。可変周波数電源10の出力周波数が更に高くなってついにω0 を越えて、これより高くなると図4A、Dに示すように振動変位S2 とコイル電圧Vとの関係は位相差で270度となる。
【0016】
図3の力の周波数と振動変位との位相差の関係から明らかなように共振点ω0 を通過したので可変周波数電源10の出力周波数を減少させる。なお、図3において、C1 、C2 、C3 は振動系の粘性係数を表わし、C3 >C2 >C1 である。
【0017】
以上のようにして可変周波数電源10の出力周波数の増減を行ってついにはこの振動パーツフィーダは共振周波数で駆動するようになる。振動パーツフィーダのボウル1内の図示しないスパイラルトラックでは部品が所定の姿勢になるように部品整列手段により整列される。この姿勢で次工程に供給される。
【0018】
振動パーツフィーダの駆動を停止させるべくスイッチSを開くと可変周波数電源10からの出力はなくなり、ボウル1の駆動は停止する。不揮発性のメモリ15にはスイッチSを切る前の可変周波数電源10の出力周波数が記憶されている。すなわち、駆動中あるいは駆動中の一定時間毎に、可変周波数10の出力周波数がメモリ15に記憶される。
【0019】
振動パーツフィーダを再び駆動開始させるべく、スイッチSを閉じるとメモリ15でこの時記憶されている共振周波数を出力すべく可変周波数電源10が駆動される。従って振動パーツフィーダのボウル1は最初から一定の共振周波数で駆動される。従って従来のように強制振動から共振周波数に移るときのショックがなくなり、また電源容量を小とすることができる。更に本発明の実施形態ではソフトスタートが行なわれる。
【0020】
以下、駆動停止、駆動開始を繰り返すごとに、停止ごとにメモリ15の内容が書き換えられるのであるが、1か月単位、1年単位では振動パーツフィーダの共振周波数が変動する。したがって従来のように共振周波数をその追尾制御して得ていたのでは上記のように強制振動から共振振動に移るために多くの電流を流さねばならないのであるが、年単位では強制振動に移る程、共振周波数の変動が大きくとも前回の共振周波数で駆動を開始することができるので、常に振動パーツフィーダをショックなく電源容量を小として駆動することができる。
【0021】
以上のような構成により、共振追尾制御はソフトスタート終了時点以降行なわれるので、この駆動開始後の設定時間までは一定の駆動周波数すなわち、本実施形態では共振周波数で振動変位は所望どおり徐々に上昇し、従って、振動パーツフィーダのボウル内の部品が整列手段、例えばワイパーに急速に進行して、部品詰まりを生ずることはなく、以後、本来の部品整列作用を行なうことができる。
【0022】
すなわち、図5に示すように駆動開始後、時間t0 までは駆動周波数はf1 で一定であり、設定時間t0 以降、追尾制御を行なうのであるが、図示するように増減量はわずかであり、短時間で一定の駆動周波数f1 にすなわち共振点に近付く。これにより図6で示すように設定時間t0 までは振動変位は0からaまでリニアに上昇し、時間t0 以降、わずかな振動変位の増減を繰り返した後、短時間で所定の振動にaとなる。
【0023】
以上、本発明の実施の形態について説明したが、勿論、本発明はこれに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。
【0024】
例えば、以上の実施例では電磁振動フィーダとして直線的ねじり振動を行なう振動パーツフィーダを説明したが、楕円振動パーツフィーダにも本発明は適用可能である。この場合には、垂直加振用板ばね、水平用加振板ばね及び垂直加振用電磁石及び水平加振用電磁石を有し、両加振力で得られる両振動変位の間に所定の位相差をもたせて楕円振動を行なわせるのであるが、この一方の駆動部、例えば水平加振力側に本発明を適用してもよい。
【0025】
また、直線的な振動を行なうリニア振動フィーダにも本発明は適用可能である。
【0026】
また、以上の実施形態では、駆動開始後一定とする駆動周波数を前回の駆動終了時に記憶した共振周波数としたが、これに限ることなく、予想される共振周波数の近傍の共振周波数を、一定とする周波数として用いてもよい。
【0027】
【発明の効果】
以上述べたように本発明の電磁振動フィーダの駆動制御方法及びその装置によれば駆動開始後コイル電圧を徐々に上昇させて、振動変位もこれに追随させるようにすることができ、振動変位が急激に上昇したり、あるいはソフトスタート終了後に駆動周波数が変動するとしても、電磁振動フィーダの本来の共振追尾制御を確実に行なわせることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態による振動パーツフィーダ及びこの駆動制御用の共振点追尾制御回路と共に示すブロック図である。
【図2】図1における共振点追尾制御回路の詳細を示すブロック図である。
【図3】本発明の実施の形態の作用を示すための力の角周波数−振動変位との位相差の関係を示すチャートである。
【図4】本発明の実施の形態の作用を示すチャートで、Aはコイル電圧の時間的変化、Bはコイル電流の時間的変化、Cは振動変位の共振周波数より低い周波数で駆動されるときの時間的変化、Dは共振周波数より高い周波数で駆動されるときの振動変位の時間的変化である。
【図5】本発明の実施の形態によるソフトスタートの作用を示す駆動周波数の時間的変化を示すチャートである。
【図6】同ソフトスタートの作用を示す振動変位の時間的変化を示すチャートである。
【図7】ソフトスタート用のコイル電圧の時間的変化を示すチャートである。
【図8】同従来例における駆動開始後の駆動周波数の時間的変化を示すチャートである。
【図9】同従来例における駆動開始後振動変位の時間的変化を示すチャートである。
【図10】振動パーツフィーダのコイル電圧による共振点の変化を示すチャートである。
【符号の説明】
7 共振点追尾制御回路
10 可変周波数電源
11 位相検出回路
21 振巾指令回路
22 定振巾制御回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drive control method and apparatus for an electromagnetic vibration feeder.
[0002]
[Prior art]
In this type of apparatus, the rising characteristics at the start of driving of an electromagnetic vibration feeder, for example, a vibration parts feeder, are performed as shown in FIG. That is, the voltage applied to the coil is increased almost linearly until time t 0 . The voltage after t 0 is made constant as a voltage for a predetermined amplitude. As a result, the parts in the bowl of the vibrating parts feeder, for example, chip-shaped parts, when the driving starts, the parts located in the vicinity of the wiper for making the single-layer plate-shaped parts, for example, the parts are smoothly downstream at the start of driving. A single layer is supplied to the side. However, the frequency of the bowl of the vibration parts feeder in the resonance tracking control changes as shown in FIG. That is, the frequency first increases from the frequency at the start of driving and then decreases, and after time t 0 , the background as shown in the figure is shown. This is due to the resonance point change as shown in FIG. .
[0003]
FIG. 10 shows the frequency-width (vibration displacement) characteristics when the voltage of the coil of the vibration parts feeder is changed to 20 volts, 30 volts, 40 volts, 50 volts, 60 volts and 70 volts. For the same vibrating parts feeder, the voltage is increased, that is, the amplitude is increased for a certain frequency. The resonance frequency decreases as the amplitude increases. For example, as shown in FIG. 10, when the coil voltage is 70 volts, the resonance point is about 54.2 hertz, whereas when the coil voltage is 20 volts, it is about 55.8 hertz. This resonance point change is shown. This is because, as is well known, in a vibrating parts feeder, a bowl and a base are connected by inclined leaf springs arranged at equiangular intervals. Used as a spring. If the torsional amplitude is increased, the effective length for the vibration between the bolts fixing the upper and lower ends is increased. This reduces the spring constant of the leaf spring. That is. Resonance frequency decreases. This is considered to be a cause. FIG. 10 shows the transition of the resonance frequency when the coil voltage is changed from 20 volts to 70 volts as described above. Although this is an experimental example, as shown in FIG. 7, when the coil voltage is gradually changed to time t 0 , the resonance frequency decreases as the amplitude increases during resonance. Although it depends on the speed, for example, a temporal change of the driving frequency as shown in FIG. 8 is observed. In the vicinity of the resonance point, the amplitude fluctuates greatly with a slight change in frequency. Although this is an unstable region, the vibration displacement of the bowl changes as shown in FIG. That is, at first, a change in the displacement of the vibration approximated to the increase in the coil voltage in FIG. 7 can be obtained, but the vibration displacement increases rapidly by time t 0 due to the phenomenon shown in FIG. There is a time zone, and after the elapse of time t 0 , it shows a so-called hunting phenomenon that rapidly decreases and increases, and makes control unstable.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an electromagnetic vibration feeder drive control method and apparatus capable of performing desired resonance tracking control during driving while performing an original soft start. .
[0005]
[Means for Solving the Problems]
The above problem is that the movable part and the base are coupled by a spring, an electromagnet is attached to the movable part or the base, and the phase difference between the voltage applied to the coil of the electromagnet and the vibration displacement of the movable part is determined. The frequency of the voltage applied to the coil is increased / decreased so that the phase difference becomes 180 degrees, and resonance vibration is caused. At the start of driving, the voltage is gradually increased to a predetermined height. Then, in the drive control method of the electromagnetic vibration feeder that is made constant thereafter, the frequency of the voltage at the previous drive is stored, and at the time of re-drive, the drive is started until the voltage after the drive starts reaches the predetermined height The frequency is solved by the drive control method of the electromagnetic vibration feeder, wherein the stored frequency is a constant frequency close to the resonance frequency. Alternatively, the movable part and the base are coupled by a spring, an electromagnet is attached to the movable part or the base, and the phase difference between the voltage applied to the coil of the electromagnet and the vibration displacement of the movable part is detected. The voltage detected by the detector is caused to resonate by increasing or decreasing the frequency of the voltage of the variable frequency power supply to be applied to the coil so that the phase difference becomes 180 degrees, and the voltage receiving the voltage of the variable frequency power supply In the drive control device of the electromagnetic vibration feeder that gradually raises the voltage to a predetermined height at the start of driving by the adjusting means, and thereafter makes it constant, the frequency of the voltage at the previous driving is stored, the drive control device of an electromagnetic vibrating feeder to said voltage after start drive during re driving becomes to the predetermined height, characterized in that it has a constant frequency close to the frequency that the stored resonant frequency It is solved Te.
[0006]
With the above configuration, the coil voltage is changed as shown in FIG. 7 at a predetermined driving frequency at the start of driving. During this time, since the drive frequency is constant, a desired change in vibration displacement can be obtained, and, for example, a single layer supply of components can be performed smoothly without applying shocking transfer force to the components in the bowl. . After the set time of the soft start, the resonance tracking control is performed in the same manner as in the past, and the characteristic is always transferred at the resonance frequency following the temporal fluctuation of the resonance frequency, and this characteristic can be exhibited.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 are block diagrams of a resonance tracking control circuit according to an embodiment of the present invention. Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0008]
In the embodiment of the present invention, a vibrating parts feeder is applied as an electromagnetic vibrating parts feeder, and in FIG. 1, a track is formed in a spiral shape on the inner peripheral wall portion in the bowl 1. Are coupled by inclined leaf springs 5 arranged at equal angular intervals. An electromagnet 3 is fixed to the base 2, and an electromagnetic coil 4 is wound around the electromagnet 3. The whole vibration parts feeder is installed on the floor by vibration-proof rubber 6.
[0009]
A vibration pickup P is disposed in the vicinity of the leaf spring 5. The pickup P is supported on the floor by a support (not shown). This is connected to the resonance point tracking control circuit 7 according to the present invention via the electric line W 1 . Further, an output is applied from the resonance point tracking control circuit 7 to the electromagnetic coil 4 of the electromagnet 3.
[0010]
FIG. 2 shows details of the resonance point tracking control circuit 7 in FIG. 1, which mainly comprises a variable frequency power supply 10, a phase detection circuit 11, a memory 15, and a constant amplitude control circuit 22. As shown in FIG. 1, an AC power supply 8 is connected to the variable frequency power supply 10 via a switch S, and the output thereof is an electromagnetic coil of the electromagnet 3 via a constant amplitude control circuit 22 and an amplifier 12. 4 is connected. Further, the output of the pickup P in FIG. 1 is connected to the amplifier 13 through the electric line W 1 . This amplified output is supplied to the phase detection circuit 11. The output of the amplifier 12 is further supplied to the phase detection circuit 11 and supplied through the electric wire W 3 , and this phase detection output is supplied to the variable frequency power supply 10. This may be an inverter, for example.
[0011]
According to the embodiment of the present invention, a constant amplitude control circuit 22 is connected to the variable frequency power supply 10, which is connected to an amplitude command circuit 21 for giving a predetermined amplitude command. Has been. Further, the output of the vibration pickup P is supplied through the electric line W 1 and the amplifier 13. The constant amplitude control circuit 22 includes a circuit that linearly changes the voltage until a predetermined time is reached after the driving is started. Further, after the switch S is closed, the variable frequency power supply 10 is supplied with the resonance frequency stored from the memory circuit 15 after the end of the previous driving, and this frequency is set to the constant amplitude frequency control circuit 22 when the switch S is closed. To the amplifier 12 side. The constant amplitude frequency control circuit 22 reaches the soft start end time and performs a constant amplitude operation. The variable frequency power supply 10 receives the output of the phase detection circuit 11 and performs the original resonance tracking control.
[0012]
Further, the phase detection circuit 11 according to the embodiment of the present invention performs phase detection by a method as shown in FIGS. This will be explained in detail in the following operation.
[0013]
The configuration of the embodiment of the present invention has been described above. Next, this operation will be described.
[0014]
When the switch S is closed, the AC power source 8 is connected to the variable frequency power source 10 and is in a driving state. This output voltage is supplied to the electromagnetic coil 4 of the electromagnet 3 via the amplifier 12. Thereby, the bowl 1 of the vibration part feeder performs torsional vibration. The pickup P detects this vibration displacement, is amplified by the amplifier 13, and is applied to the phase detection circuit 11. On the other hand, the voltage applied to the electromagnetic coil 4 at this time is supplied to this.
[0015]
FIG. 4A shows the temporal change of the applied voltage V, but a temporary delay is caused by the electromagnetic coil 4, and the current I flowing through the electromagnetic coil 4 changes as shown in FIG. 4B. This current generates an alternating magnetic attractive force between the electromagnet 3 and the bowl 1, and the bowl 1 undergoes torsional vibration. This vibration displacement, as shown in FIG. If the vibration displacement S 1 is positive at the zero cross point where the coil voltage V changes from positive to negative when it is delayed by 90 degrees, the phase difference φ at the resonance point ω 0 (angular frequency) is as shown in FIG. Since it is 90 degrees, the phase detection circuit 11 determines that the frequency should be increased smaller than ω 0 , and the output frequency of the variable frequency power supply 10 is increased. This is amplified by the amplifier 12 and passed through the coil 4 of the electromagnet 3 to vibrate the bowl 1 with a higher frequency current. By approaching the resonance point ω 0 from the previous time, the amplitude increases. When the output frequency of the variable frequency power supply 10 further increases and finally exceeds ω 0 and becomes higher than this, the relationship between the vibration displacement S 2 and the coil voltage V becomes 270 degrees in phase difference as shown in FIGS. 4A and 4D. .
[0016]
As apparent from the relationship between the phase of the force frequency and the vibration displacement in FIG. 3, the output frequency of the variable frequency power supply 10 is decreased because the resonance point ω 0 is passed. In FIG. 3, C 1 , C 2 , and C 3 represent the viscosity coefficients of the vibration system, and C 3 > C 2 > C 1 .
[0017]
As described above, when the output frequency of the variable frequency power supply 10 is increased or decreased, this vibration part feeder is driven at the resonance frequency. In the spiral track (not shown) in the bowl 1 of the vibration part feeder, the parts are aligned by the parts aligning means so as to have a predetermined posture. This posture is supplied to the next process.
[0018]
When the switch S is opened to stop the driving of the vibrating parts feeder, the output from the variable frequency power supply 10 is lost and the driving of the bowl 1 is stopped. The non-volatile memory 15 stores the output frequency of the variable frequency power supply 10 before the switch S is turned off. That is, the output frequency of the variable frequency 10 is stored in the memory 15 during driving or every fixed time during driving.
[0019]
When the switch S is closed to start driving the vibration parts feeder again, the variable frequency power source 10 is driven to output the resonance frequency stored in the memory 15 at this time. Accordingly, the bowl 1 of the vibrating parts feeder is driven at a constant resonance frequency from the beginning. Therefore, there is no shock when shifting from the forced vibration to the resonance frequency as in the prior art, and the power source capacity can be reduced. Further, in the embodiment of the present invention, soft start is performed.
[0020]
Hereinafter, every time the driving stop and the driving start are repeated, the contents of the memory 15 are rewritten every time the driving is stopped. However, the resonance frequency of the vibrating parts feeder varies in units of one month and one year. Therefore, if the resonance frequency was obtained by tracking control as in the past, a large amount of current must be passed to move from forced vibration to resonant vibration as described above. Since the drive can be started at the previous resonance frequency even if the fluctuation of the resonance frequency is large, the vibration parts feeder can always be driven with a small power supply capacity without a shock.
[0021]
With the above configuration, the resonance tracking control is performed after the soft start end time. Therefore, the vibration displacement gradually increases as desired at the constant drive frequency, that is, the resonance frequency in this embodiment until the set time after the start of the drive. Therefore, the parts in the bowl of the vibrating parts feeder are rapidly advanced to the aligning means, for example, the wiper, and the parts are not clogged, and the original parts aligning operation can be performed thereafter.
[0022]
That is, after the start of driving, as shown in FIG. 5, the driving frequency until time t 0 is constant at f 1, the set time after t 0, but of performing the tracking control, increase or decrease the amount as shown a slight There is a constant drive frequency f 1 in a short time, that is, the resonance point is approached. Thereby the vibration displacement to the set time t 0 as shown in FIG. 6 rises linearly from zero to a, after repeated increase and decrease of time after t 0, slight vibration displacement, a the predetermined vibration in a short time It becomes.
[0023]
The embodiment of the present invention has been described above. Of course, the present invention is not limited to this, and various modifications can be made based on the technical idea of the present invention.
[0024]
For example, in the above embodiment, the vibration parts feeder that performs linear torsional vibration is described as the electromagnetic vibration feeder, but the present invention can also be applied to an elliptical vibration parts feeder. In this case, it has a vertical vibration plate spring, a horizontal vibration plate spring, a vertical vibration electromagnet, and a horizontal vibration electromagnet, and a predetermined position between both vibration displacements obtained by both vibration forces. Although the elliptical vibration is performed with a phase difference, the present invention may be applied to one of the driving units, for example, the horizontal excitation force side.
[0025]
The present invention can also be applied to a linear vibration feeder that performs linear vibration.
[0026]
In the above embodiment, the drive frequency that is constant after the start of driving is the resonance frequency that is stored at the end of the previous drive. However, the present invention is not limited to this, and the resonance frequency in the vicinity of the expected resonance frequency is constant. You may use as a frequency to do.
[0027]
【The invention's effect】
As described above, according to the drive control method and apparatus of the electromagnetic vibration feeder of the present invention, the coil voltage can be gradually increased after the start of driving so that the vibration displacement can follow this. Even if the driving frequency suddenly rises or the driving frequency fluctuates after the soft start is completed, the original resonance tracking control of the electromagnetic vibration feeder can be reliably performed.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a vibration part feeder and a resonance point tracking control circuit for driving control according to an embodiment of the present invention.
FIG. 2 is a block diagram showing details of a resonance point tracking control circuit in FIG. 1;
FIG. 3 is a chart showing the relationship of the phase difference between the angular frequency of force and the vibration displacement for illustrating the operation of the embodiment of the present invention.
FIG. 4 is a chart showing the operation of the embodiment of the present invention, where A is a temporal change in coil voltage, B is a temporal change in coil current, and C is driven at a frequency lower than the resonance frequency of vibration displacement. , D is the time change of the vibration displacement when driven at a frequency higher than the resonance frequency.
FIG. 5 is a chart showing a temporal change in drive frequency showing the effect of soft start according to the embodiment of the present invention.
FIG. 6 is a chart showing a temporal change in vibration displacement showing the effect of the soft start.
FIG. 7 is a chart showing temporal changes in the coil voltage for soft start.
FIG. 8 is a chart showing temporal changes in drive frequency after the start of driving in the conventional example.
FIG. 9 is a chart showing temporal changes in vibration displacement after the start of driving in the conventional example.
FIG. 10 is a chart showing the change of the resonance point due to the coil voltage of the vibration part feeder.
[Explanation of symbols]
7 resonance point tracking control circuit 10 variable frequency power supply 11 phase detection circuit 21 amplitude command circuit 22 constant amplitude control circuit

Claims (8)

可動部と基台とをばねで結合し、前記可動部か前記基台に電磁石を取付け、該電磁石のコイルに印加される電圧と前記可動部の振動変位との位相差を検出して、該位相差が180度となるように前記コイルに印加される電圧の周波数を増減させて共振振動させるようにし、駆動開始時には前記電圧を所定の高さにまで徐々に上昇させて、以後一定とするようにした電磁振動フィーダの駆動制御方法において、前回の駆動時の前記電圧の周波数を記憶し、再駆動時には駆動開始後の前記電圧が前記所定の高さになるまでは駆動周波数は前記記憶した周波数を共振周波数に近い一定周波数としたことを特徴とする電磁振動フィーダの駆動制御方法。A movable part and a base are coupled by a spring, an electromagnet is attached to the movable part or the base, a phase difference between a voltage applied to a coil of the electromagnet and a vibration displacement of the movable part is detected, and the The frequency of the voltage applied to the coil is increased / decreased so that the phase difference becomes 180 degrees, and the vibration is caused to resonate. At the start of driving, the voltage is gradually increased to a predetermined height, and then constant. In the drive control method of the electromagnetic vibration feeder, the frequency of the voltage at the previous drive is stored, and the drive frequency is stored until the voltage after starting the drive reaches the predetermined height at the time of re-drive . A drive control method for an electromagnetic vibration feeder, wherein the frequency is a constant frequency close to a resonance frequency. 前記記憶される前記前回の駆動時の前記電圧の周波数は、駆動毎に書き変えられるようにしたことを特徴とする請求項1に記載の電磁振動フィーダの駆動制御方法。2. The drive control method for an electromagnetic vibration feeder according to claim 1, wherein the stored frequency of the voltage at the previous drive is rewritten for each drive. 前記位相差の検出は前記電圧の負から正へ又は正から負へのゼロクロスポイントにおいて前記振動変位が正か負かによって行うようにした請求項1〜2のいづれかに記載の電磁振動フィーダの駆動制御方法。The electromagnetic vibration feeder according to claim 1, wherein the phase difference is detected based on whether the vibration displacement is positive or negative at a zero cross point of the voltage from negative to positive or from positive to negative. Control method. 駆動開始後の前記電圧は所定の勾配で直線的に上昇させることにより、前記徐々に上昇させるようにしたことを特徴とする請求項1に記載の電磁振動フィーダの駆動制御方法。2. The drive control method for an electromagnetic vibration feeder according to claim 1, wherein the voltage after the start of driving is increased gradually by linearly increasing at a predetermined gradient. 前記電圧が所定の高さに達した後は、所定の振巾で前記可動部が振動するように前記電圧を調節して定振巾制御するようにしたことを特徴とする請求項1に記載の電磁振動フィーダの駆動制御方法。2. The constant amplitude control according to claim 1, wherein after the voltage reaches a predetermined height, the voltage is controlled so as to vibrate the movable part with a predetermined amplitude. Drive control method for electromagnetic vibration feeder. 可動部と基台とをばねで結合し、前記可動部か前記基台に電磁石を取付け、該電磁石のコイルに印加される電圧と前記可動部の振動変位との位相差を位相差検出器により検出して、該位相差が180度となるように前記コイルに印加されるべき可変周波数電源の電圧の周波数を増減させて共振振動させるようにし、かつ前記可変周波数電源の電圧を受ける電圧調節手段により、駆動開始時には前記電圧を所定の高さにまで徐々に上昇させて、以後一定とするようにした電磁振動フィーダの駆動制御装置において、前回駆動時の前記電圧の周波数を記憶し、再駆動時には駆動開始後の前記電圧が前記所定の高さになるまでは前記記憶した周波数を共振周波数に近い一定周波数としたことを特徴とする電磁振動フィーダの駆動制御装置。A movable part and a base are coupled by a spring, an electromagnet is attached to the movable part or the base, and a phase difference between a voltage applied to a coil of the electromagnet and a vibration displacement of the movable part is detected by a phase difference detector. Voltage adjusting means for detecting and causing resonance oscillation by increasing or decreasing the frequency of the voltage of the variable frequency power supply to be applied to the coil so that the phase difference is 180 degrees, and receiving the voltage of the variable frequency power supply Thus, in the drive control device of the electromagnetic vibration feeder, the voltage is gradually increased to a predetermined height at the start of driving, and is made constant thereafter. The drive control device for an electromagnetic vibration feeder, wherein the stored frequency is set to a constant frequency close to a resonance frequency until the voltage after the drive starts reaches the predetermined height. 前記記憶される前記前回駆動時の前記電圧の周波数は、駆動毎に書き変えられるようにしたことを特徴とする請求項6に記載の電磁振動フィーダの駆動制御装置。7. The drive control device for an electromagnetic vibration feeder according to claim 6, wherein the stored frequency of the voltage at the previous drive is rewritten for each drive. 前記位相差の検出は前記電圧の負から正へ又は正から負へのゼロクロスポイントにおいて前記振動変位が正か負かによって行うようにした請求項6又は7に記載の電磁振動フィーダの駆動制御装置。The drive control device for an electromagnetic vibration feeder according to claim 6 or 7, wherein the phase difference is detected depending on whether the vibration displacement is positive or negative at a zero cross point from negative to positive or from positive to negative. .
JP29941997A 1997-10-16 1997-10-16 Driving control method and apparatus for electromagnetic vibration feeder Expired - Fee Related JP4066480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29941997A JP4066480B2 (en) 1997-10-16 1997-10-16 Driving control method and apparatus for electromagnetic vibration feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29941997A JP4066480B2 (en) 1997-10-16 1997-10-16 Driving control method and apparatus for electromagnetic vibration feeder

Publications (2)

Publication Number Publication Date
JPH11116029A JPH11116029A (en) 1999-04-27
JP4066480B2 true JP4066480B2 (en) 2008-03-26

Family

ID=17872325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29941997A Expired - Fee Related JP4066480B2 (en) 1997-10-16 1997-10-16 Driving control method and apparatus for electromagnetic vibration feeder

Country Status (1)

Country Link
JP (1) JP4066480B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5843142B2 (en) * 2011-08-31 2016-01-13 シンフォニアテクノロジー株式会社 Electromagnetic vibration feeder drive control method and apparatus, and electromagnetic vibration feeder
JP6136122B2 (en) * 2012-06-08 2017-05-31 シンフォニアテクノロジー株式会社 Work separation system
JP2016160099A (en) * 2015-03-05 2016-09-05 シンフォニアテクノロジー株式会社 Vibration feeder control device and vibration feeder

Also Published As

Publication number Publication date
JPH11116029A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
US6144545A (en) Microactuator and method for controlling resonant frequency thereof
US5955799A (en) Linear vibration motor and method for controlling vibration thereof
US5883478A (en) Apparatus and method for controlling vibrating equipment
JP6579778B2 (en) Vibration type driving device, replacement lens including vibration type driving device, imaging device, and method of manufacturing vibration type driving device
JP4066480B2 (en) Driving control method and apparatus for electromagnetic vibration feeder
JP4211082B2 (en) Drive control method and apparatus for vibration feeder
JP4211073B2 (en) Drive control method and apparatus for elliptical vibration feeder
JP3912562B2 (en) Elliptical vibration parts feeder
JP4078694B2 (en) Oval vibration parts feeder drive control method and elliptic vibration parts feeder
JP4211072B2 (en) Drive control method and apparatus for elliptical vibration parts feeder
JPH11193124A (en) Drive controlling method for ollipitical vibration feeder and device thereof
JP5843142B2 (en) Electromagnetic vibration feeder drive control method and apparatus, and electromagnetic vibration feeder
JP4061685B2 (en) Drive control method and apparatus for elliptical vibration feeder
JP3917700B2 (en) Vibration feeder control method, control device, and weighing device
JP2893917B2 (en) Drive control device for vibrator
JPH11180529A (en) Method of drivingly controlling elliptical vibration parts feeder
JPS627083B2 (en)
JP4168469B2 (en) Drive control device for elliptical vibration parts feeder
JPH11130229A (en) Method for controlling drive of elliptic vibrating part feeder and device therefor
JPH11199027A (en) Carrying speed control method of ellipse vibrator
JP2853214B2 (en) Drive control method of elliptical vibration parts feeder
JP4168464B2 (en) Driving control method and apparatus for electromagnetic vibration feeder
JP2019134633A (en) Vibration type driving device, driving method of vibration type actuator, and electronic apparatus
JPH11180527A (en) Drive control method for elliptic vibration part feeder and device therefor
JPH0574436B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070907

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees